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Abstract

Post-fire debris flows represent one of the most erosive consequences associated

with increasing wildfire severity and investigations into their downstream impacts

have been limited. Recent advances have linked existing hydrogeomorphic models to

predict potential impacts of post-fire erosion at watershed scales on downstream

water resources. Here we address two key limitations in current models: (1) accurate

predictions of post-fire debris flow volumes in the absence of triggering storm rainfall

intensities and (2) understanding controls on grain sizes produced by post-fire debris

flows. We compiled and analysed a novel dataset of depositional volumes and grain

size distributions (GSDs) for 59 post-fire debris flows across the Intermountain West

(IMW) collected via fieldwork and from the literature. We first evaluated the utility

of existing models for post-fire debris flow volume prediction, which were largely

developed for Southern California. We then constructed a new post-fire debris flow

volume prediction model for the IMW using a combination of Random Forest model-

ling and regression analysis. We found topography and burn severity to be important

variables, and that the percentage of pre-fire soil organic matter was an essential pre-

dictor variable. Our model was also capable of predicting debris flow volumes with-

out data for the triggering storm, suggesting that rainfall may be more important as a

presence/absence predictor, rather than a scaling variable. We also constructed the

first models that predict the median, 16th percentile, and 84th percentile grain sizes,

as well as boulder size, produced by post-fire debris flows. These models demon-

strate consistent landscape controls on debris flow GSDs that are related to land

cover, physical and chemical weathering, and hillslope sediment transport processes.

This work advances our ability to predict how post-fire sediment pulses are trans-

ported through watersheds. Our models allow for improved pre- and post-fire risk

assessments across diverse ranges of watersheds in the IMW.
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1 | INTRODUCTION

Wildfire activity has increased considerably in western North America

over the past three decades and is expected to continue to increase in

frequency, severity, and size due to increasing drought and high fuel

loads (Hawbaker & Zhu, 2012; Jager et al., 2021; Murphy et al., 2018;

Westerling et al., 2011). Climate change-induced drought is resulting

in smaller snowpack and earlier snowmelt (Mote et al., 2005; Saley

et al., 2022), which lead to longer fire seasons and drier fuels,

particularly in mid-elevation forests (1680–2590 m; Abatzoglou &

Williams, 2016; Westerling et al., 2006; Wilkins et al., 2021). This is

concerning because mid-elevation forests host the water supply for

two-thirds of the population of the western United States (Brown

et al., 2008; Murphy et al., 2018).

High-severity fire can substantially reduce the infiltration capacity

of soil, which causes increased runoff, surface erosion, and can gener-

ate debris flows (Cannon & Gartner, 2005; Cannon et al., 2001; Doerr

et al., 2006; Mataix-Solera et al., 2011; Ren & Leslie, 2020;
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Wondzell & King, 2003). However, there is a shortage of quantitative

information regarding the grain size distributions of sediment eroded

from post-fire landscapes, which hinders our ability to predict down-

stream transport and delivery of sediment and associated risk to

downstream natural resources and infrastructure, such as water sup-

ply reservoirs. As fire activity increases across western North America,

it is essential to understand the fundamental impacts post-fire erosion

may have on downstream resources, specifically reservoirs and

aquatic habitat (Jager et al., 2021).

Debris flows are one of the most erosive and potentially hazard-

ous risks following a wildfire and have the potential to degrade water

quality, water supply, and aquatic habitat (Martin, 2016; Moody &

Martin, 2004; Robinne et al., 2016; Sedell et al., 2015; Smith

et al., 2011). Depending on sediment composition and volume, post-

fire debris flows that enter waterways may either degrade or enhance

aquatic habitat (Brown et al., 2001; Burton, 2005; Gresswell, 1999;

Roghair et al., 2002). Aquatic organisms, such as fish, require particu-

lar riverbed grain sizes for their survival (Kondolf, 2000), and those

requirements may differ with species, life stage, and habitat purpose

(e.g. Murphy et al., 2020). Sediment inputs from debris flows may sig-

nificantly alter bed grain size distributions (GSDs), shifting the system

closer to, or further from, optimal ecological conditions. For example,

increased inputs of fine sediments into river systems as a result of

post-fire erosion can result in the burying of gravels and pore spaces

necessary for spawning fish (Brown et al., 2001; Gresswell, 1999;

Propst & Stefferud, 1997), while deposition of coarse material can

increase channel complexity and improve aquatic habitat (Bisson

et al., 2003; Reeves et al., 1995; Sedell et al., 2015). Recent work has

also emphasized the detrimental and costly impacts of increasing

post-fire sedimentation on reservoir storage capacity (Gannon

et al., 2019; Martin, 2016; McCoy et al., 2016; Moody &

Martin, 2004; Murphy et al., 2018; Sankey et al., 2017). In order to

accurately assess reservoir vulnerability to post-fire erosion, we must

be able to predict the GSDs of that erosion as grain size exerts a first-

order control on how sediment is transported through a river network

(Ahammad et al., 2021; Czuba & Foufoula-Georgiou, 2014; Wilcock &

Crowe, 2003).

Both post-fire hillslope and debris flow erosion pose threats to

downstream water resources (e.g. Martin, 2016; Murphy et al., 2018),

yet to date only the downstream impacts of hillslope erosion have

typically been investigated (e.g. Gannon et al., 2019; Kampf et al.,

2020; Sankey et al., 2017). One key reason for this disparity is a lack

of data and knowledge regarding the size and transport dynamics of

debris flow sediment. The grain sizes from hillslope erosion are con-

trolled predominantly by soil characteristics (Pietraszek, 2006;

Robichaud, 2005; Robichaud et al., 2016; Shakesby et al., 2016),

whereas the controls on the grain size distribution of debris flows are

not well understood (Nyman et al., 2020). Because debris flows are

recognized as one of the largest contributors of erosion post-fire

(Ellett et al., 2019; Moody & Martin, 2009), it is essential that debris

flow characteristics such as occurrence, behaviour, and composition

are better understood to predict the impacts of post-fire erosion on

downstream water resources.

Several predictive models have advanced our ability to predict

the occurrence and magnitude of post-fire debris flows (Cannon et al.,

2010; Gartner et al., 2008, 2014; Liu & He, 2020; Sankey et al., 2017;

Staley et al., 2017). In particular, Staley et al. (2017) developed an

empirical model for predicting post-fire debris flow generation for the

western United States. This model has been adopted by the

United States Geological Survey (USGS) and the United States Forest

Service (USFS) for post-fire hazards assessments and is widely used

across the western United States. Gartner et al. (2008) developed a

set of empirical models to predict the volumes of debris flows in bur-

ned basins in the western United States using data from Southern Cal-

ifornia, Utah, and Colorado. Gartner et al. (2014) developed another

empirical model used to predict debris flow volumes for burned basins

using data solely from Southern California, which has been adopted as

the primary model used by the USGS and USFS for predicting debris

flow volumes across the western United States. We note that the

models from all three of these studies require detailed rainfall data on

the triggering event storm for use in either validation or prediction.

Additionally, with respect to modelling the fluvial transport of coarse

sediment inputs, recent improvements to sediment routing models

have allowed for improved predictions of mixed-size sediment trans-

port through large river networks (Ahammad et al., 2021;

Czuba, 2018; Czuba et al., 2016; Gilbert & Wilcox, 2020; Pfeiffer

et al., 2020).

Due to the hazardous nature of debris flows, the majority of

studies and models developed over the past two decades have

focused on their initiation mechanisms, probability of occurrence,

and potential magnitudes (e.g. Cannon & Gartner, 2005, 2010;

Gartner et al., 2008, 2014; McGuire et al., 2021; Staley et al., 2017;

Tang et al., 2019). However, recent studies of post-fire response

have sought to link multiple predictive models to evaluate the

impacts of post-fire erosion at the scale of large watersheds

(>10 km2) (e.g. Gannon et al., 2019; Langhans et al., 2016; Murphy

et al., 2019; Nyman et al., 2020). Accurately modelling post-fire sedi-

ment cascades, particularly when including coarse inputs from debris

flows, ultimately requires detailed information about the location,

timing, volumes, and grain sizes of debris flow inputs to river net-

works (Murphy et al., 2019).

We identify and explore two key knowledge gaps that currently

limit the development of reliable post-fire, watershed-scale models.

(1) In the absence of data on triggering storm rainfall intensities, can

we reasonably predict observed volumes for post-fire debris flows?

(2) What controls the grain size distribution (GSD) of post-fire

debris flows? Specifically, while empirical models exist to predict

post-fire debris flow volumes (Gartner et al., 2008, 2014), rigorous

validation of these models outside of Southern California is limited.

