
Procedia Computer Science 00 (2023) 1±8

Procedia
Computer
Science

www.elsevier.com/locate/procedia

XII Latin-American Algorithms, Graphs and Optimization Symposium

Resource Augmentation Analysis of the Greedy Algorithm for
the Online Transportation Problem

Stephen Arndta, Josh Ascherb, Kirk Pruhsc,1

aComputer Science Department, University of Pittsburgh, Pittsburgh PA, 15260. sda19@pitt.edu
bComputer Science Department, University of Pittsburgh, Pittsburgh PA, 15260. joa71@pitt.edu
cComputer Science Department, University of Pittsburgh, Pittsburgh PA, 15260. kirk@cs.pitt.edu

Abstract

We consider the online transportation problem set in a metric space containing parking garages of various capacities.

Cars arrive over time, and must be assigned to an unfull parking garage upon their arrival. The objective is to mini-

mize the aggregate distance that cars have to travel to their assigned parking garage. We show that the natural greedy

algorithm, augmented with garages of k ≥ 3 times the capacity, is
(

1 + 2
k−2

)

-competitive.

© 2011 Published by Elsevier Ltd.

Keywords: Online Algorithms, Weighted Bipartite Matching, Competitive Analysis

1. Introduction

We consider the natural online version of the classical transportation problem [1, 2]. The setting is a

metric spaceM that contains a collection S = {s1, s2, . . . , sm} of server sites at various locations inM. Each

server site s j has a positive integer capacity a j. Conceptually think of each server site s j as a parking garage

with a j parking spaces. Over time, a sequence of requests R = {r1, r2, . . . , rn} arrive at various locations in

the metric space. Think of the requests as cars that are looking for a space to park. Upon the arrival of each

request ri the online algorithmAmust assign ri to an unfull server site sσ(i), that is one where the number of

previous requests assigned to sσ(i) is less than aσ(i). The cost incurred by such an assignment is the distance

d(sσ(i), ri) between the location of sσ(i) and the location where ri arrived inM. The objective is to minimize
∑n

i=1 d(sσ(i), ri), the total cost to service the requests. So in our parking application, the objective would

be to minimize the aggregate distance that the cars have to travel to reach their assigned parking space. In

this setting, one standard performance metric of an online algorithm is the competitive ratio. An online

algorithm A is c-competitive if for all instances I it is the case that A(I) ≤ c · OPT(I), where A(I) is the

objective value attained by the online algorithm A on instance I and OPT(I) is the optimal objective value

for instance I.

1Supported in part by NSF grants CCF-1907673, CCF-2036077, CCF-2209654 and an IBM Faculty Award.

2 Arndt et. al. / Procedia Computer Science 00 (2023) 1±8

1.1. The Essential Story So Far

An important special case of the online transportation problem is the online metrical matching problem,

which is when each ai = 1. In [3, 4] it was shown that the optimal competitive ratio for online metrical

matching is (2n − 1)-competitive. For online metrical matching the best known competitive ratio for a

randomized algorithm against an oblivious adversary is O(log2 n) [5, 6], which is obtained by an algorithm

that uses a greedy algorithm on the embedding of the metric space into a hierarchically separated tree (HST),

and the best known lower bound for the competitiveness of a randomized algorithm against an oblivious

adversary is Ω(log n). Thus for online transportation no deterministic algorithm can be better than 2n − 1

competitive, and no randomized algorithm can be o(log n)-competitive.

The most natural algorithm for the online transportation problem is the greedy algorithm GREEDY that

assigns each request to the nearest unfull server site. So understanding the performance of GREEDY, when

it performs well and when it performs poorly, is of some interest. In [3] it was shown that the competitive

ratio of GREEDY is 2n − 1, even for online metrical matching in a line metric.

