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1 | INTRODUCTION
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Abstract

Post-fire debris flows represent one of the most erosive consequences associated
with increasing wildfire severity and investigations into their downstream impacts
have been limited. Recent advances have linked existing hydrogeomorphic models to
predict potential impacts of post-fire erosion at watershed scales on downstream
water resources. Here we address two key limitations in current models: (1) accurate
predictions of post-fire debris flow volumes in the absence of triggering storm rainfall
intensities and (2) understanding controls on grain sizes produced by post-fire debris
flows. We compiled and analysed a novel dataset of depositional volumes and grain
size distributions (GSDs) for 59 post-fire debris flows across the Intermountain West
(IMW) collected via fieldwork and from the literature. We first evaluated the utility
of existing models for post-fire debris flow volume prediction, which were largely
developed for Southern California. We then constructed a new post-fire debris flow
volume prediction model for the IMW using a combination of Random Forest model-
ling and regression analysis. We found topography and burn severity to be important
variables, and that the percentage of pre-fire soil organic matter was an essential pre-
dictor variable. Our model was also capable of predicting debris flow volumes with-
out data for the triggering storm, suggesting that rainfall may be more important as a
presence/absence predictor, rather than a scaling variable. We also constructed the
first models that predict the median, 16th percentile, and 84th percentile grain sizes,
as well as boulder size, produced by post-fire debris flows. These models demon-
strate consistent landscape controls on debris flow GSDs that are related to land
cover, physical and chemical weathering, and hillslope sediment transport processes.
This work advances our ability to predict how post-fire sediment pulses are trans-
ported through watersheds. Our models allow for improved pre- and post-fire risk

assessments across diverse ranges of watersheds in the IMW.
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particularly in mid-elevation forests (1680-2590 m; Abatzoglou &
Williams, 2016; Westerling et al., 2006; Wilkins et al., 2021). This is

Wildfire activity has increased considerably in western North America
over the past three decades and is expected to continue to increase in
frequency, severity, and size due to increasing drought and high fuel
loads (Hawbaker & Zhu, 2012; Jager et al., 2021; Murphy et al., 2018;
Westerling et al., 2011). Climate change-induced drought is resulting
in smaller snowpack and earlier snowmelt (Mote et al., 2005; Saley

et al., 2022), which lead to longer fire seasons and drier fuels,

concerning because mid-elevation forests host the water supply for
two-thirds of the population of the western United States (Brown
et al., 2008; Murphy et al., 2018).

High-severity fire can substantially reduce the infiltration capacity
of soil, which causes increased runoff, surface erosion, and can gener-
ate debris flows (Cannon & Gartner, 2005; Cannon et al., 2001; Doerr
et al., 2006; Mataix-Solera et al., 2011; Ren & Leslie, 2020;
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Wondzell & King, 2003). However, there is a shortage of quantitative
information regarding the grain size distributions of sediment eroded
from post-fire landscapes, which hinders our ability to predict down-
stream transport and delivery of sediment and associated risk to
downstream natural resources and infrastructure, such as water sup-
ply reservoirs. As fire activity increases across western North America,
it is essential to understand the fundamental impacts post-fire erosion
may have on downstream resources, specifically reservoirs and
aquatic habitat (Jager et al., 2021).

Debris flows are one of the most erosive and potentially hazard-
ous risks following a wildfire and have the potential to degrade water
quality, water supply, and aquatic habitat (Martin, 2016; Moody &
Martin, 2004; Robinne et al., 2016; Sedell et al., 2015; Smith
et al., 2011). Depending on sediment composition and volume, post-
fire debris flows that enter waterways may either degrade or enhance
aquatic habitat (Brown et al., 2001; Burton, 2005; Gresswell, 1999;
Roghair et al., 2002). Aquatic organisms, such as fish, require particu-
lar riverbed grain sizes for their survival (Kondolf, 2000), and those
requirements may differ with species, life stage, and habitat purpose
(e.g. Murphy et al., 2020). Sediment inputs from debris flows may sig-
nificantly alter bed grain size distributions (GSDs), shifting the system
closer to, or further from, optimal ecological conditions. For example,
increased inputs of fine sediments into river systems as a result of
post-fire erosion can result in the burying of gravels and pore spaces
necessary for spawning fish (Brown et al., 2001; Gresswell, 1999;
Propst & Stefferud, 1997), while deposition of coarse material can
increase channel complexity and improve aquatic habitat (Bisson
et al., 2003; Reeves et al., 1995; Sedell et al., 2015). Recent work has
also emphasized the detrimental and costly impacts of increasing
post-fire sedimentation on reservoir storage capacity (Gannon
et al, 2019; Martin, 2016; McCoy et al, 2016; Moody &
Martin, 2004; Murphy et al., 2018; Sankey et al., 2017). In order to
accurately assess reservoir vulnerability to post-fire erosion, we must
be able to predict the GSDs of that erosion as grain size exerts a first-
order control on how sediment is transported through a river network
(Ahammad et al., 2021; Czuba & Foufoula-Georgiou, 2014; Wilcock &
Crowe, 2003).

Both post-fire hillslope and debris flow erosion pose threats to
downstream water resources (e.g. Martin, 2016; Murphy et al., 2018),
yet to date only the downstream impacts of hillslope erosion have
typically been investigated (e.g. Gannon et al., 2019; Kampf et al,,
2020; Sankey et al., 2017). One key reason for this disparity is a lack
of data and knowledge regarding the size and transport dynamics of
debris flow sediment. The grain sizes from hillslope erosion are con-
trolled predominantly by soil characteristics (Pietraszek, 2006;
Robichaud, 2005; Robichaud et al., 2016; Shakesby et al., 2016),
whereas the controls on the grain size distribution of debris flows are
not well understood (Nyman et al., 2020). Because debris flows are
recognized as one of the largest contributors of erosion post-fire
(Ellett et al., 2019; Moody & Martin, 2009), it is essential that debris
flow characteristics such as occurrence, behaviour, and composition
are better understood to predict the impacts of post-fire erosion on
downstream water resources.

Several predictive models have advanced our ability to predict
the occurrence and magnitude of post-fire debris flows (Cannon et al.,
2010; Gartner et al., 2008, 2014; Liu & He, 2020; Sankey et al., 2017;
Staley et al., 2017). In particular, Staley et al. (2017) developed an

empirical model for predicting post-fire debris flow generation for the
western United States. This model has been adopted by the
United States Geological Survey (USGS) and the United States Forest
Service (USFS) for post-fire hazards assessments and is widely used
across the western United States. Gartner et al. (2008) developed a
set of empirical models to predict the volumes of debris flows in bur-
ned basins in the western United States using data from Southern Cal-
ifornia, Utah, and Colorado. Gartner et al. (2014) developed another
empirical model used to predict debris flow volumes for burned basins
using data solely from Southern California, which has been adopted as
the primary model used by the USGS and USFS for predicting debris
flow volumes across the western United States. We note that the
models from all three of these studies require detailed rainfall data on
the triggering event storm for use in either validation or prediction.
Additionally, with respect to modelling the fluvial transport of coarse
sediment inputs, recent improvements to sediment routing models
have allowed for improved predictions of mixed-size sediment trans-
port through large river networks (Ahammad et al., 2021
Czuba, 2018; Czuba et al., 2016; Gilbert & Wilcox, 2020; Pfeiffer
et al., 2020).

Due to the hazardous nature of debris flows, the majority of
studies and models developed over the past two decades have
focused on their initiation mechanisms, probability of occurrence,
and potential magnitudes (e.g. Cannon & Gartner, 2005, 2010;
Gartner et al., 2008, 2014; McGuire et al., 2021; Staley et al., 2017;
Tang et al., 2019). However, recent studies of post-fire response
have sought to link multiple predictive models to evaluate the
impacts of post-fire erosion at the scale of large watersheds
(>10 km?) (e.g. Gannon et al., 2019; Langhans et al., 2016; Murphy
et al., 2019; Nyman et al., 2020). Accurately modelling post-fire sedi-
ment cascades, particularly when including coarse inputs from debris
flows, ultimately requires detailed information about the location,
timing, volumes, and grain sizes of debris flow inputs to river net-
works (Murphy et al., 2019).

We identify and explore two key knowledge gaps that currently
limit the development of reliable post-fire, watershed-scale models.
(1) In the absence of data on triggering storm rainfall intensities, can
we reasonably predict observed volumes for post-fire debris flows?
(2) What controls the grain size distribution (GSD) of post-fire
debris flows? Specifically, while empirical models exist to predict
post-fire debris flow volumes (Gartner et al., 2008, 2014), rigorous
validation of these models outside of Southern California is limited.
Further, these models require high-resolution precipitation data
about the triggering storm event that are often difficult to predict
or constrain (Murphy et al., 2019; Nyman et al., 2015). Additionally,
no models exist to predict the GSDs of post-fire debris flows. This
presents a major obstacle in the development of reliable watershed-
scale wildfire risk assessment models, as grain size controls the
rates and modes of sediment transport through a river network
(Ahammad et al, 2021; Czuba & Foufoula-Georgiou, 2014;
Wilcock & Crowe, 2003).