Further, these models require high-resolution precipitation data

about the triggering storm event that are often difficult to predict

or constrain (Murphy et al., 2019; Nyman et al., 2015). Additionally,

no models exist to predict the GSDs of post-fire debris flows. This

presents a major obstacle in the development of reliable watershed-

scale wildfire risk assessment models, as grain size controls the

rates and modes of sediment transport through a river network

(Ahammad et al., 2021; Czuba & Foufoula-Georgiou, 2014;

Wilcock & Crowe, 2003).

The goal of this study is to improve predictions of post-fire debris

flow characteristics that currently limit our ability to predict large

watershed-scale sediment delivery, transport, and downstream

impacts after wildfire. This research focuses on quantifying GSDs of

post-fire debris flows, identifying upstream, landscape controls on

these GSDs, evaluating existing post-fire debris flow volume models,
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and constructing new predictive models for key GSD metrics and

deposit volumes of post-fire debris flows in the IMW. This work offers

the first in-depth study, of which the authors are aware, that investi-

gates landscape controls on the GSDs of post-fire debris flows.

2 | STUDY AREA

2.1 | Intermountain West

The Intermountain West (IMW) is defined as the region of the

United States between the Cascade Range and Sierra Nevada to the

west and the front range of the Rocky Mountains to the east. The cli-

mate of this region is influenced by its mid-continental location, high

average elevations, and complex mountain topography (WWA, 2021),

which yields low humidity, large seasonal temperature changes, and

steep gradients of temperature and precipitation with elevation. The

region also has a strong seasonal distribution of precipitation, with the

majority delivered as snow during winter months (WWA, 2021).

Historical trends in fire activity across the western United States

reveal that the area burned each year prior to Euro-American settle-

ment was much higher than the annual burn area today (Murphy

et al., 2018), and overall, the west has been in a ‘fire deficit’ for at

least six to seven decades compared to historical fire activity (Marlon

et al., 2012). While the area burning in the western United States is

not exceptionally high from a long-term perspective, recent trends in

wildfire behaviour and the amount of infrastructure damage caused

by high-severity fire across the west are unprecedented

(Abatzoglou & Williams, 2016; Duane et al., 2021). As the area burned

at high severity in the western United States increases, sediment

yields from hillslope erosion are projected to at least double in 35% of

western watersheds by 2050 (Sankey et al., 2017). Higher sediment

yields as a result of increasing fire activity in the western

United States pose a great threat to water storage capacity in western

US reservoirs, which are essential in supporting growing populations

across the region (Bladon et al., 2014; Martin, 2016; Murphy

et al., 2018).

2.2 | Data from the literature

Post-fire debris flows have been extensively studied across the IMW

(e.g. Cannon & Gartner, 2005, 2010; Cannon et al., 2008; Langhans

et al., 2016; Santi et al., 2008; Wondzell & King, 2003), yet very little

data has been reported on debris flow GSDs and volumes in this

region. While post-fire debris flow GSD data are sparse, some data

have been reported in the literature (Figure 1, Table 1). Here, we com-

pile all geolocated post-fire debris flow GSD and volume data that we

F I GU R E 1 Site locations examined as part of this study. (a) Map showing the sites of wildfires across the IMW used to evaluate both
post-fire debris flow grain sizes and depositional volumes. (b) Detailed map showing the sites and names of Utah wildfires examined in this study.
In both panels, red circles represent sites where fieldwork was conducted for this study, and blue circles represent sites where data was
previously collected and reported in published literature. [Color figure can be viewed at wileyonlinelibrary.com]
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could find reported in the literature from this region into one dataset

for our analysis (Figure 1, Table 1). From the literature we compiled

17 post-fire debris flow volume measurements and 22 GSD measure-

ments across fires in Utah, Arizona, Colorado, Montana, and Wyoming

(Figure 1).

2.3 | Field study sites

We identified and conducted fieldwork for an additional 29 post-fire

debris flow deposits from 10 fires that occurred between 2012 and

2018 across the state of Utah (Figure 1, Table 1). The contributing

catchments for these sites span a wide array of lithology, climate, burn

severity, and vegetation characteristics, and have drainage areas rang-

ing from 0.1 to 10 km2. Ten percent of the catchments have underly-

ing unconsolidated material, 25% of the catchments have underlying

igneous rock, and 64% of the catchments have underlying sedimen-

tary rock (Hill et al., 2015). The average elevations of the study catch-

ments range from 1600 to 3000 m and include barren land, conifer

forest, deciduous forest, mixed forest, grassland, wetland, shrubland,

and agricultural land (Hill et al., 2015).

3 | METHODS

We developed predictive models for post-fire debris flow characteri-

zation using a combination of field, geospatial, and statistical analysis,

as detailed below.

3.1 | Measurement of variables

3.1.1 | Deposit volumes

To constrain the debris flow deposit volume at each site we mea-

sured, we used a combination of field surveying and 3D reconstruc-

tion methods. First, using a handheld GPS device, we surveyed the

perimeter of the deposit to measure the planview area. We then mea-

sured the depth of the deposit at several locations within the deposit

perimeter. To constrain uncertainty in debris flow volumes, we

recorded detailed observations about the locations and potential mag-

nitudes of erosion that may have occurred since initial deposition. We

used the combination of mapped extent and spatially dispersed mea-

surements of sediment depth to create 3D models of each deposit.

T AB L E 1 Wildfires examined in this study, including fire year, location (i.e. US state), data source, and the data collected or reported on from
each location. For each site, the number of debris flows examined is reported in the table

Fire Fire year State Source Volume

Surface and

subsurface
GSD

Only

subsurface
GSD

Only

surface
GSD

Boulder
D84

Yellowstone

Fires

1988 WY/MT Meyer and Wells (1997) 1 n/a 3 n/a n/a

Dinosaur Ntl

Monument

1996–2002 CO Larsen (2003),

Martin (2000)

6 n/a n/a 9 n/a

Oak Hills 2000 UT Giraud and

McDonald (2009)

1 n/a n/a n/a n/a

Farmington 2000 UT Giraud and

McDonald (2009)

2 n/a n/a n/a n/a

Borrow Pit 2001 UT Giraud and

McDonald (2009)

1 n/a n/a n/a n/a

Mollie Fire 2001 UT Giraud and

McDonald (2009)

5 n/a n/a n/a n/a

Springville 2002 UT Giraud and

McDonald (2009)

1 n/a n/a n/a n/a

Twitchell 2010 UT Murphy et al. (2019) n/a 2 7 n/a n/a

Clay Springs 2012 UT Fieldwork 2 2 n/a n/a 2

Seeley 2012 UT Fieldwork 1 1 n/a n/a 1

Shingle 2012 UT Fieldwork 1 1 n/a n/a 1

Brianhead 2017 UT Fieldwork 4 4 n/a n/a 4

Tank Hollow 2017 UT Fieldwork 2 2 n/a n/a 2

Trail Mountain 2017 UT Fieldwork 4 4 n/a n/a 4

Coal Hollow 2018 UT Fieldwork 2 2 n/a n/a 2

Dollar Ridge 2018 UT Fieldwork 5 5 n/a n/a 5

Pole Creek 2018 UT Fieldwork 5 5 n/a n/a 5

West Valley 2018 UT Fieldwork 3 3 n/a n/a 3

Woodbury 2019 AZ McGuire and

Youberg (2020)

1 n/a n/a 1 n/a

Total 47 31 10 10 29
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Specifically, we generated a triangulated irregular network (TIN) for

each deposit to minimize potential overfitting between depth values

that occur with other interpolation methods. Using the TIN surfaces,

we calculated the volume for each debris flow deposit. Finally, we

estimated the percentage error in volumes using bounds rec-

ommended for this method (i.e. �25 to +30% as per Santi, 2014).

The post-fire debris flow volume data compiled from the litera-

ture was measured using a variety of techniques. Meyer and Wells

(1997) mapped debris flow deposits in Yellowstone National Park

using air photos combined with compass and tape methods to map

the perimeter. They then created an isopach map with approximately

50 deposit thickness measurements to estimate deposit volume. In

contrast, Martin (2000), Larsen (2003), and Giraud and McDonald

(2009) estimated debris flow volumes using deposit area and the aver-

age of depth measurements (these data were used in the construction

of the Gartner et al., 2008 Rocky Mountain model). In total, we com-

piled a dataset of 47 debris flow volumes located in Utah, Wyoming,

Montana, Colorado, and Arizona, which represents the largest geo-

located dataset of post-fire debris flow volumes we are aware of out-

side of Southern California (Table 1, Figure 1).