One way to get around this strong worst-case lower bound for GREEDY is to use resource augmentation

analysis. In this setting, this means assuming that for the online algorithm the capacity c j of each server site

s j is c j = k · a j, where k is an integer strictly greater than one, while still assuming that in the benchmark

optimal matching the capacity of the garage is a j. [7] showed that for all instances I,

GREEDY2(I) ≤ O
(

min(n, log C) · OPT(I)
)

where GREEDY2(I) is the objective value for GREEDY assuming that each server site s j has capacity

c j = 2a j, and C =
∑n

j=1 c j is the aggregate server capacity. Further [7] showed how to modify the greedy

algorithm, by artificially increasing the distances to garages that are more than half full by a constant multi-

plicative factor, to obtain an algorithm MGREEDY, and showed that

MGREEDY2(I) ≤ O (OPT(I))

That is, this modified greedy has a constant competitive ratio if the capacity of its server sites is doubled. [8]

shows how to obtain an O(log3 n)-competitive randomized algorithm using HST’s and resource augmenta-

tion of an additional one server per site.

Another way to get around the strong worst-case lower bound for GREEDY is to use average-case

analysis. [9] analyzes the average-case performance of GREEDY for online metrical matching in several

natural metric spaces. For example [9] shows that if the locations of the requests and servers are uniformly

and independently drawn from a Euclidean circle then in the limit as n grows,

E[GREEDY(I)] ≤ 2.3
√

n · E[OPT(I)]

As best as we can tell there are not results in the literature on average-case analysis of GREEDY for online

metric matching or transportation in a general metric.

There are a significant number of papers that contain (both average-case and worst-case) results for

online metrical matching and online transportation in metrics of special interest, most notably a line metric.

As our interests lie with general metric spaces, we will not survey these results here.

1.2. Our Results

Our main contribution is to extend the results in [7] to show that the algorithm GREEDY is constant

competitive with resource augmentation k ≥ 3. More specifically we show that

Theorem 1.1. For k ≥ 3, GREEDYk(I) ≤
(

1 + 2
k−2

)

OPT(I).

Further we show that this bound is essentially tight by giving an instance where this lower bound is

obtained in the limit. So one possible interpretation of this result is that GREEDY should perform reasonably

well (have bounded relative error) on instances where tripling the capacity of the garages wouldn’t change

the optimal cost by more than a constant factor (so intuitively the load on the parking system is not too

Arndt et. al. / Procedia Computer Science 00 (2023) 1±8 3

(a) An Example Connected Component of the Response

Graph for k = 3.

(b) One possible tree decomposition (roots are highest node)

high). It wouldn’t be totally unreasonable to argue that this result provides a more convincing explanation of

when GREEDY should perform reasonably, and why it performs reasonably in these instances, than do prior

results. For example, this result guarantees bounded competitiveness, and even competitiveness approaching

one as the resource augmentation increases. In fairness, let us acknowledge the best counterargument, which

is probably that a factor of three resource augmentation is significant.

Not surprisingly, our proof of Theorem 1.1 builds on the foundation established in [7]. However, it is

important to note that if one naively applies the analysis of GREEDY in [7] with k ≥ 3 (instead of k = 2),

then one just obtains logk C competitiveness (instead of the original log2 C competitiveness result). Thus

we had to develop a new method to bound certain costs for the GREEDY algorithm. The main technical

innovation was the introduction of what we call the the weighted tree cost. Informally, the weighted tree

cost bounds certain costs for the GREEDY algorithm by a particular weighted sum of the cost of certain

edges in the optimal solution (instead of directly bounding these costs by the entirety of the optimal cost).

2. Algorithm Analysis

We begin with the simplifying assumption that ci = k and ai = 1 for all 1 ≤ i ≤ n. We assume

the adversary services ri with si, and that the online algorithm services ri with sσ(i). By convention, we

represent adversary edges by listing the request first (e.g. (ri, si)) and online edges by listing the server first

(e.g. (sσ(i), ri)).

