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Abstract: The aim of this study is to conduct a systematic and theoretical anal-

ysis of estimations and inferences for a class of functional mixed-effects models

(FMEM). FMEMs consist of fixed effects that characterize the association between

longitudinal functional responses and covariates of interest and random effects that

capture the spatial-temporal correlations of longitudinal functional responses. We

propose local linear estimates of refined fixed-effect functions and establish their

weak convergence, along with a simultaneous confidence band for each fixed-effect

function. We propose a global test for the linear hypotheses of varying coefficient

functions and derive the associated asymptotic distribution under the null hypoth-

esis and the asymptotic power under the alternative hypothesis. We also establish

the convergence rates of the estimated spatial-temporal covariance operators and

their associated eigenvalues and eigenfunctions. We conduct extensive simulations

and apply our method to a white-matter fiber data set from a national database

for autism research to examine the finite-sample performance of the proposed esti-

mation and inference procedures.
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1. Introduction

There is an increasing interest in analyses of massive functional data sets,

many of which originate from brain imaging in large-scale longitudinal biomedical

studies, such as the Alzeimer’s Disease Neuroimaging Initiative (ADNI) (Evans

and Group (2006); Mueller et al. (2005); Greven et al. (2010); Yuan et al. (2014);

Zipunnikov et al. (2014)). In such studies, longitudinal functional data from n

different subjects are usually observed at, or are registered to, a large number

of locations in a common space, denoted by S, across multiple time points {tij :

j = 1, . . . , Ti; i = 1, . . . , n}, where Ti is the total number of time points for the

i-th subject. Here, we use the term “functional data” for data that are measured
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densely in S, “spatial correlation” for correlations within the functional data,

and “longitudinal data” and “temporal correlation” for data that are measured

sparingly in {tij : j = 1, . . . , Ti, i = 1, . . . , n}.
The sheer size and complexity of the longitudinal functional data pose sub-

stantial challenges to most existing statistical methods for analyzing univariate

or multivariate longitudinal data (Diggle et al. (2002); Fitzmaurice, Laird and

Ware (2004)). These include: (i) the complexity of the temporal-spatial covari-

ance structure, (ii) determining how to take advantage of the spatial-temporal

smoothness, and (iii) theoretical justifications of the inference procedures. The

first challenge is the introduction of random effects to characterize the spatial-

temporal covariance structure of longitudinal functional responses. The second is

the incorporation of spatial-temporal smoothness into both estimation and infer-

ence procedures to improve statistical efficiency (Ramsay and Silverman (2005)).

The third is to systematically investigate the theoretical properties (e.g., con-

sistency) of estimation and inference procedures for statistical models developed

for longitudinal functional data.

Models for longitudinal functional data fall within a general functional mixed-

effects modeling framework, which serves to characterize functional data with var-

ious levels of hierarchical structures (Guo (2002); Wu and Zhang (2002, 2006);

Morris and Carroll (2006); Di et al. (2009); Greven et al. (2010); Zhou et al.

(2010); Zhu, Brown and Morris (2011); Shi and Choi (2011); Cao, Yang and

Todem (2012); Chen and Müller (2012); Horvath and Kokoszka (2012); Meyer

et al. (2015); Reiss et al. (2014); Scheipl, Staicu and Greven (2015); Zipunnikov

et al. (2014); Staicu, Lahiri and Carroll (2015); Cederbaum et al. (2016)). The

term functional mixed-effects models (FMEMs) for correlated functional data

was introduced by Guo (2002). Subsequently, Morris and Carroll (2006) devel-

oped general functional mixed-effects models with multiple levels of random-effect

functions, as well as curve-to-curve deviations. Recently, a general framework for

functional additive mixed models was introduced by Scheipl, Staicu and Greven

(2015). Moreover, several FMEMs have been developed for longitudinal func-

tional data (Greven et al. (2010); Yuan et al. (2014); Zipunnikov et al. (2014);

Di, Crainiceanu and Jank (2014)). To the best of our knowledge, most studies on

functional mixed-effects models focus on challenges (i) and (ii), described above.

Here we focus on the third challenge, namely the theoretical challenges.