The goal of this study is to improve predictions of post-fire debris
flow characteristics that currently limit our ability to predict large
watershed-scale sediment delivery, transport, and downstream
impacts after wildfire. This research focuses on quantifying GSDs of
post-fire debris flows, identifying upstream, landscape controls on

these GSDs, evaluating existing post-fire debris flow volume models,

QSUAIIT SUOWIWO)) dANEAI)) d[qedrjdde oy £q pausdA0 dIe S9[oNIE Y ‘2SN JO SO[NI IO AIRIqI] SUIUQ AJ[IAN UO (SUOHIPUOI-PUB-SWLIA} W0 K[ 1M ATRIqI[ouruo//:sdny) SUOnIpuo)) pue swid [, Yl 23S [£707/60/22] U0 A1eiqu suruQ Ao[ipn ‘ANSIOAIUN 21BIS el Aq 084S dS9/2001°01/10p/Wwod" A[Im " AIeIqI[our[uo//:sdiy woiy papeoumod ‘I ‘€70z ‘L£869601



WALL €T AL

Yellowstone Fires (b)

Farmington .

Borrow Pit .

Dinosaur National

Monument Fires —|

Springville and Oak Hills . .
Dollar Ridge
Coal Hollow, Pole Creek,

Mollie .’
Tank Hollow

' Seeley
Clay Springs . Trail Mountain

Twitchell Canyon .

. Brian Head
@ @ shinge $

West Valley

Woodbury

0 25 50 100 150 200
BEEE== F—=— Kilometers

@ Field Work Sites

0 125 250 500 . Data from the Literature

] Kilometers

FIGURE 1 Site locations examined as part of this study. (a) Map showing the sites of wildfires across the IMW used to evaluate both
post-fire debris flow grain sizes and depositional volumes. (b) Detailed map showing the sites and names of Utah wildfires examined in this study.
In both panels, red circles represent sites where fieldwork was conducted for this study, and blue circles represent sites where data was
previously collected and reported in published literature. [Color figure can be viewed at wileyonlinelibrary.com]

and constructing new predictive models for key GSD metrics and
deposit volumes of post-fire debris flows in the IMW. This work offers
the first in-depth study, of which the authors are aware, that investi-
gates landscape controls on the GSDs of post-fire debris flows.

2 | STUDY AREA

21 | Intermountain West
The Intermountain West (IMW) is defined as the region of the
United States between the Cascade Range and Sierra Nevada to the
west and the front range of the Rocky Mountains to the east. The cli-
mate of this region is influenced by its mid-continental location, high
average elevations, and complex mountain topography (WWA, 2021),
which vyields low humidity, large seasonal temperature changes, and
steep gradients of temperature and precipitation with elevation. The
region also has a strong seasonal distribution of precipitation, with the
majority delivered as snow during winter months (WWA, 2021).
Historical trends in fire activity across the western United States
reveal that the area burned each year prior to Euro-American settle-
ment was much higher than the annual burn area today (Murphy
et al., 2018), and overall, the west has been in a ‘fire deficit’ for at

least six to seven decades compared to historical fire activity (Marlon

et al.,, 2012). While the area burning in the western United States is
not exceptionally high from a long-term perspective, recent trends in
wildfire behaviour and the amount of infrastructure damage caused
by high-severity fire across the west are unprecedented
(Abatzoglou & Williams, 2016; Duane et al., 2021). As the area burned
at high severity in the western United States increases, sediment
yields from hillslope erosion are projected to at least double in 35% of
western watersheds by 2050 (Sankey et al., 2017). Higher sediment
yields as a result of increasing fire activity in the western
United States pose a great threat to water storage capacity in western
US reservoirs, which are essential in supporting growing populations
across the region (Bladon et al., 2014; Martin, 2016; Murphy
et al., 2018).

2.2 | Datafrom the literature

Post-fire debris flows have been extensively studied across the IMW
(e.g. Cannon & Gartner, 2005, 2010; Cannon et al., 2008; Langhans
et al,, 2016; Santi et al., 2008; Wondzell & King, 2003), yet very little
data has been reported on debris flow GSDs and volumes in this
region. While post-fire debris flow GSD data are sparse, some data
have been reported in the literature (Figure 1, Table 1). Here, we com-

pile all geolocated post-fire debris flow GSD and volume data that we
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TABLE 1 Wildfires examined in this study, including fire year, location (i.e. US state), data source, and the data collected or reported on from
each location. For each site, the number of debris flows examined is reported in the table

Fire Fire year State Source
Yellowstone 1988 WY/MT  Meyer and Wells (1997)
Fires
Dinosaur Ntl 1996-2002 CO Larsen (2003),
Monument Martin (2000)

Oak Hills 2000 uT Giraud and
McDonald (2009)

Farmington 2000 uT Giraud and
McDonald (2009)

Borrow Pit 2001 uT Giraud and
McDonald (2009)

Mollie Fire 2001 uT Giraud and
McDonald (2009)

Springville 2002 uT Giraud and
McDonald (2009)

Twitchell 2010 uT Murphy et al. (2019)

Clay Springs 2012 uT Fieldwork

Seeley 2012 uT Fieldwork

Shingle 2012 uT Fieldwork

Brianhead 2017 uT Fieldwork

Tank Hollow 2017 uT Fieldwork

Trail Mountain 2017 uT Fieldwork

Coal Hollow 2018 uT Fieldwork

Dollar Ridge 2018 uT Fieldwork

Pole Creek 2018 uT Fieldwork

West Valley 2018 uT Fieldwork

Woodbury 2019 AZ McGuire and
Youberg (2020)

Total

could find reported in the literature from this region into one dataset
for our analysis (Figure 1, Table 1). From the literature we compiled
17 post-fire debris flow volume measurements and 22 GSD measure-
ments across fires in Utah, Arizona, Colorado, Montana, and Wyoming

(Figure 1).

2.3 | Field study sites

We identified and conducted fieldwork for an additional 29 post-fire
debris flow deposits from 10 fires that occurred between 2012 and
2018 across the state of Utah (Figure 1, Table 1). The contributing
catchments for these sites span a wide array of lithology, climate, burn
severity, and vegetation characteristics, and have drainage areas rang-
ing from 0.1 to 10 km?2. Ten percent of the catchments have underly-
ing unconsolidated material, 25% of the catchments have underlying
igneous rock, and 64% of the catchments have underlying sedimen-
tary rock (Hill et al., 2015). The average elevations of the study catch-
ments range from 1600 to 3000 m and include barren land, conifer
forest, deciduous forest, mixed forest, grassland, wetland, shrubland,
and agricultural land (Hill et al., 2015).

Surface and Only Only
subsurface subsurface surface Boulder

Volume GSD GSD GSD D84
1 n/a 3 n/a n/a
6 n/a n/a 9 n/a
1 n/a n/a n/a n/a
2 n/a n/a n/a n/a
1 n/a n/a n/a n/a
5 n/a n/a n/a n/a
1 n/a n/a n/a n/a
n/a 2 7 n/a n/a
2 2 n/a n/a 2

1 1 n/a n/a 1

1 1 n/a n/a 1

4 4 n/a n/a 4

2 2 n/a n/a 2

4 4 n/a n/a 4

2 2 n/a n/a 2

5 5 n/a n/a 5

5 5 n/a n/a 5

3 3 n/a n/a 3

1 n/a n/a 1 n/a
47 31 10 10 29

3 | METHODS

We developed predictive models for post-fire debris flow characteri-
zation using a combination of field, geospatial, and statistical analysis,

as detailed below.

3.1 | Measurement of variables

3.1.1 | Deposit volumes

To constrain the debris flow deposit volume at each site we mea-
sured, we used a combination of field surveying and 3D reconstruc-
tion methods. First, using a handheld GPS device, we surveyed the
perimeter of the deposit to measure the planview area. We then mea-
sured the depth of the deposit at several locations within the deposit
perimeter. To constrain uncertainty in debris flow volumes, we
recorded detailed observations about the locations and potential mag-
nitudes of erosion that may have occurred since initial deposition. We
used the combination of mapped extent and spatially dispersed mea-

surements of sediment depth to create 3D models of each deposit.
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Specifically, we generated a triangulated irregular network (TIN) for
each deposit to minimize potential overfitting between depth values
that occur with other interpolation methods. Using the TIN surfaces,
we calculated the volume for each debris flow deposit. Finally, we
estimated the percentage error in volumes using bounds rec-
ommended for this method (i.e. —25 to +30% as per Santi, 2014).

