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a b s t r a c t

The varying-coefficient additive model is a novel tool for analyzing functional data.
The model generalizes both the varying-coefficient model and the additive model, and
retains their merits as an effective dimension reduction model that is flexible yet easily
interpretable. However, the original method only works for densely recorded functional
response processes with time-invariant covariates. To broaden its applicability, the
model is extended to allow for time-dependent covariates and a new fitting approach is
proposed that can handle sparsely recorded functional response processes. Consistency
and L2 rate of convergence are developed for the proposed estimators of the unknown
functions. A simple algorithm is developed that overcomes the computational difficulty
caused by the non-convexity of the objective function. The proposed approach is
illustrated through a simulation study and a real data application.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the analysis of functional and longitudinal data, the relationship between a time-varying response and a few
covariates, each of which is either time-invariant or time-dependent, is of keen interest. Both varying-coefficient models
(e.g., Brumback and Rice, 1998; Hoover et al., 1998; Fan and Zhang, 2000; Guo, 2002; Huang et al., 2002, 2004; Morris and
Carroll, 2006; Şentürk and Nguyen, 2011) and additive models (e.g., Berhane and Tibshirani, 1998; Lin and Zhang, 1999;
You and Zhou, 2007; Carroll et al., 2009; Xue et al., 2010; Scheipl et al., 2015; Luo et al., 2016; Luo and Qi, 2017; Qi and
Luo, 2018) are widely used non-parametric modeling approaches to analyze functional and longitudinal data that enjoy
flexibility and parsimony. Interested readers may refer to Fan and Zhang (2008), Park et al. (2015), Hastie and Tibshirani
(1990), Wood (2017), and Stasinopoulos et al. (2017) for general introductions to varying-coefficient models and additive
models. An intriguing question is how to choose between these two models in practice. In a recent article by Zhang and
Wang (2015), it was shown that this dichotomy can be altogether bypassed by embedding both models into a larger
model, the varying-coefficient additive model (VCAM), which includes both models as special cases. However, that work
was specifically designed for densely observed functional response with vector covariates. In this article, we show how
to extend the VCAM to more general settings that allow for sparsely observed functional responses (Yao et al., 2005; Li
and Hsing, 2010), a.k.a. longitudinal data, and longitudinal covariates, in addition to vector covariates.

Denote the response by X(t) which depends on time t , and the covariates by Z(t) = (Z1(t), . . . , Zd(t)). Each covariate
Zk, k = 1, . . . , d, may also be time-invariant. Without loss of generality, we assume t ∈ [a0, b0] and Zk ∈ [ak, bk],
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k = 1, . . . , d. Let m(t, Z(t)) = E{X(t) | Z(t)} be the regression function of interest. We consider the following VCAM
for longitudinal data:

m(t, Z(t)) = β0(t)+
d∑

k=1

βk(t)φk(Zk(t)), (1)

where the βk (k = 1, . . . , d) are coefficient functions and the φk (k = 1, . . . , d) are additive component functions, which
are smooth (e.g., continuous or differentiable) and satisfy the following identifiability condition:

1
b0 − a0

∫ b0

a0

βk(t) dt = 1,
∫ bk

ak

φk(zk) dzk = 0 (k = 1, . . . , d). (2)

The proof of this condition is given in the supplementary material.
When the φk (k = 1, . . . , d) are linear functions, VCAM (1) collapses to the varying-coefficient model for longitudinal

or functional data:

m(t, Z(t)) = β0(t)+
d∑

k=1

βk(t)Zk(t), (3)

with the abuse of notations. Therefore, the VCAM generalizes the varying-coefficient model in the sense that the effect of
each covariate Zk(t) on the response may be non-linear through an unknown function φk.

Obviously, VCAM (1) also extends the classical additive model (Stone, 1985) since it is additive in Z(t) for any fixed
time t . A special form of additive models that was considered by You and Zhou (2007) and Carroll et al. (2009) among
others, is

m(t, Z(t)) = β0(t)+
d∑

k=1

φk(Zk(t)). (4)

This additive model implicitly assumes that the influence of each covariate on the response only depends on its measured
value, but not on the time when this covariate was measured, i.e., βk(t) = 1, k = 1, . . . , d in VCAM (1). Thus, VCAM (1)
is more flexible than both varying-coefficient models and additive models.

On the opposite spectrum, VCAM (1) may be regarded as a special case of the time-varying additive model (TVAM)
in Zhang et al. (2013):

m(t, Z(t)) = µ0(t)+
d∑

k=1

µk(t, Zk(t)), (5)

where µk(k = 1, . . . , d) are bivariate functions such that
∫ bk
ak

µk(t, zk) dzk = 0. While TVAM (5) relaxes the aforementioned
restrictive assumption of the additive model (4), the bivariate structure makes it less transparent to interpret the effect of
each covariate. In contrast, the multiplicative form βkφk (k = 1, . . . , d) in VCAM (1) is an appealing feature, as it not only
facilitates interpretability by separating the joint influence of covariates and time, but also involves only one-dimensional
smoothing in contrast to TVAM (5), which requires two-dimensional smoothing. Thus, VCAM (1) is an effective dimension
reduction model that enjoys flexibility, interpretability, and computational efficiency.

A special scenario of the VCAM, when X(t) is densely observed functional data and the covariates (Z1, . . . , Zd)
are time-independent covariates, was considered in Zhang and Wang (2015), who developed a very simple two-step
estimation procedure for VCAM. Unfortunately, that approach does not work for sparsely sampled longitudinal responses
or longitudinal covariates, whether densely or sparsely sampled. This provides the motivation for us to develop a new
method to estimate the unknown components of VCAM (1) to address this deficit. The new method that is described in
Section 2 differs substantially from the approach in Zhang and Wang (2015) and involves non-convex minimization of
the objective function. A simple algorithm to address the non-convex minimization issue is proposed in Section 4 along
with two methods of initial estimates for the algorithm that depend on the types of covariates.

The new estimation method necessitates a new theoretical framework, which is described in Section 3 and differs
substantially from that of Zhang and Wang (2015). A key reason is that while a closed-form solution exists for the
estimators in Zhang andWang (2015), this is not the case for the estimators in Section 2. Rather, we employ nonparametric
M-estimation approaches to derive the consistency and L2 rate of convergence for the proposed estimators of unknown
functions. Details of the proofs, which are based on the techniques of empirical processes, are available in the online
supplement.

In the functional regression literature, the VCAM may be considered a functional concurrent model (e.g., Ramsay
and Silverman, 2005; Zhang et al., 2013; Goldsmith and Schwartz, 2017; Hu et al., 2018), for which the influence of
a covariate on the functional response is instantaneous. When all covariates are time-invariant, functional concurrent
models are also called function-on-scalar regression models (e.g., Reiss et al., 2010; Goldsmith et al., 2015; Barber et al.,
2017; Reimherr et al., 2019). Another type of approaches that aims at modeling the cumulative influence of the history
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of multiple functional covariates on the functional response has been considered in e.g., Scheipl et al. (2015, 2016) and
Qi and Luo (2019). These approaches have theoretical and computational challenges because they involve an ill-posed
problem of inverting a covariance operator but they are useful alternatives to the VCAM. For recent developments and
future directions of functional regression, interested readers may refer to the survey papers by Morris (2015), Greven and
Scheipl (2017), Paganoni and Sangalli (2017), and Reiss et al. (2017).

The remainder of the article proceeds as follows. Section 2 describes the proposed estimation procedure, and Section 3
includes the asymptotic result of each function estimator. Computational issues, including the algorithm, initial estimates,
and tuning parameters, are addressed in Section 4. The numerical performance of the proposed method is examined
through a simulation experiment in Section 5 and a real data application in Section 6. Section 7 concludes the article.