3.1.2 | Grain size distributions

For all 29 debris flow deposits we visited, we measured both the sur-

face and subsurface GSDs, as well as the largest boulders. At each

deposit, we conducted at least one random walk Wolman pebble

count with a minimum of 100 measurements (Wolman, 1954), as well

as a minimum of two subsurface sieve mass measurements. Addition-

ally, we measured the b-axis of the 30 largest boulders observed on

each debris flow deposit to constrain the coarsest end of the GSDs,

which may have unique implications for aquatic habitat. This upper-

most end of GSDs is also often not well characterized by Wolman

pebble counts or sieving. These three methods of measuring grain

sizes provide a reasonable characterization of GSDs at each debris

flow deposit.

The post-fire debris flow GSD data compiled from the literature

used similar but variable methods. Meyer and Wells (1997) collected

subsurface grain size data in Yellowstone National Park using sieve

mass measurements. Larsen (2003) measured surface GSDs in Dino-

saur National Monument using Wolman pebble counts. Murphy et al.

(2019) collected both surface and subsurface GSDs using sieve mass

measurements and Wolman pebble counts in the Tushar Mountains

of Utah. Lastly, McGuire et al. (2021) collected surface GSDs using

Wolman pebble counts in the Superstition Mountains of Arizona.

From the literature, we compiled a total of 31 post-fire debris flow

grain size measurements, though 10 only had subsurface data and

another 10 only had surface data. No previous study reported boulder

sizes (Table 1, Figure 1).

3.1.3 | Catchment characteristics

We extracted catchment topographic metrics by analysing 10 m digital

elevation models from the National Elevation Dataset (NED) in ArcGIS.

Variables included contributing area, average catchment gradient,

catchment area with slopes ≥ 23�, and mean catchment elevation.

Burn severity data for all fires examined in this study were sou-

rced from the USGS Monitoring Trends in Burn Severity (MTBS) pro-

ject (Finco et al., 2012). MTBS provides burn severity data classified

as low, medium, and high. Using the classified severity rasters, we cal-

culated potential predictor variables for our analysis, including per-

centage of a catchment burned at moderate and high severity and

area of a catchment burned at moderate and high severity (as per

Gartner et al., 2014).

Catchment characteristics, such as lithology, vegetation cover,

and climate metrics, were extracted using the US EPA Stream-

Catchment (StreamCat) dataset (Hill et al., 2015). From this database,

we extracted each catchment’s mineralogical composition and litho-

logical composition. Additional lithologic variables extracted from the

database included compressive strength and hydraulic conductivity.

Soil properties (pre-fire) extracted from StreamCat included average

clay, sand, and organic matter (OM) content, average soil permeability,

soil depth to bedrock, and the soil erodibility factor. Additionally, we

extracted the percentage vegetation type for each catchment

(e.g. percentage conifer, deciduous, shrub, grasslands). Climate metrics

from this database include the 30-year average precipitation, mean

annual runoff, 30-year mean annual temperature, and average sea-

sonal water table depth. Finally, we extracted the average wetness

index from StreamCat, which is a metric combining the contributing

catchment area, slope, and flow paths (Hill et al., 2015; Kopecky et al.,

2021).

The rainfall intensities of the storms that triggered the debris

flows in our field dataset are unknown and are also unreported for

most of the data gathered from the literature. Therefore, using the

National Oceanic and Atmosphere Administration (NOAA) Precipita-

tion Frequency Data Server (PFDS), we extracted the 10 and 15-min

duration rainfall intensities for both the 2- and 100-year storm event

in each catchment (more on this approach below).

3.2 | Evaluation of existing volume models

To evaluate the existing post-fire debris flow volume prediction

models, we first calculated the volumetric estimates for each debris

flow using the Gartner et al. (2008) Rocky Mountain model:

ln Vð Þ¼0:72 ln S30ð Þ�0:02 i10ð Þþ8:54 ð1Þ

and the Gartner et al. (2014) Emergency Assessment model developed

for the western United States:

ln Vð Þ¼4:22þ0:39
ffiffiffiffiffiffiffi

i15
p

þ0:36 ln Bmhð Þþ0:13
ffiffiffi

R
p

ð2Þ

where V = predicted debris flow sediment volume (m3),

S30 = catchment area with slopes greater than or equal to 30% (km2),

i10 = peak 10-min rainfall intensity (mm/h), i15 = peak 15-min rain-

fall intensity (mm/h), Bmh = the catchment area burned at moderate

and high severity (km2), and R = catchment relief (m), computed as

the maximum minus minimum elevation.

Extremely local and high temporal resolution rainfall data for the

triggering storm event are needed to accurately apply the Gartner

et al. (2008, 2014) models, but these data are often not available.

Even when the data are available, it can still be challenging to
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impossible to accurately attribute debris flow events to the specific

rainfall event that triggered them. Therefore, in the absence of such

data (or alternatively, in cases where these models might be used for

pre-fire risk assessments), the best available data are the 1 km2 reso-

lution recurrence interval (RI) average rainfall intensity data from

NOAA’s Precipitation Frequency Data Server (PFDS). Accordingly, we

informed each Gartner et al. model using rainfall inputs representing

the 2- and 100-year storm intensities of the appropriate duration

(i10 or i15) from this source. Staley et al. (2020) suggested that 90%

of documented post-fire debris flows in the western United States

have been generated by storms with intensities of ≤5-year RI, so this

range of RI intensities was chosen to reasonably constrain the possi-

ble upper and lower bounds of storm intensities that may have trig-

gered the debris flows in our study. To evaluate the models, we then

statistically compared the outputs for each storm event against the

measured volumes for each deposit.

3.3 | Model construction

We developed predictive models for post-fire debris flow deposit

grain sizes and volumes based on potential predictor variables charac-

terizing catchment morphology, burn severity, climate, lithology, soil

properties, and vegetation cover using a combination of machine

learning and regression methods. To capture the central tendency and

tails of the deposit GSDs, we constructed four separate models to

predict a deposit’s D16, D50, D84, and the D84 of boulders. Addi-

tionally, we constructed a volume prediction model that estimates

debris flow sediment yield from burned catchments.

The initial array of predictor variables selected for inclusion in our

analysis was based on previous debris flow probability and volume pre-

diction models (Gartner et al., 2008, 2014; Staley et al., 2017), as well as

additional catchment characteristics we hypothesized could influence

debris flow grain sizes and volumes. We used consistent statistical

methods to construct all of our GSD and volume models, which included

an initial variable selection step using Random Forest modelling followed

by predictive model construction using multiple linear regression (MLR).

3.3.1 | Random Forest

We first used Random Forest (RF) machine learning models to evalu-

ate the relative importance of all included predictor variables

(Breiman, 2001). RF models are a type of classification or regression

tree analysis used to evaluate complex relationships between predic-

tor and response variables by combining observations from an ensem-

ble of trees (Cutler et al., 2007; Fisher et al., 2021; Vaughan

et al., 2017). We initially removed any variables that demonstrated

high covariance by using the variance inflation factor (VIF) and then

examined the importance of the predictor variables using variable

importance plots (Gemuer et al., 2012), which rank variables based on

the mean decrease in model accuracy that would occur if they were

removed from the RF model. From these outputs, we visually identi-

fied breaks in the variable importance plots (i.e. significant drops in

the contributed accuracy) and selected the uppermost grouping of

best predictor variables (ranging from 7 to 12 variables across our RF

models). The relationships between each identified predictor and

response variable were then individually evaluated based on both

visual diagnostics and univariate linear regression.

3.3.2 | Multiple linear regression

We used MLR analyses to develop models for post-fire debris flow grain

size metrics and deposit volumes. Based on data from the 41 post-fire

debris flows with subsurface grain size data (Table 1), we developed

models to predict three GSD metrics: the 16th percentile (D16), median

(D50), and 84th percentile (D84). The model to predict the 84th percen-

tile of boulder sizes (D84 boulders) was based only on data from the

29 deposits in our field study, as these were the only sites with boulder

data. The volumetric prediction model was developed using a dataset

that included deposit volumes from 41 post-fire debris flows (Table 1).

Requirements of linear regression analysis include: a linear rela-

tionship between the variables, normality in the residuals, and con-

stant variance in the residuals. Therefore, we first transformed all of

the GSD data into the phi scale (ϕ), or log base 2. To identify linear

correlations between the predictor and response variables, we calcu-

lated the Pearson product–moment correlation coefficient (Helsel

et al., 2020). We also attempted a natural log and square root trans-

formation for each variable to investigate which produced the most

linear relationship with the response variable. We moved forward in

our analysis with the transformation that exhibited the highest corre-

lation coefficient, the best linear visual diagnostics, and that met the

necessary linear regression assumptions. To test for normality in the

residuals we calculated a correlation between the observed residuals

and the expected residuals under normality. Next, to test if there is

constant variance in the residuals, we ran a Brown–Forsythe test,

which has a null hypothesis that the residuals have constant variance.