2.1. Defining the Response Graph and Response Trees

We start as in [7] by defining the response graph, noting that it is almost acyclic, and then decomposing

its edges into what we call response trees. An example of a response graph and one possible decomposition

into response trees can be seen in Figure 1a and Figure 1b.

Definition 2.1 (Response Graph). Let EOPT =
⋃n

i=1(ri, si) be the set of all adversary edges, EON =
⋃n

i=1(sσ(i), ri)

be the set of all online edges, and E = EOPT ∪ EON . Then the response graph is G = (S ∪ R, E), where

each edge has a weight that is the distance in the underlying metric spaceM between the endpoints of e.

Lemma 2.2. [7] Assume that request ri is in a cycle in G. Then the connected component of G − (sσ(i), ri)

that contains ri is a tree.

Definition 2.3 (Tree Decomposition). We define a tree decomposition of the response graph G to be a

collection of response trees where:

4 Arndt et. al. / Procedia Computer Science 00 (2023) 1±8

• Each response tree T is a rooted tree that is rooted at some request ri.

• Each response tree T is a subgraph of G.

• Every edge in G is either contained in a unique response tree, or is the online edge (sσ(i), ri) incident

to the root ri of some response tree T , but not both (so an online edge incident to a root of a response

tree is not in any response tree).

[7] then shows how to decompose the response graph into response trees, where each response tree T
has the following additional properties:

• For each request r j ∈ T , r j has one child, namely s j.

• Each leaf in T is a server site s j with parent r j.

• Each nonleaf server site si in T has k incident online edges in T , which are the children of si in T .

• For each request r j ∈ T and for each leaf sq ∈ T it is the case that the algorithm GREEDY had an

unused server available at sq when request r j arrived.

Intuitively, [7] accomplishes this by iteratively breaking up each connected component C as follows. Let ri

be the most recent request in C. First the online edge (sσ(i), ri) is deleted. Let C′ be the resulting connected

component containing ri (note C′ is a tree by Lemma 2.2). A response tree rooted at ri is then created by

including all vertices reachable from ri in C′ by a path that does not contain an unfull server site as an

internal server site on the path (in this context, unfull means that at the time of ri, the greedy algorithm

had not used all of the servers at that server site). Or alternatively, the leaves of T are unfull server sites

reachable from ri in C′ without passing through another unfull server site. The edges and request vertices

of T are then removed from C. We now fix a particular such decomposition of G into response trees for the

rest of the paper.

Finally, we give the following useful definitions related to response trees.

Definition 2.4 (Adversary Cost of T). For a response tree T , let OPT(T) be defined as the sum of the costs

of all adversary edges in T . Thus, OPT(T) =
∑

(r j,s j)∈T d(r j, s j).

Definition 2.5 (Online Cost of T). For a response tree T , let ON(T) be defined as the sum of the costs of

all online edges in T ∪ {(sσ(i), ri)}. Thus, ON(T) =
∑

r j∈T d(sσ(j), r j).

Definition 2.6 (Leaf Distance in T). Let T be a response tree rooted at a request ri. For all vertices x ∈ T ,

let T (x) be the subtree of T rooted at x. Define ld(x), the leaf distance of x, as the minimum distance in T
(not inM) from x to a leaf of T (x). Further, define ld(sσ(i)) to be d(sσ(i), ri) + ld(ri).

Definition 2.7 (Weighted Tree Cost). Let T be a response tree rooted at a request ri. Let r j be a request in

T , with child s j and grandchildren rδ(1), . . . rδ(k). We then recursively define the weighted tree cost of r j to

be

W(r j) = d(r j, s j) +
2

k

















k
∑

h=1

W(rδ(h))

















If s j is a leaf, then W(r j) = d(r j, s j).

2.2. Analysis of GREEDY

In Lemma 2.8 and Lemma 2.9, we show that the Weighted Tree Cost provides a useful upper bound on

leaf distances of T and by extension online edges in T . In Lemma 2.11, we use this result to directly bound

ON(T) in terms of OPT(T). Finally, in Lemma 2.12, we extend this bound on trees T to the entire response

graph G, and finally prove the main result, Theorem 1.1.