The post-fire debris flow volume data compiled from the litera-
ture was measured using a variety of techniques. Meyer and Wells
(1997) mapped debris flow deposits in Yellowstone National Park
using air photos combined with compass and tape methods to map
the perimeter. They then created an isopach map with approximately
50 deposit thickness measurements to estimate deposit volume. In
contrast, Martin (2000), Larsen (2003), and Giraud and McDonald
(2009) estimated debris flow volumes using deposit area and the aver-
age of depth measurements (these data were used in the construction
of the Gartner et al., 2008 Rocky Mountain model). In total, we com-
piled a dataset of 47 debris flow volumes located in Utah, Wyoming,
Montana, Colorado, and Arizona, which represents the largest geo-
located dataset of post-fire debris flow volumes we are aware of out-

side of Southern California (Table 1, Figure 1).

3.1.2 | Grain size distributions

For all 29 debris flow deposits we visited, we measured both the sur-
face and subsurface GSDs, as well as the largest boulders. At each
deposit, we conducted at least one random walk Wolman pebble
count with a minimum of 100 measurements (Wolman, 1954), as well
as a minimum of two subsurface sieve mass measurements. Addition-
ally, we measured the b-axis of the 30 largest boulders observed on
each debris flow deposit to constrain the coarsest end of the GSDs,
which may have unique implications for aquatic habitat. This upper-
most end of GSDs is also often not well characterized by Wolman
pebble counts or sieving. These three methods of measuring grain
sizes provide a reasonable characterization of GSDs at each debris
flow deposit.

The post-fire debris flow GSD data compiled from the literature
used similar but variable methods. Meyer and Wells (1997) collected
subsurface grain size data in Yellowstone National Park using sieve
mass measurements. Larsen (2003) measured surface GSDs in Dino-
saur National Monument using Wolman pebble counts. Murphy et al.
(2019) collected both surface and subsurface GSDs using sieve mass
measurements and Wolman pebble counts in the Tushar Mountains
of Utah. Lastly, McGuire et al. (2021) collected surface GSDs using
Wolman pebble counts in the Superstition Mountains of Arizona.
From the literature, we compiled a total of 31 post-fire debris flow
grain size measurements, though 10 only had subsurface data and
another 10 only had surface data. No previous study reported boulder
sizes (Table 1, Figure 1).

3.1.3 | Catchment characteristics

We extracted catchment topographic metrics by analysing 10 m digital
elevation models from the National Elevation Dataset (NED) in ArcGIS.
Variables included contributing area, average catchment gradient,

catchment area with slopes = 23°, and mean catchment elevation.

—————— 183
T WiLEY
Burn severity data for all fires examined in this study were sou-

rced from the USGS Monitoring Trends in Burn Severity (MTBS) pro-
ject (Finco et al., 2012). MTBS provides burn severity data classified

as low, medium, and high. Using the classified severity rasters, we cal-
culated potential predictor variables for our analysis, including per-
centage of a catchment burned at moderate and high severity and
area of a catchment burned at moderate and high severity (as per
Gartner et al., 2014).

Catchment characteristics, such as lithology, vegetation cover,
and climate metrics, were extracted using the US EPA Stream-
Catchment (StreamCat) dataset (Hill et al., 2015). From this database,
we extracted each catchment’s mineralogical composition and litho-
logical composition. Additional lithologic variables extracted from the
database included compressive strength and hydraulic conductivity.
Soil properties (pre-fire) extracted from StreamCat included average
clay, sand, and organic matter (OM) content, average soil permeability,
soil depth to bedrock, and the soil erodibility factor. Additionally, we
extracted the percentage vegetation type for each catchment
(e.g. percentage conifer, deciduous, shrub, grasslands). Climate metrics
from this database include the 30-year average precipitation, mean
annual runoff, 30-year mean annual temperature, and average sea-
sonal water table depth. Finally, we extracted the average wetness
index from StreamCat, which is a metric combining the contributing
catchment area, slope, and flow paths (Hill et al., 2015; Kopecky et al.,
2021).

The rainfall intensities of the storms that triggered the debris
flows in our field dataset are unknown and are also unreported for
most of the data gathered from the literature. Therefore, using the
National Oceanic and Atmosphere Administration (NOAA) Precipita-
tion Frequency Data Server (PFDS), we extracted the 10 and 15-min
duration rainfall intensities for both the 2- and 100-year storm event

in each catchment (more on this approach below).

3.2 | Evaluation of existing volume models
To evaluate the existing post-fire debris flow volume prediction
models, we first calculated the volumetric estimates for each debris

flow using the Gartner et al. (2008) Rocky Mountain model:

In (V) =0.72(In $30) —0.02(i10) + 8.54 (1)

and the Gartner et al. (2014) Emergency Assessment model developed
for the western United States:

In(V) =4.22+0.39+/i15+0.36(In Bmh) +0.13vR (2)

where V= predicted debris flow sediment volume (md),
S30 = catchment area with slopes greater than or equal to 30% (km?),
i10 = peak 10-min rainfall intensity (mm/h), i15 = peak 15-min rain-
fall intensity (mm/h), Bmh = the catchment area burned at moderate
and high severity (km?), and R = catchment relief (m), computed as
the maximum minus minimum elevation.

Extremely local and high temporal resolution rainfall data for the
triggering storm event are needed to accurately apply the Gartner
et al. (2008, 2014) models, but these data are often not available.

Even when the data are available, it can still be challenging to
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impossible to accurately attribute debris flow events to the specific
rainfall event that triggered them. Therefore, in the absence of such
data (or alternatively, in cases where these models might be used for
pre-fire risk assessments), the best available data are the 1 km? reso-
lution recurrence interval (RI) average rainfall intensity data from
NOAA'’s Precipitation Frequency Data Server (PFDS). Accordingly, we
informed each Gartner et al. model using rainfall inputs representing
the 2- and 100-year storm intensities of the appropriate duration
(110 or i15) from this source. Staley et al. (2020) suggested that 90%
of documented post-fire debris flows in the western United States
have been generated by storms with intensities of <5-year R, so this
range of Rl intensities was chosen to reasonably constrain the possi-
ble upper and lower bounds of storm intensities that may have trig-
gered the debris flows in our study. To evaluate the models, we then
statistically compared the outputs for each storm event against the

measured volumes for each deposit.

3.3 | Model construction

We developed predictive models for post-fire debris flow deposit
grain sizes and volumes based on potential predictor variables charac-
terizing catchment morphology, burn severity, climate, lithology, soil
properties, and vegetation cover using a combination of machine
learning and regression methods. To capture the central tendency and
tails of the deposit GSDs, we constructed four separate models to
predict a deposit’s D16, D50, D84, and the D84 of boulders. Addi-
tionally, we constructed a volume prediction model that estimates
debris flow sediment yield from burned catchments.

The initial array of predictor variables selected for inclusion in our
analysis was based on previous debris flow probability and volume pre-
diction models (Gartner et al., 2008, 2014; Staley et al., 2017), as well as
additional catchment characteristics we hypothesized could influence
debris flow grain sizes and volumes. We used consistent statistical
methods to construct all of our GSD and volume models, which included
an initial variable selection step using Random Forest modelling followed
by predictive model construction using multiple linear regression (MLR).

3.3.1 | Random Forest

We first used Random Forest (RF) machine learning models to evalu-
ate the relative importance of all included predictor variables
(Breiman, 2001). RF models are a type of classification or regression
tree analysis used to evaluate complex relationships between predic-
tor and response variables by combining observations from an ensem-
ble of trees (Cutler et al., 2007; Fisher et al., 2021; Vaughan
et al., 2017). We initially removed any variables that demonstrated
high covariance by using the variance inflation factor (VIF) and then
examined the importance of the predictor variables using variable
importance plots (Gemuer et al., 2012), which rank variables based on
the mean decrease in model accuracy that would occur if they were
removed from the RF model. From these outputs, we visually identi-
fied breaks in the variable importance plots (i.e. significant drops in
the contributed accuracy) and selected the uppermost grouping of
best predictor variables (ranging from 7 to 12 variables across our RF

models). The relationships between each identified predictor and

response variable were then individually evaluated based on both

visual diagnostics and univariate linear regression.

3.3.2 | Multiple linear regression

We used MLR analyses to develop models for post-fire debris flow grain
size metrics and deposit volumes. Based on data from the 41 post-fire
debris flows with subsurface grain size data (Table 1), we developed
models to predict three GSD metrics: the 16th percentile (D16), median
(D50), and 84th percentile (D84). The model to predict the 84th percen-
tile of boulder sizes (D84 boulders) was based only on data from the
29 deposits in our field study, as these were the only sites with boulder
data. The volumetric prediction model was developed using a dataset
that included deposit volumes from 41 post-fire debris flows (Table 1).