After completing the original version of this article, we noticed a related article by Hu et al. (2019) which was recently
accepted by Statistica Sinica. This article is an independent work with a different estimation procedure and distinct
theoretical proofs. We compare the two methods in Section 5 and demonstrate the superiority of our method in estimation
and prediction accuracy.

2. Methodology

VCAM (1) may be alternatively expressed as

X(t) | Z(t) = β0(t)+
d∑

k=1

βk(t)φk(Zk(t))+W (t),

where βk and φk, k = 1, . . . , d, satisfy (2) and W is the stochastic component of X , which is independent of Z and
E{W (t)} = 0.

Suppose that we collect data from n independent subjects, i.e., {(Xi, Zi) : i = 1, . . . , n} are independent copies of
(X, Z), where Zi = (Zi1, . . . , Zid). For the ith subject, the measurements are taken sparsely at irregularly time points Tij, j =
1, . . . , ni, and the responses may be contaminated with random errors eij, j = 1, . . . , ni, which are independent copies of
a random variable e with zero mean and finite variance. Thus we observe {(Yij, Tij, Zij) : i = 1, . . . , n; j = 1, . . . , ni}, where
Zij = Zi(Tij) = (Zi1(Tij), . . . , Zid(Tij)) = (Zij1, . . . , Zijd) and

Yij = Xi(Tij)+ eij = β0(Tij)+
d∑

k=1

βk(Tij)φk(Zijk)+Wi(Tij)+ eij. (6)

Following standard literature for functional data, we further assume that {Tij : i = 1, . . . , n; j = 1, . . . , ni} are
independent copies of a random variable T and {Zi : i = 1, . . . , n} are independent of {Tij : i = 1, . . . , n; j = 1, . . . , ni}.
Therefore, {Zij : i = 1, . . . , n; j = 1, . . . , ni} are identical copies of Z(T ), and {Yij : i = 1, . . . , n; j = 1, . . . , ni} are identical
copies of a random variable Y defined by Y = m(T , Z(T ))+W (T )+ e.

Theoretically we identify φk and βk by minimizing

E

{
Y − β0(T )−

d∑
k=1

βk(T )φk(Zk(T ))

}2

,

subject to the constraints (2). An empirical version is to minimize

1
N

n∑
i=1

ni∑
j=1

{
Yij − β0(Tij)−

d∑
k=1

βk(Tij)φk(Zijk)

}2

, (7)

where N =
∑n

i=1 ni. Another empirical criterion inspired by Huang et al. (2004) and Li and Hsing (2010) is to assign equal
weights to all subjects,

1
n

n∑
i=1

1
ni

ni∑
j=1

{
Yij − β0(Tij)−

d∑
k=1

βk(Tij)φk(Zijk)

}2

.

Since the criterion (7), which assigns equal weights to each measurement, is generally preferable for longitudinal data
following the work of Zhang and Wang (2016), we adopt this scheme hereafter.

We further use B-splines to approximate βk (k = 0, . . . , d) and φk (k = 1, . . . , d). For each βk, we use Kk,C interior
knots and Jk,C = Kk,C + pk,C B-spline basis functions of order pk,C ≥ 1, denoted by {Bkl : l = 1, . . . , Jk,C } as defined in
Chapter IX of de Boor (2001). The subscript ‘‘C’’ refers to coefficient functions. Therefore, βk is approximated by

∑Jk,C
l=1 fklBkl

with a vector fk = (fk1, . . . , fk,Jk,C ).
Similarly, to approximate each φk, we use Kk,A interior knots and Jk,A = Kk,A + pk,A B-spline basis functions of order

pk,A ≥ 1, denoted by {Nks : s = 1, . . . , Jk,A}. The subscript ‘‘A’’ corresponds to additive component functions. Therefore, φk

is approximated by
∑Jk,A

s=1 gksNks with coefficients gk = (gk1, . . . , gk,Jk,A ).
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Denote f = (f0, f1, . . . , fd) and g = (g1, . . . , gd). Combining (7) and the constraints (2), the estimates of f and g, and
thus the estimates of βk and φk, denoted by β̂k and φ̂k, are obtained by solving the optimization: minimize

n∑
i=1

ni∑
j=1

⎡⎣Yij −

J0,C∑
l=1

f0lB0l(Tij)−
d∑

k=1

⎧⎨⎩
Jk,C∑
l=1

fklBkl(Tij)

⎫⎬⎭
⎧⎨⎩

Jk,A∑
s=1

gksNks(Zijk)

⎫⎬⎭
⎤⎦2

, (8)

subject to

1
b0 − a0

∫ b0

a0

⎧⎨⎩
Jk,C∑
l=1

fklBkl(t)

⎫⎬⎭ dt = 1,
∫ bk

ak

⎧⎨⎩
Jk,A∑
s=1

gklNks(zk)

⎫⎬⎭ dzk = 0,

for k = 1, . . . , d. We denote the estimated regression function by m̂ = β̂0 +
∑d

k=1 β̂kφ̂k.

3. Theoretical properties

In this section we provide the asymptotic results for β̂k, k = 0, . . . , d, and φ̂k, k = 1, . . . , d, obtained from (8).
For simplicity and without loss of generality, we assume [ak, bk] = [0, 1] for all k = 0, . . . , d. For any two q− variate

square-integrable functions m1(x) and m2(x) defined on [0, 1]q, where x = (x1, . . . , xq) and 1 ≤ q ≤ d+ 1, define their L2
inner product by ⟨m1,m2⟩L2 =

∫
m1(x)m2(x) dx, and denote the corresponding L2 norm by ∥ · ∥L2 . Moreover, denote the

sup-norm by ∥ · ∥∞ that is defined by ∥m1∥∞ = supx∈[0,1]q |m1(x)|.
For any two sequences a(n), b(n) > 0 depending on n, the notation a(n) ⪯ b(n) (or b(n) ⪰ a(n)) represents

lim supn→∞ a(n)/b(n) < ∞, and a(n) ≍ b(n) means that a(n) ⪯ b(n) and a(n) ⪰ b(n).
Let Bk = span{Bkl : l = 1, . . . , Jk,C } (k = 0, . . . , d) and Nk = span{Nks : s = 1, . . . , Jk,A} (k = 1, . . . , d). Define the

approximation errors by

ρA = max
1≤k≤d

inf
γk∈Nk

∥φk − γk∥∞, and ρC = max
0≤k≤d

inf
αk∈Bk

∥βk − αk∥∞.

We first show that the estimated regression function m̂ is consistent.

Theorem 1 (Consistency). Under Assumptions 1–6 in the appendix, if ρA, ρC → 0 as n → ∞,

∥m̂−m∥L2 = op(1), as n → ∞.

Theorem 1 implies the consistency of each β̂k and φ̂k as in the following corollary.

Corollary 1 (Consistency). Under Assumptions 1–6 in the appendix, if ρA, ρC → 0 as n → ∞,

∥β̂k − βk∥L2 = op(1) (k = 0, . . . , d);

∥φ̂k − φk∥L2 = op(1) (k = 1, . . . , d).

We next establish the L2 rates of convergence for the function estimates.

Theorem 2 (L2 Convergence). Under Assumptions 1–7 in the appendix, if ρA, ρC → 0 as n → ∞,

∥m̂−m∥L2 = Op

{(
KA + KC

n

)1/2

+ ρA + ρC

}
, as n → ∞.

Corollary 2 (L2 Convergence). Under Assumptions 1–7 in the appendix, if ρA, ρC → 0 as n → ∞,

∥β̂k − βk∥L2 = Op

{(
KA + KC

n

)1/2

+ ρA + ρC

}
(k = 0, . . . , d);

∥φ̂k − φk∥L2 = Op

{(
KA + KC

n

)1/2

+ ρA + ρC

}
(k = 1, . . . , d).