Lemma 2.8. Let T be an arbitrary response tree. For each request r j ∈ T , d(sσ(j), r j) ≤ ld(r j).

Arndt et. al. / Procedia Computer Science 00 (2023) 1±8 5

Proof. Let sq be a leaf in the subtree of T rooted at r j that is closest to r j in T . By the triangle inequality,

we know that d(sq, r j) ≤ ld(r j). Further we know that GREEDY had an unused server at sq at the time

that r j arrived. Thus by the definition of GREEDY, it must be the case that d(sσ(j), r j) ≤ d(sq, r j). Thus by

transitivity we can conclude that d(sσ(j), r j) ≤ ld(r j).

Lemma 2.9. Let T be an arbitrary response tree. For each request r j ∈ T , ld(r j) ≤ W(r j).

Proof. We proceed by induction on the height h of the induced tree T (r j) (the subtree of T rooted at

r j). If h = 1, the induced tree contains one request, r j, which the adversary services using s j. Thus,

ld(r j) = d(r j, s j) = W(r j).

Now suppose h > 1. Then, s j has k children: rb1
, rb2
, . . . , rbk

. This gives

ld(r j) = d(r j, s j) + min
p=1...k

[

d(s j, rbp
) + ld(rbp

)
]

≤ d(r j, s j) + min
p=1...k

[

ld(rbp
) + ld(rbp

)
]

= d(r j, s j) + 2

(

min
p=1...k

[

ld(rbp
)
]

)

≤ d(r j, s j) + 2

(

min
p=1...k

[

W(rbp
)
]

)

≤ d(r j, s j) +
2

k

















k
∑

p=1

W(rbp
)

















= W(r j)

The first inequality follows from Lemma 2.8. The second inequality follows from induction. The third

inequality follows from the fact that the average has to be larger than the minimum. The last equality

follows from the definition of W(r j).

Lemma 2.9 is the main technical extension relative to [7]. In [7] the term ld(r j) is merely upper bounded

by the optimal cost. If we used that upper bound on ld(r j) in our analysis, our upper bound on the competitive

ratio would not be O(1).

Lemma 2.10. Let T be an arbitrary response tree rooted at ri of height h. Let Dℓ be the collection of

adversary edges (r j, s j) in T where the path from ri to s j in T passes through l adversary edges. Then

W(ri) =

h
∑

ℓ=1

(

2

k

)l−1
∑

(r j,s j)∈Dℓ

d(r j, s j)

Proof. We prove this by induction on h. For h = 1, we simply have W(ri) = d(ri, si). For h > 1, suppose

si has k incident online edges (si, ra1
), (si, ra2

), . . . , (si, rak
). Then D2 = {(ra1

, sa1
), (ra2

, sa2
), . . . , (rak

, sak
)}.

Further, for all 2 ≤ ℓ ≤ h, define D
a1

ℓ
⊆ Dℓ s.t. D

a1

ℓ
contains all adversary edges in Dℓ within the subtree

T (ra1
). Define D

a2

ℓ
,D

a3

ℓ
, . . . ,D

ak

ℓ
similarly. Thus, Dℓ =

⋃k
p=1 D

ap

ℓ
where D

a1

ℓ
,D

a2

ℓ
, . . . ,D

ak

ℓ
are pairwise

disjoint. Then we have

W(ri) = d(ri, si) +
2

k

















k
∑

p=1

W(rap
)

















= d(ri, si) +
2

k























k
∑

p=1























h−1
∑

l=1

(

2

k

)l−1
∑

(r j,s j)∈D
ap

l+1

d(r j, s j)













































= d(ri, si) +
2

k























h−1
∑

l=1

(

2

k

)l−1























k
∑

p=1

∑

(r j,s j)∈D
ap

l+1

d(r j, s j)













