Requirements of linear regression analysis include: a linear rela-
tionship between the variables, normality in the residuals, and con-
stant variance in the residuals. Therefore, we first transformed all of
the GSD data into the phi scale (¢), or log base 2. To identify linear
correlations between the predictor and response variables, we calcu-
lated the Pearson product-moment correlation coefficient (Helsel
et al., 2020). We also attempted a natural log and square root trans-
formation for each variable to investigate which produced the most
linear relationship with the response variable. We moved forward in
our analysis with the transformation that exhibited the highest corre-
lation coefficient, the best linear visual diagnostics, and that met the
necessary linear regression assumptions. To test for normality in the
residuals we calculated a correlation between the observed residuals
and the expected residuals under normality. Next, to test if there is
constant variance in the residuals, we ran a Brown-Forsythe test,
which has a null hypothesis that the residuals have constant variance.
If the p-value is below a = 0.05, then there is not constant variance in
the residuals. After conducting these preliminary diagnostics on the
predictor variables, we selected all the variables that met the neces-
sary linear regression assumptions.

We next examined the narrowed response variables for
multicollinearity, which can result in unreliable models with unstable
and unrealistic parameter coefficients (Helsel et al., 2020). We used
both visual diagnostics, such as examining correlation plots and correla-
tion coefficients between predictors, and the VIF to diagnose
multicollinearity. After identifying associated predictor variables, we
kept the variable with the best diagnostics and highest correlation with
the response variable and removed the other variable from the model.

Every possible combination of the predictor variables that met the
above criteria were then assembled and examined as potential MLR
models (combination sets included one to seven predictor variables, see
the online Supporting Information). Seeking to identify the most parsi-
monious model for each response variable, we then selected the model
that exhibited the best combination of low Akaike information criterion
(AIC), which is an estimator of prediction error, and high R?, while using

the fewest number of predictor variables (Helsel et al., 2020).

3.4 | Model validation

Due to the small sample sizes of our datasets, we validated each of

our selected grain size and volume models using a fivefold cross-
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validation approach (Kohavi, 2001). For fivefold cross-validation, the
dataset for each model is randomly shuffled and then split into five
groups. The process loops through each group, holding it as the test
dataset and using the remaining four groups as the training dataset.
The model is fit on the training sets and evaluated on the test sets,
and then the performance measures reported by each trial are aver-
aged to report a cross-validated R? and root mean square error
(RMSE). Ultimately, by using fivefold cross-validation we were able to
evaluate whether or not overfitting of the MLR models occurred dur-

ing the model construction.

4 | RESULTS AND DISCUSSION
4.1 | Grain size distribution field measurements
411 | Results

To investigate the grain size variance both within single deposits and
between deposits, we examined grain size data from 51 different

post-fire debris flow deposits (Table 1, Figure 2). First, comparing sur-

(a)

FIGURE 2 Cumulative distributions
(CDFs) displaying the full GSDs for all
post-fire debris flow deposits examined in
this study. (a) CDF plot showing the GSDs
of subsurface sediment measured by sieve
mass measurements, and (b) CDF plot

Cumulative Percent Finer Than

face and subsurface metrics for the 31 deposits that contained both
data types, we found that the surface was much coarser than the sub-
surface material (Figure 3). The average offset from the line rep-
resenting the 1:1 relationship between the surface and subsurface
distributions is 3.32 for D16, 1.15 for D50, and 0.27 for D84
(Figure 3b). This offset suggests the D16 of the surface is much
coarser than the subsurface, while in contrast, the distributions for
the D84 are roughly similar. Additionally, Figure 4 displays the grain
size metric ranges (Figures 4a and c) and relative ranges in the phi
scale (Figures 4b and d). When examining the grain size metrics for all
51 deposits in the phi scale, the D16 exhibits the greatest relative
range compared to the D50 and D84, and the D84 has the least rela-
tive spread across all deposits (Figures 4b and d).

4.1.2 | Discussion

We observed inverse grading of the post-fire debris flow deposits.
This type of grading is potentially the result of some combination of
winnowing of fines from the deposit surface and from kinetic sieving

during transport, as smaller grains pass through larger particles in

Cumulative Percent Finer Than

showing the GSDs of surface sediment
measured by Wolman pebble counts.
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(a) The subsurface GSD metrics (D16, D50, D84) plotted against their respective surface GSD metric for the 31 debris flow

deposits with both measurements. The black line represents the 1:1 relationship between the surface and subsurface distributions. (b) Plot
showing the difference between the surface and subsurface values shown in panel (a). Metrics with equal values should plot along the black line
(= 0 on y-axis). These results demonstrate that, for nearly every deposit measured, surface grain sizes are coarser than subsurface sizes in the
same deposit across the full distribution of grain sizes. However, panel (b) highlights that this relationship is most pronounced in the finer tail of
deposit distribution, and the difference between the surface and subsurface becomes smaller in the median and coarser tail of deposit grain sizes.

[Color figure can be viewed at wileyonlinelibrary.com]
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(b)

FIGURE 4 Probability density
functions for the D16, D50, and D84
GSD metrics across all debris flow GSDs
examined in this study. The upper row
(panels a and b) shows the distribution of
surface GSD metrics, and the bottom row
(panels c and d) shows the distribution of
subsurface GSD metrics. The left-hand
column (panels a and c) shows the grain
size values plotted in linear space, and the
right-hand column (panels b and d) shows
the grain size values plotted in the phi

[] ot
[] oso
[] ps4

scale. These distributions show the

10 overlap in the values of D16, D50, and
D84 found across post-fire debris flows,
highlighting that there are not distinct
D16, D50, or D84 values for all debris
flow deposits. [Color figure can be viewed
at wileyonlinelibrary.com]
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motion and displace these larger particles upwards (Betran, 2003;
Naylor, 1980; Strom, 2006; Wang et al., 2012). While inverse grading
has not previously been investigated or demonstrated specifically in
post-fire debris flows, these findings are consistent with previous stud-
ies of debris flow rheology and sedimentology (Bridgewater, 1994;
Naylor, 1980; Zou et al., 2017). It is worth noting, however, that while
the identification of this phenomenon in our data is likely real, it is also
likely influenced by the differing methods used to collect the data. Spe-
cifically, the Wolman pebble counts used for surface measurements are
systematically biased against identifying finer sediments that would be
captured by the sieving techniques.

These findings indicate that measuring the subsurface material is
essential for obtaining accurate and wholistic characterizations of
post-fire debris flow GSDs. Particularly in the context of understand-
ing and predicting the impacts of post-fire sediment inputs to river
systems, only measuring a deposit’s surface material could result in a
substantial overestimate of grain size metrics, particularly for the finer
end of the GSD. These fine sediments would not only be more effi-
ciently transported downstream if delivered to a river, but may
degrade aquatic habitat and spawning grounds by infilling between
river gravels (Brown et al, 2001; Gresswell, 1999; Propst &
Stefferud, 1997). Thus, collecting grain size measurements of debris
flow subsurface material is critical for understanding and predicting

potential downstream impacts after fire.

4.2 | Predictive models
We developed four models to predict post-fire debris flow deposit
GSD metrics and one volume prediction model. Due to the observed

inverse grading of post-fire debris flow deposits, we developed our

5 10

Surface Grain Size (¥)

grain size models based on the subsurface grain size data from
41 post-fire debris flow deposits across a diversity of topographic,
lithologic, and ecological conditions.

All predictor variables used in the construction of these models
are publicly available and easy to obtain or derive using GIS software.
General statistics were calculated for all potential predictor variables
and include a correlation test for normality, the Brown-Forsythe test
of constant variance, and the Pearson correlation coefficient (Table 2).
Many models were developed and analysed during the MLR analysis
and only the most parsimonious model is reported here. Each
reported model exhibited a low AIC, high R?, a low residual standard

error, and no multicollinearity present between the predictors.

421 | Grain size models

Results

The four post-fire debris flow grain size models, including the model
equation, R?, fivefold cross-validated R?, and sample size used to pro-
duce each model, are detailed in Table 3. Every predictor in the D16,
D50, and D84 models is significant with a p-value < 0.1.