To address challenge (iii), we provide a comprehensive theoretical analysis

for a class of FMEMs. Our FMEM consists of a measurement model at each grid

point s ∈ S and a hierarchical factor model. The measurement model primarily
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includes fixed effects to characterize the varying association between longitudi-

nal functional responses and the covariates of interest. The hierarchical factor

model primarily uses random effects to capture the medium-to-long-range spatial

covariance and local covariance structure. Formally, we establish the weak con-

vergence of the estimated varying association function, the uniform convergence

rate of the spatial-temporal covariance estimator, the asymptotic distribution of

a global test statistic for linear hypotheses of the regression coefficient functions,

and an asymptotic simultaneous confidence band (SCB) for each varying fixed-

effect function. The code and documentation for the FMEM, written in Matlab,

are freely accessible from the “http://www.nitrc.org/projects/fadtts.”

2. FMEM: Functional Mixed-Effects Model

2.1. Model setup

Suppose that we observe longitudinal functional data and clinical variables

from n independent subjects. Let Ti be the total number of longitudinal mea-

surements for the i-th subject, i = 1, . . . , n, and let tij be the j-th measurement

time point for the i-th subject; thus, j = 1, . . . , Ti. Throughout this paper, we

focus on a fixed number of time points and sparse longitudinal data; that is,

maxi≤n Ti < T0 < ∞. Let sm represent a specific grid point of the functional

template space S for m = 1, . . . ,M . Specifically, for the i-th subject at time tij ,

we observe functional data, denoted by yij(sm) = yi(tij , sm) for 1 ≤ m ≤ M ,

and a px-dimensional covariate vector xi of interest, denoted by xij = xi(tij), at

time tij . Here xi may include time-independent and time-dependent covariates,

such as age, gender, and genetic markers. For ease of notation, we assume that

S = [0, 1] and 0 = s1 ≤ · · · ≤ sM = 1. However, our results can easily be

extended to higher dimensions when S is a compact subset of a Euclidean space.

We consider an FMEM consisting of a measurement model and a hierarchical

factor model. This model aims to extend the conventional linear mixed-effects

model to accommodate the additional spatial component. The measurement

model associated with the FMEM characterizes the varying association between

functional responses and their covariates at any s ∈ S, as follows:

yij(s) = µ(xij , β(s)) + zTijbi(s) + eij(s), (2.1)

where µ(·, ·) is a known function, β(s) = (β1(s), . . . , βpβ(s))T is a pβ×1 vector of

the fixed-effect functions of s, and zij = zi(tij) = (zij1, . . . , zijpz)
T is a pz×1 vector

of the random-effect covariates associated with the random effects bi(s). Here,
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bi(s) = (bi1(s), . . . , bipz(s))
T is a vector of the random effects that characterize

the spatial-temporal correlation structures across the functional domain space.

In contrast, eij(s) is a spatial random process delineated from bi(s), that is,

after filtering out zTijbi(s). Moreover, eij(s) and bi(s) are independent. In many

applications, µ(xij , β(s)) = xTijβ(s) is a linear function of xij , similar to the

setting of the traditional linear mixed-effects model. Therefore, we focus on this

special linear case in this paper. Extensions to nonlinear cases are discussed in

Remark 1. Marginally, for a fixed s, model (2.1) with µ(xij , β(s)) = xTijβ(s) is

a standard linear mixed-effects model. This motivates us to adopt the standard

notation for linear mixed-effects models. Moreover, because zij may include time-

independent and time-dependent covariates, the inclusion of zTijbi(s) allows us to

capture a large portion of the variation in the spatial and temporal correlation

structures.

The spatial random process eij in (2.1) is further decomposed into two parts,

eij(s) = eij,G(s) + eij,L(s), (2.2)

where eij,G(s) is a smooth stochastic process representing the global dependency

that depicts the medium-to-long-range spatial dependence, eij,L(s) is a measure-

ment error representing local variability, and eij1,G(·) and eij2,L(·) are indepen-

dent for any j1 and j2. Because eij,L(s) are measurement errors, we assume

that eij1,L(s) and eij2,L(s′) are mutually independent whenever either j1 6= j2 or

s 6= s′. We also assume that, for any j1 6= j2, eij1,G(·) and eij2,G(·) are mutu-

ally independent. This assumption is equivalent to assuming that the random

effects bi(·) = (bi1(·), . . . , bipz(·))T explain all the within-subject correlation along

the longitudinal direction, which is a common assumption in linear mixed-effects

models. However, it does not exclude correlations along the functional direction

because eij,G(s) and eij,G(s′) are not required to be independent for s 6= s′.