Theorem 2 and Corollary 2 indicate that each β̂k and φ̂k, together with m̂, achieves the rate of convergence that
is comparable with that of one-dimensional nonparametric smoothers. This may not be surprising considering the
multiplicative form βkφk (k = 1, . . . , d) assumed in VCAM (1). In particular, if pk,C = 4 (k = 0, . . . , d) and pk,A = 4
(k = 1, . . . , d), i.e., Bk (k = 0, . . . , d) and Nk (k = 1, . . . , d) are all cubic spline spaces, and all βk (k = 0, . . . , d) and
φk (k = 1, . . . , d) have bounded second derivatives, then ρC ⪯ K−2

C and ρA ⪯ K−2
A by Assumption 5 and Theorem 6.27

of Schumaker (2007). Additionally if KA ≍ KC ≍ n1/5, the rate of convergence becomes optimal, which is n2/5 (Stone,
1985).
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4. Computational issues

4.1. Algorithm

The minimization in (8) is non-convex with respect to (f, g), which poses computational challenges to standard
optimization methods. Fortunately, due to the special multiplicative structure of VCAM (1), we propose Algorithm 1 to
circumvent this challenge.
Algorithm 1: The algorithm for fitting VCAM (1).

Obtain initial estimates β̂ ini
k (k = 0, . . . , d) and φ̂ini

k (k = 1, . . . , d).
Outer loop: Repeat until convergence.

For k = 1 to k = d
Inner loop: Repeat until convergence for each k.

Find the latest residuals: Rijk = Yij − β̂0(Tij)−
∑

l̸=k β̂l(Tij)φ̂l(Zijl).
β̌k = Smooth(Rijk, φ̂k(Zijk), Tij); β̂k = β̌k/

∫ b0
a0

β̌k.

φ̌k = Smooth(Rijk, β̂k(Tij), Zijk); φ̂k = φ̌k −
∫ bk
ak

φ̌k.
Output (inner loop): Return β̂k and φ̂k at convergence.
β̂0 = Smooth(Yij −

∑d
k=1 β̂k(Tij)φ̂k(Zijk), 1, Tij).

Output (outer loop): Return β̂k (k = 0, . . . , d) and φ̂k (k = 1, . . . , d) at convergence.

In Algorithm 1, the generic notation ‘‘Smooth(R,U, V )’’ represents the B-spline estimator of V when fitting a multi-
plicative model R ≈ UV with response R and known covariate U . For the convergence criteria of the inner and outer loops
respectively, define two mean residual squares as follows:

mrs =
1
N

n∑
i=1

ni∑
j=1

{
Yij − β̂0(Tij)−

d∑
k=1

β̂k(Tij)φ̂k(Zijk)

}2

,

mrsk =
1
N

n∑
i=1

ni∑
j=1

{
Rijk − β̂k(Tij)φ̂k(Zijk)

}2
.

The outer loop converges if the decrease of mrs is smaller than ϵ1, while the inner loop for each k = 1, . . . , d converges
if the decrease of mrsk is smaller than ϵ2. Here ϵ1 > 0 and ϵ2 > 0 are pre-specified small thresholds. In both Sections 5
and 6 we adopt ϵ1 = 10−3 and ϵ2 = 10−2.

Remark 1. 1. Algorithm 1 is a modified backfitting algorithm (Breiman and Friedman, 1985). The outer loop is essentially
the backfitting algorithm which updates each product βkφk (k = 1, . . . , d) alternately, while the inner loop updates βk and
φk iteratively for each k = 1, . . . , d. Due to the multiplicative form of βkφk, each iteration in the inner loop involves solving
a convex (least squares) optimization, so the computation is fairly simple here. The main challenge of the non-convex
optimization in (8) is to find good initial values and this will be discussed in Section 4.2.
2. Hu et al. (2019) used a different estimation procedure to fit VCAM (1) with three steps: first fit a two-dimensional
additive model where each product ηk(t, zk) = βk(t)φk(zk) (k = 1, . . . , d) is regarded as a general bivariate function, then
find an initial estimate for each βk, using the fact that βk(t)/βk(t0) = ηk(t, zk0)/ηk(t0, zk0) if ηk(t0, zk0) ̸= 0, and use this
initial estimate to get the estimate φ̂k, and finally update the initial estimates of βk with the estimates φ̂k (k = 1, . . . , d)
to get the final estimate of βk. Different from Algorithm 1, the three-step estimation by Hu et al. (2019) does not involve
backfitting or iterations and their theoretical proofs are developed for the three-step estimators.

4.2. Initialization

The initial estimates β̂ ini
k (k = 0, . . . , d) and φ̂ini

k (k = 1, . . . , d) are crucial for the convergence of Algorithm 1 and the
performance of the final estimates. Depending on the types of covariates Z, we propose two methods for initialization.

Initialization 1 (Time-Invariant Covariates). When all covariates are time-invariant, i.e., Zijk = Zik for all k = 1, . . . , d,
we use a similar two-step estimation procedure in Zhang and Wang (2015) to obtain the initial estimates, which
however requires densely recorded longitudinal responses to approximate the integrals (b0 − a0)−1

∫
Y (t) dt . A regular

additive model for independent data emerges after one integrates both sides of (1) since (b0 − a0)−1
∫

βk(t) dt = 1
(k = 1, . . . , d). Initial estimates φ̂ini

k (k = 1, . . . , d) can then be obtained by fitting such an additive model and β̂ ini
k

(k = 0, . . . , d) are subsequently obtained by fitting a varying-coefficient model where φ̂ini
k (Zik) (k = 1, . . . , d) are

considered as covariates. This two-step procedure produces good estimates for dense longitudinal responses and does not
require updating the estimates (Zhang and Wang, 2015). In our setting where the longitudinal response may be sparse,
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the integral (b0 − a0)−1
∫
Y (t) dt cannot be well approximated. Hence, this previous approach does not work to produce

the final estimate but can be used to provide initial estimates. This approach to initializing Algorithm 1 turns out to be
quite reliable in our experience.

Explicitly, for the ith subject, we sort the pairs {(Yij, Tij) : j = 1, . . . , ni} in the ascending order of Tij such that they are
now rearranged as {(Y ∗

ij , T
∗

ij ) : j = 1, . . . , ni} where T ∗

i1 ≤ · · · ≤ T ∗

i,ni
and Y ∗

ij = Yik when Tik = T ∗

ij . Next, we proceed with
the following two steps:

Step 1 : Ỹi =
1

b0 − a0

⎧⎨⎩1
2

ni−1∑
j=1

(Y ∗

ij + Y ∗

i,j+1)(T
∗

i,j+1 − T ∗

ij )

+Y ∗

i1(T
∗

i1 − a0)+ Y ∗

i,ni (b0 − T ∗

i,ni )

⎫⎬⎭ ,

(β̌0, ĝini) = argmin
β̃0,g

n∑
i=1

⎧⎨⎩Ỹi − β̃0 −

d∑
k=1

Jk,A∑
s=1

gksNks(Zik)

⎫⎬⎭
2

,

φ̂ini
k =

Jk,A∑
s=1

ĝ ini
ks Nks −

1
bk − ak

∫ bk

ak

⎧⎨⎩
Jk,A∑
s=1

ĝ ini
ks Nks(zk)

⎫⎬⎭ dzk (k = 1, . . . , d).

Step 2 : f̂ini = argmin
f

n∑
i=1

ni∑
j=1

⎧⎨⎩Yij −

J0,C∑
l=1

f0lB0l(Tij)−
d∑

k=1

φ̂ini
k (Zik)

Jk,C∑
l=1

fklBkl(Tij)

⎫⎬⎭
2

,

β̂ ini
0 =

J0,C∑
l=1

f̂ ini0l B0l, β̂ ini
k =

∑Jk,C
l=1 f̂

ini
kl Bkl[

1
b0−a0

∫ b0
a0

{∑Jk,C
l=1 f̂

ini
kl Bkl(t)

}
dt
] (k = 1, . . . , d).