The D16 model exhibits an R? of 0.59, a cross-validated R? of
0.60, and 71% of the predicted D16 values are within one residual
standard error of the measured D16 value (Figure 5a). The D50 model
has an R? of 0.71, a cross-validated R? of 0.69, and 76% of the
predicted D50 values are within one residual standard error of the
measured D50 value (Figure 5b). The D84 model has an R? of 0.60, a
fivefold cross-validated R? of 0.56, and 76% of the predicted D84
values are within one residual standard error of the measured D84
value (Figure 5c). Finally, the D84 boulder model was constructed

using data from 29 debris flow deposits, which were collected during
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TABLE 2 Summary statistics and transformations of the predictor variables selected for the models, including the response variable related to
each predictor, the correlation coefficient between predictor and response, and the p-value for significance of each predictor, the results from the
Brown-Forsyth (BF) test for constant variance in the residuals, and results from the normality test of the residuals (normality of residuals). Refer

to Section 3.3.2 for interpretations of these tests

Response St.
Predictor variable variable Mean dev.
Mean annual D16 6.4 4.3
temperature (°C) D50
D84

Mean catchment Boulder D84 2184 520

elevation (m)

% Catchment with D16 52 26
slopes = 23° D84
Catchment area with slopes > 23° Volume 0.7 1.2
(km?)
Catchment area burned at Volume 0.7 1.7
moderate and high severities (km?)
Average catchment runoff (mm) D84 120 112
Volume
Average catchment wetness index D50 307 83
Boulder D84
Average catchment soil D50 6 2.5
permeability (cm/h) D84
% Soil organic matter Volume 0.8 0.3
Soil depth to bedrock (cm) D16 109 30.7
Average catchment rock D50 79.3 26.7
compressive strength (mPa) D84
% Catchment lithological Boulder D84 2.9 14
magnesium content
% Catchment with conifer cover D16 36 24.6

Corr. Significance BF Normality

Min Max Trans.  coeff. p-value test  of residuals
092 185 In 0.54 <0.0001 0.59 0.94
In 045 <0.0001 0.72 0.96
In 0.38 0.025 0.98 0.97
839 2924 In 0.23 0.26 0.85 0.99
0 95 —0.38 0.04 025 098
J 013 005 052 094
0 5.8 v 0.35 0.08 0.95 0.99
0 9.1 \/ 0.3 0.02 0.14 0.99
17 463 -0.52 0.06 0.23 0.98
041 0.08 0.74 0.99
189 450 In 0.25 0.07 048 0.92
-0.46 0.1 0.53 0.99
1 10.3 —0.46 0.0001 021 095
-0.37 0.0009 0.72 0.96
0.2 14 0.49 0.0005 0.95 0.99
43 151 0.28 0.01 0.17 0.95
30 153 -0.59 <0.0001 0.82 0.96
-0.59 0.0025 0.4 0.97
1.1 6.1 0.42 0.2 097 0.99
1.3 92 —0.49 0.03 0.05 0.97

TABLE 3 The best models found for predicting post-fire debris flow grain size metrics in the phi scale, including the equation, goodness-of-fit

statistics, and sample size

Model Equation # Variables R? x-val R? n

D16 (@) D16=—7.21+2.83In(T) —0.03Cp — 0.035p +0.04Rd 4 0.59 0.6 41
D50 (@) D50 = 5.52—0.036CS +1.17In(T) — 0.35K 3 0.71 0.69 41
D84 () D84 =4.83+0.66In (T) —0.004Ro — 0.27K +0.16/5p 4 0.6 0.56 41
Boulder D84 () D84B =3.75 — 0.002WI +0.022,/5p + 0.093Mg0 +0.75InE 4 0.34 0.25 29

The variables are defined as T = mean annual temperature (°C), Cp = percentage area of the catchment with conifer cover, Sp = percentage area of the
catchment with slopes = 23°, Rd = average catchment soil depth to bedrock (cm), CS = average catchment rock compressive strength (MPa), K = average
catchment soil permeability (cm/h), WI = average catchment wetness index, Ro = average catchment runoff (mm), MgO = average catchment lithological

magnesium oxide content, E = mean catchment elevation.

fieldwork as part of this study. The D84 boulder model predicts the
84th percentile size of the boulders in a debris flow deposit and has
an R? of 0.34, a cross-validated R? of 0.25, and 76% of the predicted
values are within one residual standard error of the measured value
(Figure 5d).

Discussion

Our results demonstrate that there are systematic landscape con-
trols on post-fire debris flow GSDs that allow for the prediction of
grain size metrics based on variables related to catchment land

cover, physical and chemical weathering, and hillslope sediment

transport processes. The four GSD models reported here are the
first investigation into landscape controls on post-fire debris flow
grain sizes. We examined 50 potential predictor variables, out of
which we identified 10 variables as significant in the prediction of
one or more key GSD metrics (Table 2). Notably, our analysis rev-
ealed that no wildfire-related metrics were identified as controls on
the GSD of post-fire debris flows. This suggests debris flow GSDs
are controlled by the grain sizes available for transport prior to the
fire, rather than any possible hydrogeomorphic effects of the fire,
which is consistent with previous observations in the literature
(Kean et al., 2011, 2019).
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FIGURE 5 Plots showing the grain size values predicted by each model plotted against the measured subsurface grain size metrics for each
debris flow deposit. Observed vs. predicted values for the D16 model (a), D50 model (b), D84 model (c), and boulder D84 model (d). The thick
black line in each plot represents the 1:1 relationship, and the thin black lines above and below the 1:1 line represent the envelope for one

residual standard error.

Variables that are known to influence weathering rates are pre-
sent in the GSD models. For example, mean annual temperature
(MAT) exhibits a significant positive relationship with D16, D50, and
D84. MAT can be related to the depth and intensity of frost cracking,
as it has been shown to be correlated with how much time an area
spends in the frost-cracking window and the availability of water to
contribute to segregation ice growth (Hales & Roering, 2007;
Messenzehl et al., 2017). MAT can also drive chemical weathering
rates and influence grain size; however, this effect should not be con-
sidered in isolation from local precipitation (Murphy et al., 2016; Sklar
et al., 2017). Elevation is also a proxy for a location’s exposure to
physical and chemical weathering processes (Marshall & Sklar, 2012;
Riebe et al., 2015; Sklar et al., 2016), and we found average catchment
elevation to have a significant positive relationship with a deposit’s
boulder D84.

The percentage area of the catchment with slopes 223° was also
found to be significant in the prediction of debris flow deposit D16
and D84, however, it exhibited a negative relationship with D16 and a
positive relationship with D84. The positive relationship between
D84 and slope is consistent with findings in the literature (Attal
et al., 2015; Riebe et al., 2015; Whittaker et al., 2010). Attal et al.

(2015) found that low-gradient slopes increase residence times,
exposing particles to weathering processes for longer periods of time,
resulting in the production of finer grain sizes. In contrast, the rela-
tionship between D16 and slope is negative. This could indicate that
slope is not acting as a proxy for weathering processes in its control
on D16, but instead reflecting debris flow transport processes for the
most transportable material. Terrain steepness encourages efficiency
of runoff-related erosion and sediment transport processes, which has
been found to directly influence the shear stress of overland, rill, and
channelized flow erosion (Cannon, 2001; Cannon et al., 2003;
Prancevic & Lamb, 2015; Prancevic et al., 2014; Santi et al., 2008;
Staley et al., 2017). It is possible that more overland flow and rill ero-
sion on steeper slopes could result in the entrainment, transport and
contribution of more fines to debris flows and produce a finer D16.
The catchment’s average rock compressive strength has a signifi-
cant negative relationship with debris flow deposit D50. We expected
rock strength to be an important variable in grain size prediction, how-
ever, the negative relationship between rock strength and D50 is con-
trary to relationships previously documented in the literature (Allen
et al., 2015; Marshall & Sklar, 2012; Roda-Boluda et al., 2018; Sklar

et al., 2016). This discrepancy could result from limitations associated
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FIGURE 6 Post-fire debris flow volume predictions by the Gartner et al. (2008) model (a) and the Gartner et al. (2014) model (b) under 2-year
storm (light blue) and 100-year storm (dark blue) scenarios plotted against the observed debris flow volumes. The error bars represent model
error of two standard errors of the estimate. The thick black line shows the 1:1 relationship. The Gartner et al. (2008) model employs a negative
relationship between rainfall intensity and debris flow volume (such that the 100-year events exhibit smaller predicted volumes), while the
Gartner et al. (2014) model employs a positive relationship between rainfall intensity and debris flow volume. [Color figure can be viewed at

wileyonlinelibrary.com]

with the estimation and aggregation of catchment-average rock com-
pressive strength in StreamCat data. Examining the average compres-
sive rock strength for each contributing catchment (i.e. average rock
strength across 0.1-10 km?) could be too coarse to capture the
nuances associated with where sediment is being sourced from within
the catchment and what the corresponding rock strengths are for
those areas. Future work should further examine this relationship and
which metrics for rock strength may best predict deposit GSDs.

