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Abstract: The aim of this study is to conduct a systematic and theoretical anal-
ysis of estimations and inferences for a class of functional mixed-effects models
(FMEM). FMEMs consist of fixed effects that characterize the association between
longitudinal functional responses and covariates of interest and random effects that
capture the spatial-temporal correlations of longitudinal functional responses. We
propose local linear estimates of refined fixed-effect functions and establish their
weak convergence, along with a simultaneous confidence band for each fixed-effect
function. We propose a global test for the linear hypotheses of varying coefficient
functions and derive the associated asymptotic distribution under the null hypoth-
esis and the asymptotic power under the alternative hypothesis. We also establish
the convergence rates of the estimated spatial-temporal covariance operators and
their associated eigenvalues and eigenfunctions. We conduct extensive simulations
and apply our method to a white-matter fiber data set from a national database
for autism research to examine the finite-sample performance of the proposed esti-

mation and inference procedures.
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1. Introduction

There is an increasing interest in analyses of massive functional data sets,
many of which originate from brain imaging in large-scale longitudinal biomedical
studies, such as the Alzeimer’s Disease Neuroimaging Initiative (ADNI) (Evans
and Group (2006); Mueller et al. (2005); Greven et al. (2010); Yuan et al. (2014);
Zipunnikov et al. (2014)). In such studies, longitudinal functional data from n
different subjects are usually observed at, or are registered to, a large number
of locations in a common space, denoted by S, across multiple time points {t;; :
j=1,...,T;;i =1,...,n}, where T; is the total number of time points for the
i-th subject. Here, we use the term “functional data” for data that are measured
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densely in S, “spatial correlation” for correlations within the functional data,
and “longitudinal data” and “temporal correlation” for data that are measured
sparingly in {t;; : j=1,...,T;,i=1,...,n}.

The sheer size and complexity of the longitudinal functional data pose sub-
stantial challenges to most existing statistical methods for analyzing univariate
or multivariate longitudinal data (Diggle et al. (2002); Fitzmaurice, Laird and
Ware (2004)). These include: (i) the complexity of the temporal-spatial covari-
ance structure, (ii) determining how to take advantage of the spatial-temporal
smoothness, and (iii) theoretical justifications of the inference procedures. The
first challenge is the introduction of random effects to characterize the spatial-
temporal covariance structure of longitudinal functional responses. The second is
the incorporation of spatial-temporal smoothness into both estimation and infer-
ence procedures to improve statistical efficiency (Ramsay and Silverman (2005)).
The third is to systematically investigate the theoretical properties (e.g., con-
sistency) of estimation and inference procedures for statistical models developed
for longitudinal functional data.

Models for longitudinal functional data fall within a general functional mixed-
effects modeling framework, which serves to characterize functional data with var-
ious levels of hierarchical structures (Guo (2002); Wu and Zhang (2002, 2006);
Morris and Carroll (2006); Di et al. (2009); Greven et al. (2010); Zhou et al.
(2010); Zhu, Brown and Morris (2011); Shi and Choi (2011); Cao, Yang and
Todem (2012); Chen and Miiller (2012); Horvath and Kokoszka (2012); Meyer
et al. (2015); Reiss et al. (2014); Scheipl, Staicu and Greven (2015); Zipunnikov
et al. (2014); Staicu, Lahiri and Carroll (2015); Cederbaum et al. (2016)). The
term functional mixed-effects models (FMEMs) for correlated functional data
was introduced by Guo (2002). Subsequently, Morris and Carroll (2006) devel-
oped general functional mixed-effects models with multiple levels of random-effect
functions, as well as curve-to-curve deviations. Recently, a general framework for
functional additive mixed models was introduced by Scheipl, Staicu and Greven
(2015). Moreover, several FMEMs have been developed for longitudinal func-
tional data (Greven et al. (2010); Yuan et al. (2014); Zipunnikov et al. (2014);
Di, Crainiceanu and Jank (2014)). To the best of our knowledge, most studies on
functional mixed-effects models focus on challenges (i) and (ii), described above.
Here we focus on the third challenge, namely the theoretical challenges.

To address challenge (iii), we provide a comprehensive theoretical analysis
for a class of FMEMs. Our FMEM consists of a measurement model at each grid
point s € S and a hierarchical factor model. The measurement model primarily
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includes fixed effects to characterize the varying association between longitudi-
nal functional responses and the covariates of interest. The hierarchical factor
model primarily uses random effects to capture the medium-to-long-range spatial
covariance and local covariance structure. Formally, we establish the weak con-
vergence of the estimated varying association function, the uniform convergence
rate of the spatial-temporal covariance estimator, the asymptotic distribution of
a global test statistic for linear hypotheses of the regression coefficient functions,
and an asymptotic simultaneous confidence band (SCB) for each varying fixed-
effect function. The code and documentation for the FMEM, written in Matlab,
are freely accessible from the “http://www.nitrc.org/projects/fadtts.”

2. FMEM: Functional Mixed-Effects Model
2.1. Model setup

Suppose that we observe longitudinal functional data and clinical variables
from n independent subjects. Let T; be the total number of longitudinal mea-
surements for the i-th subject, ¢ = 1,...,n, and let ¢;; be the j-th measurement
time point for the ¢-th subject; thus, j = 1,...,7;. Throughout this paper, we
focus on a fixed number of time points and sparse longitudinal data; that is,
max;<pn 1; < Ty < oo. Let sy, represent a specific grid point of the functional
template space S for m = 1,..., M. Specifically, for the i-th subject at time ¢;;,
we observe functional data, denoted by vij(sm) = vi(tij, sm) for 1 < m < M,
and a p,-dimensional covariate vector z; of interest, denoted by z;; = x;(t;;), at
time t;;. Here x; may include time-independent and time-dependent covariates,
such as age, gender, and genetic markers. For ease of notation, we assume that
S =1[0,1] and 0 = 51 < --- < spy = 1. However, our results can easily be
extended to higher dimensions when § is a compact subset of a Euclidean space.