6 Arndt et. al. / Procedia Computer Science 00 (2023) 1±8

= d(ri, si) +
2

k



















h−1
∑

l=1

(

2

k

)l−1
∑

(r j,s j)∈Dl+1

d(r j, s j)



















= d(ri, si) +

h
∑

l=2

(

2

k

)l−1
∑

(r j,s j)∈Dℓ

d(r j, s j)

=

h
∑

l=1

(

2

k

)l−1
∑

(r j,s j)∈Dℓ

d(r j, s j)

Lemma 2.11. Let T be an arbitrary response tree. Then ON(T) ≤
(

1 + 2
k−2

)

OPT(T).

Proof. Using Lemma 2.8 and Lemma 2.9, we can bound ON(T) as follows:

ON(T) =
∑

r j∈T
d(sσ(j), r j) ≤

∑

r j∈T
ld(r j) ≤

∑

r j∈T
W(r j)

Note by applying Lemma 2.10 one can view
∑

r j∈T W(r j) as a linear combination of costs of adversary

edges. Consider an arbitrary adversary edge (rq, sq) ∈ T . Note again by Lemma 2.10 that d(rq, sq) will be

included in W(r j) with coefficient
(

2
k

)b−1
only when the following two conditions hold: r j is an ancestor of

rq, and the simple path from r j to sq in T passes through b adversary edges. Further, clearly an ancestor

r j which satisfies these conditions is unique. Thus the coefficient associated with the cost of (rq, sq) in
∑

r j∈T W(r j) is at most 1 +
(

2
k

)

+
(

2
k

)2
+ · · · = 1

1− 2
k

= k
k−2
= 1 + 2

k−2
. Thus, we have

∑

r j∈T
W(r j) ≤

(

1 +
2

k − 2

)

∑

(rq,sq)∈T
d(rq, sq) =

(

1 +
2

k − 2

)

OPT(T)

Lemma 2.12. GREEDYk(I) ≤
(

1 + 2
k−2

)

OPT(I) under the assumption that each server site si has k ≥ 3

online servers and one adversary server.

Proof. Note that GREEDYk(I) is equal to the total cost of the online edges in the response graph, G. Via

our tree decomposition, this cost is

GREEDYk(I) =
∑

T∈G
ON(T) ≤

(

1 +
2

k − 2

)

∑

T∈G
OPT(T) =

(

1 +
2

k − 2

)

OPT(I)

Proof of Theorem 1.1. Split each server site with online capacity ci = kai and adversary capacity ai into ai

server sites with online capacity k and adversary capacity 1. Clearly the optimal cost is the same because

the underlying server locations have not changed. Further, GREEDYk assigns requests identically on both

instances for the same reason, and so the online cost is the same as well. Thus Lemma 2.12 directly gives

the desired result.

Arndt et. al. / Procedia Computer Science 00 (2023) 1±8 7

2.3. Algorithm Lower Bound

Lastly, we show the competitiveness bound of 1 + 2
k−2

for GREEDYk is essentially tight.

Theorem 2.13. ∀ ϵ > 0, there is an instance Iϵ where GREEDYk(Iϵ) >
(

1 + 2
k−2
− ϵ

)

OPT(Iϵ).

Proof. We embed m server sites on the real line. The server site s1 is located at the point −1. For 2 ≤ i ≤ m,

the server site si is located at 2i−1 − 1. The online algorithm has ci = km−i+1 servers at site si, and the

adversary has ai = km−i servers at site si. The requests occur in m batches. The first batch consists of km−1

requests at 0. For 2 ≤ i ≤ m, the i-th batch consists of km−i requests at si = 2i−1 − 1. GREEDYk responds to

batch i (1 ≤ i < m) by answering each request in batch i with server site si+1, thus depleting si+1. GREEDYk

responds to batch m by answering the sole request with site s1.