If the p-value is below α = 0.05, then there is not constant variance in

the residuals. After conducting these preliminary diagnostics on the

predictor variables, we selected all the variables that met the neces-

sary linear regression assumptions.

We next examined the narrowed response variables for

multicollinearity, which can result in unreliable models with unstable

and unrealistic parameter coefficients (Helsel et al., 2020). We used

both visual diagnostics, such as examining correlation plots and correla-

tion coefficients between predictors, and the VIF to diagnose

multicollinearity. After identifying associated predictor variables, we

kept the variable with the best diagnostics and highest correlation with

the response variable and removed the other variable from the model.

Every possible combination of the predictor variables that met the

above criteria were then assembled and examined as potential MLR

models (combination sets included one to seven predictor variables, see

the online Supporting Information). Seeking to identify the most parsi-

monious model for each response variable, we then selected the model

that exhibited the best combination of low Akaike information criterion

(AIC), which is an estimator of prediction error, and high R2, while using

the fewest number of predictor variables (Helsel et al., 2020).

3.4 | Model validation

Due to the small sample sizes of our datasets, we validated each of

our selected grain size and volume models using a fivefold cross-
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validation approach (Kohavi, 2001). For fivefold cross-validation, the

dataset for each model is randomly shuffled and then split into five

groups. The process loops through each group, holding it as the test

dataset and using the remaining four groups as the training dataset.

The model is fit on the training sets and evaluated on the test sets,

and then the performance measures reported by each trial are aver-

aged to report a cross-validated R2 and root mean square error

(RMSE). Ultimately, by using fivefold cross-validation we were able to

evaluate whether or not overfitting of the MLR models occurred dur-

ing the model construction.

4 | RESULTS AND DISCUSSION

4.1 | Grain size distribution field measurements

4.1.1 | Results

To investigate the grain size variance both within single deposits and

between deposits, we examined grain size data from 51 different

post-fire debris flow deposits (Table 1, Figure 2). First, comparing sur-

face and subsurface metrics for the 31 deposits that contained both

data types, we found that the surface was much coarser than the sub-

surface material (Figure 3). The average offset from the line rep-

resenting the 1:1 relationship between the surface and subsurface

distributions is 3.32 for D16, 1.15 for D50, and 0.27 for D84

(Figure 3b). This offset suggests the D16 of the surface is much

coarser than the subsurface, while in contrast, the distributions for

the D84 are roughly similar. Additionally, Figure 4 displays the grain

size metric ranges (Figures 4a and c) and relative ranges in the phi

scale (Figures 4b and d). When examining the grain size metrics for all

51 deposits in the phi scale, the D16 exhibits the greatest relative

range compared to the D50 and D84, and the D84 has the least rela-

tive spread across all deposits (Figures 4b and d).

4.1.2 | Discussion

We observed inverse grading of the post-fire debris flow deposits.

This type of grading is potentially the result of some combination of

winnowing of fines from the deposit surface and from kinetic sieving

during transport, as smaller grains pass through larger particles in

F I GU R E 2 Cumulative distributions
(CDFs) displaying the full GSDs for all
post-fire debris flow deposits examined in

this study. (a) CDF plot showing the GSDs
of subsurface sediment measured by sieve
mass measurements, and (b) CDF plot
showing the GSDs of surface sediment
measured by Wolman pebble counts.

F I GU R E 3 (a) The subsurface GSD metrics (D16, D50, D84) plotted against their respective surface GSD metric for the 31 debris flow
deposits with both measurements. The black line represents the 1:1 relationship between the surface and subsurface distributions. (b) Plot
showing the difference between the surface and subsurface values shown in panel (a). Metrics with equal values should plot along the black line
(= 0 on y-axis). These results demonstrate that, for nearly every deposit measured, surface grain sizes are coarser than subsurface sizes in the
same deposit across the full distribution of grain sizes. However, panel (b) highlights that this relationship is most pronounced in the finer tail of
deposit distribution, and the difference between the surface and subsurface becomes smaller in the median and coarser tail of deposit grain sizes.

[Color figure can be viewed at wileyonlinelibrary.com]
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motion and displace these larger particles upwards (Betran, 2003;

Naylor, 1980; Strom, 2006; Wang et al., 2012). While inverse grading

has not previously been investigated or demonstrated specifically in

post-fire debris flows, these findings are consistent with previous stud-

ies of debris flow rheology and sedimentology (Bridgewater, 1994;

Naylor, 1980; Zou et al., 2017). It is worth noting, however, that while

the identification of this phenomenon in our data is likely real, it is also

likely influenced by the differing methods used to collect the data. Spe-

cifically, the Wolman pebble counts used for surface measurements are

systematically biased against identifying finer sediments that would be

captured by the sieving techniques.

These findings indicate that measuring the subsurface material is

essential for obtaining accurate and wholistic characterizations of

post-fire debris flow GSDs. Particularly in the context of understand-

ing and predicting the impacts of post-fire sediment inputs to river

systems, only measuring a deposit’s surface material could result in a

substantial overestimate of grain size metrics, particularly for the finer

end of the GSD. These fine sediments would not only be more effi-

ciently transported downstream if delivered to a river, but may

degrade aquatic habitat and spawning grounds by infilling between

river gravels (Brown et al., 2001; Gresswell, 1999; Propst &

Stefferud, 1997). Thus, collecting grain size measurements of debris

flow subsurface material is critical for understanding and predicting

potential downstream impacts after fire.

4.2 | Predictive models

We developed four models to predict post-fire debris flow deposit

GSD metrics and one volume prediction model. Due to the observed

inverse grading of post-fire debris flow deposits, we developed our

grain size models based on the subsurface grain size data from

41 post-fire debris flow deposits across a diversity of topographic,

lithologic, and ecological conditions.

All predictor variables used in the construction of these models

are publicly available and easy to obtain or derive using GIS software.

General statistics were calculated for all potential predictor variables

and include a correlation test for normality, the Brown–Forsythe test

of constant variance, and the Pearson correlation coefficient (Table 2).

Many models were developed and analysed during the MLR analysis

and only the most parsimonious model is reported here. Each

reported model exhibited a low AIC, high R2, a low residual standard

error, and no multicollinearity present between the predictors.

4.2.1 | Grain size models

Results

The four post-fire debris flow grain size models, including the model

equation, R2, fivefold cross-validated R2, and sample size used to pro-

duce each model, are detailed in Table 3. Every predictor in the D16,

D50, and D84 models is significant with a p-value ≤ 0.1.

The D16 model exhibits an R2 of 0.59, a cross-validated R2 of

0.60, and 71% of the predicted D16 values are within one residual

standard error of the measured D16 value (Figure 5a). The D50 model

has an R2 of 0.71, a cross-validated R2 of 0.69, and 76% of the

predicted D50 values are within one residual standard error of the

measured D50 value (Figure 5b). The D84 model has an R2 of 0.60, a

fivefold cross-validated R2 of 0.56, and 76% of the predicted D84

values are within one residual standard error of the measured D84

value (Figure 5c). Finally, the D84 boulder model was constructed

using data from 29 debris flow deposits, which were collected during

F I G U R E 4 Probability density
functions for the D16, D50, and D84
GSD metrics across all debris flow GSDs
examined in this study. The upper row
(panels a and b) shows the distribution of
surface GSD metrics, and the bottom row
(panels c and d) shows the distribution of
subsurface GSD metrics. The left-hand
column (panels a and c) shows the grain
size values plotted in linear space, and the
right-hand column (panels b and d) shows
the grain size values plotted in the phi
scale. These distributions show the
overlap in the values of D16, D50, and
D84 found across post-fire debris flows,
highlighting that there are not distinct
D16, D50, or D84 values for all debris
flow deposits. [Color figure can be viewed
at wileyonlinelibrary.com]
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fieldwork as part of this study. The D84 boulder model predicts the

84th percentile size of the boulders in a debris flow deposit and has

an R2 of 0.34, a cross-validated R2 of 0.25, and 76% of the predicted

values are within one residual standard error of the measured value

(Figure 5d).