We consider an FMEM consisting of a measurement model and a hierarchical
factor model. This model aims to extend the conventional linear mixed-effects
model to accommodate the additional spatial component. The measurement
model associated with the FMEM characterizes the varying association between
functional responses and their covariates at any s € S, as follows:

Yij (s) = w(wij, B(s)) + 25bi(s) + ei5(s), (2.1)
where p(-, ) is a known function, 3(s) = (B1(s), ..., Bp,(s))T is a pg x 1 vector of
the fixed-effect functions of s, and z;; = z;(ti;) = (2ij1,- . ., zijpz)T is a p,x1 vector
of the random-effect covariates associated with the random effects b;(s). Here,
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bi(s) = (bi1(s),...,bip.(s))T is a vector of the random effects that characterize
the spatial-temporal correlation structures across the functional domain space.
In contrast, e;;(s) is a spatial random process delineated from b;(s), that is,
after filtering out zij;-bi(s). Moreover, e;;(s) and b;(s) are independent. In many
applications, p(zi;, B(s)) = JJZ; (s) is a linear function of x;;, similar to the
setting of the traditional linear mixed-effects model. Therefore, we focus on this
special linear case in this paper. Extensions to nonlinear cases are discussed in
Remark 1. Marginally, for a fixed s, model (2.1) with p(z;;, 8(s)) = :1:3; (s) is
a standard linear mixed-effects model. This motivates us to adopt the standard
notation for linear mixed-effects models. Moreover, because z;; may include time-
independent and time-dependent covariates, the inclusion of z;‘gbl(s) allows us to
capture a large portion of the variation in the spatial and temporal correlation
structures.

The spatial random process e;; in (2.1) is further decomposed into two parts,
eij(s) = eija(s) + eijL(s), (22)
where e;;(s) is a smooth stochastic process representing the global dependency
that depicts the medium-to-long-range spatial dependence, e;; 1,(s) is a measure-
ment error representing local variability, and e;;, ¢(-) and e;j;, (-) are indepen-
dent for any j; and jo. Because e;;r(s) are measurement errors, we assume
that e;;,,1(s) and e;j, 1.(s") are mutually independent whenever either j; # jo or
s # s'. We also assume that, for any j; # ja, €5, ¢(-) and e;j, ¢(-) are mutu-
ally independent. This assumption is equivalent to assuming that the random
effects b;(-) = (bi1(+), ..., bip.(-))T explain all the within-subject correlation along
the longitudinal direction, which is a common assumption in linear mixed-effects
models. However, it does not exclude correlations along the functional direction
because e;;,¢(s) and e;;,¢(s’) are not required to be independent for s # s'.
Moreover, b;(s), €;;.1,(s), and e;; c(s) are mutually independent and are inde-
pendent and identical copies of SP(0, X, 1), SP(0,), and SP(0, X, ), respec-
tively, where SP(u,Y) denotes a stochastic process vector with mean function
(or function vector) u(s) and covariance function (or function matrix) (s, s’).
Moreover, 3(s, s') is a p, X p, matrix with Xy (s, 8") as the (k, k')-th element.
The covariance structure of y;(s) = (yi1(s),...,vir,(s))T, denoted by ¥,,(s, s'),
is
Sy ijija(8,8) = zglﬁb(s, §)zij,+3e.c (8,811 = j2)+ e (s, 8')1(j1 = ja, s = &),

where 1(+) is an indicator function.
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2.2. Estimation procedure

Our primary goal is to find efficient procedures for estimations and infer-
ences for §(+). Inspired by novel ideas from the literature (Yao, Miiller and Wang
(2005); Greven et al. (2010); Zipunnikov et al. (2014)), we develop a procedure to
estimate B(-), Lpr (-, ), Le,a(+, ), e, (-, -), and the eigenvalue-eigenvector pairs
of Ypprr () and X¢ g(-,-). Compared with the estimation methods of Greven
et al. (2010) and Zipunnikov et al. (2014), our method is an improvement over
the ordinary least squares methods used to estimate 3(-) by incorporating spa-
tial and/or temporal smoothness in longitudinal functional data. Explicitly, we
incorporate the within-subject correlations between T; longitudinal observations
to obtain statistical efficiency, as stated in Theorem 1.

Henceforth, we focus on pu(x;;, B(s)) = xz;
mation procedure can be extended to a nonlinear mean function pu(z;j, 5(s)), as

(s). However, the proposed esti-

discussed at the end of Section 2.2. There are four key steps in the estimation
procedure:

Step (I): Calculate an initial estimator 3(s) of 8(s) for each s € S.

Step (II): Calculate estimates of the covariance operators Mpgi (-, ) and
Yec(+,-) and their spectral decompositions, and obtain an estimate of
Ee,L('a )

Step (III): Use the estimated covariance operators obtained from Step (II)
to improve the estimate in step (I) using a refined estimator of 3(s), denoted

by B(s).

Step (IV): Obtain individual random-effect functions w;;c(s) = ngi(s) +
eij7g(8).

Step (I): We employ a local linear smoother (Fan and Gijbels (1996)) to
obtain an initial estimator of 5(-) without incorporating the spatial-temporal
correlation. Specifically, we apply a Taylor expansion for 3 at s,

B(sm) ~ B(s) + B(3)(sm — 8) = A(8)s, (5m — 9), (2.3)
where sp,, (57— ) = (1, (s;n—5)/h1)T and A(s) = [3(s) h18(s)] is a p, X 2 matrix.
Here, 3(s) = (81(5), ..., Bp,(5))" is a py x 1 vector and £i(s) = dfy(s)/ds for
Il =1,...,p;. Let K(s) be a kernel function and K,(s) = h='K(s/h) be the
rescaled kernel function with bandwidth h. We estimate A(s) by minimizing the
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following weighted least squares function:

M
SO S (Wi (sm) — 2L A s, (50— 92K (sm —s). (2.4)

i=1 j=1m=1
Let a®? = aa’ for any vector a and C ® D be the Kronecker product of
two matrices C' and D. For an M; x M matrix C' = (¢j;), denote vec(C) =

(Cl1s- ey CM Ly -+ > C1My» - - > MM, ) - Let A(s) be the minimizer of (2.4). Then,
vec(A(s)) = 2(s, 1) D > Ky (sm— 5){sm, (5m — 8) @25 }yij(sm), (2.5)
i=1 j=1m=1

where X(s,h1) = > 1", Z]T:1 M K, (5m— 8) {5, (5m — 5)®? ®x%2}. Thus, we
have 3(s) = (B1(5), - -, Bp, (5))T = {(1,0) @ I, }vec(A(s)), where I, is a py X py
identity matrix. In practice, we may select the bandwidth h; by using leave-one-
curve-out cross-validation. Specifically, we pool the data from all n subjects and
select a bandwidth A1 by minimizing the cross-validation score given by
n 1 n 7 M
ORI O3 1D 9) 9) SUACHER L ATC REED
i=1 i=1 j=1m=1
where (s, h1)("? is a local linear estimator of 3(s) with bandwidth h;, based
on all data excluding the observations for the i-th subject.

Step (II): We use a two-step procedure to estimate X (s, s') and X, (s, s').
Let X¢(s, s’) be the covariance function of e;;(s).