Initialization 2 (Longitudinal Covariates). If at least one of the covariates is time-dependent, the joint effect of φk and βk
for all k = 1, . . . , d cannot be separated by the intra-subject integration of Yij, so the previous initialization approach will
not produce reliable initial estimates. Therefore, we propose an alternative two-step initialization method for this setting:

Step 1 : (f̌0, ĝini) = argmin
f0,g

n∑
i=1

ni∑
j=1

⎧⎨⎩Yij −

J0,C∑
l=1

f0lB0l(Tij)−
d∑

k=1

Jk,A∑
s=1

gksNks(Zijk)

⎫⎬⎭
2

,

φ̂ini
k =

Jk,A∑
s=1

ĝ ini
ks Nks −

1
bk − ak

∫ bk

ak

⎧⎨⎩
Jk,A∑
s=1

ĝ ini
ks Nks(zk)

⎫⎬⎭ dzk (k = 1, . . . , d).

Step 2 : f̂ini = argmin
f

n∑
i=1

ni∑
j=1

⎧⎨⎩Yij −

J0,C∑
l=1

f0lB0l(Tij)−
d∑

k=1

φ̂ini
k (Zijk)

Jk,C∑
l=1

fklBkl(Tij)

⎫⎬⎭
2

,

β̂ ini
0 =

J0,C∑
l=1

f̂ ini0l B0l, β̂ ini
k =

∑Jk,C
l=1 f̂

ini
kl Bkl[

1
b0−a0

∫ b0
a0

{∑Jk,C
l=1 f̂

ini
kl Bkl(t)

}
dt
] (k = 1, . . . , d).

The idea of this method is simple: first obtain φ̂ini
k (k = 1, . . . , d) by fitting an additive model where we set βk = 1

(k = 1, . . . , d), and then obtain β̂ ini
k (k = 0, . . . , d) by fitting a varying-coefficient model where φ̂ini

k (Zijk) (k = 1, . . . , d)
are regarded as known covariates.

One could also adopt an alternative initialization by essentially interchanging Steps 1 and 2. That is, first estimate βk
(k = 0, . . . , d) by fitting a varying-coefficient model with φk(zk) = zk − (ak + bk)/2 (k = 1, . . . , d) so that the constraints
(2) are met, and then update the estimates of φk (k = 1, . . . , d) with known β̂k (k = 0, . . . , d). Simulations not presented
in this article showed that its performance is typically worse.

4.3. Knots selection

The performance of the function estimates relies on how many interior knots are selected and where they are
positioned. Automated selection of the locations of knots is a hard problem so a common practice is to use equally
spaced knots or equal number of observations between knots. For illustration and simplicity, we use equally spaced knots



X. Zhang, Q. Zhong and J.-L. Wang / Computational Statistics and Data Analysis 145 (2020) 106912 7

in numerical implementations so Assumption 3 is automatically met. It thus remains to properly select the number of
knots.

Leave-one-curve-out cross-validation was suggested by Rice and Silverman (1991) as a data-driven approach for tuning
parameter selection in functional and longitudinal data analysis and has been widely adopted. However, this could be
computationally costly, so we opt for V-fold cross-validation which has been shown to be effective (e.g., Jiang and Wang,
2010; Chen and Lei, 2015; Wong and Zhang, 2019).

Explicitly, let K = {Kk,C : k = 0, . . . , d} ∪ {Kk,A : k = 1, . . . , d} be the number of interior knots for all functions to be
estimated. We select K̂ such that

K̂ = argmin
K

V∑
v=1

∑
i∈Jv

1
|Jv|

ni∑
j=1

{
Yij − m̂(−v)

K (Tij, Zij)
}2

,

where Jv represents the index set for the vth fold with its size |Jv|, and m̂(−v)
K represents the estimated regression function

with all observations, but excluding Jv .

5. Simulation

In this section we study the numerical performance of the proposed method in terms of estimation and prediction
accuracy with and without model misspecification. We also compare our method with the one by Hu et al. (2019).

We considered d = 2, [a0, b0] = [0, 2] and [ak, bk] = [0, 1] (k = 1, 2). The true functions were constructed in terms of
cubic B-spline basis functions, i.e., p0,C = p1,C = p2,C = p1,A = p2,A = 4. We positioned equidistance knots with K0,C = 4,
K1,C = 1, K2,C = 2, K1,A = 3, and K2,A = 2. The true functions that satisfy the identifiability condition (2) are:

β0 = B01 + 2B02 + 4B03 + 3B04 − 2B05 + 3B07 + 6B08;

β1 =
β̃1

0.5
∫ 2
0 β̃1(t)dt

= β̃1/2.25, where β̃1 = 5B12 + 3B13 + B14;

β2 =
β̃2

0.5
∫ 2
0 β̃1(t)dt

= β̃2/2, where β̃2 = 6B22 + 2B23 + 3B25;

φ1 = φ̃1 −

∫ 1

0
φ̃1(z) dz = φ̃1 − 1, where φ̃1 = −2N12 + 5N15;

φ2 = φ̃2 −

∫ 1

0
φ̃2(z) dz = φ̃2 − 1.5, where φ̃2 = 4N23 + 2N24.

Here we generated the true functions using B-spline basis functions in order to assess the cross-validation method for knot
selection as in Section 4.3. These true functions are more general than low-degree polynomials, e.g., linear or quadratic
polynomials, which are typically used in simulations.

We had Q = 300 simulation runs where n = 50, 100, 200 curves per run were generated. For each simulated
data, {ni : i = 1, . . . , n} were independently generated from a discrete uniform distribution on {2, . . . , 10}, and
{Tij : i = 1, . . . , n; j = 1, . . . , ni} were independently generated from a continuous uniform distribution on [0, 2]. We
considered two settings for the covariates:
Time-Invariant Z: For Zijk = Zik (k = 1, 2), we generated {(Zi1, Zi2) : i = 1, . . . , n} independently from a Gaussian copula
with correlation parameter 0.6 using a MATLAB function ‘‘copula()’’. Marginally both Zi1 and Zi2 follow a continuous
uniform distribution on [0, 1].
Longitudinal Z: First we generated independent {(Ui1,Ui2) : i = 1, . . . , n} from a Gaussian copula with correlation 0.6, and
independently generated {(Vi1, Vi2) : i = 1, . . . , n} from a Gaussian copula with correlation 0.5. Then the two covariates
were

Zij1 = 0.5Ui1(0.5Tij)1/2 + 0.5Vi1, Zij2 = 0.5Ui2(0.5Tij)1/3 + 0.5Vi2.

Marginally both Zij1, Zij2 ∈ [0, 1].
We generated the stochastic component Wij =

∑4
l=1 Ailγl(Tij), where γ1(t) = 21/2 cos(2π t), γ2(t) = 21/2 sin(2π t),

γ3(t) = 21/2 cos(4π t), and γ4(t) = 21/2 sin(4π t), and {Ail : i = 1, . . . , n} were independently sampled from N(0, λl) with
λl = 1/(l + 1)2, l = 1, . . . , 4. The random errors {eij : i = 1, . . . , n; j = 1, . . . , ni} were independently generated from
N(0, σ 2) with σ = 0.1 and 0.4 respectively.

To generate the response, we considered four different true models: the VCAM, the additive model (AM), the
varying-coefficient model (VCM), and the time-varying additive model (TVAM) in Zhang et al. (2013):

Model 1 (VCAM) : Yij = β0(Tij)+
d∑

k=1

βk(Tij)φk(Zijk)+Wij + eij;
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Fig. 1. Five randomly selected estimates out of 300 simulation runs and the mean function of all 300 estimates obtained by the proposed VCAM
approach for the setting n = 100, σ = 0.4 when the true model is Model 1 with longitudinal covariates. Thick solid line: true function; dashed line:
average function estimates; thin solid lines: five randomly selected estimates.

