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Abstract

We consider the online transportation problem set in a metric space containing parking garages of various capacities.
Cars arrive over time, and must be assigned to an unfull parking garage upon their arrival. The objective is to mini-
mize the aggregate distance that cars have to travel to their assigned parking garage. We show that the natural greedy
algorithm, augmented with garages of k > 3 times the capacity, is (1 + é -competitive.
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1. Introduction

We consider the natural online version of the classical transportation problem [1, 2]. The setting is a
metric space M that contains a collection S = {s1, 52, ..., 5,;} of server sites at various locations in M. Each
server site s; has a positive integer capacity a;. Conceptually think of each server site s; as a parking garage
with a; parking spaces. Over time, a sequence of requests R = {r(,7»,...,7,} arrive at various locations in
the metric space. Think of the requests as cars that are looking for a space to park. Upon the arrival of each
request r; the online algorithm A must assign r; to an unfull server site s, that is one where the number of
previous requests assigned to s,(; is less than as;. The cost incurred by such an assignment is the distance
d(sq), ri) between the location of s, and the location where r; arrived in M. The objective is to minimize
Y1 d(so), 1i), the total cost to service the requests. So in our parking application, the objective would
be to minimize the aggregate distance that the cars have to travel to reach their assigned parking space. In
this setting, one standard performance metric of an online algorithm is the competitive ratio. An online
algorithm A is c-competitive if for all instances [ it is the case that A(I) < ¢ - OPT(I), where A(I) is the
objective value attained by the online algorithm A on instance / and OPT(/) is the optimal objective value
for instance 1.
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1.1. The Essential Story So Far

An important special case of the online transportation problem is the online metrical matching problem,
which is when each a; = 1. In [3, 4] it was shown that the optimal competitive ratio for online metrical
matching is (2n — 1)-competitive. For online metrical matching the best known competitive ratio for a
randomized algorithm against an oblivious adversary is 0(log2 n) [5, 6], which is obtained by an algorithm
that uses a greedy algorithm on the embedding of the metric space into a hierarchically separated tree (HST),
and the best known lower bound for the competitiveness of a randomized algorithm against an oblivious
adversary is Q(logn). Thus for online transportation no deterministic algorithm can be better than 2n — 1
competitive, and no randomized algorithm can be o(log n)-competitive.

The most natural algorithm for the online transportation problem is the greedy algorithm GREEDY that
assigns each request to the nearest unfull server site. So understanding the performance of GREEDY, when
it performs well and when it performs poorly, is of some interest. In [3] it was shown that the competitive
ratio of GREEDY is 2" — 1, even for online metrical matching in a line metric.

One way to get around this strong worst-case lower bound for GREEDY is to use resource augmentation
analysis. In this setting, this means assuming that for the online algorithm the capacity c; of each server site
sjis cj = k- aj, where k is an integer strictly greater than one, while still assuming that in the benchmark
optimal matching the capacity of the garage is a;. [7] showed that for all instances /,

GREEDY, (1) < O (min(n, log C) - OPT(I))

where GREEDY (/) is the objective value for GREEDY assuming that each server site s; has capacity
¢j =2aj,and C = Z;zl c; is the aggregate server capacity. Further [7] showed how to modify the greedy
algorithm, by artificially increasing the distances to garages that are more than half full by a constant multi-
plicative factor, to obtain an algorithm MGREEDY, and showed that

MGREEDY, (/) < 0 (OPT(]))

That is, this modified greedy has a constant competitive ratio if the capacity of its server sites is doubled. [8]
shows how to obtain an O(log® n)-competitive randomized algorithm using HST’s and resource augmenta-
tion of an additional one server per site.

Another way to get around the strong worst-case lower bound for GREEDY is to use average-case
analysis. [9] analyzes the average-case performance of GREEDY for online metrical matching in several
natural metric spaces. For example [9] shows that if the locations of the requests and servers are uniformly
and independently drawn from a Euclidean circle then in the limit as n grows,

E[GREEDY(])] < 2.3 Vn - E[OPT(])]

As best as we can tell there are not results in the literature on average-case analysis of GREEDY for online
metric matching or transportation in a general metric.

There are a significant number of papers that contain (both average-case and worst-case) results for
online metrical matching and online transportation in metrics of special interest, most notably a line metric.
As our interests lie with general metric spaces, we will not survey these results here.

