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Analog IC performance has a strong dependence on interconnect RC parasitics, which are significantly af-
fected by wire sizes in recent technologies, where minimum-width wires have high resistance. However,
performance-driven wire sizing for analog ICs has received very little research attention. In order to fill this
void, we develop several techniques to facilitate an end-to-end automatic wire sizing approach. They include
a circuit performance model based on customized graph neural network (GNN) and two optimization tech-
niques: one using Bayesian optimization accelerated by the GNN model, and the other based on TensorFlow
training. Experimental results show that our technique can achieve 11% circuit performance improvement or
8.7X speedup compared to a conventional Bayesian optimization method.
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1 INTRODUCTION

Analog IC performance is sensitive to layout RC parasitic, and this is why performance degra-
dation is easily seen from a schematic design to its post-layout simulation. It is observed [27]
that such layout-induced performance degradation becomes increasingly significant at advanced
technology nodes. In manual layout designs, such degradation is addressed by designers through
simulation-based diagnosis and layout iterations. Automatic analog layout tools attempt to miti-
gate the degradation by enforcing geometric [24, 30, 46] or parasitic constraints [11] during place-
ment and routing [8]. Since analog circuit behavior is very complex, such simple constraints are
either inadequate or overly tight so that satisfying performance specification remains a challenge.
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Fig. 1. Impact of wire widths on the performance of an OTA design. UGF: Unity Gain Frequency; BW: Band-
width; PM: Phase Margin.
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Fig. 2. Effect of wire sizing along with transistor sizing for a two-stage OTA. FOM: Figure of Merit, ideally 1.

This is a main reason there are still performance gaps between manual designs and automatic
designs.

Although the first-order effects of RC parasitics are determined by the wirelength that results
from placement and routing, changing wire width, a.k.a. wire sizing, can exert a significant impact
to circuit performance, particularly in modern technologies (FInFET and beyond), where the design
is wire resistance constrained. This impact is illustrated through an example of an Operational
Transconductance Amplifier (OTA) in Figure 1, built in a 7nm technology. The picture at the
left shows the schematic after transistor sizing, and the middle shows its layout. When the wire
widths of L1 and L2 change from 1X to 3X of the minimum wire width, the Unity Gain Frequency
(UGF) increases from 688.5MHz to 972.0MHz, and the gain increases from 23dB to 25db. This is
because wire sizing reduces the wire resistance in series with the transistors, due to which the
effective transconductance (Gm) of the differential pair (Mn3/Mn4) increases as the resistances of
L1 and L2 decrease, and thereby improves the UGF. The effect of wire sizing is still significant
even when transistor sizing has been performed, because the performance bottleneck is caused by
the large wire resistance. In Figure 2, we compare the post-layout performance of four solutions:
(1) no sizing, (2) wire sizing only, (3) transistor sizing only, and (4) transistor sizing + wire sizing
(TS+WS). Both the transistor sizing and wire sizing are achieved through Bayesian optimization.
The overall performance is reflected by a composite Figure of Merit (FOM) with 1.00 being its
ideal value. The curves on the right show that wire sizing alone improves FOM by 11.5%. If the
wire sizing is performed after transistor sizing, it can improve FOM by 19%. Although transistor
sizing is a more powerful technique, wire sizing brings additional significant benefit on top of it.

In analog design automation, wire sizing has been studied for addressing electromigration [22,
23, 38] and IR-drop [42]. In digital designs, performance (timing/power)-driven wire sizing was
once a very active research subject [36]. These approaches are largely facilitated by the avail-
ability of analytical models, for example, the Black’s equation [38] for electromigration and
the Elmore delay model [9, 13, 36] for digital circuit timing. There has been little research on
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Fig. 3. Performance evaluation runtime for an OTA design and a comparator design.

performance-driven wire sizing for analog ICs largely due to the lack of a fast yet credible perfor-
mance model. Usually, analog circuit performance is evaluated through circuit simulation, which
is too time consuming for frequent use in optimizations. This is particularly true for layout designs,
where the number of circuit elements is substantially more than schematic designs.

A similar but better-studied problem is analog transistor sizing. A variety of optimization tech-
niques for analog transistor sizing have been proposed [3, 4, 14, 15, 25, 28, 29, 31-33, 40, 43, 50],
including simulated annealing [31], evolutionary algorithms [25], gradient-based local search [33],
and Bayesian optimization [29]. Recently, a reinforcement learning approach [40] was also ex-
plored. Most of these previous techniques rely on time-consuming circuit simulations. To acceler-
ate the optimizations, surrogate performance models have been developed, including polynomial
models [28, 43], Support Vector Machine (SVM) [14], and Gaussian-process-based models [32].
However, wire sizing faces additional difficulties compared to transistor sizing. The key difference
is that transistor sizing is often performed for schematic designs, while wire sizing must consider
actual routing and wire parasitics. Post-layout circuit performance evaluation is typically much
slower than schematic level due to the extra time on parasitic extraction and significantly increased
circuit elements after layout. The examples in Figure 3 show that the runtime difference can be
as much as one order of magnitude. Hence, the budget for simulation-based circuit performance
evaluation in wire sizing is usually much tighter than transistor sizing.

There are several analog transistor sizing methods that consider the effect of layout para-
sitics [5, 17, 19, 21, 26, 34]. Layout parasitics are estimated through templates in [5] and schematic-
level RC annotation is utilized in [19]. Both of the approaches [5, 19] are difficult to cover a wide
range of scenarios. In [17, 21], layout parasitics are considered for transistor sizing. Constraint-
based layout tools are embedded in the sizing loop [17], while [21] employs a floorplaner. However,
both [17] and [21] still require the use of expensive parasitic extraction and post-layout simulation.
A linear approximation technique is proposed in [34] but tends to be inaccurate. In [26], an RC
prediction technique is developed, yet expensive simulations are still needed. While these tech-
niques [5, 17, 19, 21, 26, 34] are valuable for considering the layout effect in transistor sizing, the
considerations are either too simplified or incomplete for wire sizing, which is carried out in a
late step of layout design. There are parasitic-aware analog layout techniques [16, 35, 48]. In [48],
capacitance sensitivity is considered during placement, while signal coupling is reduced in rout-
ing [16]. The work of [35] prioritizes resistance-sensitive nets during routing. In [10], routing wire
resistance is minimized through balancing the number of layer changes and routing wire length.
The work of [47] proposes wire detouring techniques to deal with parasitic mismatching. However,
none of these works directly address circuit performance.

In this work, both performance modeling and optimization techniques are studied for
performance-driven analog wire sizing, which is the first work on this subject. The proposed
wire sizing techniques can be incorporated with either automatic or manual analog layout design
where transistor sizing has already been performed. Our approach is a general framework that is
applicable to a variety of different types of analog IC designs. Different performance metrics are
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combined into an FOM as in other works [40]. The effect of wire sizing and the effectiveness of
our techniques are demonstrated on four different types of circuits: OTA, comparator, Voltage
Controlled Oscillator (VCO), and Switched Capacitor Filter (SCF). The contributions of this
work are summarized as follows:

e A customized Graph Neural Network (GNN)-based analog circuit performance model,
called Wire Attention Graph Network (WAGN), is developed. WAGN can improve the
true-positive rate from 77.1% to 89.5% compared to a recent previous work [20] with a simi-
lar false-positive rate. It also outperforms conventional surrogate models used in transistor
sizing, such as SVM.

e Two wire size optimization techniques are investigated. One is Bayesian optimization
guided by WAGN (BO-WAGN). The other is TensorFlow-based optimization (TF).
BO-WAGN is slightly faster than TF, while the implementation effort of TF is signficantly
lower than BO-WAGN.

e With consideration of training cost including training data generation time and WAGN
model training time, BO-WAGN with model knowledge transfer achieves either 11% circuit
performance improvement with similar runtime or 8.7x speedup with similar solution qual-
ity compared to a conventional Bayesian optimization method. Our other techniques obtain
similar results. Compared to automated layout without wire sizing, our techniques can im-
prove circuit performance by 8% to 21%.

e The proposed wire sizing techniques are integrated with an open-source analog router to
ensure routing completion. Our approach is complementary to constraints-based analog au-
tomation methodologies.