For batch 1, GREEDYk services km−1 requests, each of which requires a cost of s2 − 0 = 1. For batch i,

1 < i < m, GREEDYk services km−i requests, each of which requires a cost of si+1− si = (2i−1)−(2i−1−1) =

2i−1. For batch m, GREEDYk services 1 request, which requires a cost of sm− s1 = (2m−1−1)− (−1) = 2m−1.

Thus GREEDYk incurs a total cost of

GREEDYk(Iϵ) = km−1 · 1 +
m−1
∑

i=2

km−i · 2i−1 + 1 · 2m−1 =

m
∑

i=1

km−i · 2i−1

= km−1

m
∑

i=1

2i−1

ki−1

= km−1

m
∑

i=1

(

2

k

)i−1

= km−1



















1 −
(

2
k

)m

1 − 2
k



















= km−1 · k

k − 2

(

1 −
(

2

k

)m)

= km−1 ·
(

1 +
2

k − 2

) (

1 −
(

2

k

)m)

The adversary could respond to the requests by servicing batch i with server site si. The adversary would

incur a cost of km−1 for batch 1, and a cost of 0 for batches i, 2 ≤ i ≤ m. Then the adversary can achieve a

total cost of OPT(Iϵ) ≤ km−1. Thus, we have

GREEDYk(Iϵ)

OPT(Iϵ)
≥

km−1 ·
(

1 + 2
k−2

) (

1 −
(

2
k

)m)

km−1
=

(

1 +
2

k − 2

) (

1 −
(

2

k

)m)

For any ϵ > 0, for sufficiently large m,
(

2
k

)m
<

(

k−2
k

)

ϵ giving

(

1 +
2

k − 2

) (

1 −
(

2

k

)m)

>

(

1 +
2

k − 2

) (

1 −
(

k − 2

k

)

ϵ

)

= 1 +
2

k − 2
− ϵ

Thus for sufficiently large m,

GREEDYk(Iϵ) >

(

1 +
2

k − 2
− ϵ

)

OPT(Iϵ)

8 Arndt et. al. / Procedia Computer Science 00 (2023) 1±8

References

[1] J. Kennington, R. Helgason, Algorithms for Network Programming, John Wiley and Sons, 1980. arXiv:https://

onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230120107. 1

[2] E. Lawler, Combinatorial Optimization: Networks and Matroids, Sanders College Publishing, 1976. 1

[3] B. Kalyanasundaram, K. Pruhs, Online weighted matching, Journal of Algorithms 14 (3) (1993) 478±488. 2

[4] S. Khuller, S. G. Mitchell, V. V. Vazirani, On-line algorithms for weighted matching and stable marriages, Tech. rep., Cornell

University (1994). 2

[5] A. Meyerson, A. Nanavati, L. Poplawski, Randomized online algorithms for minimum metric bipartite matching, in: Proceed-

ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, Society for Industrial and Applied

Mathematics, USA, 2006, p. 954±959. 2

[6] N. Bansal, N. Buchbinder, A. Gupta, J. S. Naor, An o(log2 k)-competitive algorithm for metric bipartite matching, in: L. Arge,

M. Hoffmann, E. Welzl (Eds.), Algorithms ± ESA 2007, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 522±533. 2

[7] B. Kalyanasundaram, K. R. Pruhs, The online transportation problem, SIAM Journal on Discrete Mathematics 13 (3) (2000)

370±383. 2, 3, 4, 5

[8] C. Chung, K. Pruhs, P. Uthaisombut, The online transportation problem: On the exponential boost of one extra server, in: E. S.

Laber, C. Bornstein, L. T. Nogueira, L. Faria (Eds.), LATIN 2008: Theoretical Informatics, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2008, pp. 228±239. 2

[9] Y. The Tsai, C. Yi Tang, Y. Yen Chen, Average performance of a greedy algorithm for the on-line minimum matching problem on

euclidean space, Information Processing Letters 51 (6) (1994) 275±282. 2

	1 Introduction
	2 Algorithm Analysis