1.2. Our Results

Our main contribution is to extend the results in [7] to show that the algorithm GREEDY is constant
competitive with resource augmentation k > 3. More specifically we show that

Theorem 1.1. For k > 3, GREEDY,()) < (1 + ) OPT(J).

Further we show that this bound is essentially tight by giving an instance where this lower bound is
obtained in the limit. So one possible interpretation of this result is that GREEDY should perform reasonably
well (have bounded relative error) on instances where tripling the capacity of the garages wouldn’t change
the optimal cost by more than a constant factor (so intuitively the load on the parking system is not too
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(a) An Example Connected Component of the Response  (b) One possible tree decomposition (roots are highest node)
Graph for k = 3.

high). It wouldn’t be totally unreasonable to argue that this result provides a more convincing explanation of
when GREEDY should perform reasonably, and why it performs reasonably in these instances, than do prior
results. For example, this result guarantees bounded competitiveness, and even competitiveness approaching
one as the resource augmentation increases. In fairness, let us acknowledge the best counterargument, which
is probably that a factor of three resource augmentation is significant.

Not surprisingly, our proof of Theorem 1.1 builds on the foundation established in [7]. However, it is
important to note that if one naively applies the analysis of GREEDY in [7] with £ > 3 (instead of k = 2),
then one just obtains log, C competitiveness (instead of the original log, C competitiveness result). Thus
we had to develop a new method to bound certain costs for the GREEDY algorithm. The main technical
innovation was the introduction of what we call the the weighted tree cost. Informally, the weighted tree
cost bounds certain costs for the GREEDY algorithm by a particular weighted sum of the cost of certain
edges in the optimal solution (instead of directly bounding these costs by the entirety of the optimal cost).

2. Algorithm Analysis

We begin with the simplifying assumption that ¢; = k and @; = 1 for all 1 < i < n. We assume
the adversary services r; with s;, and that the online algorithm services r; with s,(;. By convention, we
represent adversary edges by listing the request first (e.g. (7, s;)) and online edges by listing the server first
(e-g. (Soiy» 1i))-

2.1. Defining the Response Graph and Response Trees

We start as in [7] by defining the response graph, noting that it is almost acyclic, and then decomposing
its edges into what we call response trees. An example of a response graph and one possible decomposition
into response trees can be seen in Figure 1a and Figure 1b.

Definition 2.1 (Response Graph). Let Eqpr = JI_, (73, 5;) be the set of all adversary edges, Eon = U'Z;(Soq)» i)
be the set of all online edges, and E = Egpyr U Epy. Then the response graph is G = (S U R, E), where
each edge has a weight that is the distance in the underlying metric space M between the endpoints of e.

Lemma 2.2. [7] Assume that request r; is in a cycle in G. Then the connected component of G — (Sq(iy, i)
that contains r; is a tree.

Definition 2.3 (Tree Decomposition). We define a tree decomposition of the response graph G to be a
collection of response trees where:
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e Each response tree 7 is a rooted tree that is rooted at some request r;.
e Each response tree 7 is a subgraph of G.

o Every edge in G is either contained in a unique response tree, or is the online edge (sq(;), ;) incident
to the root r; of some response tree 7, but not both (so an online edge incident to a root of a response
tree is not in any response tree).

[7] then shows how to decompose the response graph into response trees, where each response tree 7~
has the following additional properties:

e For each request r; € 77, r; has one child, namely s;.
e Each leaf in 7" is a server site s; with parent r;.
e Each nonleaf server site s; in 7 has k incident online edges in 7, which are the children of s; in 7.

e For each request r; € 7 and for each leaf 5, € 7 it is the case that the algorithm GREEDY had an
unused server available at s, when request r; arrived.

Intuitively, [7] accomplishes this by iteratively breaking up each connected component C as follows. Let r;
be the most recent request in C. First the online edge (s, #;) is deleted. Let C’ be the resulting connected
component containing r; (note C’ is a tree by Lemma 2.2). A response tree rooted at ; is then created by
including all vertices reachable from r; in C’ by a path that does not contain an unfull server site as an
internal server site on the path (in this context, unfull means that at the time of r;, the greedy algorithm
had not used all of the servers at that server site). Or alternatively, the leaves of 7 are unfull server sites
reachable from r; in C’ without passing through another unfull server site. The edges and request vertices
of 7~ are then removed from C. We now fix a particular such decomposition of G into response trees for the
rest of the paper.
Finally, we give the following useful definitions related to response trees.