2 PROBLEM FORMULATION

Given a global routing solution, wire sizing is to select wire width for all nets so that the circuit
performance is optimized. In modern process technologies (FInFET and beyond), lithography is
performed with multiple patterning [2, 12], where discretization of device dimensions and inter-
connection widths are increasingly important. Therefore, we use discrete wire widths as the sizing
variables. Let s = [sq,5sy,...,5c] € Z° denote integer wire width variables for C nets.! The wire
sizing problem can be formulated as

max FOM(s)
N

s.t. sp <s;<sy,i=12,...,C (1)
Si € Z,i =12,...,C,
where sy and sy are the lower and upper bounds for wire sizes, respectively. To account for multiple
performance metrics, a composite FOM is defined to assess the overall circuit performance:

M
FOM = Zwi . Ei, (2)
i=1
where z; € [0, 1] represents relative performance, and w; indicates weighting factors satisfying
Zfil w; = 1. The relative performance z; is defined as
.| %i +
min (¢—, 1) , forz; €11

i

i 5 ®)
. i -
min | —, 1|, forz; € II",
Zi
17 represents a set of integer scalar and Z€ denotes a set of C-dimensional integer vectors.
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where z; denotes the raw performance value obtained through circuit simulations, and ¢; implies
user-defined specification. IT* (IT7) is the set of performance metrics that are preferred to be greater
(less) than ¢;, such as gain and bandwidth (delay and offset). With the transformation in Equa-
tion Equation (3), the relative performance z; is desired to be the greater, the better, for both IT*
and IT".

3 OVERVIEW OF THE PROPOSED APPROACH

The proposed wire sizing is performed after global routing and before detailed routing in an auto-
matic analog layout flow. It covers a circuit performance model and two optimization techniques:

e Circuit performance model: A GNN model is customized, which is called WAGN, for fast
FOM prediction. Its input is a circuit graph with associated features, and the output is FOM
classification. WAGN is built upon a Pooling with Edge Attention (PEA) network [20],
which is also a customized GNN but developed for performance-driven analog placement.
Both of them consist of multiple attention-pooling layers and a Multi-Layer Perceptron
(MLP) network. However, there are two significant differences. Unlike PEA, which only
includes a circuit netlist and a placement solution in its features, WAGN additionally consid-
ers a global routing solution as features. Moreover, a multi-kernel-based attention scheme is
proposed in WAGN for the attention-pooling layer, which is an enhancement over the linear-
function-based attention scheme in PEA. Details for WAGN are elaborated in Section 4.

e Wire size optimization guided by WAGN.

— BO-WAGN. Previous works on BO-based transistor sizing are mostly guided by circuit
simulations, which are notoriously slow. As the extraction/simulation cost for wire sizing
is even higher, WAGN is applied for the BO-based wire sizing. Compared to conventional
Bayesian optimization, it can either significantly accelerate the computation without
sacrificing solution quality or attain significantly better solution quality with similar
runtime cost.

— TF. By treating wire sizes as trainable parameters instead of input features, the infrastruc-
ture of WAGN is reused for wire size optimization. The optimization is conducted using
TensorFlow training with multi-start to avoid local optimal.

Each wire sizing solution is ensured to be discrete and realized in detailed routing to conform with
design rules. As analog circuits are typically not as congested as digital circuits, routability is rarely
an issue even with wire sizing. For the same reason, wire width increase rarely enlarges the chip
area for analog circuits. It should be noted that two nets with a symmetry constraint are always
assigned with the same width.

4 GNN-BASED PERFORMANCE MODEL
4.1 Notations and Background on GNN

Our analog circuit performance model is a GNN [45], which deals with problems that can be ab-
stracted to graphs. A graph G(V, &) composed by nodes V and edges & can be represented by
adjacency matrix A, node feature matrix X, and edge feature tensor E. A € R™*" is an n by n ma-
trix, where n = |V| is the number of nodes and its element a;; indicates whether an edge e;; exists
between node v; and node v;. X € R™4 is an n by d matrix, and its row X; € R? is a d-dimension
feature vector for node v;. E € R™™? is an n by n by p tensor, and its element E;; € R is a
p-dimension feature vector for edge e;;. A GNN takes A, X, and E as inputs and outputs the class
of the entire graph or the class of every node in the graph.
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Attention-based Graph Convolution. A central concept in GNN is graph convolution, in which
a node feature is updated by aggregating features from its neighboring nodes. Before an aggre-
gation, usually a transformation is performed as XW, where W is a trainable matrix. Then, the
aggregation is formulated as ®4XW, where ®4 € R™" is a matrix depending on A. The form of
@ 4 varies for different GNN techniques. A node embedding is generated as Z) = o(®4XW),
where o(-) is an activation function. With repeated iterations of such procedure, multiple layers
of node embeddings are generated as Z = X = X,z = x® z® = x4 More generally,
a graph convolution operation is described as

z0 =g (o) xOw?), (4)

where [ is the index of layers. As feature dimension d may vary from layer to layer, the weight
matrix is denoted as W) e Ré*di1,

The popular Graph Attention Network (GAT) [39] combines ®4 with the attention mecha-
nism, where the attention coefficient a;; from node v; to v; is defined by

e’

ajj = SOftmaXrOW(Tij) = ﬁ
keNB; € ©

T T
tyy = LeakyReLU (- (W "X ") |ow 0 "X P)])

where a¥) € R?d1+1 ig a trainable weight vector, Xgl) is the feature vector of node v;, N B; is the
set of neighboring nodes of v;, -7 means vector transposition, and || is the vector concatenation
operation. The row-wise softmax here means the index k in the denominator enumerates columns
for row i. LeakyReLU(") is a nonlinear function defined by

LeakyReLU(x) = {:x i i :)), (6)
where c € [0, 1) is a parameter. The attention-based graph convolution is described by
Z0 = o(axPDw D), ™)
where a € R™" is a matrix with aij,i,j = 1,2,...,n as its entries.

Graph Pooling. Graph pooling, such as DiffPool [49], is to iteratively coarsen a graph through
clustering such that a global view is obtained. At layer [, the number of nodes is changed from n;
to ny41, where nj; < n; and ny = n. The graph pooling operation requires an assignment matrix
S e Rm>n1 where each row corresponds to a node at layer I and each column indicates a cluster

(new node) for layer [+ 1. This is soft clustering that the element SEJI.) is the probability of assigning

node vgl) into cluster vj(.lH). The assignment matrix of layer [ is defined as
. |
SO = softmax,oyw G(D(l) ZA(I)D(I) ZX”’WLI(:O,) ) (8)

(I

where W;lgol € R4*n141 ig a trainable weight matrix. In addition, A ) = AD 4 I, where I indicates

~ (D)

identity matrix, and D’ € R"™*™ is a diagonal matrix, where f)gf) = Z;z 1 A(li) The pooling

operation is to aggregate embedding Z") into the next layer by

x 1+ — 0T 70 )
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Fig. 4. A differential pair and its graph encoding.

and then perform soft clustering by
A — 0T 4060 (10)

The pooling operation is often applied along with graph convolution at each layer.