These models fill a key knowledge gap in the development of reli-
able post-fire, watershed-scale models that incorporate debris flows
(e.g. Murphy et al., 2019). Characterizing the GSD controls of post-fire
debris flows is critical to predicting their impacts on downstream
resources, because grain size exerts a first-order control on fluvial
transport (e.g. Ahammad et al., 2021). These new models will advance
our ability to predict how post-fire debris flows may impact aquatic
habitat, as erosional inputs can either enhance or degrade habitat
depending on the grain size composition (Brown et al, 2001;
Burton, 2005; Gresswell, 1999). Additionally, since no wildfire metrics
were significant in predicting post-fire debris flow grain sizes, these
models could easily be implemented for pre-fire risk assessments.
Specifically, by not requiring any knowledge of fire conditions, these
models could be used in advance of fires to help identify which catch-
ments might contribute large boulders, or alternatively very fine sedi-
ment, if they were to burn and produce debris flows. This predictive
power could help inform pre-fire resource management and/or post-
fire risk management and mitigation, since the relative grain sizes pro-
duced by the debris flows could have positive or negative implications

for aquatic habitat or downstream resources and infrastructure.

4.2.2 | Evaluation of previous volume models

Results

Of the two Gartner et al. (2008, 2014) models that we evaluated, we
found that the Gartner et al. (2008) Rocky Mountain model provided
the best predictions of volumes for the IMW debris flows in this
study. Specifically, the Rocky Mountain model with 2-year Rl per-
formed best (RMSE = 3292 m3), followed by the Rocky Mountain
model with 100-year Rl (RMSE = 3698 m®). Given our approach and

assumptions using Rl rainfall intensity inputs for the models, we
expected the volume predictions from the two rainfall scenarios
would roughly straddle the 1:1 observed vs. predicted line (i.e. the
triggering storm Rl was likely between the 2- and 100-year storm for
most events). Using this approach with the Gartner et al. (2008) Rocky
Mountain model, we found this to be the case for 48% of debris
flows, with 21% overpredicted and 31% underpredicted (Figure 6A).

Eighty-five percent of debris flow volumes predicted by the
2-year Rl Rocky Mountain model were within one order of magnitude
of observed values. While there was a slight positive trend in the plot
of residuals vs. fitted values (m = 0.34, R? = 0.05), we found that
100% of debris flows with observed volumes <1000 m? (n = 21) were
overpredicted, and 80% of debris flows with observed volumes
>4000 m? were underpredicted by on average a factor of 2.5 (range
0.25-15x). The majority of debris flows with observed volumes
21000 m® were underpredicted (13 of 20) but all by less than one
order of magnitude. By comparison, the 100-year Rl Rocky Mountain
model underpredicted the volumes of 80% of debris flows, but 83%
of predictions were within one order of magnitude. There was a
slightly more positive trend in the residuals vs. fitted values plot
(m = 0.5, R? = 0.13), however the majority of overpredictions (70%)
were in debris flows with observed volumes <250 m3. These over-
predictions were 1.2-9.6x their observed volumes, but on average
were only overestimated by 213 m>.

Recognizing that our assessment does not use the triggering
storm intensity data as intended, we rearranged the Gartner et al.
(2008) Rocky Mountain model, substituted measured volumes for
predicted volumes [Equation 1)], and estimated the i10 rainfall inten-
sity the model would require us to accurately predict the volume of
each measured debris flow. This analysis allowed us to further evalu-
ate the model, as well as our approach of using the 2- and 100-year RI
rainfall intensities. Consistent with interpretations from Figure 6A, we
found that approximately half (48%) of the estimated rainfall intensi-
ties were between the 2- and 100-year Rl events, with 21% greater
than the 100-year and 31% less than the 2-year average rainfall inten-
sity (Figure 7A). While this lends support to our approach, it is not
consistent with Staley et al. (2020), who found that 77% of post-fire
debris flows are triggered by storms of <2-year Rl intensity. Notably,

this analysis also highlights that events requiring a rainfall intensity
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FIGURE 7 (a) The 10-min rainfall intensities
of triggering storm events estimated by
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Rl > 100 years by the Gartner et al. (2008) model were predominantly
the smaller debris flows (<1000 m®). Although perhaps counterintui-
tive, this reflects the negative relationship between rainfall intensity
and debris flow volume in the model [i.e. Equation 1) indicates that
more intense storms produce smaller debris flows for any given slope
condition]. Further, this analysis suggests that, if we assume the
Gartner et al. (2008) Rocky Mountain model would perfectly predict
the measured debris flow volumes had we known the triggering rain-
fall intensities (i.e. our back-calculated storm intensities are accurate),
there is in fact no apparent relationship between post-fire debris flow
volume and rainfall intensity (Figure 7A). This apparent lack of rela-
tionship is also observed with i15 values when the same analysis was
performed with the Gartner et al. (2014) model (Figure 7B).

Using the 2- and 100-year Rl 15-min rainfall intensities as model
inputs, we found the Gartner et al. (2014) model performed with sig-
nificantly lower accuracy (RMSE = 18 255 and 116 761 m®, respec-
tively) than the respective Gartner et al. (2008) model (Figure 6B).
Almost 90% of debris flow volumes were overpredicted by the 2-year
RI model, with 56% of predictions within one order of magnitude. For
the 100-year Rl model, 97% of volumes were overpredicted, with only
15% of predictions within one order of magnitude. In contrast to the
Gartner et al. (2008) Rocky Mountain model, only three debris flows
(or 8%) had observed volumes between the 2- and 100-year Rl predic-
tions; two of these were among the four largest observed debris flows
(>7500 m®). The Gartner et al. (2014) models also exhibited the most
significant and positive trends in the residuals vs. fitted values plot
(2-year RI: m = 1.05, R? = 0.31; 100-year Rl: m = 1.09, R? = 0.33).
This indicates an increasing degree of overprediction with the increas-

ing size of predicted debris flows, however the largest relative

overpredictions occurred in debris flows with observed volumes
between 250 and 1000 m?.

In the absence of triggering rainfall data, one possible explanation
for the significant overprediction found with the Gartner et al. (2014)
model could be that the events in fact all occurred with rainfall inten-
sities much smaller than that of the 2-year Rl storm, a conclusion that
would be consistent with Staley et al. (2020). However, this would be
contradictory to our analysis with the Gartner et al. (2008) Rocky
Mountain model, which was developed specifically for this region,
performed significantly better, and indicated that more than two-
thirds of events would have been triggered by a storm with

a >2-year RI.

Discussion

A notable limitation in our ability to definitively evaluate the accuracy
of the Gartner et al. (2008, 2014) models was a lack of rainfall data for
the storm events that triggered each debris flow in our dataset. How-
ever, this issue highlights an inherent challenge in validating these
models in most landscapes. Dangerous and destructive post-fire
debris flows are occurring in many regions and countries, yet the nec-
essary rainfall data are often non-existent, incomplete, or too coarse
in spatiotemporal resolution to identify the potential magnitude of the
triggering storm. Moreover, even where adequate rainfall gauging and
data are available, researchers must still be able to confidently identify
the exact timing of the debris flows in order to attribute them to a
measured storm intensity. Most wildfires burn in remote terrain, so
unless a debris flow directly impacts lives, property, or infrastructure,
the documentation and attribution to an exact hour, day, or even

week can be difficult to impossible.
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Therefore, we evaluated the Gartner et al. (2008, 2014) models
under an assumption that most debris flows in the IMW were likely
triggered by storms at or between the average 2- and 100-year RI
rainfall intensities. We recognize this is not the intended approach to
parameterize precipitation in the models and that the RI of average
rainfall intensities may not represent those of peak storm intensities;
however, in addition to our common data limitations, we highlight that
in the development of the Gartner et al. (2008) Rocky Mountain
model, the authors themselves did not find rainfall to be a significant
predictor. Rather, the authors state that this variable was forced into
their model. Presumably as a result of this decision, the magnitude of
the regression coefficient for the rainfall intensity variable was not
only negative but also close to zero [i.e. —0.02 in Equation 1)]. To fur-
ther examine the role of precipitation in the Gartner et al. (2008)
model, we analysed the dataset used in the original construction of
the model (Garter, 2005) and ran a univariate regression of their data
with only the slope parameter included and no rainfall metric. We
found that forcing rainfall intensity into the model improved the
explained variance of their debris flow volumes by 7%. Additionally,
including rainfall intensity produced a model with a negative relation-
ship between rainfall intensity and debris flow volume. This relation-
ship is difficult to reconcile in terms of geomorphic processes and is
notably inconsistent with other post-fire debris flow volume models
that include rainfall metrics as a predictor (e.g. Gartner et al., 2008,
western United States model; Gartner et al., 2008, Southern California
model; Cannon et al., 2010; Gartner et al., 2014, Emergency Assess-
ment model).