Discussion

Our results demonstrate that there are systematic landscape con-

trols on post-fire debris flow GSDs that allow for the prediction of

grain size metrics based on variables related to catchment land

cover, physical and chemical weathering, and hillslope sediment

transport processes. The four GSD models reported here are the

first investigation into landscape controls on post-fire debris flow

grain sizes. We examined 50 potential predictor variables, out of

which we identified 10 variables as significant in the prediction of

one or more key GSD metrics (Table 2). Notably, our analysis rev-

ealed that no wildfire-related metrics were identified as controls on

the GSD of post-fire debris flows. This suggests debris flow GSDs

are controlled by the grain sizes available for transport prior to the

fire, rather than any possible hydrogeomorphic effects of the fire,

which is consistent with previous observations in the literature

(Kean et al., 2011, 2019).

T AB L E 2 Summary statistics and transformations of the predictor variables selected for the models, including the response variable related to
each predictor, the correlation coefficient between predictor and response, and the p-value for significance of each predictor, the results from the
Brown–Forsyth (BF) test for constant variance in the residuals, and results from the normality test of the residuals (normality of residuals). Refer
to Section 3.3.2 for interpretations of these tests

Predictor variable

Response

variable Mean

St.

dev. Min Max Trans.

Corr.

coeff.

Significance

p-value

BF

test

Normality

of residuals

Mean annual

temperature (�C)
D16 6.4 4.3 0.92 18.5 ln 0.54 <0.0001 0.59 0.94

D50 ln 0.45 <0.0001 0.72 0.96

D84 ln 0.38 0.025 0.98 0.97

Mean catchment

elevation (m)

Boulder D84 2184 520 839 2,924 ln 0.23 0.26 0.85 0.99

% Catchment with

slopes ≥ 23�
D16 52 26 0 95 �0.38 0.04 0.25 0.98

D84 √ 0.13 0.05 0.52 0.94

Catchment area with slopes ≥ 23�

(km2)

Volume 0.7 1.2 0 5.8 √ 0.35 0.08 0.95 0.99

Catchment area burned at

moderate and high severities (km2)

Volume 0.7 1.7 0 9.1 √ 0.3 0.02 0.14 0.99

Average catchment runoff (mm) D84 120 112 17 463 �0.52 0.06 0.23 0.98

Volume 0.41 0.08 0.74 0.99

Average catchment wetness index D50 307 83 189 450 ln 0.25 0.07 0.48 0.92

Boulder D84 �0.46 0.1 0.53 0.99

Average catchment soil

permeability (cm/h)

D50 6 2.5 1 10.3 �0.46 0.0001 0.21 0.95

D84 �0.37 0.0009 0.72 0.96

% Soil organic matter Volume 0.8 0.3 0.2 1.4 0.49 0.0005 0.95 0.99

Soil depth to bedrock (cm) D16 109 30.7 43 151 0.28 0.01 0.17 0.95

Average catchment rock

compressive strength (mPa)

D50 79.3 26.7 30 153 �0.59 <0.0001 0.82 0.96

D84 �0.59 0.0025 0.4 0.97

% Catchment lithological

magnesium content

Boulder D84 2.9 1.4 1.1 6.1 0.42 0.2 0.97 0.99

% Catchment with conifer cover D16 36 24.6 1.3 92 �0.49 0.03 0.05 0.97

T AB L E 3 The best models found for predicting post-fire debris flow grain size metrics in the phi scale, including the equation, goodness-of-fit
statistics, and sample size

Model Equation # Variables R2 x-val R2 n

D16 (Φ) D16¼�7:21þ2:83ln Tð Þ�0:03Cp�0:03Spþ0:04Rd 4 0.59 0.6 41

D50 (Φ) D50¼ 5:52�0:036CSþ1:17ln Tð Þ�0:35K 3 0.71 0.69 41

D84 (Φ) D84¼ 4:83þ0:66ln Tð Þ�0:004Ro�0:27Kþ0:16
ffiffiffiffiffi

Sp
p

4 0.6 0.56 41

Boulder D84 (Φ) D84B¼3:75�0:002WIþ0:022
ffiffiffiffiffi

Sp
p þ0:093MgOþ0:75lnE 4 0.34 0.25 29

The variables are defined as T = mean annual temperature (�C), Cp = percentage area of the catchment with conifer cover, Sp = percentage area of the

catchment with slopes ≥ 23� , Rd = average catchment soil depth to bedrock (cm), CS = average catchment rock compressive strength (MPa), K = average

catchment soil permeability (cm/h), WI = average catchment wetness index, Ro = average catchment runoff (mm), MgO = average catchment lithological

magnesium oxide content, E = mean catchment elevation.
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Variables that are known to influence weathering rates are pre-

sent in the GSD models. For example, mean annual temperature

(MAT) exhibits a significant positive relationship with D16, D50, and

D84. MAT can be related to the depth and intensity of frost cracking,

as it has been shown to be correlated with how much time an area

spends in the frost-cracking window and the availability of water to

contribute to segregation ice growth (Hales & Roering, 2007;

Messenzehl et al., 2017). MAT can also drive chemical weathering

rates and influence grain size; however, this effect should not be con-

sidered in isolation from local precipitation (Murphy et al., 2016; Sklar

et al., 2017). Elevation is also a proxy for a location’s exposure to

physical and chemical weathering processes (Marshall & Sklar, 2012;

Riebe et al., 2015; Sklar et al., 2016), and we found average catchment

elevation to have a significant positive relationship with a deposit’s
boulder D84.

The percentage area of the catchment with slopes ≥23� was also

found to be significant in the prediction of debris flow deposit D16

and D84, however, it exhibited a negative relationship with D16 and a

positive relationship with D84. The positive relationship between

D84 and slope is consistent with findings in the literature (Attal

et al., 2015; Riebe et al., 2015; Whittaker et al., 2010). Attal et al.

(2015) found that low-gradient slopes increase residence times,

exposing particles to weathering processes for longer periods of time,

resulting in the production of finer grain sizes. In contrast, the rela-

tionship between D16 and slope is negative. This could indicate that

slope is not acting as a proxy for weathering processes in its control

on D16, but instead reflecting debris flow transport processes for the

most transportable material. Terrain steepness encourages efficiency

of runoff-related erosion and sediment transport processes, which has

been found to directly influence the shear stress of overland, rill, and

channelized flow erosion (Cannon, 2001; Cannon et al., 2003;

Prancevic & Lamb, 2015; Prancevic et al., 2014; Santi et al., 2008;

Staley et al., 2017). It is possible that more overland flow and rill ero-

sion on steeper slopes could result in the entrainment, transport and

contribution of more fines to debris flows and produce a finer D16.

The catchment’s average rock compressive strength has a signifi-

cant negative relationship with debris flow deposit D50. We expected

rock strength to be an important variable in grain size prediction, how-

ever, the negative relationship between rock strength and D50 is con-

trary to relationships previously documented in the literature (Allen

et al., 2015; Marshall & Sklar, 2012; Roda-Boluda et al., 2018; Sklar

et al., 2016). This discrepancy could result from limitations associated

F I GU R E 5 Plots showing the grain size values predicted by each model plotted against the measured subsurface grain size metrics for each
debris flow deposit. Observed vs. predicted values for the D16 model (a), D50 model (b), D84 model (c), and boulder D84 model (d). The thick
black line in each plot represents the 1:1 relationship, and the thin black lines above and below the 1:1 line represent the envelope for one
residual standard error.
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with the estimation and aggregation of catchment-average rock com-

pressive strength in StreamCat data. Examining the average compres-

sive rock strength for each contributing catchment (i.e. average rock

strength across 0.1–10 km2) could be too coarse to capture the

nuances associated with where sediment is being sourced from within

the catchment and what the corresponding rock strengths are for

those areas. Future work should further examine this relationship and

which metrics for rock strength may best predict deposit GSDs.

These models fill a key knowledge gap in the development of reli-

able post-fire, watershed-scale models that incorporate debris flows

(e.g. Murphy et al., 2019). Characterizing the GSD controls of post-fire

debris flows is critical to predicting their impacts on downstream

resources, because grain size exerts a first-order control on fluvial

transport (e.g. Ahammad et al., 2021). These new models will advance

our ability to predict how post-fire debris flows may impact aquatic

habitat, as erosional inputs can either enhance or degrade habitat

depending on the grain size composition (Brown et al., 2001;

Burton, 2005; Gresswell, 1999). Additionally, since no wildfire metrics

were significant in predicting post-fire debris flow grain sizes, these

models could easily be implemented for pre-fire risk assessments.

Specifically, by not requiring any knowledge of fire conditions, these

models could be used in advance of fires to help identify which catch-

ments might contribute large boulders, or alternatively very fine sedi-

ment, if they were to burn and produce debris flows. This predictive

power could help inform pre-fire resource management and/or post-

fire risk management and mitigation, since the relative grain sizes pro-

duced by the debris flows could have positive or negative implications

for aquatic habitat or downstream resources and infrastructure.