Moreover, bi(s), eij,L(s), and eij,G(s) are mutually independent and are inde-

pendent and identical copies of SP(0,Σe,L), SP(0,Σb), and SP(0,Σe,G), respec-

tively, where SP(µ,Σ) denotes a stochastic process vector with mean function

(or function vector) µ(s) and covariance function (or function matrix) Σ(s, s′).

Moreover, Σb(s, s
′) is a pz × pz matrix with Σbkk′(s, s′) as the (k, k′)-th element.

The covariance structure of yi(s) = (yi1(s), . . . , yiTi(s))
T , denoted by Σy,i(s, s

′),

is

Σy,ij1j2(s, s
′) = zTij1Σb(s, s

′)zij2+Σe,G(s, s′)1(j1 = j2)+Σe,L(s, s′)1(j1 = j2, s = s′),

where 1(·) is an indicator function.
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2.2. Estimation procedure

Our primary goal is to find efficient procedures for estimations and infer-

ences for β(·). Inspired by novel ideas from the literature (Yao, Müller and Wang

(2005); Greven et al. (2010); Zipunnikov et al. (2014)), we develop a procedure to

estimate β(·), Σbkk′(·, ·), Σe,G(·, ·), Σe,L(·, ·), and the eigenvalue-eigenvector pairs

of Σbkk′(·, ·) and Σe,G(·, ·). Compared with the estimation methods of Greven

et al. (2010) and Zipunnikov et al. (2014), our method is an improvement over

the ordinary least squares methods used to estimate β(·) by incorporating spa-

tial and/or temporal smoothness in longitudinal functional data. Explicitly, we

incorporate the within-subject correlations between Ti longitudinal observations

to obtain statistical efficiency, as stated in Theorem 1.

Henceforth, we focus on µ(xij , β(s)) = xTijβ(s). However, the proposed esti-

mation procedure can be extended to a nonlinear mean function µ(xij , β(s)), as

discussed at the end of Section 2.2. There are four key steps in the estimation

procedure:

Step (I): Calculate an initial estimator β̂(s) of β(s) for each s ∈ S.

Step (II): Calculate estimates of the covariance operators Σbkk′(·, ·) and

Σe,G(·, ·) and their spectral decompositions, and obtain an estimate of

Σe,L(·, ·).

Step (III): Use the estimated covariance operators obtained from Step (II)

to improve the estimate in step (I) using a refined estimator of β(s), denoted

by β̃(s).

Step (IV): Obtain individual random-effect functions uij,G(s) = zTijbi(s) +

eij,G(s).

Step (I): We employ a local linear smoother (Fan and Gijbels (1996)) to

obtain an initial estimator of β(·) without incorporating the spatial-temporal

correlation. Specifically, we apply a Taylor expansion for β at s,

β(sm) ≈ β(s) + β̇(s)(sm − s) = A(s)sh1
(sm − s), (2.3)

where sh1
(sm−s) = (1, (sm−s)/h1)T and A(s) = [β(s) h1β̇(s)] is a px×2 matrix.

Here, β̇(s) = (β̇1(s), . . . , β̇px(s))T is a px × 1 vector and β̇l(s) = dβl(s)/ds for

l = 1, . . . , px. Let K(s) be a kernel function and Kh(s) = h−1K(s/h) be the

rescaled kernel function with bandwidth h. We estimate A(s) by minimizing the
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following weighted least squares function:

n∑
i=1

Ti∑
j=1

M∑
m=1

{yij(sm)− xTijA(s)sh1
(sm − s)}2Kh1

(sm − s). (2.4)