(S1) First, we use the least squares method to estimate (s, Spy) and e (Sm,
Smr) for mym/ = 1,..., M. Let 4;;(s) = yij(s) — xZ;B(s) We estimate
Y5 (8ms Smy) and X (S, Spmy) by minimizing the following least squares func-

tion:
n
D > g (sm)iga (smr) = 235, Bp(5my )15}
i=1 ji#j2
n T;
+ DD i (sm) g (5m) — 2550 (S5m0 25 — Se(Smy )} (2.7)

i=1 j=1
where Zjﬁéjz denotes the sum over all ji,jo = 1,...,T;, such that j; # ja.
The least squares method in (2.7) has been considered in the literature (Di
et al. (2009); Greven et al. (2010); Cederbaum et al. (2016)), where previous
authors used penalized splines smoothing instead of a local linear regression.

Let 355 (sm, $m) and B55 (s, 8,) be the minimizers of (2.7). Then, we
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have Vec(flbLS(sm, Smr)) = G{u(5m, Sm) —2LE5 (S, 5mr ) g} and S5 (s, S )
=(1- agng)_l{v(sm,smI) — angGu(sm,sm/)}, where ag = (Z?:l Ti)_l,
9= D1 2ty i @ zij, G = {3001 2050 5, (2, © 2i,) 22,

V(Sm, Smy) = ag Z Z Uij(8m)Uij(Smr), and

i=1 j=1

n TL'
WSy Sm) = DY g, (sm) iy (5m0) (205, © 2355)-

i=1 j1,j2=1

(S2) Next, for each (k,k'), with 1 < kK < p,, we apply a local constant
smoother to f]fki,(sm,sm/) for s, 8m € S xS and m,m’ = 1,..., M.
This provides the final estimate for 3;(s, s’). Similarly, we can obtain an
estimate of X, ¢ (s,s’) using a local constant smoother, where the diago-
nal elements of 325 (s,,, s,) (i€, BL% (s, 8m),m = 1,... M) are excluded
from the estimation of 3. (s, s’).

Specifically, we estimate Ypgi(s,s") and X, (s, s’) by minimizing the fol-
lowing weighted least squares functions:

M
ming, sy Y {54 (Smy Sm) = Skke (8,8} Ky (5 —8) K, (s —5"),

m,m’=1
ming, ,(s.¢) Z {355 (s ) — B (5, 8') 2 Ky (S — 8) Ky (80 — 8).
mz#£Em’

(2.8)
The bandwidths hs and hg are selected using the leave-one-curve-out cross-
validation method.

Finally, we perform the spectral decomposition of Sy (s,s') and f]e,g(s, s,
and then calculate ie,L(sm, Sm) using

Se 1 (Sms 5m) = {55 (S 5m) —Ee,(Sms 5m) FLELS (81, $m) = e, (Sms 5m) > 0).

Step (III): We incorporate the estimated covariance function to improve
the local linear regression estimate of 3(-). Similar, but different ideas have been
used to iteratively improve the mean estimation (Cederbaum et al. (2016); Di,
Crainiceanu and Jank (2014)). Letting ¥, (s, s’) be the covariance function of
uic(s) = (uin.g(s), - -, uir, c(s))”, we obtain its estimator 3, ¢(s, s') based on
f]b(s, s') and ﬁ]evg(s, s") from step (II). Let X; = (241 ... xi1,) be a p; x T; matrix.
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We estimate A(s) by minimizing the following weighted least squares function:

n M
D> Hyilsm) = XTA(S)sn, (5m =)} Ly 6 (8ms 5m) ™21 Ky (81— 9), (2.9)
i=1 m=1
where hg is a bandwidth.
Let A(s) be the minimizer of (2.9). Then, we have

vec(A(s))

n M
=S5, h8) D Y Ky (s — ) {sns (5 — 9) @ XiHEy, 6 (5ms 5m) Y 9i(sm),
i=1 m=1
where X(s, hg) = 30y oM K, (m—8)[{8h, (5m—8)@X;} Sy, (8 sm) ~ /2|92,
We have
B(s) = (B1(5), -+ Bp. ()T = {(1,0) @ I, }vec(A(s)). (2.10)

To select the bandwidth hg, we pool the data from all n subjects and select
the bandwidth hg that minimizes CV(hg) = (nM)~* 3" M [{yi(sm) —
XTB(5m, hg)(*i)}Tf]th(sm, sm) /%2, Here, (s, hp)"" is the local linear es-
timator of (s) with the bandwidth hg, based on all data excluding the observa-
tions for the i-th subject.

Step (IV): We use the local linear regression method to smooth {;;(sy,) =
Yij (Sm) — xz 3(sm)}M_,, and then obtain an estimate of u;;c(s) = ngz(s) +
eij,c(s) for each i and j. Because the local linear regression is a standard method
(Fan and Gijbels (1996); Wand and Jones (1995)), we omit the detailed steps
for the approximation of u;;(s). Furthermore, to recover the subject-specific
random effect b;(s), we can use the best linear unbiased predictors. These are
commonly employed in linear mixed-effects models to estimate b;(s) at each point
s and then smooth over s.

Remark 1. To extend the estimation procedure to nonlinear mean functions
p(zij, B(s)), such as exponential functions or power functions, we need to modify
steps (I) and (III) by applying a Taylor expansion for wu(z;;, 3(sm)) at s, as
follows:

(i, B(sm)) = w(xij, B(s)) + fu(xij, B(5))B(8)(8m — 5) = p1ij(5)8h, (Sm — 8),
where fi(zi;,8(s)) = Ou(zij, B(s))/0B(s) and p(s) = (u(wij, B(s)), fulwiy,

B(s))B(s)h1). Then, we estimate A(s) by minimizing the following nonlinear
weighted least squares function: L, (A(s)) => 1", er;l Zﬂm/[:l{yij(sm) — i (s)
Shy(Sm — 8)}2Kp, (8 — s). In this general case, A(s) does not have an explicit

form, but it can be estimated using optimization algorithms, such as the Gaus-
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sian Newton algorithm or the Levenberg-Marquardt algorithm (Seber and Wild
(1989)). Similarly to L, (A(s)), we can modify (2.9) in step (III).

2.3. Computational complexity

The computational complexity of our estimation procedure is extremely im-
portant for high-dimensional neuroimaging data, which usually contain a large
number of locations, especially when they correspond to the voxel locations of
an image. For instance, M can have a magnitude of tens of thousands. For the
linear mean function, the computational complexity of our estimation procedure
in Section 2.2 is O(nh1TyM? + nTo(RoM)? + nTohsM?). If we use leave-one-out
cross-validation, then the computational effort increases by a factor of n.