Definition 2.4 (Adversary Cost of 7°). For a response tree 7, let OPT(7") be defined as the sum of the costs
of all adversary edges in 7. Thus, OPT(7") = Z(,f’sf)eq— d(rj, s;).

Definition 2.5 (Online Cost of 7). For a response tree 7, let ON(7") be defined as the sum of the costs of
all online edges in 7~ U {(5¢(;), 7:)}. Thus, ON(7") = ere‘T d(sqj), 1))-

Definition 2.6 (Leaf Distance in 7). Let 7 be a response tree rooted at a request ;. For all vertices x € 7,
let 7 (x) be the subtree of 7~ rooted at x. Define ld(x), the leaf distance of x, as the minimum distance in 7~
(not in M) from x to a leaf of 7 (x). Further, define Id(s.(;) to be d(sqq), i) + ld(r;).

Definition 2.7 (Weighted Tree Cost). Let 7 be a response tree rooted at a request ;. Let 7; be a request in
7, with child s; and grandchildren 75), ... 7s5%). We then recursively define the weighted tree cost of r; to
be

k
2
W(r) = dirj.s) + ¢ (; W(r§<h>>]
If 5; is a leaf, then W(r)) = d(r;, s).

2.2. Analysis of GREEDY

In Lemma 2.8 and Lemma 2.9, we show that the Weighted Tree Cost provides a useful upper bound on
leaf distances of 7~ and by extension online edges in 7. In Lemma 2.11, we use this result to directly bound
ON(7) in terms of OPT(7"). Finally, in Lemma 2.12, we extend this bound on trees 7 to the entire response
graph G, and finally prove the main result, Theorem 1.1.

Lemma 2.8. Let 7 be an arbitrary response tree. For each request rj € T, d(sq(j), ;) < ld(r)).
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Proof. Let s, be a leaf in the subtree of 7~ rooted at r; that is closest to r; in 7. By the triangle inequality,
we know that d(sy,7;) < ld(r;). Further we know that GREEDY had an unused server at s, at the time
that r; arrived. Thus by the definition of GREEDY, it must be the case that d(sy(j), 7;) < d(s4,r;). Thus by
transitivity we can conclude that d(sqj), 7;) < ld(r;). O

Lemma 2.9. Let T be an arbitrary response tree. For each request rj € T, ld(r;) < W(r)).

Proof. We proceed by induction on the height / of the induced tree 7 (r;) (the subtree of 7 rooted at

r;). If h = 1, the induced tree contains one request, r;, which the adversary services using s;. Thus,
ld(rj) = d(rj, Sj) = W(I’j).
Now suppose i > 1. Then, s; has k children: r, ,74,,..., 7. This gives

ld(r) = d(rj, 5j) + min, |d(sj.r,) + 1d(r,)]

<d(rj,s;) + IIl]ln [ld(r;, ) + 1d(rp, )]
= d(rj,s)) +2 (prg@a [ld(r;,p)])

<d(rj,sj) +2 ( min [W(r,, )])

<d(rj,s;)+ (Z W (r, )]

=W(r))

The first inequality follows from Lemma 2.8. The second inequality follows from induction. The third
inequality follows from the fact that the average has to be larger than the minimum. The last equality
follows from the definition of W(r;). O]

Lemma 2.9 is the main technical extension relative to [7]. In [7] the term [d(r;) is merely upper bounded
by the optimal cost. If we used that upper bound on /d(r;) in our analysis, our upper bound on the competitive
ratio would not be O(1).

Lemma 2.10. Let 7 be an arbitrary response tree rooted at r; of height h. Let Dy be the collection of
adversary edges (rj, s;) in T where the path from r; to s in T passes through | adversary edges. Then

h I-1
Wi =Y (%) S s

=1 (rj,5))€Dg
Proof. We prove this by induction on A. For h = 1, we simply have W(r;) = d(r;, s;). For h > 1, suppose
s; has k incident online edges (s, ¥4,), (Si, ¥ay)s - - -5 (8is7q,). Then Dy = {(ra,, Sa,)s (Fays Say)s - - - » (Fays Sa )}
Further, for all 2 < £ < h, define Dy' C Dy s.t. D}' contains all adversary edges in D, within the subtree
T (ra)). Define D, D, ..., D} similarly. Thus, D; = Ul;:1 D?” where D;', Dy, ..., Dy* are pairwise
disjoint. Then we have

W) = der ) + 2 W(rap]

h— 1
d(rj, s})
/:1 (), r/)ED

) >3,

p=l @, ’/)ED;»{,]

2
= d(r;, 5;) +

M» R

S
Il
—

:‘

-1
2
= d(rl" si) +

N
Wll\)
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o) h—1 o) -1
=d(r;, s;) + % Z(%) Z d(rj, Sj)

=1 (rj,5;)€D111

h ) -1

= d(r;, Si)"'Z(%) Z d(rj,s;)
1=2 (rj»s)ED;

h -1
2
= Z(%) Z d(rj, Sj)
=1 (rj,s;)€Dy

Lemma 2.11. Let 7 be an arbitrary response tree. Then ON(T") < (l + é) OPT(7).