Let a⊗2 = aaT for any vector a and C ⊗ D be the Kronecker product of

two matrices C and D. For an M1 ×M2 matrix C = (cjl), denote vec(C) =

(c11, . . . , cM11, . . . , c1M2
, . . . , cM1M2

)T . Let Â(s) be the minimizer of (2.4). Then,

vec(Â(s)) = Σ(s, h1)−1
n∑
i=1

Ti∑
j=1

M∑
m=1

Kh1
(sm−s){sh1

(sm−s)⊗xij}yij(sm), (2.5)

where Σ(s, h1) =
∑n

i=1

∑Ti
j=1

∑M
m=1Kh1

(sm−s){sh1
(sm−s)⊗2⊗x⊗2

ij }. Thus, we

have β̂(s) = (β̂1(s), . . . , β̂px(s))T = {(1, 0)⊗ Ipx}vec(Â(s)), where Ipx is a px× px
identity matrix. In practice, we may select the bandwidth h1 by using leave-one-

curve-out cross-validation. Specifically, we pool the data from all n subjects and

select a bandwidth h1 by minimizing the cross-validation score given by

CV(h1) =

(
n∑
i=1

TiM

)−1 n∑
i=1

Ti∑
j=1

M∑
m=1

{yij(sm)− xTi β̂(sm, h1)(−i)}2, (2.6)

where β̂(s, h1)(−i) is a local linear estimator of β(s) with bandwidth h1, based

on all data excluding the observations for the i-th subject.

Step (II): We use a two-step procedure to estimate Σb(s, s
′) and Σe,G(s, s′).

Let Σe(s, s
′) be the covariance function of eij(s).

(S1) First, we use the least squares method to estimate Σb(sm, sm′) and Σe(sm,

sm′) for m,m′ = 1, . . . ,M . Let ûij(s) = yij(s) − xTij β̂(s). We estimate

Σb(sm, sm′) and Σe(sm, sm′) by minimizing the following least squares func-

tion:
n∑
i=1

∑
j1 6=j2

{ûij1(sm)ûij2(sm′)− zTij1Σb(sm, sm′)zij2}2

+

n∑
i=1

Ti∑
j=1

{ûij(sm)ûij(sm′)− zTijΣb(sm, sm′)zij − Σe(sm, sm′)}2, (2.7)

where
∑

j1 6=j2 denotes the sum over all j1, j2 = 1, . . . , Ti, such that j1 6= j2.

The least squares method in (2.7) has been considered in the literature (Di

et al. (2009); Greven et al. (2010); Cederbaum et al. (2016)), where previous

authors used penalized splines smoothing instead of a local linear regression.

Let Σ̂LS
b (sm, sm′) and Σ̂LS

e (sm, sm′) be the minimizers of (2.7). Then, we
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have vec(Σ̂LS
b (sm, sm′)) = G{u(sm, sm′)−Σ̂LS

e (sm, sm′)g} and Σ̂LS
e (sm, sm′)

= (1 − a2g
T g)−1{v(sm, sm′) − a2g

TGu(sm, sm′)}, where a2 = (
∑n

i=1 Ti)
−1,

g =
∑n

i=1

∑Ti
j=1 zij ⊗ zij , G = {

∑n
i=1

∑Ti
j1,j2

(zij1 ⊗ zij2)⊗2}−1,

v(sm, sm′) = a2

n∑
i=1

Ti∑
j=1

ûij(sm)ûij(sm′), and

u(sm, sm′) =

n∑
i=1

Ti∑
j1,j2=1

ûij1(sm)ûij2(sm′)(zij1 ⊗ zij2).

(S2) Next, for each (k, k′), with 1 ≤ k, k′ ≤ pz, we apply a local constant

smoother to Σ̂LS
bkk′(sm, sm′) for sm, sm′ ∈ S × S and m,m′ = 1, . . . ,M.

This provides the final estimate for Σb(s, s
′). Similarly, we can obtain an

estimate of Σe,G(s, s′) using a local constant smoother, where the diago-

nal elements of Σ̂LS
e (sm, sm′) (i.e., Σ̂LS

e (sm, sm),m = 1, . . .M) are excluded

from the estimation of Σe,G(s, s′).

Specifically, we estimate Σbkk′(s, s′) and Σe,G(s, s′) by minimizing the fol-

lowing weighted least squares functions:

minΣbkk′ (s,s′)

M∑
m,m′=1

{Σ̂LS
bkk′(sm, sm′)−Σbkk′(s, s′)}2Kh2

(sm−s)Kh2
(sm′−s′),

minΣe,G(s,s′)

∑
m 6=m′

{Σ̂LS
e (sm, sm′)− Σe,G(s, s′)}2Kh3

(sm − s)Kh3
(sm′ − s′).