4.2 Circuit Graph and Features

A circuit netlist and its global routing solution can be encoded into a directed graph G(V, &),
where device pins, IO pins, and Steiner nodes in routing constitute graph nodes V and connections
between nodes are indicated by graph edges &.

The features directly related to the ith node are encoded in vector X; € R?. They include:

e Node type: PMOS, NMOS, capacitor, current source, GND, Steiner node, and so forth

e Functional module the node/pin belongs to, such as bias current mirror, differential pair, and
active load

e Device dimension: width/length/number of fin of transistors

e Pin location

In the edge feature matrix, E;; € RP,i,j = 1,2,...,n, represents the features of the edge from
node j to node i. The features related to physical routes and edge properties are encoded in edge
feature vector E;;. The p features include:

e Horizontal distance, vertical distance, number of vias, and wire width options between node
i and node j.

e Pin length of node i and node j (the length of pins can influence the actual routing length).
Pins have rectangle shapes on metal layers. The length refers to the shape length.

e Type of node i and node j, such as transistor source, drain, gate, Steiner point, and so forth.
The types of node i and node j may affect the current direction of the associated edge in a
circuit.

Figure 4 shows an example of encoding a differential pair into a circuit graph. The graph is
directed and an edge direction indicates causality in analog circuit behaviors. For example, the
voltages at M3_S and M4_S control the voltage at M2_D but not the other way around. Intuitively,
as circuit performance is affected by both node features (transistor’s size/dimension, etc.) and edge
features (distance between two transistors’ pins, etc.), we apply both of them into our WAGN’s
attention mechanism. In this way, information of neighboring nodes are aggregated according to
their node features and connection relationships.

4.3 Wire Attention Graph Network (WAGN)

Figure 5 shows the architecture of WAGN, where multiple serially connected attention-pooling
layers are followed by an MLP network. Our WAGN network shares the same structure with
the PEA network but has a significant difference in its attention-pooling layers. Each attention-
pooling layer consists of four steps.
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Step 1: Attention construction and compression. In [20], attention construction and com-
pression are realized by:

e Raw attention construction defined as
a® = r;E" (11)

where attention coefficient 7;; is a function of node features X El) and X;l), EEJI;C is the kth

channel of edge feature Eg), and [ is the layer index.
e Bidirection normalization to obtain 3D attention, which is defined as

(D)

dl.jk = softmaxmw(a”k)
0 — ~(1) ~(I)
a’ = (1) o aimkajmk (12)
Tijk = Z ~(1) :
m=1 umk

e Compressing the attention from 3D to 2D as

I i ) 1)1
e = g (@;b0) Z“f];cbz(c)’ (13)

where b") € RP! is a trainable vector. In this way, vector a(l) is transformed into a scalar

and the 3D attention a¥) is compressed into a 2D matrix. Thls step means to reduce both
runtime and memory use.

A key enhancement by WAGN is the new treatment of attention coefficient 7;;, which plays a
critical role in each attention-pooling layer. In PEA [20], 7;; is a LeakyReLU function of a single
linear kernel of node features X El) and XY, In WAGN, we propose using multiple kernel functions
for the attention coefficient to capture the nonlinear connection strength between node i and j.
On average, this new attention coefficient benefits WAGN with 3.0% accuracy improvement over
PEA (details are demonstrated in Table 3) and more efficient knowledge transfer (demonstrated in
Table 5). The new attention coefficient is defined as

3
T T
7;j = LeakyReLU (Z B(w® x " w® x® )), (14)

r=1
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where B, (x, x”) is the rth kernel function and x and x’ are feature vectors after linear transforma-
tions. Here we employ three kernel functions:

By(x,x") = exp(—yllx — x|I5),
By(x,x") = (xTx" +¢)%, (15)
Bs(x,x’) = MLP(x||x”).

e B;(x,x’) is a Gaussian kernel function where y is a hyper-parameter. This kernel can de-
scribe the difference of the input vectors.

® By(x,x’) is a polynomial kernel function where c¢ is a trainable variable and d is a
hyper-parameter. The inner product of two input vectors can describe their similarity and
interaction.

® Bs(x,x’) is a multi-layer perceptron function. The multi-layer perceptron function is used
here to capture the relationship beyond difference and similarity.

Our multi-kernel-based attention coefficient is a new contribution to GNN.
The rest of the operations in WAGN, including graph convolution, node pooling, and edge pool-
ing, are the same as PEA. They are briefly covered here for the completeness of the description.
Step 2: Graph convolution. The graph convolution is performed as

70 = ¢ (g(a®; )X OW D) (16)

where ¢(-) is an activation function. Node embedding Z" is aggregated from node feature X
with a 2D attention matrix g(a?); b(l)).

Steps 3 and 4: Node and edge pooling. Through a trainable assignment matrix §) e R™>7+1
for layer I , new node feature matrix X"V, adjacency matrix A** and edge feature tensor E/+!)
for layer I + 1 are computed with details in Section 4.1 or [20].

By flattening the adjacency/node/edge matrix of the circuit graph in the last attention-pooling
layer, a 1D vector is obtained and fed to several MLP layers. The MLP output y is the probability
that the overall performance (FOM) is below a user-specified performance threshold T:

y = P(FOM < T), (17)

i.e., a soft classification if the performance is unsatisfactory.

4.4 Handling Different Topologies and Model Complexity

The same type of circuit can be implemented with different topologies. For example, OTA can be
realized as either cascode OTA or current mirror OTA with the same functionality. Even for the
same netlist topology, global routing may result in different Steiner tree topologies for multi-pin
nets. The correspondingly different graph structures can be handled by a single WAGN model.
This is in contrast to the Gaussian process model in [29], which is restricted to a single topology.
Given a WAGN model with L layers, each layer is characterized by trainable weights W (!, w

pool’
W(l; ,and b(l), whose sizes depend on node feature size d(;), edge channel size p(;), and number
edge

of nodes n;. Thus, we can identify a graph and a convolution/pooling layer in WAGN by three
parameters {dj, p;, n;}. Please note the parameters {d;, p;, n;} in one layer are independent of the
input graph {dp, po, no}. As such, a single WAGN model can handle graphs of different sizes and
structures.

The model complexity depends on the configuration of attention-pooling layers. Given the fact
that n; > nyiq, d; = djy1, and p; > ppiq, in the [tk attention-pooling layer, the computation com-
plexity is O(n?(nl +pr+ dlz)) for attention construction and compression, O(n?dl + nldlz) for graph
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convolution, O(n?(n; + dy)) for node pooling, and O(nj(n;p; + p7)) for edge pooling. The overall
computation complexity for the I*" attention-pooling layer is O(n?(n pr+ d12 + plz)). The backward
propagation and forward evaluation have the same computation complexity. The training takes
much longer time than inference, as training requires multiple iterations of backward propaga-

tions, while inference is only one-pass forward evaluation.

4.5 Training of WAGN Model

Given N data samples obtained from post-layout simulations, the ith sample includes circuit graph
G; and label y;, which is 0 for satisfactory performance and 1 for unsatisfactory performance. Let
0 denote trainable parameters of a WAGN model, including w( ), b(l), and others; the model can
be trained by minimizing the cross-entropy for all data samples, defined as follows:

N
1 N u
Loss =~ > (yilog(i) + (1 = y)log(1 ~ ) + 21161, (18)
i=1
where 7; is the model output. L,-regularization is used here to avoid overfit and A is the regular-
ization parameter. After training, the model is denoted as

9 = WAGNg_ (G)), (19)

where WAGNy, (-) represents a WAGN model with trained parameter 84 and g; indicates the
probability that sample G; has unsatisfactory performance.