Model 2 (AM) : Yij = β0(Tij)+
d∑

k=1

φk(Zijk)+Wij + eij;

Model 3 (VCM) : Yij = β̃0(Tij)+
d∑

k=1

βk(Tij)(Zijk − 0.5)+Wij + eij;

Model 4 (TVAM) : Yij = µ0(Tij)+
d∑

k=1

µk(Tij, Zijk)+Wij + eij,

where β̃0(t) = β0(t)+0.5β1(t)+0.5β2(t), µ0(t) = t2−0.6 sin(2π t)−2+t{(0.5t)1/2/8+t/24+1/12}+cos(2π t){(0.5)1/3/4+
1/4}, µ1(t, z1) = t{z21 − (0.5t)1/2/8− t/24− 1/12}, and µ2(t, z2) = cos(2π t){z2 − (0.5)1/3/4− 1/4}. Both Models 2 (AM)
and 3 (VCM) are submodels of Model 1 (VCAM), while all of them are submodels of Model 4 (TVAM). All βk and φk
(k = 1, . . . , d) in Models 1–3 satisfy the identifiability condition (2) (the covariates are centered in Model 3 such that∫
(zk − 0.5) dzk = 0), so the function estimates obtained by fitting a VCAM are comparable with those obtained by fitting

an AM or a VCM. so the additive component function estimates by fitting AM and VCAM respectively are comparable,
while the coefficient function estimates by fitting VCM and VCAM respectively are comparable. This is why in Model 3
(VCM) the covariates are centered. Model 4 (TVAM) are not comparable with the other three models in terms of function
estimation, so we only compare their prediction accuracy.

For Models 1–3, we compared the performance in estimation accuracy of fitting the VCAM by Algorithm 1, the VCAM
by Hu et al. (2019), hereafter denoted as ‘‘HYY’’, the AM by B-spline smoothing (Stone, 1985), and the VCM by B-spline
smoothing (Huang et al., 2002). For each function, we used 80% of the simulated data in each simulation run to obtain
the estimates and the integrated squared errors (ISE) to evaluate its estimation accuracy. For example, with β̂

[q]
0 obtained

from the qth simulation run (q = 1, . . . ,Q ), we calculated its ISE[q] =
∫
|β̂

[q]
0 (t)− β0(t)|

2
dt/(b0 − a0) and the median

and absolute mean deviation of {ISE[q] : q = 1, . . . ,Q }. For the AM fitting, only the estimates of β0 and the additive
component functions φk (k = 1, . . . , d) are attainable and comparable with those obtained from the two VCAM fittings,
while for the VCM fitting, only the estimates of the coefficient functions, i.e., β̃0 and βk (k = 1, . . . , d), are attainable and
comparable with those obtained from the two VCAM fittings. Model 4 is not comparable to the other models in terms of
estimation so we only use it for comparisons in prediction.

To further illustrate whether the proposed VCAM approach can capture the shape of each target function, we provide
in Fig. 1 the average of the 300 function estimates for each target when the true model is Model 1 for the case n = 100
and σ = 0.4 with longitudinal covariates. On average the proposed estimates show very small biases and can capture
the shapes of the targets. A random sample of five estimates also shown in Fig. 1 illustrates the satisfactory performance
of each individual estimate. Additional figures for longitudinal covariates with n = 50 and for time-invariant covariates
with n = 50 and 100 are presented in the supplement.

For Models 1–4, we compared the performance in prediction accuracy of the four fittings above together with the TVAM
fitting by smooth backfitting (Zhang et al., 2013). We used the mean squared prediction error (MSPE) of the estimated
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Table 1
Estimation accuracy (time-invariant covariates) for the four methods: the proposed VCAM, HHY, AM and VCM fittings. The values of median and
median absolute value (in the parentheses) of integrated squared errors are reported. In each simulation run, only 80% of the data were used to
obtain the function estimates, so the actual sample sizes are 40, 160 for n = 50, 200.
True models Model 1 (VCAM) Model 2 (AM) Model 3 (VCM)

n σ Proposed HHY AM VCM Proposed AM Proposed VCM

β0

50
0.1 0.0651 1.0844 0.1543 2.8209 0.0827 0.0807 0.0714 0.0486

(0.0346) (1.1964) (0.0854) (19.0569) (0.0419) (0.0352) (0.0427) (0.0247)

0.4 0.0751 0.9624 0.1644 2.9509 0.1428 0.1375 0.0818 0.0587
(0.0426) (1.1928) (0.0923) (32.7028) (0.0576) (0.0552) (0.0469) (0.0293)

200
0.1 0.0189 0.0611 0.0472 0.1720 0.0250 0.0266 0.0159 0.0128

(0.0094) (0.0310) (0.0213) (0.3856) (0.0107) (0.0108) (0.0095) (0.0066)

0.4 0.0210 0.0441 0.0487 0.1479 0.0281 0.0299 0.0210 0.0164
(0.0105) (0.0202) (0.0222) (1.7489) (0.0121) (0.0122) (0.0107) (0.0076)

β1

50
0.1 0.0213 0.1051 – 0.1676 0.0207 – 0.7568 0.6532

(0.0223) (0.3387) – (95.9368) (0.0253) – (4.5252) (0.6794)

0.4 0.0257 0.1112 – 0.2043 0.0266 – 1.0940 0.9235
(0.0186) (0.6597) – (0.7121) (0.0169) – (24.3383) (1.3383)

200
0.1 0.0051 0.0094 – 0.0447 0.0046 – 0.1810 0.1849

(0.0033) (0.0124) – (0.0338) (0.0032) – (0.1278) (0.1078)

0.4 0.0058 0.0117 – 0.0500 0.0058 – 0.2315 0.2267
(0.0040) (0.0133) – (0.0321) (0.0038) – (0.1962) (0.1598)

β2

50
0.1 0.0388 0.1198 – 2.3982 0.0331 – 0.9350 0.6209

(0.0223) (0.3387) – (95.9368) (0.0253) – (4.5252) (0.6794)

0.4 0.0421 0.1416 – 2.0351 0.0442 – 0.9865 0.7403
(0.0304) (0.9765) – (167.3636) (0.0342) – (8.8343) (0.9251)

200
0.1 0.0105 0.0142 – 0.6252 0.0080 – 0.1783 0.1750

(0.0057) (0.0136) – (12.1283) (0.0055) – (0.1579) (0.1345)

0.4 0.0124 0.0156 – 0.7186 0.0094 – 0.2230 0.2115
(0.0068) (0.0256) – (15.1527) (0.0057) – (0.1758) (0.1613)

φ1

50
0.1 0.0105 1.0273 0.0302 – 0.0122 0.0099 0.0061 –

(0.0099) (0.2854) (0.0217) – (0.0135) (0.0101) (0.0074) –

0.4 0.0111 0.9193 0.0306 – 0.0138 0.0122 0.0085 –
(0.0109) (0.2708) (0.0215) – (0.0128) (0.0122) (0.0079) –

200
0.1 0.0027 0.6191 0.0069 – 0.0030 0.0029 0.0022 –

(0.0021) (0.3413) (0.0042) – (0.0024) (0.0024) (0.0016) –

0.4 0.0084 0.3128 0.0200 – 0.0132 0.0122 0.0111 –
(0.0077) (0.0993) (0.0186) – (0.0128) (0.0113) (0.0103) –

φ2

50
0.1 0.0086 0.2800 0.0188 – 0.0083 0.0075 0.0075 –

(0.0058) (0.0874) (0.0161) – (0.0070) (0.0069) (0.0043) –

0.4 0.0063 0.3240 0.0120 – 0.0066 0.0070 0.0054 –
(0.0038) (0.1615) (0.0083) – (0.0038) (0.0034) (0.0051) –