(2.8)

The bandwidths h2 and h3 are selected using the leave-one-curve-out cross-

validation method.

Finally, we perform the spectral decomposition of Σ̂bkk′(s, s′) and Σ̂e,G(s, s′),

and then calculate Σ̂e,L(sm, sm) using

Σ̂e,L(sm, sm) = {Σ̂LS
e (sm, sm)−Σ̂e,G(sm, sm)}1(Σ̂LS

e (sm, sm)−Σ̂e,G(sm, sm) > 0).

Step (III): We incorporate the estimated covariance function to improve

the local linear regression estimate of β(·). Similar, but different ideas have been

used to iteratively improve the mean estimation (Cederbaum et al. (2016); Di,

Crainiceanu and Jank (2014)). Letting Σyi,G(s, s′) be the covariance function of

ui,G(s) = (ui1,G(s), . . . , uiTi,G(s))T , we obtain its estimator Σ̂yi,G(s, s′) based on

Σ̂b(s, s
′) and Σ̂e,G(s, s′) from step (II). Let Xi = (xi1 . . . xiTi) be a px×Ti matrix.
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We estimate A(s) by minimizing the following weighted least squares function:

n∑
i=1

M∑
m=1

[{yi(sm)−XT
i A(s)shβ(sm−s)}T Σ̂yi,G(sm, sm)−1/2]⊗2Khβ(sm−s), (2.9)

where hβ is a bandwidth.

Let Ã(s) be the minimizer of (2.9). Then, we have

vec(Ã(s))

= Σ̃(s, hβ)−1
n∑
i=1

M∑
m=1

Khβ(sm − s){shβ(sm − s)⊗Xi}{Σ̂yi,G(sm, sm)}−1yi(sm),

where Σ̃(s, hβ) =
∑n

i=1

∑M
m=1Khβ(sm−s)[{shβ(sm−s)⊗Xi}Σ̂yi,G(sm, sm)−1/2]⊗2.

We have

β̃(s) = (β̃1(s), . . . , β̃px(s))T = {(1, 0)⊗ Ipx}vec(Ã(s)). (2.10)

To select the bandwidth hβ , we pool the data from all n subjects and select

the bandwidth hβ that minimizes CV(hβ) = (nM)−1
∑n

i=1

∑M
m=1[{yi(sm) −

XT
i β̃(sm, hβ)(−i)}T Σ̂yi,G(sm, sm)−1/2]⊗2. Here, β̃(s, hβ)(−i) is the local linear es-

timator of β(s) with the bandwidth hβ , based on all data excluding the observa-

tions for the i-th subject.

Step (IV): We use the local linear regression method to smooth {ũij(sm) =

yij(sm) − xTij β̃(sm)}Mm=1, and then obtain an estimate of uij,G(s) = zTijbi(s) +

eij,G(s) for each i and j. Because the local linear regression is a standard method

(Fan and Gijbels (1996); Wand and Jones (1995)), we omit the detailed steps

for the approximation of uij,G(s). Furthermore, to recover the subject-specific

random effect bi(s), we can use the best linear unbiased predictors. These are

commonly employed in linear mixed-effects models to estimate bi(s) at each point

s and then smooth over s.

Remark 1. To extend the estimation procedure to nonlinear mean functions

µ(xij , β(s)), such as exponential functions or power functions, we need to modify

steps (I) and (III) by applying a Taylor expansion for µ(xij , β(sm)) at s, as

follows:

µ(xij , β(sm)) ≈ µ(xij , β(s)) + µ̇(xij , β(s))β̇(s)(sm − s) = µij(s)sh1
(sm − s),

where µ̇(xij , β(s)) = ∂µ(xij , β(s))/∂β(s) and µij(s) = (µ(xij , β(s)), µ̇(xij ,

β(s))β̇(s)h1). Then, we estimate A(s) by minimizing the following nonlinear

weighted least squares function: Ln(A(s)) =
∑n

i=1

∑Ti
j=1

∑M
m=1{yij(sm)− µij(s)

sh1
(sm − s)}2Kh1

(sm − s). In this general case, Â(s) does not have an explicit

form, but it can be estimated using optimization algorithms, such as the Gaus-
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sian Newton algorithm or the Levenberg–Marquardt algorithm (Seber and Wild

(1989)). Similarly to Ln(A(s)), we can modify (2.9) in step (III).