4.2.2 | Evaluation of previous volume models

Results

Of the two Gartner et al. (2008, 2014) models that we evaluated, we

found that the Gartner et al. (2008) Rocky Mountain model provided

the best predictions of volumes for the IMW debris flows in this

study. Specifically, the Rocky Mountain model with 2-year RI per-

formed best (RMSE = 3292 m3), followed by the Rocky Mountain

model with 100-year RI (RMSE = 3698 m3). Given our approach and

assumptions using RI rainfall intensity inputs for the models, we

expected the volume predictions from the two rainfall scenarios

would roughly straddle the 1:1 observed vs. predicted line (i.e. the

triggering storm RI was likely between the 2- and 100-year storm for

most events). Using this approach with the Gartner et al. (2008) Rocky

Mountain model, we found this to be the case for 48% of debris

flows, with 21% overpredicted and 31% underpredicted (Figure 6A).

Eighty-five percent of debris flow volumes predicted by the

2-year RI Rocky Mountain model were within one order of magnitude

of observed values. While there was a slight positive trend in the plot

of residuals vs. fitted values (m = 0.34, R2 = 0.05), we found that

100% of debris flows with observed volumes <1000 m3 (n = 21) were

overpredicted, and 80% of debris flows with observed volumes

>4000 m3 were underpredicted by on average a factor of 2.5 (range

0.25–15�). The majority of debris flows with observed volumes

≥1000 m3 were underpredicted (13 of 20) but all by less than one

order of magnitude. By comparison, the 100-year RI Rocky Mountain

model underpredicted the volumes of 80% of debris flows, but 83%

of predictions were within one order of magnitude. There was a

slightly more positive trend in the residuals vs. fitted values plot

(m = 0.5, R2 = 0.13), however the majority of overpredictions (70%)

were in debris flows with observed volumes <250 m3. These over-

predictions were 1.2–9.6� their observed volumes, but on average

were only overestimated by 213 m3.

Recognizing that our assessment does not use the triggering

storm intensity data as intended, we rearranged the Gartner et al.

(2008) Rocky Mountain model, substituted measured volumes for

predicted volumes [Equation 1)], and estimated the i10 rainfall inten-

sity the model would require us to accurately predict the volume of

each measured debris flow. This analysis allowed us to further evalu-

ate the model, as well as our approach of using the 2- and 100-year RI

rainfall intensities. Consistent with interpretations from Figure 6A, we

found that approximately half (48%) of the estimated rainfall intensi-

ties were between the 2- and 100-year RI events, with 21% greater

than the 100-year and 31% less than the 2-year average rainfall inten-

sity (Figure 7A). While this lends support to our approach, it is not

consistent with Staley et al. (2020), who found that 77% of post-fire

debris flows are triggered by storms of ≤2-year RI intensity. Notably,

this analysis also highlights that events requiring a rainfall intensity

F I GU R E 6 Post-fire debris flow volume predictions by the Gartner et al. (2008) model (a) and the Gartner et al. (2014) model (b) under 2-year
storm (light blue) and 100-year storm (dark blue) scenarios plotted against the observed debris flow volumes. The error bars represent model
error of two standard errors of the estimate. The thick black line shows the 1:1 relationship. The Gartner et al. (2008) model employs a negative
relationship between rainfall intensity and debris flow volume (such that the 100-year events exhibit smaller predicted volumes), while the
Gartner et al. (2014) model employs a positive relationship between rainfall intensity and debris flow volume. [Color figure can be viewed at
wileyonlinelibrary.com]
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RI > 100 years by the Gartner et al. (2008) model were predominantly

the smaller debris flows (<1000 m3). Although perhaps counterintui-

tive, this reflects the negative relationship between rainfall intensity

and debris flow volume in the model [i.e. Equation 1) indicates that

more intense storms produce smaller debris flows for any given slope

condition]. Further, this analysis suggests that, if we assume the

Gartner et al. (2008) Rocky Mountain model would perfectly predict

the measured debris flow volumes had we known the triggering rain-

fall intensities (i.e. our back-calculated storm intensities are accurate),

there is in fact no apparent relationship between post-fire debris flow

volume and rainfall intensity (Figure 7A). This apparent lack of rela-

tionship is also observed with i15 values when the same analysis was

performed with the Gartner et al. (2014) model (Figure 7B).

Using the 2- and 100-year RI 15-min rainfall intensities as model

inputs, we found the Gartner et al. (2014) model performed with sig-

nificantly lower accuracy (RMSE = 18 255 and 116 761 m3, respec-

tively) than the respective Gartner et al. (2008) model (Figure 6B).

Almost 90% of debris flow volumes were overpredicted by the 2-year

RI model, with 56% of predictions within one order of magnitude. For

the 100-year RI model, 97% of volumes were overpredicted, with only

15% of predictions within one order of magnitude. In contrast to the

Gartner et al. (2008) Rocky Mountain model, only three debris flows

(or 8%) had observed volumes between the 2- and 100-year RI predic-

tions; two of these were among the four largest observed debris flows

(>7500 m3). The Gartner et al. (2014) models also exhibited the most

significant and positive trends in the residuals vs. fitted values plot

(2-year RI: m = 1.05, R2 = 0.31; 100-year RI: m = 1.09, R2 = 0.33).

This indicates an increasing degree of overprediction with the increas-

ing size of predicted debris flows, however the largest relative

overpredictions occurred in debris flows with observed volumes

between 250 and 1000 m3.

In the absence of triggering rainfall data, one possible explanation

for the significant overprediction found with the Gartner et al. (2014)

model could be that the events in fact all occurred with rainfall inten-

sities much smaller than that of the 2-year RI storm, a conclusion that

would be consistent with Staley et al. (2020). However, this would be

contradictory to our analysis with the Gartner et al. (2008) Rocky

Mountain model, which was developed specifically for this region,

performed significantly better, and indicated that more than two-

thirds of events would have been triggered by a storm with

a >2-year RI.

Discussion

A notable limitation in our ability to definitively evaluate the accuracy

of the Gartner et al. (2008, 2014) models was a lack of rainfall data for

the storm events that triggered each debris flow in our dataset. How-

ever, this issue highlights an inherent challenge in validating these

models in most landscapes. Dangerous and destructive post-fire

debris flows are occurring in many regions and countries, yet the nec-

essary rainfall data are often non-existent, incomplete, or too coarse

in spatiotemporal resolution to identify the potential magnitude of the

triggering storm. Moreover, even where adequate rainfall gauging and

data are available, researchers must still be able to confidently identify

the exact timing of the debris flows in order to attribute them to a

measured storm intensity. Most wildfires burn in remote terrain, so

unless a debris flow directly impacts lives, property, or infrastructure,

the documentation and attribution to an exact hour, day, or even

week can be difficult to impossible.

F I G U R E 7 (a) The 10-min rainfall intensities
of triggering storm events estimated by
rearranging the Gartner et al. (2008) model for
debris flow volumes in our Intermountain West
dataset (red circles). (b) The 15-min rainfall
intensities of triggering storm events estimated by
rearranging the Gartner et al. (2014) model for
debris flow volumes in our Intermountain West
dataset (red circles). The grey shaded region
represents the range of rainfall intensities
between the 2-year storm event (light blue line)
and the 100-year storm event (dark blue line) for
each debris flow catchment. [Color figure can be
viewed at wileyonlinelibrary.com]
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Therefore, we evaluated the Gartner et al. (2008, 2014) models

under an assumption that most debris flows in the IMW were likely

triggered by storms at or between the average 2- and 100-year RI

rainfall intensities. We recognize this is not the intended approach to

parameterize precipitation in the models and that the RI of average

rainfall intensities may not represent those of peak storm intensities;

however, in addition to our common data limitations, we highlight that

in the development of the Gartner et al. (2008) Rocky Mountain

model, the authors themselves did not find rainfall to be a significant

predictor. Rather, the authors state that this variable was forced into

their model. Presumably as a result of this decision, the magnitude of

the regression coefficient for the rainfall intensity variable was not

only negative but also close to zero [i.e. �0.02 in Equation 1)]. To fur-

ther examine the role of precipitation in the Gartner et al. (2008)

model, we analysed the dataset used in the original construction of

the model (Garter, 2005) and ran a univariate regression of their data

with only the slope parameter included and no rainfall metric. We

found that forcing rainfall intensity into the model improved the

explained variance of their debris flow volumes by 7%. Additionally,

including rainfall intensity produced a model with a negative relation-

ship between rainfall intensity and debris flow volume. This relation-

ship is difficult to reconcile in terms of geomorphic processes and is

notably inconsistent with other post-fire debris flow volume models

that include rainfall metrics as a predictor (e.g. Gartner et al., 2008,

western United States model; Gartner et al., 2008, Southern California

model; Cannon et al., 2010; Gartner et al., 2014, Emergency Assess-

ment model).