While other models report a positive and more significant relation-
ship between rainfall and debris flow volumes than the Gartner et al.
(2008) Rocky Mountain model, most are heavily influenced by Southern
California data. Assuming one of the Gartner et al. (2008, 2014) models
evaluated here would have produced accurate results had we known
the triggering storm intensities, we back-calculated rainfall intensities
and found neither model exhibits a significant trend with our IMW
post-fire debris flow volumes. Overall, our findings suggest it is possible
that the assumption of a scaling relationship between precipitation
intensity and debris flow volumes may not be appropriate for post-fire
debris flows in the IMW. Future work should explore whether this rela-
tionship is unique to post-fire debris flows in the Transverse Ranges of
Southern California or if there are other geologic/tectonic settings that
exhibit a predictable relationship between rainfall intensity and debris
flow volume. Regionally specific models have frequently been
suggested for the western United States, and there are many geologic,
tectonic, climatic, and geographical differences that could likely influ-
ence debris flow processes.

We found that the commonly used Gartner et al. (2014) model
significantly overpredicted the volumes of debris flows in our IMW
dataset. While likely influenced by the previously mentioned geo-
graphic differences, we highlight that statistical discrepancies could
also potentially contribute to the lack of performance with the
Gartner et al. (2014) model. Specifically, there is a large disparity
between the size of debris flows examined in this study and those
from Southern California, analysed by Gartner et al. (2014) (Table 4).
The average volume used in the construction of their model was
nearly 30-fold larger than the average in our IMW dataset. While this
is possibly another strong indicator that there are in fact distinct geo-

graphic differences, this statistical disparity could nonetheless

-WILEY*

contribute to our overpredictions, particularly given that the most sig-

nificant residuals were observed in debris flows with the smallest
volumes.

Finally, it is also possible that temporal effects could have
influenced our results when applying the Gartner et al. (2014) model.
Specifically, the Gartner et al. (2014) model was constructed using
data from debris flows that were all known to have occurred within
2 years post-fire. In contrast, we can only confirm that 50% of the
debris flows in our dataset occurred within 2 years following a fire.
We cannot confirm whether this was true or not for the remaining
debris flows, because we do not have documentation regarding the
timing of their occurrence. It is possible that this could introduce addi-
tional variance in the predictions from the Gartner et al. (2014) model,
as debris flow volumes have been found to be largest shortly after a

fire and then decrease over time (Santi & Morandi, 2013).

423 | New debris flow volume prediction model
Results

Following the assessment of existing models, we developed a new
model to predict sediment yield potential for debris flows produced
from burned catchments in the IMW. Table 4 presents our volume
prediction model compared to the Gartner et al. (2008, 2014) models,
including the respective model equations and sample sizes of original
datasets.

We constructed the new IMW volume model using the same
approaches as with the grain size models, but with a dataset of
41 measured deposit volumes. The model predicts the natural log of
the debris flow deposit volume (m®) as a function of the catchment’s
pre-fire percentage soil organic matter (SOM) content, the square root
of the catchment area with slopes 223° (km?), the square root of the
catchment burned at moderate and high severity (km?), and the aver-
age catchment runoff (mm). Every predictor in our volume prediction
model is significant using a significance threshold of <0.1. The model
exhibited an R? = 0.51 and a cross-validated R? = 0.55. This similarity
in cross-validated and general R? value indicates the model is not
overfitted to the dataset. In comparison to the evaluated Gartner
et al. (2008, 2014) models, our volume model exhibited the lowest
RMSE (= 2941 m®).

Additionally, 97% of predicted volumes were within one order of
magnitude of the observed values (Figure 8), and there was no detect-
able trend or variance explained in the residuals vs. fitted values plot
(m = 0.0, R? = 1e-05). While our model did overpredict 89% of debris
flows <250 m®, it was on average by just 200 m® (compared to
825 m® for the best-performing 2-year Rl storm with Gartner
et al., 2008). Our model underpredicted volumes for all four of the
largest debris flows (those with observed volumes between 7500 and
15 000 m®). However, this was also true of the Gartner et al. (2008)
models, and our average underprediction was equivalent to that of
the 2-year Rl in the Gartner et al. (2008) model (~7400 m°).

Discussion

We constructed a new post-fire debris flow volume prediction model
using the largest dataset of geolocated post-fire debris flow volumes
that we are aware of outside Southern California. Our model was

developed and assessed with data solely from the IMW and included
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TABLE 4 Equations for the post-fire debris flow volume prediction models from Gartner et al. (2008, 2014), as well as the new model
developed in this study. Fit diagnostics (R? and cross-validated R?) represent the results for our model applied to the Intermountain West debris
flow volume dataset compiled in this study. Dataset sizes (n), along with minimum, mean, and maximum volumes of debris flows, represent those

data used in the original development for each model

Model development Applied to IMW
dataset dataset
Model Equation n Min Mean Max R? x-val. R?
Gartner et al. (2008) InV =0.72(InS30) —0.02(i10) 4 8.54 17 n/a n/a n/a n/a n/a
Gartner et al. (2014) InV =4.22 4+ 0.39V/i15+0.36(InBmh) +0.13vR 79 29 46 200 864 300 n/a n/a
Volume prediction NV =2.7+1.90m+0.1751/553 + 0.8v/Bmh+0.003Ro 41 36 1600 13750 0.5 0.55

model (this study)

The variables are defined as V = volume of a debris flow (m?®), S3o = catchment area with slopes = 30% (km?), i10 = peak 10-min rainfall intensity (mm/h),
15 = peak 15-min rainfall intensity (mm/h), Bmh = catchment area burned at moderate and high severity (km?), R = catchment relief (m), S,3 = catchment
area with slopes > 23°, Om = percentage soil organic matter, Ro = average catchment runoff (mm).
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FIGURE 8 Post-fire debris flow volumes predicted using the new
volume prediction model plotted against measured volumes (Table 4).
The thick black line represents the 1:1 relationship. The thin lines
represent the envelope of one residual standard error. The model
exhibits an R? = 0.51 and a cross-validated R? = 0.55.

many of the same sites used to construct the Gartner et al. (2008)
Rocky Mountain model, plus many more. Notably, our model’s predic-
tor variables were all identified and selected for inclusion by machine
learning algorithms that assessed a large set of potential metrics; and
in contrast with the Gartner et al. (2008, 2014) models, our model
does not include any precipitation information related to the trigger-
ing storm event (as it was not known). Further, across all assessed sta-
tistical metrics, our rainfall-less, post-fire debris flow volume model
performed as well or better than either of the Gartner et al. (2008,
2014) models when they were run and evaluated using a realistic
range of Rl storm intensities, rather than triggering storm intensities.
The variables identified and used to predict volumes in our model
reflect upslope characteristics that are all previously understood to
influence post-fire debris flow process (e.g. Cannon et al., 2010;
Gartner et al., 2008, 2014; Pietraszek, 2006; Prancevic & Lamb, 2015;
Prancevic et al., 2014; Staley et al., 2017). They include: the catch-

ment area with slopes 223°, the catchment area burned at moderate

and high severity, average catchment runoff, and soil organic matter
content. While average catchment runoff has not specifically been
included in previous volume models, it is well understood that post-
fire debris flows are generated by runoff, and it stands to reason that
for any given burn severity, post-fire runoff may reasonably scale with
the average pre-fire runoff conditions. Our model did not improve
with the inclusion of local precipitation metrics, though we only evalu-
ated average rainfall metrics and none specific to the triggering storm
event. While some previous research has found that short-duration
intensities are more important for post-fire debris flow generation
and sediment yield (Kean et al., 2011; Staley et al., 2013), Cannon
et al. (2010) found average storm intensity to be significant for five
post-fire debris flow volume prediction models.

Pre-fire OM content was found to be a particularly significant
predictor for debris flow volumes, exhibiting a positive relationship.
Cannon et al. (2010) also found a significant relationship between OM
and post-fire debris flow volumes in two of their models, though it is
not a variable in either of the Gartner et al. (2008, 2014) models.
Additionally, Rupert et al. (2008) reported OM to be the strongest
predictor in their post-fire debris flow generation models based on
data from Southern California. OM is an important constituent for
maintaining soil structure, and the quantity of OM has been observed
to directly control soil aggregation (Mataix-Solera et al., 2011). When
soils are burned, particularly at high severity, the severity of soil water
repellency (or hydrophobicity) is dependent on the pre-fire OM con-
tent, along with soil texture and soil water content (DeBano, 1981,
2000; DeBano et al., 1979; Doerr et al., 2009). Additionally, the
degree of change in soil structure, hydrophobicity, and soil infiltration
capacity after wildfire has been directly linked to the quantity of OM
incinerated by the fire (DeBano, 2000; DeBano et al., 1979). It is thus
likely that the observed relationships between pre-fire OM and post-
fire debris flow volume reflects the magnitude of post-fire hydrologic
response due to incineration of OM. While the magnitude of change
in soil conditions and resulting surface runoff may depend on the soil
burn severity for any given OM content, burn severity is also included
as a predictor in our model.