Proof. Using Lemma 2.8 and Lemma 2.9, we can bound ON(7") as follows:

ON(T) = " d(soir) < D ld(r)) < ) W(r)
ri€l” ri€l” ri€l”
Note by applying Lemma 2.10 one can view 2., .- W(r;) as a linear combination of costs of adversary
edges. Consider an arbitrary adversary edge (7, s,) € 7. Note again by Lemma 2.10 that d(r,, s,) will be

b-1
included in W(r;) with coefficient (%) only when the following two conditions hold: r; is an ancestor of

74, and the simple path from r; to s, in 7 passes through b adversary edges. Further, clearly an ancestor
r; which satisfies these conditions is unique. Thus the coefficient associated with the cost of (ry, s;) in

2
: 2 2 1 k 2
2rer W(rj)is at most 1 + (;) + (;) +.- = il 1 + 5. Thus, we have

2 2
3 W < (1 v k__z) S diryesp) = (1 + k__z)OPT(T)

rieT” (rg»850)ET
O

Lemma 2.12. GREEDY(]) < (1 + é) OPT(I) under the assumption that each server site s; has k > 3
online servers and one adversary server.

Proof. Note that GREEDY(]) is equal to the total cost of the online edges in the response graph, G. Via
our tree decomposition, this cost is

2 2
GREEDY (/) = TZEQON(‘T) < (1 + m)TZEQOPT(T) = (1 + k—_z) OPT(])

O

Proof of Theorem 1.1. Split each server site with online capacity ¢; = ka; and adversary capacity g; into q;
server sites with online capacity k and adversary capacity 1. Clearly the optimal cost is the same because
the underlying server locations have not changed. Further, GREEDY assigns requests identically on both
instances for the same reason, and so the online cost is the same as well. Thus Lemma 2.12 directly gives

the desired result.
O
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2.3. Algorithm Lower Bound
Lastly, we show the competitiveness bound of 1 + é for GREEDY} is essentially tight.

Theorem 2.13. V € > 0, there is an instance I, where GREEDY(1,) > (1 + ﬁ - 6) OPT(l,).

Proof. We embed m server sites on the real line. The server site s is located at the point —1. For 2 < i < m,
the server site s; is located at 2°~! — 1. The online algorithm has ¢; = &"~"*! servers at site s;, and the
adversary has a; = k™~ servers at site s;. The requests occur in m batches. The first batch consists of k™!
requests at 0. For 2 < i < m, the i-th batch consists of &~/ requests at s; = 2'~! — 1. GREEDY} responds to
batch i (1 < i < m) by answering each request in batch i with server site s;,|, thus depleting s;,;. GREEDY
responds to batch m by answering the sole request with site s;.

For batch 1, GREEDY; services k"' requests, each of which requires a cost of s, — 0 = 1. For batch i,
1 < i < m, GREEDY, services k"~ requests, each of which requires a cost of s, —s; = (2'=1)— (271 -1) =
2i=1, For batch m, GREEDY}, services 1 request, which requires a cost of s,, —s; = 2" ! = 1) = (=1) = 2!,
Thus GREEDY/, incurs a total cost of

m—1 m

GREEDY,(I.) = k""" -1+ Z Rty omt = Z i
i=2 i=1

| m 2i—l

=K =)

i=1

)

i=1

e )

The adversary could respond to the requests by servicing batch i with server site s;. The adversary would
incur a cost of k! for batch 1, and a cost of O for batches i, 2 < i < m. Then the adversary can achieve a
total cost of OPT(I,) < k”~'. Thus, we have

GREEDY,(I,) >km*1.(1+k_i2)(1—(%)’”) 22 m
OPT(,) - =1 ( +_)( _( ))

For any € > 0, for sufficiently large m, (%)m < (%) € giving

o) e e 5

Thus for sufficiently large m,

2
GREEDY,(I,) > (1 i e) OPT(L,)
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