200
0.1 0.0022 0.2889 0.0063 – 0.0026 0.0026 0.0021 –

(0.0014) (0.1874) (0.0039) – (0.0018) (0.0017) (0.0014) –

0.4 0.0032 0.3052 0.0083 – 0.0034 0.0033 0.0027 –
(0.0020) (0.1889) (0.0043) – (0.0024) (0.0025) (0.0022) –

regression function to evaluate the prediction accuracy of a model fitting. In the qth simulation run (q = 1, . . . ,Q ),
we obtained a regression function estimate m̂[q] using 80% of the randomly selected subjects as the training set, then
calculated MSPE[q] = ave{

∑
i∗∈E

∑ni∗
j=1{m̂

[q](Ti∗j, Zi∗j) − m(Ti∗j, Zi∗j)}2/NE} where m is the true regression function and E
represents the index set of the remaining 20% subjects as the test set with NE =

∑
i∗∈E ni∗ , and finally obtained the

median and absolute mean deviation of {MSPE[q] : q = 1, . . . ,Q }.
Tables 1 and 2, corresponding to time-invariant and longitudinal covariates respectively, give the estimation accuracy

results, for sample size n = 50 and 200, of four competing methods: the proposed VCAM, HHY, and the AM and VCM
fittings. Generally, all estimators perform better as the sample size n increases or the error standard deviation σ decreases.
Compared with the AM and VCM fittings, the performance of the proposed VCAM method is always superior when the
model is correctly specified, i.e., under Model 1 (VCAM), and is very competitive when the model is misspecified, i.e., under
Model 2 (AM) or Model 3 (VCM). This is not completely surprising, since both AM and VCM are submodels of VCAM, but
it is still encouraging news for the proposed VCAM method. When the model is correctly specified, i.e., under Model 1
(VCAM), the proposed method always outperforms the HHY method substantially; the function estimates obtained by the
misspecified AM and VCM fittings are sometimes better than those by the HHY method.

Table 3 gives the prediction accuracy results of five methods: the proposed VCAM, HHY, AM, VCM, and TVAM fittings.
When the model is correctly specified, i.e., under Model 1 (VCAM), the proposed VCAM method is substantially better
than all the other methods. Under the true Model 2 (AM) or Model 3 (VCM), the proposed VCAM fitting is not as good as
the correctly specified one under the AM and VCM setting respectively. However, under Model 4 (TVAM), the proposed
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Table 2
Estimation accuracy (longitudinal covariates) for the four methods: the proposed VCAM, HHY, AM and VCM fittings. The values of median and
median absolute value (in the parentheses) of integrated squared errors are reported. In each simulation run, only 80% of the data were used to
obtain the function estimates, so the actual sample sizes are 40, 160 for n = 50, 200.
True models Model 1 (VCAM) Model 2 (AM) Model 3 (VCM)

n σ Proposed HHY AM VCM Proposed AM Proposed VCM

β0

50
0.1 0.1173 1.3010 0.1926 24.5585 0.2405 0.1911 0.1090 0.1538

(0.0742) (85.8510) (0.1002) (8.4675) (0.1152) (0.0745) (0.1556) (0.1839)

0.4 0.1321 0.8483 0.2467 23.6962 0.2409 0.1859 0.1122 0.1567
(0.0980) (3.9681) (0.1104) (8.5085) (0.1131) (0.0712) (0.1703) (0.9286)

200
0.1 0.0318 0.1577 0.1912 0.6291 0.0357 0.0201 0.0256 0.0313

(0.0170) (0.2755) (0.0560) (3.0003) (0.0166) (0.0164) (0.0149) (0.0196)

0.4 0.0412 0.1869 0.1989 0.7069 0.0406 0.0245 0.0303 0.0393
(0.0202) (0.1918) (0.0515) (9.8924) (0.0205) (0.0131) (0.0162) (0.0341)

β1

50
0.1 0.0296 0.2625 – 0.0255 0.0300 – 1.4647 1.4053

(0.0260) (1.4618) – (0.0719) (0.0245) – (5.3743) (1.6408)

0.4 0.0370 0.1957 – 0.0641 0.0313 – 1.4292 1.3733
(0.0322) (0.9095) – (0.0663) (0.0242) – (5.9967) (1.7807)

200
0.1 0.0085 0.0263 – 0.0280 0.0079 – 0.3724 0.3944

(0.0056) (0.1137) – (0.0213) (0.0054) – (0.3899) (0.3055)

0.4 0.0098 0.0273 – 0.0272 0.0094 – 0.5057 0.4905
(0.0073) (0.0447) – (0.0218) (0.0072) – (0.5030) (0.4014)

β2

50
0.1 0.0649 0.3400 – 4.0624 0.0552 – 1.4515 1.2324

(0.0549) (1.6324) – (80.8300) (0.0451) – (8.5422) (1.5135)

0.4 0.0862 0.2989 – 5.2395 0.0676 – 1.9443 1.3985
(0.0789) (0.9516) – (109.2635) (0.0583) – (9.3415) (1.9495)

200
0.1 0.0202 0.0363 – 4.2656 0.0151 – 0.4648 0.3917

(0.0102) (0.0798) – (3.003) (0.0092) – (0.4321) (0.3095)

0.4 0.0211 0.0340 – 4.1240 0.0159 – 0.4718 0.4372
(0.0129) (0.0273) – (47.6214) (0.0115) – (0.4295) (0.3081)

φ1

50
0.1 0.0090 0.6753 0.0255 – 0.0087 0.0090 0.0077 –

(0.0082) (0.2430) (0.0256) – (0.0066) (0.0063) (0.0071) –

0.4 0.0134 0.5814 0.0301 – 0.0121 0.0117 0.0084 –
(0.0104) (0.1730) (0.0260) – (0.0079) (0.0073) (0.0079) –

200
0.1 0.0074 0.8133 0.0358 – 0.0059 0.0054 0.0038 –

(0.0053) (0.3581) (0.0213) – (0.0036) (0.0039) (0.0057) –

0.4 0.0091 0.7934 0.0383 – 0.0070 0.0074 0.0048 –
(0.0060) (0.3326) (0.0241) – (0.0053) (0.0049) (0.0053) –

φ2

50
0.1 0.0045 0.1172 0.0107 – 0.0048 0.0045 0.0053 –

(0.0044) (0.0472) (0.0118) – (0.0052) (0.0046) (0.0058) –

0.4 0.0052 0.0887 0.0126 – 0.0081 0.0073 0.0062 –
(0.0053) (0.0274) (0.0116) – (0.0074) (0.0069) (0.0073) –

200
0.1 0.0043 0.1663 0.0199 – 0.0038 0.0034 0.0029 –

(0.0030) (0.0689) (0.0133) – (0.0027) (0.0025) (0.0036) –

0.4 0.0043 0.1685 0.0208 – 0.0042 0.0042 0.0046 –
(0.0038) 0.0643 (0.0136) – (0.0033) (0.0030) (0.0050) –

VCAM fitting is comparable with, and sometimes better than, the TVAM fitting. The estimation and prediction results for
n = 100 are given in the supplementary material and similar comparisons can be observed.

Next we demonstrate the performance of the cross-validation method to select the number of knots. For Model 1
(VCAM), a few summary statistics for the selected number of knots by cross-validation for the proposed method are
given in Table 4. The number of knots selected by cross-validation for each function is very close to the true one for both
time-invariant and longitudinal covariates.

In conclusion, this simulation study demonstrates the appealing performance of the proposed VCAM approach in both
estimation and prediction with and without model misspecification, and the satisfactory performance of cross-validated
knots selection.