We first discuss steps (I) and (III). In step (I), we need to calculate the
local linear estimator of ((s,,) at each grid point s, across Sp = {sm,m =
1,...,M}. The computational complexity of step (I) is almost the same as that
of the standard pointwise linear regression analysis. An alternative is to fit a
linear mixed-effect model at each grid point s,, using the maximum likelihood.
However, this step is not necessary because it only applies to an initial estimate,
which is then improved in step (III).

For step (III), we only need to calculate the weighted least squares estima-
tors B(sm) in (2.10) across s, € Sy, which is computationally straightforward.
The computational complexity is O(nTphy M) for each s,,; thus, the overall com-
plexity is O(nTohi M?).

To improve the computational efficiency, we standardize all covariates and
then use a single tuning parameter h; to smooth all coefficient functions g;(s).
This strategy works best for coefficient functions that exhibit similar degrees of
smoothness. Thus, it may be necessary to use different tuning parameters for
different coefficient functions (Fan and Zhang (2008)) when the functions have
different levels of smoothness.

Next, we discuss the computational complexity of step (II). First, estimating
@i;(s) is computationally fast for all possible (4, j). Second, we do not need to
calculate Xp(s,s’) and X, (s, s’) for all possible (s,s’). As discussed in step
(III), we only need the estimates of Xy (S, spm) and e ¢(Sm, sm) for all s, € Sp.
Therefore, in step (S2), we focus on solving X4(sym, Sm) and e g (sm, Sm), with
all (Sm, Sy ) 10 {(Smy Smr) € So X So & [Sm — Smy| < Ro}, where Ry is a positive
scalar. In this case, step (II) is computationally feasible even for large M when
Ry is relatively small. The computational complexity is at most O(nTp(RoM)?)
for (sm, sm’) € Sp X Sop.
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A major computational hurdle is the calculation of ¥;(s,s") and X, (s, s)
for all possible (s,s’). If M is relatively large, it can be computationally chal-
lenging to estimate Xy(sp, s),) and X ¢ (Sm, S),) across all possible (sp,, s),) €
So x Sp. We take two different approaches. The first estimates X(sp,, s},) and
e, (Sm, i) for a small subset of Sy x Sp. Specifically, we bin the data to re-
duce the number of grid points to a much smaller number My << M. Then, we
estimate X (s, s") and X, (s, s”) on those My points and interpolate the results
elsewhere. The second approach applies the approaches proposed by Zipunnikov
et al. (2014) and Xiao et al. (2016) to estimate (s, s’) and X, (s, s’). These
methods include a fast implementation of the sandwich smoother for covariance
smoothing, and a two-step procedure where we first obtain the singular value
decomposition of the data matrix and then smooth the eigenvectors.

Note that with regard to the computational complexity of step (IV), similarly
to step (II), smoothing u;; p(s) for all possible (4, j) is computationally light. The
overall computational complexity is approximately O(nTyhsM?), where hy is the
bandwidth of the local linear method.

Remark 2. We discuss two possible extensions of (2.2). The first is to extend
the estimation procedure from S = [0, 1] to a D-dimensional compact subset of
a Euclidean space. For this, we only need to modify steps (I) and (III) by chang-
ing £(s) and s,, — s into D x 1 vectors. The second extension is to assume that
eij,,.c(s) and e;j;, g(s), for ji # jo, are dependent and have a separable covariance
structure, cov(eij, a($), €ij,,c(s)) = Ze,a(s, 8" )p(tij, tij,; 0). Here, p(tij,,tij,;0) is
usually a prespecified correlation function of unknown parameter 6, such as the
exponential correlation model with p(t;j,,ti;,;0) = exp(—0|tij, — ti;,|) (Diggle
et al. (2002); Fitzmaurice, Laird and Ware (2004)). However, we found empiri-
cally that using of the correlation function significantly increases the computa-
tional complexity, but does not yield much of an efficiency gain when estimating

B()-

3. Theoretical Results

We systematically investigate the asymptotic properties of all estimators
proposed in Section 2.2 and investigate several inference procedures based on the
asymptotic properties. For any smooth function f(s), we use the notation f (s) =
df(s)/ds and f(s) = d*f(s)/ds*>. We use u; = [ K(v)vidv and vy, = [ K9(v)dv,
for ¢ =1 and 2, and || - ||2 for the Euclidean norm.
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3.1. Assumptions

Throughout the paper, the following assumptions are used to facilitate the
technical details. Some of the assumptions might be weakened, but the current
version simplifies the proof.

(A.1) The grid points in Sy = {sp, m = 1,..., M} are independently and iden-
tically distributed with a density function f(s), which has a continuous second-
order derivative and bounded support S. Moreover, for some f; > 0 and f, < oo,
fi< f(s) < fyforall s €S.

(A.1b) The grid points S = {sm,m = 1,..., M} are prefixed according to a
design density function f(s) such that [;™ f(s)ds = m/M for m > 1. Here,
f(s) has a continuous second-order derivative and bounded support [0, 1], and
fi < f(s) < fy for all s € [0, 1], for some positive f; > 0 and f,, < 0.

(A.2) The covariate vectors z;; = (zij1,. .. ,:L'ijpz)T and z;; = zi(tij) = (2ij1,-- -
zijpz)T may or may not be time-dependent. Nevertheless, we use the notation
w1 = xy(ti;) for 1 <1 < py, and 2z = 2(t;) for 1 <1 < p,. We assume that
supyer |zi(t)| and supycr |z (t)| are almost surely bounded, where T is a finite
time domain.

(A.3) The kernel function K(t¢) is a symmetric density function with compact
support [—1, 1], and is Lipschitz continuous.

(A.4) All components of 5(s) have continuous second-order derivatives on S.
(A.5) With probability one, the sample paths of e;;c(-) and b;(-) are Lipschitz
continuous.

(A.6) max; T; < Ty, n,M — oo, h — 0, Mh — oo and n®h — oo for some a > 0,
where Tp is a fixed constant, and h can be hi, hg, ha, or h3.

(A7) E{supscio 1) lei,c(s)*?} + E{sup,cg, lei;,L(s)|*} < oo, for some g > 2.
(A.8) E{supsco,1 ||bz(s)||§q} < 00, for some ¢ > 2.

(A9) E{X;Zy, c(s,8) 718y, als, 8 )Sy, c(s', ) 71X} exists for any (s, ).
(A.10) There is a positive fixed integer E2 < oo such that the eigenvalues of ¥, ¢
satisfy A{ > --- > A% > A, for some constant A > 0. There is an analogous case
for the eigenvalues of Y.