5 PERFORMANCE-DRIVEN WIRE SIZING OPTIMIZATION
5.1 Optimization Strategy
With a trained WAGN model WAGNg_ , the performance-driven wire sizing problem becomes

min WAGNp, (s)
N
s.t. sp <s;<sy,i=12,...,C (20)
S; € Z,iZ 1,2,...,C.

The decision variables are integer wire width s for all nets, which are a part of input features for the
WAGN model. In guiding solution search, WAGN and circuit simulation have different tradeoffs:
WAGN is fast but relatively inaccurate, while circuit simulation is accurate but slow. To integrate
the strength of both, we propose a two-stage optimization strategy as follows:

e Stage 1: The integer constraints are relaxed and two continuous optimization methods are
described in Sections 5.2 and 5.3. The fractional results are discretized through partial enu-
meration. If a fractional wire width is very close to its nearest integer, i.e., the difference is
below a threshold, it is directly rounded to the nearest integer. For the other nets, we enu-
merate all combinations of rounding each up and down and evaluate the rounded solutions
according to WAGNg, (s). The enumeration here has limited impact on the optimization
runtime for two reasons: (1) an analog circuit is typically not large compared with a digital
circuit, and (2) only a portion of the nets are enumerated.

e Stage 2: The top few (by default 10) best solutions from stage 1 are simulated and the optimal
one according to Equation (1) is selected to be the final solution.

5.2 TensorFlow Training-based Optimization

Wire size optimization Equation (20) after relaxing the integer constraints is a nonlinear program-
ming problem. One observation is that neural network training is a process of minimizing its loss
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Fig. 6. Penalty function.

function in the same way as solving a nonlinear programming problem. This observation implies
that the infrastructure for training WAGNg, (s) can be reused for continuous wire sizing. In this
work, TensorFlow [1] is adopted for both training model WAGNy _ (s) and wire sizing. The loss
function for wire sizing in Tensorflow is defined as

Lsizing = WAGNG* (S) + L

C

Le=¢ Z (ReLU(sy. - s) + ReLU(s; — s07)) (21)
j=1

$ >0,

where 0, indicates WAGN parameters after training by Equation (18) and are fixed during wire
sizing. Instead of 6, s is treated as trainable parameters in minimizing Lg;z;ng. Constraints s; <
s; < sy,i = 1,2,...,C are relaxed and handled by penalty function L., where ¢ is an empirical
penalty coefficient. Penalty function L. is plotted in Figure 6. One can see that a huge penalty is
applied once the value of s is outside of [s, si7]. When ¢ is sufficiently large, optimized wire width
solutions can be ensured in [sy, sy]. The TensorFlow training minimizes Lg;;;ng and then obtains
a feasible solution with the minimum WAGNy_ value, i.e., the minimum probability of violating
performance specifications.

TensorFlow minimizes Equation (21) through the gradient descent method, which is an iterative
algorithm depending on the initial solution. To reduce the chance of being trapped into local min-
imum, we suggest a multi-start approach. That is, multiple sequences of iterations are performed
with different initial solutions. The top few best solutions among all sequences are simulated and
the one with the maximum FOM is chosen as the final continuous sizing solution.

5.3 WAGN-guided Bayesian Optimization

Bayesian optimization is for solving problems with a black box model as its objective function [37].
Through initial sampling to this black box model, a probabilistic surrogate model is constructed.
In later iterations, new samples are decided by an acquisition function and the surrogate model is
continuously trained. At the end, the best solution found during the iterations is returned.

The sampling in Bayesian-optimization-based transistor sizing [29] is through circuit simula-
tion, which becomes overly expensive for evaluating wire sizing solutions. A neural network is
employed for Bayesian optimization in [50] to act as a surrogate model. However, its sampling is
still obtained through circuit simulations. In this work, we propose a hybrid use of WAGN and
circuit simulation in Bayesian-optimization-based wire sizing and the framework is outlined in
Algorithm 1. In this framework, the initial sampling (step 1) and the main sampling iterations
(step 5) are through our WAGN network, which is much faster than the simulation-based sam-
pling in [29]. Only a few top solutions obtained by step 8 are simulated to obtain the max-FOM
solution with high accuracy.

In our implementation, the surrogate model is a Gaussian process with Radial Basis Func-
tion kernel. The acquisition function is decided according to Expected Improvement [18]. The
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ALGORITHM 1: WAGN-guided Bayesian Optimization

: Sample N solutions and evaluate them by WAGN
: Construct a probabilistic surrogate model from the N samples
: fort=1,2,3,..., Njter do
Find s, that optimizes the acquisition function [29]
Sample y. = WAGNg_ (s:)
Update probabilistic surrogate model according to y.
end for
: Collect top few best solutions Sop
: Simulate FOM for all solutions in Syop
: return the solution with the max simulated FOM

R I

—_
(=1

Table 1. Circuit Specifications

‘ ‘ Design Specifications ‘ ‘
CC-OTA Gain: 37.0dB, UGF:1522.9MHz, BW:21.82MHz, PM:82.10°
CM-OTA Gain: 32.57dB, UGF:531.0MHz, BW:12.4MHz, PM: 82.82°
5T-OTA Gain: 32.43dB, UGF:1105MHz, BW:26.45MHz, PM:86.47°
TS-OTA1 Gain: 37dB, UGF: 400MHz, BW:6.0MHz, PM:60°
TS-OTA2 Gain: 48dB, UGF: 550MHz, BW:2.5MHz, PM:60°

Compl1 Evaluation delay: 22.27ps, Precharge delay: 26.48ps, Power: 108W, Offset: 2.60mV
Comp2 Evaluation delay: 37.28ps, Precharge delay: 17.65ps, Power: 297.5uW, Offset:2.40 mV
Comp3 Evaluation delay: 71.32ps, Precharge delay: 9.73ps, Power: 91.13uW, Offset: 2.00mV
VCO1/VCO2 Power: 31.7mW, Max Frequency: 1GHz, Min Frequency:0.38GHz
SCF1/SCF2 Gain: 17.5dB, UGF:3.3MHz, BW:1.2MHz

L-BFGS-B algorithm [6], which can handle constraints and thereby ensure that all wire width val-
ues are within [sz, sy], is used in step 4. More details of Bayesian optimization can be found in [7].
Let N = N + Njter, where Ny is the number of initial samples (line 1 of Algorithm 1) and Nj;., is
the number of iterations (line 3). The computational complexity of training the surrogate model is
O(N?) (line 6) and the complexity of the surrogate model inference is O(N?) (line 4). A derivation
of these complexities can be found in [50]. The computational cost of sampling (lines 1 and 5) is
the WAGN model inference, and its complexity has been discussed in Section 4.4.

6 EXPERIMENTS

Our experiments are conducted on a Linux machine (64-core) using Xeon (R) E5-2680 V2 proces-
sor with 2.8GHz frequency and 256G memory. The machine learning models are implemented in
Python. Our analog IC placer and router based on [41] are programmed in C++ and support symme-
try, matching, and common centroid constraints. SPICE? simulations are performed for schematic
and layout solutions. Parasitic extractions are performed using Calibre. Both the simulation time
and extraction time are counted in the data sampling process. The layout generation and their
post-layout simulations are conducted in parallel on the 64-core machine.