2.3. Computational complexity

The computational complexity of our estimation procedure is extremely im-

portant for high-dimensional neuroimaging data, which usually contain a large

number of locations, especially when they correspond to the voxel locations of

an image. For instance, M can have a magnitude of tens of thousands. For the

linear mean function, the computational complexity of our estimation procedure

in Section 2.2 is O(nh1T0M
2 + nT0(R0M)2 + nT0hsM

2). If we use leave-one-out

cross-validation, then the computational effort increases by a factor of n.

We first discuss steps (I) and (III). In step (I), we need to calculate the

local linear estimator of β(sm) at each grid point sm across S0 = {sm,m =

1, . . . ,M}. The computational complexity of step (I) is almost the same as that

of the standard pointwise linear regression analysis. An alternative is to fit a

linear mixed-effect model at each grid point sm using the maximum likelihood.

However, this step is not necessary because it only applies to an initial estimate,

which is then improved in step (III).

For step (III), we only need to calculate the weighted least squares estima-

tors β̃(sm) in (2.10) across sm ∈ S0, which is computationally straightforward.

The computational complexity is O(nT0h1M) for each sm; thus, the overall com-

plexity is O(nT0h1M
2).

To improve the computational efficiency, we standardize all covariates and

then use a single tuning parameter h1 to smooth all coefficient functions βj(s).

This strategy works best for coefficient functions that exhibit similar degrees of

smoothness. Thus, it may be necessary to use different tuning parameters for

different coefficient functions (Fan and Zhang (2008)) when the functions have

different levels of smoothness.

Next, we discuss the computational complexity of step (II). First, estimating

ûij(s) is computationally fast for all possible (i, j). Second, we do not need to

calculate Σb(s, s
′) and Σe,G(s, s′) for all possible (s, s′). As discussed in step

(III), we only need the estimates of Σb(sm, sm) and Σe,G(sm, sm) for all sm ∈ S0.

Therefore, in step (S2), we focus on solving Σb(sm, sm) and Σe,G(sm, sm), with

all (sm, sm′) in {(sm, sm′) ∈ S0 × S0 : |sm − sm′ | ≤ R0}, where R0 is a positive

scalar. In this case, step (II) is computationally feasible even for large M when

R0 is relatively small. The computational complexity is at most O(nT0(R0M)2)

for (sm, sm′) ∈ S0 × S0.
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A major computational hurdle is the calculation of Σb(s, s
′) and Σe,G(s, s′)

for all possible (s, s′). If M is relatively large, it can be computationally chal-

lenging to estimate Σb(sm, s
′
m) and Σe,G(sm, s

′
m) across all possible (sm, s

′
m) ∈

S0 × S0. We take two different approaches. The first estimates Σb(sm, s
′
m) and

Σe,G(sm, s
′
m) for a small subset of S0 × S0. Specifically, we bin the data to re-

duce the number of grid points to a much smaller number M0 << M . Then, we

estimate Σb(s, s
′) and Σe,G(s, s′) on those M0 points and interpolate the results

elsewhere. The second approach applies the approaches proposed by Zipunnikov

et al. (2014) and Xiao et al. (2016) to estimate Σb(s, s
′) and Σe,G(s, s′). These

methods include a fast implementation of the sandwich smoother for covariance

smoothing, and a two-step procedure where we first obtain the singular value

decomposition of the data matrix and then smooth the eigenvectors.

Note that with regard to the computational complexity of step (IV), similarly

to step (II), smoothing uij,P (s) for all possible (i, j) is computationally light. The

overall computational complexity is approximately O(nT0hsM
2), where hs is the

bandwidth of the local linear method.

Remark 2. We discuss two possible extensions of (2.2). The first is to extend

the estimation procedure from S = [0, 1] to a D-dimensional compact subset of

a Euclidean space. For this, we only need to modify steps (I) and (III) by chang-

ing β̇l(s) and sm − s into D× 1 vectors. The second extension is to assume that

eij1,G(s) and eij2,G(s), for j1 6= j2, are dependent and have a separable covariance

structure, cov(eij1,G(s), eij2,G(s)) = Σe,G(s, s′)ρ(tij1 , tij2 ; θ). Here, ρ(tij1 , tij2 ; θ) is

usually a prespecified correlation function of unknown parameter θ, such as the

exponential correlation model with ρ(tij1 , tij2 ; θ) = exp(−θ|tij1 − tij2 |) (Diggle

et al. (2002); Fitzmaurice, Laird and Ware (2004)). However, we found empiri-

cally that using of the correlation function significantly increases the computa-

tional complexity, but does not yield much of an efficiency gain when estimating

β(·).