Remark 3. Our theoretical results hold for both random and fixed designs. As-
sumptions (A.1) is a standard condition on random design points s, whereas
(A.1b) applies to fixed designs. Assumption (A.2) is a condition on the bound-
edness of the covariate vectors. The bounded support restriction on K(-) in
assumption (A.3) is not essential and can be removed if we include restrictions
on the tail of K(-). Assumptions (A.4)—(A.5) are smoothness conditions on the
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coefficient functions, random functions, and their covariances. The smoothness
condition in assumption (A.5) can be relaxed with substantial additional effort
(Zhu, Li and Kong (2012)). Assumption (A.6) is a weak condition on n, M,
and h, where hy is the bandwidth used in Step (I) for the initial estimate of
B. Assumptions (A.7) and (A.8) require uniform bounds on certain high-order
moments of the random functions, which are standard assumptions in the liter-
ature (Zhu, Li and Kong (2012); Li and Hsing (2010)). Assumption (A.10) on
the simple multiplicity of the first E eigenvalues is only needed to investigate the
asymptotic properties of the eigenfunctions. It is also a standard assumption in
the literature.

3.2. Asymptotics of estimation procedure

We state the following theorems, for which detailed proofs can be found in
the Supplementary Material. The first theorem tackles the theoretical properties
of {B(s) : s € S} obtained from step (ITI).

Theorem 1. Under (A.1) (or (A.1b)) and (A.2)-(A.9), we have the following
results:
(i) The asymptotic bias and covariance of B(s) for s € (0,1) are

Bias(3(s)|S) = %B(s)h%w{l +o(1)}, (3.1)

n ~1
var(B(s)|S) = n~! {nl Z E(Xi{%y, a(s, 3)}1XiT)} {1+0(1)}.
i=1

(it) If log M = o(Mhg) and there exists v, — oo, with nt/2yi71 = o(1) and
n~Y2y,log M = o(1) for some q > 2 that satisfies (A.7), then as n — oo,
Vn{B(s) — E(B(s)|S)} converges weakly to a centered Gaussian process G(-) ~
G(0,R), where R(s,s") = {Q*(s,5)}tQ*(s,s){Q*(s',s")} 7L, with Q*(s,s') =
linn o0 n S0 (X005, 9)} 1Sy 65, )1 y,.0(5', )} 1 XT).

Theorem 1 (i) provides a theoretical justification for steps (I)—(III) for the
refined estimator j3 (s). It has several important implications. First, the estimator
f(s) obtained in step (I) has the asymptotic covariance

n -1 n n -1
n~t {n—l > E(XZ»XZT)} n 'Y B(Xi%y, a(s 8)X]) {n_l > E(XiXZ-T)}

i=1 i=1 i=1
(details can be found in the proof of Theorem 1), which is larger than that of
B(s). The improvement by the refined estimator 3(s) is the result of incorporat-
ing within-subject correlations between T} longitudinal observations, and can lead
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to a substantial efficiency gain when estimating {3(s) : s € S}. Second, if we use
the maximum likelihood (or the restricted maximum likelihood) estimators for
each observation at s,,, the asymptotic covariance, given by {>"7" | E(X;{Zy, (sm,
sm)} ' XT)} 71, is larger than that of 5(s,,). The improvement achieved by (s, )
is the result of incorporating the smoothness in the functional data. Therefore,
we can construct more efficient estimators of (s) by simultaneously accounting
for the smoothness in the functional data and the within-subject covariance, be-
cause these functions are measured repeatedly and longitudinally. Moreover, the
asymptotic bias of B (s) is of order h%, which is similar to that of a nonparamet-
ric regression for independent responses. In contrast, the asymptotic variance of
B(s) is of order n~1t,

Note that the efficiency gain discussed above does not conflict with the re-
sults of Lin and Carroll (2001), who show that the most efficient estimator of
the nonparametric function using kernel smoothing is achieved by ignoring the
dependence structure among the functional observations. In our setting, this
means that kernel smoothing in the direction of s should be implemented as
in Step (I), that is, by ignoring the dependence structure among functional ob-
servations. However, in the FMEM setting of longitudinal functional data, it
is possible to improve the [ estimate as we did in Step (III) by incorporating
the covariance structure ¥y, (s, s). The analogy here is with the standard linear
mixed-effects model with longitudinal data only (i.e., no functional components),
because the FMEM is an extension of the linear mixed-effects model. Clearly, in
a linear mixed-effects model, we need to perform a weighted least squares pro-
cedure to improve the efficiency of the 5 estimator. This was done in Step (III)
to refine the (3 estimator using a weighted least squares estimator with weights
from ¥,; ¢ (s,s). Note that we could implement Step (III) only after we obtain-
ing a covariance estimate in Step (II), which relies on an initial unweighted least
squares estimator of 3 in Step (I). This explains why three steps are necessary
for the estimation of f5.

Theorem 1 (ii) establishes the weak convergence of the centered estimator
B(s) — E(B(s)), which is essential to the statistical inference for 3(s) in Section
33. Let h = n® M = n?, and 7, = n?. Anything that satisfies a < 0,
a+ >0, and —1/(2(1 —q)) < v < 1/2 will satisfy the assumptions, where
g > 2 is a constant that satisfies the moment condition given in (A.7).

The second theorem provides a theoretical analysis of the estimators of
Ye,c(s,s") obtained from step (II). Similar results can be obtained for Xp yp (s, 8),
1 < k,k' < p,, and are provided in the online Supplementary Material.



2020 ZHU ET AL.

Theorem 2. Under (A.1) (or (A.1b)), (A.2)—(A.8), and (A.10), if by = O((logn/
n)1/4) and hs = O(log n/n)1/4, then we have the following results:

(i) supg o |§e,g(s,s’) — Yea(s,8)| = Op((logn/n)/?);

(i) For 1 <1< B, {[} [ (s) v (s) 2ds}/2 = Oy((log n/n)"/2)

(iii) For 1 <1< E, |\ — Xf| = Op((logn/n)/?).

Theorem 2 characterizes the uniform convergence rates of 2676'(8, s') and the
associated eigenvalues and eigenfunctions. It can be regarded as an extension
of Theorems 3.3-3.6 of Li and Hsing (2010), who established the strong uniform
convergence rates of these estimates under a simpler model.

3.3. Asymptotics of inference procedure

In this subsection, we derive the asymptotic theory of a global test for testing
linear hypotheses of §(-) and the theory for the SCB for each component of 3(-).
These are key tools for statistical inferences for the coefficient functions.