The test cases include five different OTA designs (5-transistor OTA, cascode OTA, current mir-
ror OTA, two two-stage OTAs), three comparator designs, two VCO designs, and two SCF designs.
The ASAP 7nm (ASAP7) process technology [12] and GlobalFoundries 12nm (GF12) technology
are employed in the test cases. Their schematics are depicted in Figure 7 and circuit specifications
are provided in Table 1. The specifications are obtained according to schematic designs so that
the goal of wire sizing is to approach the schematic design performance as much as possible. For

2Both Hspice and Spectre are used. Spectre is used for SCF circuits for the Periodic AC (PAC) and Periodic Steady-state
(PSS) analysis. Hspice is used for the simulations of the rest of the circuits.
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Fig. 7. Analog circuit test cases. Comp1 and Comp2 share the same topology but with different transistor
sizes. SCF1 and SCF2 share the same switch structures with different opamps. VCO1 has four repeating
oscillator structures, while VCO2 has six repeating structures.

Table 2. WAGN Network Configuration

Feature #Node  # Edge Predictor | # Neurons
# Nodes
Extractor Features Features 39
12 11 31 16
12 11 31 MLP layers 8
WAGN layers p s 12 4
6 5 12 1

each schematic design, 2,000 layouts with different placement, routing, and wire sizes are gener-
ated by varying tool parameters and layout constraints. Among the data, 80% of the samples are
for training and the other 20% are for testing so that no training data is seen in testing. During
the WAGN model construction, cross-validation is performed to tune model hyperparameters. We
implement the proposed WAGN model with four attention-pooling layers and five MLP layers.
Table 2 summarizes the configuration of the WAGN network.

We consider discrete wire sizing in the context of gridded routing, where each net has wire width
options of 1%, 2X, and 3X. According to our experience, the upper bound of 3x is high enough for
sufficient performance improvement and low enough for reducing routability problems. Indeed,
99% of our wire sizing solutions are routable. In the rare event that a net is not routable with
increased wire width, it can be captured by our flow and restored to its original wire width. The
overall impact of wire sizing to routability is very small. Although only three width options are
considered, the solution space is still huge; e.g., a circuit with only 20 nets has over 3 billion wire
sizing solutions, which is immensely more than the 2,000 training samples.

The wire widths decided by a sizing solution are realized in detailed routing through parallel
routes. An example with different wire width implementations is depicted in Figure 8. There are
3(2) parallel routes from Pin B to Pin A(C) to realize the 3(2)x wire widths, and design rules are
well followed. The path lengths for the parallel routes might be slightly different, but the impact
on performance is negligible.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 19. Pub. date: December 2022.



19:14 Y. Li et al.

- —— .
- * Pin A

PinC

-

Fig. 8. Wire sizing through parallel routes.

Table 3. Comparison among Different Circuit
Performance Models on Average of the 12 Test Cases
(Details Are Provided in Table 12)

Accuracy

Precision

TPR

FPR

AUROC

WAGN

94.0%

83.3%

89.5%

4.7%

0.971

PEA

91.0%

81.3%

77.1%

4.9%

0.932

SVM

85.0%

76.6%

58.7%

5.4%

0.892

RF

83.9%

76.6%

47.4%

4.5%

0.881

TPR: True-Positive Rate; FPR: False-Positive Rate; AUROC:
Area under Receiver Operating Characteristic curve.

Table 4. Source-target Topology Pairs for Transfer Learning

VCo1
VCo2

VCo2
VCOo1

SCF1
SCF2

SCF2
SCF1

TS-OTA2
TS-OTA1

CC-OTA
CM-OTA

CC-OTA
5T-OTA

CM-OTA
5T-OTA

TS-OTA1
TS-OTA2

Compl1
Comp2

Comp2
Compl

Comp1
Comp3

Source
Target

6.1 Results on ML Performance Models

A classification model is evaluated by the following metrics based on True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).

e Recall, ak.a. True-positive Rate (TPR): —TPTI; N
o False-positiveTl;a;z (FPR): %

. +
* Accuracy: mprN rpiFN

seio. TP
e Precision: TP+FP

With different thresholds in the classification, there is a tradeoff between TPR and FPR. Receiver
Operating Characteristic (ROC) curve shows the TPR-FPR tradeoff. Area under the ROC
curve (AUROC) is a metric for assessing the overall performance of the entire tradeoff. AUROC
is 1 if the model is perfect and 0.5 if the model performs random guesses. The proposed WAGN
model is evaluated by comparisons with PEA [20], Random Forest (RF), and SVM.

Table 3 compares different models where training and testing data are for the same schematic
topology. One can see that GNN techniques, including both WAGN and PEA, are superior to RF and
SVM. Compared to PEA [20], our WAGN model improves TPR from 77.1% to 89.5% with around
5% FPR.

We also evaluate the knowledge transfer capability of different models. Here, “transfer” means
that a model is trained with 80% data of a source (S) topology and applied to a target (T) topology
with fine-tune training by 10% data from T. As such, the knowledge learned from S is applied
(transferred) to T. Twelve S-T transfer pairs listed in Table 4 are tested. The transfer learning
results are shown in Table 5, where “fine-tune-only” means the training is based on 10% of T data
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Table 5. Transfer Learning Results Averaged from the

12 Circuits
Accuracy | Precision | TPR | FPR | AUROC
WAGN transfer 90.0% 81.2% 73.9% | 4.9% | 0.916
WAGN fine-tune-only 86.5% 77.4% | 61.0% | 5.3% | 0.872
PEA transfer 87.4% 79.6% 63.7% | 4.9% | 0.895
PEA fine-tune-only 86.3% 78.1% 59.1% | 5.0% | 0.886

Detailed results are provided in Table 13. TPR: True-Positive
Rate; FPR: False-Positive Rate; AUROC: Area under Receiver
Operating Characteristic curve.

only. Please note that “fine-tune-only” is different from WAGN/PEA, where the model is trained
with 80% of T data and its inference is performed on T topology. For WAGN, the transfer leads
to 12.9% improvement on TPR for a similar false-positive rate. By contrast, the TPR improvement
from PEA transfer learning is only 4.6%. Please note that the knowledge transfer is restricted
to be between different topologies of the same type of circuit, e.g., different topologies of OTAs.
Knowledge transfer among different types of circuits is much more difficult as they often have
different performance metrics, e.g., gain for OTA and linearity for ADC.

6.2 Results on Wire Sizing

There is no previous work on performance-driven analog wire sizing. Thus, we use a uniform
sizing strategy and conventional Bayesian optimization, which is a recent approach to transistor
sizing [29], as the main baselines for comparison. Overall, the following methods are compared:

e 1X (2%, 3X) width. All nets of a circuit have the same 1X (2%, 3X) wire width.

e BO1. A baseline approach of conventional Bayesian optimization [29], which is guided by
circuit simulation. The number of circuit simulations is 14, which is derived in a way such
that BO1 CPU runtime is similar to our techniques.

e BO2. This is almost the same as BO1 except that it allows 110 circuit simulation runs, which
is a typical number of total samplings in conventional use.

e BO-WAGN. Wire sizes are optimized by our Bayesian optimization, which is guided by a
hybrid of WAGN and 10 circuit simulations.

o BO-WAGN-transfer. Wire sizes are optimized by our Bayesian optimization, which is
guided by a hybrid of WAGN with transfer learning (Section 6.1) and 10 circuit simulations.

o TF. Wire sizes are optimized by our TensorFlow-based sizing optimization, where WAGN
and 10 circuit simulations are employed for each design.

o TF-transfer. Wire sizes are optimized by TensorFlow-based sizing, where WAGN with trans-
fer learning (Section 6.1) and 10 circuit simulations are employed for each design.