While other models report a positive and more significant relation-

ship between rainfall and debris flow volumes than the Gartner et al.

(2008) Rocky Mountain model, most are heavily influenced by Southern

California data. Assuming one of the Gartner et al. (2008, 2014) models

evaluated here would have produced accurate results had we known

the triggering storm intensities, we back-calculated rainfall intensities

and found neither model exhibits a significant trend with our IMW

post-fire debris flow volumes. Overall, our findings suggest it is possible

that the assumption of a scaling relationship between precipitation

intensity and debris flow volumes may not be appropriate for post-fire

debris flows in the IMW. Future work should explore whether this rela-

tionship is unique to post-fire debris flows in the Transverse Ranges of

Southern California or if there are other geologic/tectonic settings that

exhibit a predictable relationship between rainfall intensity and debris

flow volume. Regionally specific models have frequently been

suggested for the western United States, and there are many geologic,

tectonic, climatic, and geographical differences that could likely influ-

ence debris flow processes.

We found that the commonly used Gartner et al. (2014) model

significantly overpredicted the volumes of debris flows in our IMW

dataset. While likely influenced by the previously mentioned geo-

graphic differences, we highlight that statistical discrepancies could

also potentially contribute to the lack of performance with the

Gartner et al. (2014) model. Specifically, there is a large disparity

between the size of debris flows examined in this study and those

from Southern California, analysed by Gartner et al. (2014) (Table 4).

The average volume used in the construction of their model was

nearly 30-fold larger than the average in our IMW dataset. While this

is possibly another strong indicator that there are in fact distinct geo-

graphic differences, this statistical disparity could nonetheless

contribute to our overpredictions, particularly given that the most sig-

nificant residuals were observed in debris flows with the smallest

volumes.

Finally, it is also possible that temporal effects could have

influenced our results when applying the Gartner et al. (2014) model.

Specifically, the Gartner et al. (2014) model was constructed using

data from debris flows that were all known to have occurred within

2 years post-fire. In contrast, we can only confirm that 50% of the

debris flows in our dataset occurred within 2 years following a fire.

We cannot confirm whether this was true or not for the remaining

debris flows, because we do not have documentation regarding the

timing of their occurrence. It is possible that this could introduce addi-

tional variance in the predictions from the Gartner et al. (2014) model,

as debris flow volumes have been found to be largest shortly after a

fire and then decrease over time (Santi & Morandi, 2013).

4.2.3 | New debris flow volume prediction model

Results

Following the assessment of existing models, we developed a new

model to predict sediment yield potential for debris flows produced

from burned catchments in the IMW. Table 4 presents our volume

prediction model compared to the Gartner et al. (2008, 2014) models,

including the respective model equations and sample sizes of original

datasets.

We constructed the new IMW volume model using the same

approaches as with the grain size models, but with a dataset of

41 measured deposit volumes. The model predicts the natural log of

the debris flow deposit volume (m3) as a function of the catchment’s
pre-fire percentage soil organic matter (SOM) content, the square root

of the catchment area with slopes ≥23� (km2), the square root of the

catchment burned at moderate and high severity (km2), and the aver-

age catchment runoff (mm). Every predictor in our volume prediction

model is significant using a significance threshold of ≤0.1. The model

exhibited an R2 = 0.51 and a cross-validated R2 = 0.55. This similarity

in cross-validated and general R2 value indicates the model is not

overfitted to the dataset. In comparison to the evaluated Gartner

et al. (2008, 2014) models, our volume model exhibited the lowest

RMSE (= 2941 m3).

Additionally, 97% of predicted volumes were within one order of

magnitude of the observed values (Figure 8), and there was no detect-

able trend or variance explained in the residuals vs. fitted values plot

(m = 0.0, R2 = 1e-05). While our model did overpredict 89% of debris

flows <250 m3, it was on average by just 200 m3 (compared to

825 m3 for the best-performing 2-year RI storm with Gartner

et al., 2008). Our model underpredicted volumes for all four of the

largest debris flows (those with observed volumes between 7500 and

15 000 m3). However, this was also true of the Gartner et al. (2008)

models, and our average underprediction was equivalent to that of

the 2-year RI in the Gartner et al. (2008) model (�7400 m3).

Discussion

We constructed a new post-fire debris flow volume prediction model

using the largest dataset of geolocated post-fire debris flow volumes

that we are aware of outside Southern California. Our model was

developed and assessed with data solely from the IMW and included
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many of the same sites used to construct the Gartner et al. (2008)

Rocky Mountain model, plus many more. Notably, our model’s predic-
tor variables were all identified and selected for inclusion by machine

learning algorithms that assessed a large set of potential metrics; and

in contrast with the Gartner et al. (2008, 2014) models, our model

does not include any precipitation information related to the trigger-

ing storm event (as it was not known). Further, across all assessed sta-

tistical metrics, our rainfall-less, post-fire debris flow volume model

performed as well or better than either of the Gartner et al. (2008,

2014) models when they were run and evaluated using a realistic

range of RI storm intensities, rather than triggering storm intensities.

The variables identified and used to predict volumes in our model

reflect upslope characteristics that are all previously understood to

influence post-fire debris flow process (e.g. Cannon et al., 2010;

Gartner et al., 2008, 2014; Pietraszek, 2006; Prancevic & Lamb, 2015;

Prancevic et al., 2014; Staley et al., 2017). They include: the catch-

ment area with slopes ≥23�, the catchment area burned at moderate

and high severity, average catchment runoff, and soil organic matter

content. While average catchment runoff has not specifically been

included in previous volume models, it is well understood that post-

fire debris flows are generated by runoff, and it stands to reason that

for any given burn severity, post-fire runoff may reasonably scale with

the average pre-fire runoff conditions. Our model did not improve

with the inclusion of local precipitation metrics, though we only evalu-

ated average rainfall metrics and none specific to the triggering storm

event. While some previous research has found that short-duration

intensities are more important for post-fire debris flow generation

and sediment yield (Kean et al., 2011; Staley et al., 2013), Cannon

et al. (2010) found average storm intensity to be significant for five

post-fire debris flow volume prediction models.

Pre-fire OM content was found to be a particularly significant

predictor for debris flow volumes, exhibiting a positive relationship.

Cannon et al. (2010) also found a significant relationship between OM

and post-fire debris flow volumes in two of their models, though it is

not a variable in either of the Gartner et al. (2008, 2014) models.

Additionally, Rupert et al. (2008) reported OM to be the strongest

predictor in their post-fire debris flow generation models based on

data from Southern California. OM is an important constituent for

maintaining soil structure, and the quantity of OM has been observed

to directly control soil aggregation (Mataix-Solera et al., 2011). When

soils are burned, particularly at high severity, the severity of soil water

repellency (or hydrophobicity) is dependent on the pre-fire OM con-

tent, along with soil texture and soil water content (DeBano, 1981,

2000; DeBano et al., 1979; Doerr et al., 2009). Additionally, the

degree of change in soil structure, hydrophobicity, and soil infiltration

capacity after wildfire has been directly linked to the quantity of OM

incinerated by the fire (DeBano, 2000; DeBano et al., 1979). It is thus

likely that the observed relationships between pre-fire OM and post-

fire debris flow volume reflects the magnitude of post-fire hydrologic

response due to incineration of OM. While the magnitude of change

in soil conditions and resulting surface runoff may depend on the soil

burn severity for any given OM content, burn severity is also included

as a predictor in our model.

We constructed a new model for IMW post-fire debris flow vol-

umes that exhibits good predictive capability and can be used in the

absence of triggering storm event rainfall data. It is possible that the

inclusion of triggering storm rainfall metrics would further improve

our model’s accuracy, but this data is notoriously difficult to obtain.