We first consider linear hypotheses for 5(s),

Hy: CB(s) = Bo(s) forall s vs. Hy:CpP(s)# Po(s) for some s,  (3.2)

where C' is a ¢ X p, matrix with rank ¢, and Sy(s) is a given ¢ x 1 vector of
functions. We define a global test statistic .S, as

1 n -
Sn :/ d(S)T C{ ZXii]yi,G(Svs)_lXiT} CT
0

i=1
where d(s) = Cf(s) — bias(CB(s)) — Bo(s). For simplicity and computational
efficiency, we do not consider estimating the bias of C' B(s) because our simulation

-1
d(s)ds, (3.3)

results show that it is negligible. It follows from Theorem 1 that under Hy, we

have
n -1 -1/2
c{ > X%y, als, s)le} cT d(s) = Ge(s),

=1

where = denotes weak convergence and G¢(+) is a centered Gaussian process
with covariance function {C'Q*(s,s)CT}1/2R(s,s"){CQ*(s',s')CT} /2. Thus,
we can derive the asymptotic distribution of S, under the null hypothesis and
its asymptotic power under local alternative hypotheses.

Theorem 3. Under assumptions (A.1)-(A.9), if log M = o(Mhg) and there
exists vn — 00, with /2~y "4 = o(1) and n='?~y,log M = o(1) for some q > 2
that satisfies (A.7), we have the following results:

(i) Sy, = fol Gco(s)TGe(s)ds under the null hypothesis Hy,
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n—oo

(i) P(Sy, > SnalHin) — 1 for a sequence of local alternatives Hi,, :
CB(s)—Bo(s) = n~7/2d(s), where T is any scalar in [0,1), Sy, o is the upper 100a
percentile of Sy, under Hy, and 0 < [ ||d(s)|[*ds < oo.

Theorem 3 can be regarded as a generalization of Theorem 7 of Zhang
and Chen (2007) and Theorem 2 of Zhang (2011). The test statistic S, has
a weighted x2-type asymptotic distribution under Hy. Zhang and Chen (2007)
(after Theorem 7) discuss the estimation of the null distribution of S, using a
x2-approximation and bootstrapping, which also applies to the case we consider
here. It is easy to see that part (ii) still holds when the critical value S, , is
replaced by some estimated critical value.

Next, we construct SCBs for the coefficient functions, which can then be used
for statistical inferences for FMEM. For a given confidence level «, we construct
a SCB for each [;(s), 1 <1 < p,, as follows:

P(B/*(s) < Bu(s) < B%(s) forall se0,1])=1-a, (3.4)
where BlLa(s) and BlU "*(s) are the lower and upper limits, respectively, of the
SCB. Specifically, a 1 — a SCB for 5;(s) is:

5 5 C . . C
(Bl(s) — bias(fi(s)) — \l/(g), Bi(s) — bias(Fi(s)) + \l/(%)) ; (3.5)
where Cj(«) is the critical value of sup 5 |G(s)| associated with $i(s) in Theorem
1.

To carry out the inference procedure developed above, we approximate both
Ci(a) and S, o. Because the asymptotic distribution of \S,, is quite complicated
and it is difficult to directly approximate the percentiles of S, under the null
hypothesis, we use a wild bootstrap method to approximate the critical values of
Syp. The wild bootstrap idea has been used by Zhu, Li and Kong (2012); details
are presented in the Appendix. Let G(@(.) be the bootstrapped samples for ¢ =
1,...,Q, where @ is the total number of wild bootstrap samples. The following
theorem lays a foundation for the wild bootstrap method used to construct a
SCB of (s) and to approximate the null distribution of S,,.

Theorem 4. Under assumptions (A.1)—(A.9) and given data, the bootstrapped
process G\D(s) converges in distribution to G(0, R), which is defined in part (ii)
of Theorem 1, as n — oo.

4. Simulation Studies

In this section, we present four sets of simulations to examine the finite-
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sample performance of the proposed estimation and inference procedures. In
the first two simulations, we consider two competing methods: wavelet-based
functional mixed models (WFMM) (Morris and Carroll (2006)) and functional
additive mixed models (FAMM) (Scheipl, Staicu and Greven (2015)). All com-
putations for these numerical examples were carried out on a computer with
Windows 7, a 3.60 GHz quard-core Intel Core i7 CPU, and 16 GB DDR3 1,066
MHz memory. The computation time for FMEMs can be reduced further by
using other computer languages, such as C++.
All simulated data sets were generated from the following model:

yij(s) = 2;8(s) + 2;bi(s) + eija(s) + eijL(s),
2 2
bi(s) = > bthi(s),  eyals) =Y eqrti(s), (4.1)
k=1 k=1

where T = (1,:1:ij71,xij72)T, Zij = (1,.%‘]‘72), bz‘k ~ N(O, /\Z), €ijk ™~ N(O, )\z), and
eijr(s) ~ N(0,%. ), for i = 1,...,n. Each subject was observed up to three
times in this sample, among which 5%, 30%, and 65% have only one, two, and all
three observations, respectively. We set s, = (m — 0.5)/M. The first covariate
xi;,1 was simulated from N (0, 1) and fixed across time for subject i. The second
covariate x;; 2 was assumed to vary over time, where the increments ;52 —2;(;_1)2
were independently sampled from a uniform distribution on [0, 1]. Both covariates
were standardized to have a zero mean and unit variance. Moreover, we set
)\z =\ = 21=k for k = 1,2, and e, = 0.01. The functional coefficients and
eigenfunctions were selected as

Bi(s) =5 Bals) =(1—5)%  PBs(s) =4s(1—s) - 04,

Wi(s)" = (¥11(5), ¥15(5)) = (sin(2ms), cos(2ms)),  ¥§(s) = V3(2s — 1),
V3(s)" = (U1 (5), ¥35(5)) = <\}§7sin(2m)), Y5(s) = V5(65” — 65+ 1).

We fitted an FMEM, WFMM, and FAMM to each simulated data set and
calculated all unknown quantities. The average computation times per simulated
data set with n = 100 and M = 40 for the FMEM, WFMM, and FAMM are,
respectively, 19.6 seconds, 2.32 seconds, and 1.15 hours.

Simulation 1. The first simulation evaluates the performance of the estimates
for B;(-). We set n = 100 and M = 40 and 60, and then simulated 1,000 data sets
from model (4.1), as described above. Table 1 summarizes the mean integrated
absolute error (MIAE) and mean integrated squared error (MISE) of all estimated
coefficient functions, based on 1,000 simulations. The results in Table 1 indicate
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Table 1. Simulation 1. MIAEx1072 and MISE x10~2 and their standard deviations
x10~2. MIAE denotes the mean integrated absolute error and MISE denotes the mean
integrated square error. Standard deviations are shown in parentheses. For each case,
100 simulated data sets were used.