Please note 3x width is realized by three parallel routes for a net, and possibly with different
wire length resulting from detailed routing. Therefore, the wire area, which is the product of wire
length and wire width, of 3x width can be more than 3x of the wire area of 1x width.

A comparison among different methods on post-layout circuit performance in terms of FOM is
plotted in Figure 9. The best of our approach, BO-WAGN-transfer, leads to 8% to 21% average FOM
improvement compared to the uniform sizing strategy (1x, 2X, 3x width). The reason BO-WAGN-
transfer is better than BO-WAGN is mostly because of circuit Comp1. For Comp1, BO-WAGN-
transfer finds a solution with FOM 0.77 (BO2 also finds this solution). However, BO-WAGN only
finds a solution with FOM 0.68. For other circuits, BO-WAGN-transfer and BO-WAGN achieve the
same or similar solutions. The others of our techniques obtain similar FOMs as BO-WAGN-transfer,
with only 1% difference on average. These results confirm that uniform wire sizing is insufficient
for performance improvement and our sizing techniques are indeed effective.
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m1x width 0 70 0 92 0 92 0 59 0 73 0 29 0 85 0 34 0 50 0 72 0 78 0 66
= 2x width 0.95 0.93 0.93 0.83 0.82 0.64 0.44 0.84 0.32 0.47 0.76 0.76 0.72
= 3x width 0.94 0.90 0.90 0.88 0.91 0.65 0.35 0.84 0.31 0.00 0.76 0.75 0.74
BO1 0.90 0.91 0.91 0.86 0.82 0.64 0.44 0.84 0.31 0.47 0.74 0.75 0.72
=BO2 1.00 0.99 1.00 0.94 0.93 0.77 0.69 0.88 0.35 0.51 0.78 0.79 0.80
= BO-WAGN 0.99 0.98 0.99 0.94 0.92 0.68 0.67 0.87 0.34 0.50 0.78 0.79 0.79
m BO-WAGN-transfer 1.00 0.99 1.00 0.92 0.92 0.77 0.67 0.88 0.36 0.51 0.78 0.79 0.80
uTF 0.97 0.99 0.97 0.93 0.93 0.68 0.68 0.87 0.38 0.49 0.78 0.80 0.79
u TF-transfer 1.00 0.97 1.00 0.92 0.9 0.68 0.67 0.89 0.35 0.50 0.78 0.80 0.79

m1x width m2x width = 3x width BO1 mBO2 m=BO-WAGN wm=BO-WAGN-transfer ®TF mTF-transfer

Fig. 9. Post-layout performance results from different wire sizing methods in terms of FOM. BO: Bayesian
Optimization; TF: TensorFlow; VCO: Voltage Controlled Oscillator; SCF: Switched Capacitor Filter.

Table 6. Runtime Comparison of Different Methods

‘ BO1 | BO2 | BO-WAGN (min) | BO-WAGN- TF (min) TF-transfer
(min) | (min) | WOTC ~ WTC | transfer (min) | WOTC WTC (min)
5T-OTA | 17.1 | 1168 | 11.2 39.5 | 14.6 | 171 454 | 200
CC-OTA | 194 | 1309 | 122 333 | 14.3 | 159 370 | 180
CM-OTA | 181 | 1249 | 118 289 | 135 | 126 297 | 143
TS-OTA1| 68.6 | 5109 | 48.10 20851 | 5918 | 547 22161 | 7254
TS-OTA2 | 48.0 | 3633 | 33.01 13497 | 44.11 | 351 14186 | 4670
Compl | 352 | 2443 | 213 60.6 | 25.2 | 271 664 | 310
Comp2 | 53.8 | 3862 | 324 700 | 36.2 | 258 634 | 296
Comp3 | 35.1 | 273.0 | 233 605 | 27.0 | 269 641 | 306
VCO1 | 1284 | 9347 | 883 2625 | 1057 | 1325 3067 |  150.0
VCO2 | 1225|8923 | 931 3006 | 1138 | 2304 4374 | 2511
SCF1 | 1293 | 962.0 | 99.0 2784 | 116.9 | 973 2763 | 1152
SCF2 | 946 | 669.0 | 625 1686 | 73.1 | 614 1674 | 720
Avg. | 6421 | 4674 | 447 1372 | 53.6 | 614 15477 ] 7093
Norm | 1.2X | 8.7X | 0.8x  2.6X | 1x | 11x  29x | 1.3x

WOTC: without considering training cost (training data generation + training time);
WTC: with consideration of training cost. Training cost is also considered for both
BO-WAGN-transfer and TF-transfer.

Runtime comparisons are provided in Table 6. All results are normalized with respect to that of
BO-WAGN-transfer. The runtimes of BO-WAGN-transfer and TF-transfer cover the training cost of
WAGN, which includes the time of training dataset generation (layout generation, parasitic extrac-
tion, and post-layout simulation) and WAGN model training. The runtime of BO-WAGN-transfer
(TF-transfer) is similar to that of BO-WAGN (TF) when training cost is not considered. Thus, the
runtime of BO-WAGN-transfer and TF-transfer without considering training cost is omitted in
the table. Its dominating part is circuit simulations, which are performed in parallel easily. The
simulations in BO1 and BO2 are difficult to be parallelized as a sample (or a new sizing solution)
depends on the results of previous iterations. The parallel Bayesian optimization in [44] is for
multi-objective optimization, which is different from the wire sizing here. The runtime of BO1 is
similar to BO-WAGN-transfer, but its circuit performance (FOM) is 11% worse. BO2 can achieve
similar circuit performance as our techniques but is 8.7x slower. According to [40], machine learn-
ing model transfer among different technology generations is not hard. Thus, our WAGN train cost
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Table 7. Post-layout Results of CM-OTA

1x Width  2x Width 3x Width BO1 BO2 BO-WAGN BO-WAGN-transfer =~ TF  TF-transfer

Gain (dB) 33.1 323 31.1 29.9  32.6 324 32.6 32.8 324
UGF (MHz) 451.0 470.5 511.4 517.0 516.5 524.7 507.2 520.0 513.7
BW (MHz) 10.2 114 14.5 16.9 123 12.9 13.2 12.1 12.5
PM (%) 78.5 71.7 77.6 769 774 71.0 76.4 71.5 77.3
FOM 0.92 0.93 0.90 091 1.00 0.99 1.00 0.97 1.00
Wire Area (um?) 0.24 0.63 0.86 0.52  0.57 0.44 0.51 0.66 0.67

Table 8. Post-layout Results of TS-OTA1

1x Width  2x Width 3x Width BO1 BO2 BO-WAGN BO-WAGN-transfer = TF  TF-transfer

Gain (dB) 18.25 35.6 36.1 35.76  36.22 36.23 3591 36.02 36.27
UGF (MHz) 88.0 283.0 324.6 302.8 364.9 364.2 350.6 357.2 357.7
BW (MHz) 10.79 4.46 4.92 4.66 543 5.43 5.35 5.51 5.21
PM (degree) 76.12 65.56 64.79 6286 61.97 62.63 62.03 62.8 61.13

FOM 0.59 0.83 0.88 0.86 0.94 0.94 0.92 0.93 0.92
Wire Area (ym?) 113 2.35 3.68 2.08 279 2.98 2.95 2.70 2.60