We constructed a new model for IMW post-fire debris flow vol-
umes that exhibits good predictive capability and can be used in the
absence of triggering storm event rainfall data. It is possible that the
inclusion of triggering storm rainfall metrics would further improve

our model’s accuracy, but this data is notoriously difficult to obtain.

QSUAIIT SUOWIWO)) dANEAI)) d[qedrjdde oy £q pausdA0 dIe S9[oNIE Y ‘2SN JO SO[NI IO AIRIqI] SUIUQ AJ[IAN UO (SUOHIPUOI-PUB-SWLIA} W0 K[ 1M ATRIqI[ouruo//:sdny) SUOnIpuo)) pue swid [, Yl 23S [£707/60/22] U0 A1eiqu suruQ Ao[ipn ‘ANSIOAIUN 21BIS el Aq 084S dS9/2001°01/10p/Wwod" A[Im " AIeIqI[our[uo//:sdiy woiy papeoumod ‘I ‘€70z ‘L£869601



WALL €T AL

Despite this reality, most commonly used post-fire debris flow volume
prediction models rely on metrics that require varying information
about the storm that triggered the debris flow. In four of the models
presented by Gartner et al. (2008), they found that volume had a sig-
nificant positive relationship with the total storm rainfall. In their
Rocky Mountain model, no precipitation metrics were found to be sig-
nificant, however, they forced the peak 10-min rainfall intensity into
the model, resulting in a weak and negative relationship. They also
found no precipitation metrics to be significant in their Sedimentary
Rock model. Cannon et al. (2010) reported the average storm intensity
from the triggering storm event to have a significant positive relation-
ship with post-fire debris flow volume for five of their volume predic-
tion models. Gartner et al. (2014) found volume to have a significant
positive relationship with the triggering storm peak 15-min rainfall
intensity, which is consistent with the rainfall metric found to influence
debris flow generation (Staley et al., 2017). Nyman et al. (2015) evalu-
ated the Gartner et al. (2008) western United States model, which uses
total storm rainfall as a predictor, for a burned area in southeast
Australia. Although they reported this model worked well for predicting
their observed volumes, they also found that it only explained 3% more
of the variance in their volumes than an extremely parsimonious, relief-
only model that included no precipitation metrics (Nyman et al., 2015).

Across all these studies and models, there is no consensus or
clearly demonstrated and consistent relationship between post-fire
debris flow volumes and the characteristics of the storm that generate
them. Rather, despite the often-presumed positive relationship
between rainfall and post-fire debris flow volume, previous work in
this area has presented wildly contradictory relationships, proposed
an array of potential storm metrics, and sometimes predicted volumes
without the need of any precipitation metric. Although we know rain-
fall intensity is a critical predictor for debris flow generation (Staley
et al., 2017), there is no similarly compelling evidence to demonstrate
if or how post-fire debris flow volumes scale with rainfall. We posit
that the role of rainfall may instead serve as more of an occurrence/
non-occurrence predictor linked to debris flow initiation, rather than a
scaling variable for volume. In essence, rainfall is required in that it
controls the ability of a burned catchment to generate a debris flow,
but the debris flow volumes produced from catchments across the
IMW may be insensitive to rainfall intensity because they are often
limited by the sediment availability along the debris flow path (i.e. in
the channel). In line with this proposal, debris flow channels in the
IMW are often observed to erode down to the underlying bedrock
(e.g. DelLong et al., 2018; Murphy et al., 2019).

Moreover, rainfall thresholds have frequently been identified to
control the generation of debris flows (Cannon et al., 2011; McGuire &
Youberg, 2020; Staley et al., 2013, 2017) and have largely been found
to occur with low-RI storm events (Staley et al., 2020). Across the
western United States, there is a relatively small range of storm inten-
sities responsible for producing post-fire debris flows that have vol-
umes spanning many orders of magnitude (~80% triggering i15 are
<55 mm/h; Staley et al., 2020). While higher-intensity storm events
may be capable of producing larger debris flows, the reality may be
that burned landscapes are so hydrologically responsive that lower-RI
events often trigger debris flows and evacuate most available sedi-
ment, at least in the IMW, before the lower-probability but higher-
intensity storm events occur. Thus, despite the intuitive

hydrogeomorphic link, these low-rainfall thresholds may limit our
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ability to document and interpret this relationship from empirical

datasets. Additionally, the low range of triggering rainfall intensities
relative to that of debris flow volumes presents potential statistical
issues with empirical observation. Even small levels of uncertainty or
error in rainfall intensity values, which are often from gauges many
kilometres away from the debris flows (e.g. Staley et al., 2017), could
degrade and propagate large uncertainty into empirically derived rela-
tionships. These issues may contribute to the inconsistent and contra-
dictory relationships previously observed, and ultimately, more work
is required on the relationships between post-fire debris flow volume,
the characteristics of the triggering storm events, and sediment avail-
ability in the contributing catchments.

This study provides a new approach and insights into the poten-
tial controls on and predictions of post-fire debris flow volumes in the
IMW. To construct our volume model, we used a strictly statistical
approach rather than process-based methods. Nonetheless, the pre-
dictor variables and relationships in our volume model all have robust,
process-based explanations. Specifically, we find that greater volumes
of debris flow sediment are predicted when larger areas of a catch-
ment burn at moderate to high severity, where there are larger areas
of the catchment with slopes 223°, where there is more organic mate-
rial in the soil before the fire, and where there is more predicted
catchment runoff based on pre-existing soil conditions. Using
machine-learning statistical approaches, as we have here, can offer
new insights that might otherwise be overlooked in models con-

structed based on previous understanding and assumptions.

5 | CONCLUSIONS

In this study, we compiled a novel dataset of deposit volumes and
grain sizes for post-fire debris flows across 19 fires that were located
across the IMW. Utilizing this dataset, we developed and presented
four new predictive grain size models to capture the fine, median, and
coarse ends of a deposit GSD. These models use topographic, climate,
and lithological metrics to predict debris flow grain sizes, and as no
wildfire metrics were found to be significant, they can easily be used
to inform risk assessments (such as to stream habitat) conducted
either before or after a wildfire occurs (i.e. no data or predictions of
wildfire severity are required). We have also developed and presented
a new post-fire debris flow volume prediction model, which uses pre-
dictor variables from publicly available datasets across the IMW
region and that are all grounded in previously understood post-fire
debris flow controls and process. This model can be applied after a fire
using available burn severity maps to predict debris flow sediment
yields from burned catchments without requiring information about
the triggering storm. While we recognize that not using any precipita-
tion metrics in our volume model departs from some previous
approaches (Cannon et al., 2010; Gartner et al., 2008, 2014), the exis-
ting models are challenging to validate or apply without detailed pre-
cipitation data. Additionally, the current understanding of rainfall
controls on post-fire debris flow volumes is limited and inconsistent,
particularly outside of Southern California. Overall, the suite of
models presented here advance our geomorphic understanding of
burned landscapes, improve upon common approaches in post-fire
risk assessment, and better inform watershed management in

response to post-fire debris flows.
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As the area burned at high severity is projected to increase across
the western United States (Liu et al., 2010; Westerling et al., 2011),
watersheds will become more vulnerable to post-fire erosion and
debris flows (Cannon & Gartner, 2005; Moody & Martin, 2009; Ren &
Leslie, 2020). Simultaneously, yearly decreases in snowpack and
increasing evapotranspiration are resulting in increased water scarcity
across the western United States (U.S. Environmental Protection
Agency [EPA], 2016), making water storage in reservoirs even more
essential (Abatzoglou & Williams, 2016; Cayan, 1996; Westerling
et al, 2006). As advancements in modelling seek to predict how
increasing post-fire erosion will impact downstream water resources
and reservoir storage capacities, it is essential to have better and more
detailed information about the location, timing, volumes, and grain
sizes of debris flow inputs to river networks after wildfire. The models
presented here offer insights into post-fire debris flows in the IMW
and provide a critical step towards predicting post-fire debris flow
grain sizes, which can help inform watershed-scale modelling frame-
works (e.g. Murphy et al., 2019). To improve these models further and
our ability to understand downstream impacts of post-fire debris
flows, it is paramount that the geomorphic and wildfire communities
expand efforts to collect more post-fire rainfall and debris flow data,

especially in regions beyond Southern California.
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