Method MIAEx10~2 MISEx10~2
M Bi() Ba() Bs () Bi(-) Ba(-) Bs(+)
WFMM 40 1.63 (0.73) 1.67 (0.77) 1.88 (0.78) 0.04 (0.04) 0.05 (0.04) 0.06 (0.04)
60 1.37 (0.61) 1.39 (0.63) 1.55 (0.64) 0.03 (0.03) 0.03 (0.03) 0.04 (0.03)
FAMM 40 3.36 (2.11) 2.84 (1.88) 4.26 (3.27) 0.23 (0.56) 0.16 (0.35) 0.38 (0.77)
60 3.03 (1.93) 2.51 (1.58) 3.95 (3.29) 0.18 (0.36) 0.13 (0.21) 0.34 (0.95)
FMEM 40 1.57 (0.72) 1.44 (0.65) 1.69 (0.70) 0.04 (0.03) 0.03 (0.03) 0.05 (0.03)
60 1.29 (0.60) 1.23 (0.55) 1.37 (0.53) 0.03 (0.03) 0.03 (0.01) 0.03 (0.03)
Wb (s) NG NG uh,(s)
0.2 0.4 0.2 0.4
_/\/‘\,
0.1 0.2 0.2
- \’/ 0.1 /\/
- 0% O\V/ NI
=
0
~0.1 02 /‘/\/\/V 02
~0.2 ~0.4 ~0.1 ~0.4
0 05 1 0 05 1 0 0.5 1 0 05 1
0.2 0.4 0.2 0.2
0.1 w 0.2 0.15 /\_/\' 0.1
S
=0 ov 0.1 0
=
0.1N ~0.2 0.05 \/\/ -0.1
-0.2 ~0.4 0 -0.2
0 05 1 0 05 1 0 0.5 1 0 05 1

S S S S

Figure 1. Simulations 2: the estimates of the first two eigenfunctions ’Q[Jlb7 p(), for Lk =
1,2, and their pointwise confidence intervals. The red solid, green dashed, and blue solid,
curves are, respectively, the true eigenfunctions, the pointwise means, and the pointwise
5th and 95th percentiles of the estimated eigenfunctions based on 1,000 replications.

satisfactory performance of our estimators because all MIAE and MISE values
are quite small. As expected, the errors all decrease as the number of grid points
increases. Moreover, the FMEM outperforms the WFMM and FAMM in terms
of both the MIAE and the MISE. However, this comparison may be unfair to the
WFMM, because it is designed for spiky data, not intrinsically smooth functional
data.

Simulation 2. The second simulation evaluates the accuracy of the estima-
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Figure 2. Simulations 2: the estimates of the first two eigenfunctions v,k = 1,2, and
their pointwise confidence intervals. The red solid, green dashed, and blue solid, curves
are, respectively, the true eigenfunctions, the pointwise means and the pointwise 5¢th and
95th percentiles of the estimated eigenfunctions based on 1,000 replications.

tors of the eigenvalues and eigenfunctions of the covariance functions (., .),
Yeal(.,.), and X, 1. We used the same parameter values as those in Simulation
1. We set ¢ = 0.1 and n = 50 and 100, and generated 1,000 data sets for each
combination. The accuracy of all of the estimators improves with the sample
size. The estimated eigenfunctions are plotted in Figures 1 and 2, in which the
mean and pointwise 5th and 95th percentiles of the estimated functions are plot-
ted with the true eigenfunctions. Figure 3 shows the boxplots for the estimates
of the eigenvalues and o2, which are quite close to their true values.

Simulation 3. The third simulation evaluates the type-I error rate and the
power of the global test statistics, S,,. We are interested in testing Hy : B3(s) = 0,
for all s, against Hy : f3(s) # 0, for some s. All parameters in the FMEM were
specified as above, except that B3(s) was set as 4cs(1 — s) — 0.4c. Here we first
set ¢ = 0 to assess the type-I error rate of S, and then set ¢ = 0.04,0.06, 0.08,
and 0.1 to examine the power of S,, at different effect sizes. Furthermore, we
set n = 50 and 100 and used 1,000 replications to estimate the rejection rate of
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Figure 3. Simulation 2: boxplots of the differences between the estimated eigenvalues 5\2
and A, for k = 1,2, and their true values (left panel), and those between the estimated
o2 and its true values (right panel) based on 1,000 replications.
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Figure 4. Simulation 3: Power curves as functions of ¢. The rejection rates of S,, using
the wild bootstrap method are calculated at five different values of the effect size ¢
(¢ =0,0.04,0.06,0.08 and 0.1) for two sample sizes (n = 50 and 100) at the 0.01 (a) and
0.05 (b) significance levels based on 1,000 replications.

Sn. The p-value of S,, was approximated using the wild bootstrap method with

@ = 500 bootstrap samples.

Fig. 4 presents the rejection rates of S, across all effect sizes at the two
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Table 2. Autism spectrum disorder data analysis: demographic information for partici-
pants.

Visit ~ Number of subjects Age: mean(std) (years) Age: range (years)
1 58 10.53 (5.96) [0, 18]
2 148 12.25 (4.62) [0, 21]
3 160 12.29 (5.14) 1, 22]
4 19 1.84 (1.42) 1, 6]
5 7 1.57 (0.79) 1, 3
6 10 2.70 (0.67) 2, 4]
7 6 3.17 (0.75) 2, 4]
8 5 3.40 (1.14) 2, 5]
9 3 3.67 (1.15) [3, 5]
Gender Male/Female 126/127

significance levels & = 0.05 and 0.01. The type-I error rates are well maintained
at the two significance levels for n = 100. Specifically, at o = 0.05 (or 0.01),
the type I error rates of S, are 0.066 (or 0.014) for n = 50 and 0.055 (or 0.012)
for n = 100. As expected, the statistical power for rejecting the null hypothesis
increases with the sample size, the effect size ¢, and the significance level.

5. Data Analysis

The data set was taken from the national database for autism research
(NDAR) (http://ndar.nih.gov/), an NIH-funded research data repository that
aims to accelerate progress in autism spectrum disorder (ASD) research through
data sharing, data harmonization, and the reporting of research results. A total of
416 MRI scans are selected for 253 normal children (126 males and 127 females),
following the standard protocol. Table 3 contains demographic information and
the distribution of scan availability.