Table 9. Post-layout Results of TS-OTA2

1x Width  2x Width 3x Width BO1 BO2 BO-WAGN BO-WAGN-transfer ~TF  TF-transfer

Gain (dB) 36.70 42.56 46.4 41.86 47.43 46.79 46.77 47.32 46.81
UGF (MHz) 356.3 412.2 470.5 437.8 517.8 503.3 503.3 508.5 468.1
BW (MHz) 5.43 3.27 2.30 37.13 214 2.28 2.28 2.16 2.21
PM(°) 61.48 58.08 61.6 5898 67.9 65.98 65.79 65.42 61.20
FOM 0.73 0.82 0.91 0.82 093 0.92 0.92 0.93 0.90
Wire Area (um?) 0.38 0.72 115 101 1.02 0.59 0.59 0.95 0.46

Table 10. Post-layout Results of Comp1

1x Width  2x Width 3x Width BO1 BO2 BO-WAGN BO-WAGN-transfer =~ TF  TF-transfer

Evaluation delay (ps) 36.2 31.7 311 329 324 32.8 32.4 31.7 32.2
Precharge delay (ps) 45.6 435 40.7 441 411 414 41.1 435 41.1

Power (uW) 124.0 123.3 125.4 125.0 1253 125.0 125.0 124.6 124.7
Offset (mV) 17.8 17.8 13.4 10.5 1.8 6.1 1.8 6.1 6.1

FOM 0.60 0.64 0.65 0.64 0.77 0.68 0.77 0.68 0.68

Wire Area (um?) 0.16 0.40 0.68 036 039 0.35 0.37 0.40 0.34

can be potentially further amortized across different technology generations. TF and BO-WAGN
optimization methods can achieve about the same FOM improvement (Figure 9). While BO-WAGN
is moderately faster than TF, the implementation effort of TF is lower than BO-WAGN as the same
code infrastructure is used for both the model construction and optimization in TF.

Detailed results for an OTA, two-stage OTAs, and a comparator are shown in Tables 7-10, re-
spectively. One can observe that the wire area from wire size optimization is always smaller than
that of 3x width layout and often similar to 2x width layout. Please note that wire area increase
hardly affects chip area as the redundant routes use existing white space without changing device
placement. We notice that wire width values in a layout after optimization are often uniformly
distributed; i.e., each wire width occurs in about one-third of the nets of a circuit. This indicates
that wires of different nets need to be sized differently.

The gain of CC-OTA and the offset results of Comp2 are plotted in Figure 10 for different meth-
ods. Without degradation on other performance metrics, wire sizing improves the gain by about
3dB for CC-OTA and reduces offset by about 7mV for Comp2. The plots also confirm that our
techniques achieve remarkably better gain and offset than BO1.
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Fig. 10. Post-layout results of CC-OTA and Comp2.
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Fig. 11. FOM of TF with respect to & and 7.
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6.3 Parameter Analysis for TF- and BO-based Optimizations
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Both TF- and BO-based wire size optimizations consist of multiple runs with different initial so-
lutions, and the number of runs is denoted by £. At the end of TF as well as BO-WAGN, the top
1 solutions according to WAGNy_ (-) are simulated to find the solution with the maximum FOM.
In our default setting & = 100 and 1 = 10. It is conceivable that solution quality should improve
with increase of ¢ and 7. This effect is evaluated in a couple of circuits and the results are shown in
Figures 11 and 12, where a lighter color means a higher FOM. For TF, FOM increases with 1 but its
dependence on ¢ is weak. For BO-WAGN, the effect of increasing ¢ is more obvious. Interestingly,
TF is sensitive to small changes of ¢ and 5, while BO is not. Both & and 5 are parameters whose

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 19. Pub. date: December 2022.



Performance-driven Wire Sizing for Analog Integrated Circuits 19:19

TS-OTA1 TS-0TA2

: Bl

Fig. 13. Manual annotated circuits.

Non-sensitive

R-sensitive

RC-sensitive

Table 11. Post-layout Results of
TS-OTA1 and TS-OTA2

Circuit \ TS-OTA1 | TS-OTA2
Method | MA BO-WAGN | MA BO-WAGN
Gain (dB) | 36.15 36.23 | 3591 46.79
UGF (MHz) | 3294 3642 | 3498 5033
BW (MHz) | 499 543 | 587 2.28

PM (degree) | 63.92 63.63 | 6175 64.98

FOM | 0.89 094 | 074 0.92
Wire Area (um?) | 2.89 298 | 1.08 0.59

values can be determined by users. Alternatively, their values can be dynamically increased during
runtime till the saturation of FOM improvement.

6.4 Comparison with a Manual Annotated Method

We compare our approach with a manual annotated (MA) method, where the sensitivity of nets
is annotated by analog designers and the wire width is sized up accordingly. As shown in Figure 13,
the sensitivity of nets is annotated for two circuits, TS-OTA1 and TS-OTA2. Some nets (marked in
black) are not sensitive. Some nets (marked in blue) are sensitive to R only, and the wires can be
made as wide as possible. Some other nets are sensitive to both R and C (marked in red). For these
nets, the wires shouldn’t be too narrow (R limiting) or too wide (C limiting). In our experiment,
we set 1X width for non-sensitive nets, 3X width for R-sensitive nets, and 2X width for RC-sensitive
nets. Their post-layout results are shown in Table 11. We can see that our approach, BO-WAGN,
is able to find better solutions than the MA method. This is not surprising, as the critical/load-
sensitive nets are usually identified based on the circuit topology. However, the RC tradeoffs and
their impacts on circuit performance are actually design dependent (transistor and capacitor size
dependent). Such tradeoffs and impacts are hard for the designer to capture manually.

7 CONCLUSION AND FUTURE RESEARCH

Wire width can significantly affect analog IC performance, while performance-driven analog wire
sizing has been rarely studied. In this work, a customized graph neural network model, WAGN, is
developed for quickly estimating the performance of wire sizing solutions. Experimental results
show that WAGN not only is superior to SVM and random forest but also outperforms a state-of-
the-art previous work. Two wire sizing optimization techniques are investigated: one is BO guided
by WAGN, and the other is based on TensorFlow training, which is also guided by WAGN. The for-
mer is slightly faster, and the latter requires significantly less implementation effort. Experimental
results show that our best technique achieves either an average of 11% overall circuit performance
improvement or 8.7X speedup compared to conventional Bayesian optimization.

The proposed techniques have three weaknesses. First, the effectiveness of each ML model is
restricted to only one type of circuits and its knowledge cannot be easily transferred to a different
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type of circuit. Second, the ML models can only perform classification, while a regression model is
more useful in practice. Third, the effectiveness of the ML models is difficult to scale to large circuits
such as ADC/DAC. These weaknesses will be addressed in our future research. Additionally, we
will further improve wire sizing techniques to account for the effect of process variations and
accommodate joint transistor-wire sizing. Another future research direction will be simultaneous
transistor and wire sizing.