6. Data application

We applied our method to a dataset from the US National Longitudinal Survey of Youth to study the wage trajectories
of high school dropouts. The dataset is an illustrative example in Ch.6 of Singer and Willett (2003) and is available from
the website of UCLA Statistical Consulting Group (https://stats.idre.ucla.edu/other/examples/alda/). This dataset contains
6,402 observations of hourly wages from n = 888 male subjects who left high school before graduation. The number of
observations for each subject ni varies from 1 to 13. TIME refers to the time (in years) associated with observed wages
since entry into the labor force. We considered two covariates that might be related to wage, the highest grade of school

https://stats.idre.ucla.edu/other/examples/alda/
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Table 3
Prediction accuracy for the five methods: the proposed VCAM, HHY, AM, VCM and TVAM fittings. The values of median and median absolute value
(in the parentheses) of mean squared prediction errors are reported. In each simulation run, 80% of the data were used as the training set to obtain
the regression function estimates and the remaining 20% were used as the test set for validation.
True models Model 1 (VCAM) Model 2 (AM) Model 3 (VCM) Model 4 (TVAM)

Time-Invariant Z
n σ Proposed HHY AM VCM TVAM Proposed AM Proposed VCM Proposed TVAM

50
0.1 0.1085 2.5122 0.8337 2.3055 0.6002 0.1034 0.0555 0.1095 0.0493 0.2159 0.1496

(0.0611) (1.3892) (0.3200) (1.1042) (0.3109) (0.0537) (0.0321) (0.0695) (0.0281) (0.1487) (0.0562)

0.4 0.1232 2.5034 0.8220 2.3918 0.6274 0.1253 0.0668 0.1313 0.0633 0.2570 0.1769
(0.0683) (1.6080) (0.3934) (1.5195) (0.3917) (0.0612) (0.0388) (0.0837) (0.0329) (0.2576) (0.0626)

200
0.1 0.0277 1.5303 0.8171 2.3642 0.2244 0.0258 0.0170 0.0246 0.0177 0.0413 0.0557

(0.0087) (0.5433) (0.1277) (0.4717) (0.0441) (0.0082) (0.0059) (0.0080) (0.0058) (0.0164) (0.0184)

0.4 0.0339 1.6121 0.8062 2.4257 0.2260 0.0316 0.0210 0.0317 0.0216 0.0519 0.0617
(0.0101) (0.5817) (0.1149) (0.4283) (0.0444) (0.0090) (0.0072) (0.0113) (0.0077) (0.0220) (0.0199)

Longitudinal Z
n σ Proposed HHY AM VCM TVAM Proposed AM Proposed VCM Proposed TVAM

50
0.1 0.0930 1.5771 0.4344 11.5085 0.3312 0.0820 0.1033 0.0907 0.0435 0.2002 0.1346

(0.0443) (29.7635) (0.1750) (5.5338) (0.1352) (0.0404) (0.0250) (0.0554) (0.0952) (0.6109) (0.0664)

0.4 0.1063 1.5771 0.4132 0.5319 0.3205 0.0540 0.0367 0.1149 0.0995 0.2430 0.1472
(0.0494) (29.7635) (0.1561) (0.2492) (0.1423) (0.0117) (0.0128) (0.0531) (0.2332) (0.6472) (0.0632)

200
0.1 0.0297 1.0034 0.5236 0.5888 0.1230 0.0278 0.0172 0.0282 0.0235 0.0489 0.0575

(0.0087) (0.4959) (0.0842) (0.1183) (0.0261) (0.0080) (0.0096) (0.0100) (0.0102) (0.0263) (0.0249)

0.4 0.0334 1.0071 0.4912 0.5838 0.1306 0.0310 0.0210 0.0323 0.0285 0.0558 0.0603
(0.0102) (0.4317) (0.0770) (0.1026) (0.0234) (0.0100) (0.0083) (0.0103) (0.0162) (0.0271) (0.0297)

Table 4
Summary statistics for the number of knots selected by five-fold cross-validation for the proposed VCAM fitting. All values reported are based on 300
simulation runs and the 80% training data in each run, so the actual sample sizes are 40, 80, 160 for n = 50, 100, 200 respectively. Med: median;
Std: standard deviation.
True number β0 β1 β2 φ1 φ2

4 1 2 3 2

Time-Invariant Z
n σ Mean Med Std Mean Med Std Mean Med Std Mean Med Std Mean Med Std

50 0.1 3.00 3 0.89 1.89 2 0.82 1.86 2 0.82 3.18 3 0.73 2.04 2 0.99
0.4 2.87 3 0.85 1.88 2 0.81 1.87 2 0.76 3.03 3 0.87 2.01 2 0.99

100 0.1 3.19 3 0.88 1.79 2 0.80 2.13 2 0.76 3.28 3 0.45 2.41 2 0.96
0.4 3.07 3 0.85 1.84 2 0.81 1.91 2 0.76 3.30 3 0.48 2.37 2 0.97

200 0.1 3.35 4 0.90 1.86 2 0.81 2.06 2 0.72 3.14 3 0.35 2.70 3 0.76
0.4 3.37 4 0.88 1.81 2 0.81 2.11 2 0.74 3.14 3 0.35 2.66 3 0.89

Longitudinal Z
n σ Mean Med Std Mean Med Std Mean Med Std Mean Med Std Mean Med Std

50 0.1 2.82 3 0.92 1.78 2 0.78 1.84 2 0.79 2.34 2 1.11 1.81 2 0.89
0.4 2.78 3 0.94 1.84 2 0.81 1.82 2 0.77 2.26 2 1.08 1.89 2 1.02

100 0.1 3.00 3 0.91 1.84 2 0.81 1.93 2 0.78 2.79 3 0.97 2.16 2 1.02
0.4 2.95 3 0.91 1.86 2 0.82 1.94 2 0.80 2.67 3 1.03 2.15 2 1.08

200 0.1 3.42 4 0.87 1.92 2 0.83 1.96 2 0.76 3.25 3 0.71 2.38 2 1.03
0.4 3.4167 4 0.85 1.84 2 0.81 1.98 2 0.79 3.19 3 0.72 2.36 2 1.01

completed and the local unemployment rate for the year of survey, denoted by HGC and UER respectively. HGC is time-
invariant while UER is longitudinal. To be consistent with the analysis in Singer and Willett (2003), we took the natural
logarithm of wages as the response, denoted by LNW, and fitted the following VCAM:

LNWij ≈ β0
(
TIMEij

)
+ β1

(
TIMEij

)
φ1 (HGCi) + β2

(
TIMEij

)
φ2
(
UERij

)
.

We performed Algorithm 1 with the same specifications as in Section 5. The numbers of knots selected by the five-fold
cross-validation are K0,C = 2, K1,C = 1, K2,C = 2, K1,A = 3, and K2,A = 1.

The function estimates are shown in Fig. 2. The β̂0 curve indicates that overall wages increase over time, which
conforms with common sense and the results in Murnane et al. (1999) and Singer and Willett (2003). In the plot for
either φ1 or φ2, the reference line for the constant zero is not entirely contained in the region between the confidence
band. This suggests that both φ1 and φ2 may be significantly different from zero at the 5% level, which implies that HGC
and UER are both significant covariates. Similarly, both β1 and β2 may be significantly different from being a constant
(one in this case) at the 5% level. This suggests time-varying effects of the covariates and that a conventional additive
model, such as (4), has a lack of fit. Since the confidence band for φ2 does not cover a linear function that integrates to
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Fig. 2. Results of fitting VCAM for the wage data. Solid line: function estimate; dotted line: upper or lower bound of 95% pointwise bootstrap
confidence band; dashed line: reference for a constant, either zero or one.

zero, the conventional varying coefficient model (3) may not be a good fit for this data either. These conclusions would
be stronger if they were based on simultaneous confidence bands, of which development requires substantial theoretical
work and is beyond the scope of this article.