The diffusion tensor imaging (DTI) data were processed by two key steps,
including a weighted least squares estimation method (Basser, Mattiello and
LeBihan (1994)) to construct the diffusion tensors, and a pipeline for tract-based
spatial statistics (TBSS) (Smith et al. (2006)) to register DTIs from multiple
subjects to create a mean image and a mean skeleton. Specifically, maps of frac-
tional anisotropy (FA) were computed for all subjects from the DTI after Eddy
current correction and automatic brain extraction using the FMRIB software li-
brary. FA maps were then fed into the TBSS tool, which is also part of the FSL.
In the TBSS analysis, the FA data for all subjects were aligned into a common
space by a nonlinear registration method. Then, the the mean FA images were
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Figure 5. Data analysis: (a) 3D visualization of the corpus callosum in the sagittal
view, with the FA skeleton template overlaid. (b) and (c¢) FAs along the corpus callosum
obtained from two selected subjects A (b) and B (c) with two or three visits. Different
visits for the same subjects are indicated by color. (d) and (e) FA values varying by age
at selected locations: arclength = 18.66 (d) and arclength = 31.49 (e) along the corpus
callosum for all 253 subjects, with green and blue lines corresponding to subjects A and
B, respectively. Red dashed lines represent the fitted lines for the male group.



2028 ZHU ET AL.
Intercept Gender log(Age) log(Age)2
0.9 r
3 41 0.02 N
0.8 \% P I X ~777 7\ 1 0.05
- - 4 'ﬂ— -'O\ \) -
X PR \ _’/ - ) \\\‘\ . ,”. \‘
071 Ry 0 0 [=== " 0 f——on= v
) -, e\ S
L WESN ~. o ) Ve
0.6 N7, =7\ _os o~ =-0.05 -0.05 S \
-0.02 (PG - -
L)
0.5 -0.1 -0.1
0 20 40 20 40 0 20 40 0 20 40
(a) arclength (b) arclength (c) arclength (d) arclength

Figure 6. 95% simultaneous confidence bands for the coefficient functions. The solid
curves are the estimated coefficient functions and the dashed curves are the 95% simul-
taneous confidence bands. The thin horizontal line is the line crossing the origin (0,

0).

created and thinned to obtain a mean FA skeleton, which represents the centers
of all white matter tracts common to the group. Subsequently, each subject’s
aligned FA data sets were projected onto this skeleton. Although several DTI
fiber tracts were tracked, we chose to focus on the corpus callosum (see Fig. 5
(a)) to illustrate the applicability of our method in assessing the effects of covari-
ates of interest, such as patient age and gender. In this case, there are M = 45
grid points along each fiber tract. The FA values were extracted at each grid
point multiple times (one to nine times) along the selected fiber tracts for all 253
infants.

The goal of the data analysis is to delineate the development of skeleton
diffusion properties over time. We fitted FMEM (2.1) and (2.2) with z; =
(1, Gender, log(Age), {log(Age)}?)” and z; = (1,log(Age))” to the selected FA
tracts obtained from all 253 subjects. The coeflicient functions associated with
log(Age) and {log(Age)}? were included to detect age effects in the FA changes.
In addition, as shown in Fig. 5, there are random subject-to-subject variations
in the FA measures at each grid point along this tract, as well as in the age effect
on FA measures. We included random intercept and age effects in the model to
account for the inter-subject variations.

We applied the FMEM, WFMM, and FAMM to this data set and estimated
all unknown quantities, but only discuss the results based on the FMEM here.
The results for the WFMM and FAMM are provided in the Supplementary Ma-
terial. The computation times for the FMEM, WFMM, and FAMM are, respec-
tively, 55.8 seconds, 7.9 seconds, and 6.078 hours.

For the FMEM, we constructed the estimated functional coefficients of 3(s)
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and their 95% SCBs, along with the global test statistic S, to test for the sig-
nificance of the gender and age effects on the FA values. The p-value of S,, was
approximated using the resampling method with ¢ = 1,000 replications. Fig-
ure 6 presents the estimated coefficient functions corresponding to the intercept,
gender, log(Age), and {log(Age)}?, along with their 95% SCBs. The intercept
function describes the overall trend of the FA along the corpus callosum. In gen-
eral, the central regions of the corpus callosum show smaller FA values, whereas
the peripheral regions show larger FA values. In Figure 6, the SCB contains
the horizontal line crossing (0,0) for the gender effect, whereas the horizontal
line is out of the 95% SCB for the age effect, indicating a significant age effect.
This agrees with our analysis results based on S,, for the gender and age ef-
fects. We obtained p-values of 0.215 and < 0.0001 for the gender and age effects,
respectively, indicating a significant age effect but no gender effect.

Supplementary materials

available in the attached file include the proofs of Lemmas 1-13, Theorems
1-3, and Corollary 1.
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Appendix
Wild bootstrap method for critical values of S,

We have shown that the asymptotic distribution of S, is very complicated
hence it is difficult to directly approximate the percentiles of S, under the null
hypothesis. Instead, we propose using a wild bootstrap method to obtain critical
values of S,,. The wild bootstrap consists of the following three steps.

Step 1. Fit (2.1) and (2.2) under the null hypothesis Hy, which yields 5*(s,,),
U5 o(sm) and €(sm) = yij(sm) — xz;,é’*(sm) — U; (sm) for all 4,j and m =
1,..., M.
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(@)

Step 2. Generate a random sample 7,7 and 7;;(s,,,)(@ from a N(0,1) gener-

ator for all 7,7 and m =1,..., M and then construct
G (sm) @) = xTﬂ (om) + 75 55,6 (5m) + 7 (5m) V5 (5m).

Then, based on §;;(sm )@, we recalculate B(s) D and d(s)@ = CB(s)@ — By(s).
Subsequently, we compute

1
St :n/ d(s)@T
0

Step 3. Repeat Step 2 () times to obtain {ST(Lq) :q=1,...,Q} and then cal-
culate p = Q~ Z 1 1(Sn (@) > Sp). If p is smaller than a pre-specified significance

-1 -1
{ZX Yy.a(s,s)” lXT} cTl d(s)Dds.

=1

level «, say 0.05, then one rejects the null hypothesis Hy.

Wild bootstrap methods for simultaneous confidence bands of j(-)

Although there are several methods of determining Cj(«) including random
field theory (Worsley et al. (2004)), we develop an efficient resampling method
to approximate Cj(«) as follows (Kosorok (2003)).

o We calculate 7i(sm) = yi(sm) — XI B(spm) for all 4,7, and m.

e For ¢ = 1,...,Q, we independently simulate {Ti(Q) : 4 =1,...,n} from
N(0,1) and calculate a stochastic process G(s)(@ given by

Vnlly, (1 0)]vec(S(s, hy)
Zr" ZKh ) {sn(sm — 8) @ Xi}5y, (5, 8) " Fi(5m))-

e We calculate sup,¢g ) le;G(5) D] for all ¢, where ¢ is a p, x 1 vector with
the [-th element 1 and 0 otherwise, and use their 1 — o empirical percentile
to estimate Cy(«).
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