APPENDIX

Detailed Experimental Results on Circuit Performance Models

Table 12. Comparisons of Circuit Performance Models

Circuit WAGN PEA | WAGN PEA | WAGN PEA ‘WAGN PEA | WAGN PEA
F

Accuracy Precision Recall/TPR PR AUROC

CC-OTA | 94.0% 91.5% | 58.5% 53.1% | 87.8% 68.9% 54%  59% | 0.974  0.920
CM-OTA | 97.0% 94.0% | 89.9% 85.1% | 98.6%  80.3% 3.5%  3.0% | 0998 0.975
5T-OTA | 96.5% 94.7% | 84.3% 85.3% | 98.6%  95.5% 4.0%  5.6% | 0.996  0.986
TS-OTA1 | 95.2% 925% | 86.3% 87.1% | 96.3% 82.1% 51%  4.0% | 0.988  0.954
TS-OTA2 | 953% 93.8% | 86.5% 86.4% | 96.1% 86.4% 50% 4.0% | 0.994  0.967
Comp1 92.0% 86.3% | 83.0% 77.5% | 82.0%  62.6% 50%  6.0% | 0.962  0.905
Comp2 91.5% 88.0% | 84.9% 79.3% | 82.7%  69.7% 53%  6.0% | 0961  0.898
Comp3 91.8% 89.0% | 83.0% 80.2% | 83.8% 73.7% 57%  6.0% | 0.954  0.920
VCO1 92.2% 87.9% | 87.2% 81.5% | 80.9% 70.7% 4.0%  5.8% | 0937  0.893
VCO2 923% 89.0% | 86.8% 87.9% | 81.6% 68.0% 42%  3.4% | 0933  0.919
SCF1 953% 92.4% | 83.3% 85.6% | 91.6% 83.8% 4.0%  4.7% | 0972  0.922
SCF2 95.0%  92.6% | 86.1% 86.2% | 94.4% 83.8% 49%  4.5% | 0.983  0.931

Avg. 94.0% 91.0% | 83.3% 81.3% | 89.5% 77.1% | 4.7% 4.9% | 0.971 0.932

SVM RF SVM RF SVM RF SVM RF SVM RF
Accuracy Precision Recall/TPR FPR AUROC

CC-OTA | 83.5% 82.8% | 69.7% 77.9% | 50.6%  43.5% 6.6%  4.1% | 0874  0.887
CM-OTA | 89.0% 82.0% | 79.1% 77.4% | 73.6% 39.8% 62% 39% | 0.853  0.751
5T-OTA 97.0%  78.0% | 86.4%  66.7% | 98.6%  24.0% 33%  4.0% | 0994  0.720
TS-OTA1 | 833% 83.0% | 70.2% 72.0% | 45.5% 40.9% 57%  4.7% | 0.921  0.929
TS-OTA2 | 86.1% 84.5% | 77.4%  75.9% | 54.6% 46.9% 47%  43% | 0911  0.921
Comp1 82.5% 84.4% | 67.2% 74.6% | 46.1% 50.0% 6.7%  52% | 0.859  0.883
Comp2 81.9% 84.4% | 75.0% 79.7% | 48.0%  50.4% 58%  4.3% | 0889  0.924
Comp3 83.5% 86.2% | 78.0% 81.3% | 46.5%  58.2% 43%  45% | 0.880  0.929
VCO1 82.6% 84.1% | 76.0% 72.6% | 50.7%  50.0% 58%  57% | 0.864  0.893
VCO2 85.1% 84.6% | 76.8% 81.7% | 57.8%  59.0% 58% 53% | 0916 0.912
SCF1 88.6% 84.4% | 81.0% 80.0% | 71.4%  50.0% 5.6%  4.2% | 0885 0.910
SCF2 87.0% 88.7% | 82.4% 80.0% | 61.3%  60.3% 44%  39% | 0.863 0.914

Circuit

Avg. ‘ 85.8% 83.9% | 76.6% 76.6% | 58.7% 47.7% 5.4% 4.5% | 0.892 0.881
TPR: True-Positive Rate. FPR: False-Positive Rate. AUROC: Area under the ROC
curve.
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Table 13. Detailed Transfer Learning Results

Model

Circuit Transfer FTO | Transfer FTO | Transfer FTO | Transfer FTO | Transfer FTO
S T Accuracy Precision Recall/TPR FPR AUROC

CC-OTA CM-OTA 88.0%  83.6% 79.0%  75.6% 68.1%  47.2% 5.7% 4.9% 0.898 0.808
CC-OTA 5T-OTA 94.8%  93.8% 80.5%  81.9% 93.0%  83.1% 4.9% 4.0% 0.975 0.960
CM-OTA 5T-OTA 96.0%  93.8% 84.8%  81.9% 94.4%  83.1% 3.7% 4.0% 0.977 0.960
TS-OTA2 TS-OTA1 95.9%  89.4% 87.1%  80.7% 97.9%  751% 4.8% 5.9% 0.989 0.928
TS-OTA1 TS-OTA2 93.4%  88.5% 83.9%  80.1% 90.7%  71.2% 5.7% 5.8% 0.976 0.930

WAGN Compl Comp2 85.4% 83.6% 81.5% 78.4% 58.7% 53.3% 4.9% 5.3% 0.858 0.848

Comp?2 Comp1 85.6%  86.4% 81.6%  75.7% 58.9%  59.6% 5.0% 5.7% 0.858 0.801
Comp1l Comp3 86.8%  84.8% 79.5%  75.7% 62.6%  56.6% 5.3% 6.0% 0.899 0.885
VCO1 VCO2 86.4%  82.9% 822%  77.6% 58.2%  50.7% 4.2% 5.3% 0.860 0.816
VCO2 VCO1 86.1%  82.9% 82.1%  77.6% 61.3%  50.7% 4.9% 5.3% 0.857 0.809

SCF1 SCF2 90.8%  84.3% 758%  72.6% 70.4%  50.6% 4.9% 5.7% 0.936 0.848
SCF2 SCF1 91.3%  84.1% 76.5%  71.4% 73.2%  50.6% 4.9% 6.0% 0.911 0.876
Avg. 90.0%  86.5% 81.2%  77.4% 73.9%  61.0% 4.9% 5.3% 0.916 0.872

CC-OTA CM-OTA 82.8%  80.9% 75.5%  73.0% | 46.3%  37.5% 5.0% 4.6% 0.870 0.803
CC-OTA  5T-OTA 93.8%  92.0% 788%  76.7% 88.7%  78.9% 5.2% 5.2% 0.990 0.983
CM-OTA  5T-OTA 94.3%  92.0% 81.6%  76.7% 87.3%  78.9% 4.3% 5.2% 0.974 0.983
TS-OTA2 TS-OTA1 92.7%  92.2% 86.6%  85.0% 84.0%  83.8% 4.4% 5.0% 0.976 0.972
TS-OTA1 TS-OTA2 90.0%  88.9% 83.4%  83.7% 753%  69.5% 5.0% 5.4% 0.958 0.949

PEA Comp1l Comp2 85.0%  83.5% 791%  76.2% 53.5%  48.5% 4.7% 5.0% 0.858 0.876

Comp2 Comp1 84.0%  83.5% 778%  771% | 49.5%  47.5% 4.7% 4.7% 0.840 0.826
Comp1 Comp3 85.0%  84.5% 77.5%  76.1% 55.6%  54.6% 5.3% 5.7% 0.866 0.869
VCO1 VCO2 83.9%  83.4% 773%  75.2% 50.4%  50.6% 5.0% 5.6% 0.816 0.811
VCO2 VCO1 84.0%  83.7% 751%  76.3% 53.9%  50.6% 6.0% 5.3% 0.836 0.814

SCF1 SCF2 86.7%  85.0% 81.2%  79.2% 60.9%  54.4% 4.7% 4.8% 0.871 0.872
SCF2 SCF1 86.4%  85.5% 81.5%  80.8% 59.0%  55.1% 4.5% 4.4% 0.886 0.869
Avg. 87.4%  86.3% 79.6%  78.1% 63.7%  59.1% 4.9% 5.0% 0.895 0.886

FTO: fine-tune-only.
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