T AB L E 4 Equations for the post-fire debris flow volume prediction models from Gartner et al. (2008, 2014), as well as the new model
developed in this study. Fit diagnostics (R2 and cross-validated R2) represent the results for our model applied to the Intermountain West debris
flow volume dataset compiled in this study. Dataset sizes (n), along with minimum, mean, and maximum volumes of debris flows, represent those
data used in the original development for each model

Model Equation

Model development
dataset

Applied to IMW
dataset

n Min Mean Max R2 x-val. R2

Gartner et al. (2008) lnV¼0:72 lnS30ð Þ�0:02 i10ð Þþ8:54 17 n/a n/a n/a n/a n/a

Gartner et al. (2014) lnV¼4:22þ0:39
ffiffiffiffiffiffiffi

i15
p

þ0:36 lnBmhð Þþ0:13
ffiffiffi

R
p

79 29 46 200 864 300 n/a n/a

Volume prediction

model (this study)
lnV¼2:7þ1:9Omþ0:175

ffiffiffiffiffiffiffi

S23
p þ0:8

ffiffiffiffiffiffiffiffiffiffi

Bmh
p

þ0:003Ro 41 36 1600 13 750 0.5 0.55

The variables are defined as V = volume of a debris flow (m3), S30 = catchment area with slopes ≥ 30% (km2), i10 = peak 10-min rainfall intensity (mm/h),

i15 = peak 15-min rainfall intensity (mm/h), Bmh = catchment area burned at moderate and high severity (km2), R = catchment relief (m), S23 = catchment

area with slopes ≥ 23� , Om = percentage soil organic matter, Ro = average catchment runoff (mm).

F I GU R E 8 Post-fire debris flow volumes predicted using the new
volume prediction model plotted against measured volumes (Table 4).
The thick black line represents the 1:1 relationship. The thin lines
represent the envelope of one residual standard error. The model
exhibits an R2 = 0.51 and a cross-validated R2 = 0.55.
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Despite this reality, most commonly used post-fire debris flow volume

prediction models rely on metrics that require varying information

about the storm that triggered the debris flow. In four of the models

presented by Gartner et al. (2008), they found that volume had a sig-

nificant positive relationship with the total storm rainfall. In their

Rocky Mountain model, no precipitation metrics were found to be sig-

nificant, however, they forced the peak 10-min rainfall intensity into

the model, resulting in a weak and negative relationship. They also

found no precipitation metrics to be significant in their Sedimentary

Rock model. Cannon et al. (2010) reported the average storm intensity

from the triggering storm event to have a significant positive relation-

ship with post-fire debris flow volume for five of their volume predic-

tion models. Gartner et al. (2014) found volume to have a significant

positive relationship with the triggering storm peak 15-min rainfall

intensity, which is consistent with the rainfall metric found to influence

debris flow generation (Staley et al., 2017). Nyman et al. (2015) evalu-

ated the Gartner et al. (2008) western United States model, which uses

total storm rainfall as a predictor, for a burned area in southeast

Australia. Although they reported this model worked well for predicting

their observed volumes, they also found that it only explained 3% more

of the variance in their volumes than an extremely parsimonious, relief-

only model that included no precipitation metrics (Nyman et al., 2015).

Across all these studies and models, there is no consensus or

clearly demonstrated and consistent relationship between post-fire

debris flow volumes and the characteristics of the storm that generate

them. Rather, despite the often-presumed positive relationship

between rainfall and post-fire debris flow volume, previous work in

this area has presented wildly contradictory relationships, proposed

an array of potential storm metrics, and sometimes predicted volumes

without the need of any precipitation metric. Although we know rain-

fall intensity is a critical predictor for debris flow generation (Staley

et al., 2017), there is no similarly compelling evidence to demonstrate

if or how post-fire debris flow volumes scale with rainfall. We posit

that the role of rainfall may instead serve as more of an occurrence/

non-occurrence predictor linked to debris flow initiation, rather than a

scaling variable for volume. In essence, rainfall is required in that it

controls the ability of a burned catchment to generate a debris flow,

but the debris flow volumes produced from catchments across the

IMW may be insensitive to rainfall intensity because they are often

limited by the sediment availability along the debris flow path (i.e. in

the channel). In line with this proposal, debris flow channels in the

IMW are often observed to erode down to the underlying bedrock

(e.g. DeLong et al., 2018; Murphy et al., 2019).

Moreover, rainfall thresholds have frequently been identified to

control the generation of debris flows (Cannon et al., 2011; McGuire &

Youberg, 2020; Staley et al., 2013, 2017) and have largely been found

to occur with low-RI storm events (Staley et al., 2020). Across the

western United States, there is a relatively small range of storm inten-

sities responsible for producing post-fire debris flows that have vol-

umes spanning many orders of magnitude (�80% triggering i15 are

<55 mm/h; Staley et al., 2020). While higher-intensity storm events

may be capable of producing larger debris flows, the reality may be

that burned landscapes are so hydrologically responsive that lower-RI

events often trigger debris flows and evacuate most available sedi-

ment, at least in the IMW, before the lower-probability but higher-

intensity storm events occur. Thus, despite the intuitive

hydrogeomorphic link, these low-rainfall thresholds may limit our

ability to document and interpret this relationship from empirical

datasets. Additionally, the low range of triggering rainfall intensities

relative to that of debris flow volumes presents potential statistical

issues with empirical observation. Even small levels of uncertainty or

error in rainfall intensity values, which are often from gauges many

kilometres away from the debris flows (e.g. Staley et al., 2017), could

degrade and propagate large uncertainty into empirically derived rela-

tionships. These issues may contribute to the inconsistent and contra-

dictory relationships previously observed, and ultimately, more work

is required on the relationships between post-fire debris flow volume,

the characteristics of the triggering storm events, and sediment avail-

ability in the contributing catchments.

This study provides a new approach and insights into the poten-

tial controls on and predictions of post-fire debris flow volumes in the

IMW. To construct our volume model, we used a strictly statistical

approach rather than process-based methods. Nonetheless, the pre-

dictor variables and relationships in our volume model all have robust,

process-based explanations. Specifically, we find that greater volumes

of debris flow sediment are predicted when larger areas of a catch-

ment burn at moderate to high severity, where there are larger areas

of the catchment with slopes ≥23�, where there is more organic mate-

rial in the soil before the fire, and where there is more predicted

catchment runoff based on pre-existing soil conditions. Using

machine-learning statistical approaches, as we have here, can offer

new insights that might otherwise be overlooked in models con-

structed based on previous understanding and assumptions.

5 | CONCLUSIONS

In this study, we compiled a novel dataset of deposit volumes and

grain sizes for post-fire debris flows across 19 fires that were located

across the IMW. Utilizing this dataset, we developed and presented

four new predictive grain size models to capture the fine, median, and

coarse ends of a deposit GSD. These models use topographic, climate,

and lithological metrics to predict debris flow grain sizes, and as no

wildfire metrics were found to be significant, they can easily be used

to inform risk assessments (such as to stream habitat) conducted

either before or after a wildfire occurs (i.e. no data or predictions of

wildfire severity are required). We have also developed and presented

a new post-fire debris flow volume prediction model, which uses pre-

dictor variables from publicly available datasets across the IMW

region and that are all grounded in previously understood post-fire

debris flow controls and process. This model can be applied after a fire

using available burn severity maps to predict debris flow sediment

yields from burned catchments without requiring information about

the triggering storm. While we recognize that not using any precipita-

tion metrics in our volume model departs from some previous

approaches (Cannon et al., 2010; Gartner et al., 2008, 2014), the exis-

ting models are challenging to validate or apply without detailed pre-

cipitation data. Additionally, the current understanding of rainfall

controls on post-fire debris flow volumes is limited and inconsistent,

particularly outside of Southern California. Overall, the suite of

models presented here advance our geomorphic understanding of

burned landscapes, improve upon common approaches in post-fire

risk assessment, and better inform watershed management in

response to post-fire debris flows.

WALL ET AL. 193

 10969837, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5480 by U

tah State U
niversity, W

iley O
nline Library on [22/09/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



As the area burned at high severity is projected to increase across

the western United States (Liu et al., 2010; Westerling et al., 2011),

watersheds will become more vulnerable to post-fire erosion and

debris flows (Cannon & Gartner, 2005; Moody & Martin, 2009; Ren &

Leslie, 2020). Simultaneously, yearly decreases in snowpack and

increasing evapotranspiration are resulting in increased water scarcity

across the western United States (U.S. Environmental Protection

Agency [EPA], 2016), making water storage in reservoirs even more

essential (Abatzoglou & Williams, 2016; Cayan, 1996; Westerling

et al., 2006). As advancements in modelling seek to predict how

increasing post-fire erosion will impact downstream water resources

and reservoir storage capacities, it is essential to have better and more

detailed information about the location, timing, volumes, and grain

sizes of debris flow inputs to river networks after wildfire. The models

presented here offer insights into post-fire debris flows in the IMW

and provide a critical step towards predicting post-fire debris flow

grain sizes, which can help inform watershed-scale modelling frame-

works (e.g. Murphy et al., 2019). To improve these models further and

our ability to understand downstream impacts of post-fire debris

flows, it is paramount that the geomorphic and wildfire communities

expand efforts to collect more post-fire rainfall and debris flow data,

especially in regions beyond Southern California.
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