The overall increasing pattern of φ̂1, together with the positivity of β̂1, indicates that with the same years of working
experience, people who completed higher grades before dropping out earned higher wages on average. This may not be
surprising at a first glance as the benefit of education to wages is well known or at least expected. However, we show
that even among those who dropped out of high school, more education is associated with higher wages. Moreover, the
product β̂1φ̂1 reveals that the effect of HGC on wages is time-dynamic since β1 is not a constant function: the influence
of HGC on wages is initially steady since the entry of the labor force, but it amplifies dramatically after six years (cf. the
plot for β1 in Fig. 2 ). In particular, for dropouts with HGC ≤ 9 and those with HGC ≥ 10, the difference in their income
grows rapidly with labor force experience (cf. the plots for φ1 and β1 in Fig. 2).

The observation that β̂2 is positive and φ̂2 is a decreasing function demonstrates that with the same years since the
entry of labor force, on average people in areas with a higher local unemployment rate earn less than those in areas
with a lower unemployment rate. This association is referred to as the ‘‘wage curve’’ in economics (e.g., Blanchflower
and Oswald, 1994). Since β2 is not a constant function, UER has a time-varying influence on wages, i.e., the effect of the
unemployment rate on hourly wages depends on not only the value of UER but also the time when UER is observed.

This application illustrates the applicability and advantages of VCAM (1) for longitudinal data. Apart from easy
interpretations, the VCAM is able to help identify the time-dynamic association between HGC, UER and LNW, which
neither the varying-coefficient model (3) nor the additive model (4) can adequately capture. Fitting a VCAM also reveals
interesting interactive effects between time and covariates as discussed above, which were ignored in previous studies
based on this dataset, e.g., by Murnane et al. (1999) and Singer and Willett (2003).

7. Discussion

In this article we consider the VCAM for functional data where the data may be sparsely measured and/or longitudinal
covariates are present. Compared to Zhang andWang (2015) who handled dense functional data with vector covariates, we
propose a new estimation procedure, and develop the consistency and L2 rate of convergence for each estimated function.
To tackle the non-convex minimization issue, we take advantage of the multiplicative structure of the VCAM and provide
a modified backfitting algorithm. The appealing numerical performance in both estimation and prediction, subject to
minor model misspecification or not, is demonstrated by a simulation study. The desirable interpretability of the VCAM
is also illustrated through a real data application. While we focus on continuous covariates in this article, the proposed
approach can easily be modified to handle discrete covariates by choosing a pre-specified additive component function for
each discrete covariate. Likewise, the proposed approach can also be modified to accommodate any pre-specified additive
component or coefficient function.

This article, together with Zhang and Wang (2015), provides the foundation for several future research topics
regarding the VCAM. One future direction is to extend the VCAM to incorporate the influence of functional covariate
histories on the response. Like function-on-function regression, the extension may involve theoretical and computational
challenges associated with the inversion of a compact covariance operator. Another future direction is the development
of simultaneous confidence bands.
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Appendix

A.1. Assumptions

For simplicity and without loss of generality we assume that [ak, bk] = [0, 1] for all k = 0, . . . , d. Below is a list of
assumptions to establish the asymptotic properties for m̂, β̂k and φ̂k obtained from (8).

Assumption 1. The joint density of (T , Z(T )), denoted by p(t, z), where z = (z1, . . . , zd), is bounded below and above on
its domain [0, 1]d+1, i.e.,

0 < mp ≤ inf
(t,z)∈[0,1]d+1

p(t, z) ≤ sup
(t,z)∈[0,1]d+1

p(t, z) ≤ Mp < ∞.

Assumption 2. All ni are bounded, i.e., ni ≤ M < ∞ for all i = 1, . . . , n.

Assumption 3. The knots for φk, k = 1, . . . , d, are

0 = τk,1−pk,A = · · · = τk,0 < τk,1 < · · · < τk,Kk,A < τk,Kk,A+1 = · · · = τk,Kk,A+pk,A = 1,

and the knots for βk, k = 0, . . . , d, are

0 = ζk,1−pk,C = · · · = ζk,0 < ζk,1 < · · · < ζk,Kk,C < ζk,Kk,C+1 = · · · = ζk,Kk,C+pk,C = 1.

They have bounded mesh ratios,

lim sup
n→∞

max
1≤k≤d

max1≤l≤Kk,A+1{τkl − τk,l−1}

min1≤l≤Kk,A+1{τkl − τk,l−1}
< ∞,

lim sup
n→∞

max
0≤k≤d

max1≤l≤Kk,C+1{ζkl − ζk,l−1}

min1≤l≤Kk,C+1{ζkl − ζk,l−1}
< ∞.

Assumption 4. All pk,A, k = 1, . . . , d and pk,C , k = 0, . . . , d are bounded:

max
{
max
1≤k≤d

pk,A, max
0≤k≤d

pk,C

}
≤ pAC < ∞.

Assumption 5. For KA = max1≤k≤d Kk,A and KC = max0≤k≤d Kk,C , we assume

lim sup
n→∞

KA

min1≤k≤d Kk,A
< ∞, and lim sup

n→∞

KC

min0≤k≤d Kk,C
< ∞.

Assumption 6. KA, KC → ∞ and (log KA + log KC )KAKC/n → 0.

Assumption 7. There exists a constant 0 < L < ∞ such that
(a) The error e satisfies E exp (be) ≤ exp

(
Lb2
)
for any scalar b;

(b) For any number of arbitrary time points t1, . . . , tp ∈ [0, 1], the random vector Wp = (W (t1), . . . ,W (tp))⊤ satisfies
E exp

(
b⊤Wp

)
≤ exp

(
pLb⊤b

)
for any vector b = (b1, . . . , bp)⊤.

Assumptions 1 and 2 are typical in the literature on smoothing (e.g., Stone, 1985; Wang and Yang, 2007) and on
longitudinal data analysis respectively. Assumptions 3 and 4 are standard for B-spline methods. Assumption 5, also used
by Huang et al. (2004) and Zhang and Wang (2015), implies that the numbers of knots for all φk, k = 1, . . . , d are of the
same order, and likewise for all βk, k = 0, . . . , d, which will be used to prove Property 2 in the supplementary material.
Assumption 6 will be useful to prove Lemma 2 in the supplement. Assumption 7 indicates that e is a sub-Gaussian
random variable and Wp is a sub-Gaussian random vector. This assumption is common when using the technique of
empirical processes to obtain a convergence rate (e.g., van der Vaart and Wellner, 1996; van de Geer, 2000). Obviously
Assumption 7(a) is automatically satisfied if e is Gaussian. A sufficient condition for Assumption 7(b) is that {W (t) : t ∈
[0, 1]} is a Gaussian process with supt∈[0,1] Var{W (t)} < ∞ (see the proof in the Appendix A.2).
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A.2. Sufficient condition for Assumption 7(b)

Proposition 1. Assumption 7(b) holds if {W (t) : t ∈ [0, 1]} is a Gaussian process with supt∈[0,1] Var{W (t)} < ∞.

Proof. Denote the eigenvalues of the covariance matrix Cov(Wp) in the descending order by λ1 ≥ · · · ≥ λp ≥ 0. For
arbitrary b = (b1, . . . , bp)⊤, we have

E
{
exp

(
b⊤Wp

)}
= exp

{
1
2
b⊤Cov(Wp)b

}
≤ exp

{
1
2
λ1b⊤b

}
≤ exp

{
1
2

( p∑
l=1

λl

)
b⊤b

}
= exp

[
1
2
tr
{
Cov(Wp)

}
b⊤b

]
≤ exp

(
p
2

[
sup

t∈[0,1]
Var{W (t)}

]
b⊤b

)
≤ exp

(
pLb⊤b

)
,

if we choose L ≥ supt∈[0,1] Var{W (t)}/2. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2020.106912. An
online supplementary material document is given that includes the proof of the identifiability condition (2), the proofs
for the theoretical results in Section 3, and additional simulation results.
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