3. Theoretical Results

We systematically investigate the asymptotic properties of all estimators

proposed in Section 2.2 and investigate several inference procedures based on the

asymptotic properties. For any smooth function f(s), we use the notation ḟ(s) =

df(s)/ds and f̈(s) = d2f(s)/ds2. We use uq =
∫
K(v)vqdv and vq =

∫
Kq(v)dv,

for q = 1 and 2, and || · ||2 for the Euclidean norm.
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3.1. Assumptions

Throughout the paper, the following assumptions are used to facilitate the

technical details. Some of the assumptions might be weakened, but the current

version simplifies the proof.

(A.1) The grid points in S0 = {sm,m = 1, . . . ,M} are independently and iden-

tically distributed with a density function f(s), which has a continuous second-

order derivative and bounded support S. Moreover, for some fl > 0 and fu <∞,

fl < f(s) < fu for all s ∈ S.

(A.1b) The grid points S0 = {sm,m = 1, . . . ,M} are prefixed according to a

design density function f(s) such that
∫ sm

0 f(s)ds = m/M for m ≥ 1. Here,

f(s) has a continuous second-order derivative and bounded support [0, 1], and

fl < f(s) < fu for all s ∈ [0, 1], for some positive fl > 0 and fu <∞.

(A.2) The covariate vectors xij = (xij1, . . . , xijpx)T and zij = zi(tij) = (zij1, . . . ,

zijpz)
T may or may not be time-dependent. Nevertheless, we use the notation

xijl = xil(tij) for 1 ≤ l ≤ px, and zijl = zil(tij) for 1 ≤ l ≤ pz. We assume that

supt∈T |xil(t)| and supt∈T |zil(t)| are almost surely bounded, where T is a finite

time domain.

(A.3) The kernel function K(t) is a symmetric density function with compact

support [−1, 1], and is Lipschitz continuous.

(A.4) All components of β(s) have continuous second-order derivatives on S.

(A.5) With probability one, the sample paths of eij,G(·) and bi(·) are Lipschitz

continuous.

(A.6) maxi Ti < T0, n,M →∞, h→ 0, Mh→∞ and nah→∞ for some a > 0,

where T0 is a fixed constant, and h can be h1, hβ , h2, or h3.

(A.7) E{sups∈[0,1] |eij,G(s)|2q}+ E{sups∈S0
|eij,L(s)|2q} <∞, for some q > 2.

(A.8) E{sups∈[0,1] ‖bi(s)‖
2q
2 } <∞, for some q > 2.

(A.9) E{XiΣyi,G(s, s)−1Σyi,G(s, s′)Σyi,G(s′, s′)−1XT
i } exists for any (s, s′).

(A.10) There is a positive fixed integer E <∞ such that the eigenvalues of Σe,G

satisfy λe1 > · · · > λeE > λ, for some constant λ > 0. There is an analogous case

for the eigenvalues of Σb.

Remark 3. Our theoretical results hold for both random and fixed designs. As-

sumptions (A.1) is a standard condition on random design points s, whereas

(A.1b) applies to fixed designs. Assumption (A.2) is a condition on the bound-

edness of the covariate vectors. The bounded support restriction on K(·) in

assumption (A.3) is not essential and can be removed if we include restrictions

on the tail of K(·). Assumptions (A.4)–(A.5) are smoothness conditions on the



2018 ZHU ET AL.

coefficient functions, random functions, and their covariances. The smoothness

condition in assumption (A.5) can be relaxed with substantial additional effort

(Zhu, Li and Kong (2012)). Assumption (A.6) is a weak condition on n, M ,

and h, where h1 is the bandwidth used in Step (I) for the initial estimate of

β. Assumptions (A.7) and (A.8) require uniform bounds on certain high-order

moments of the random functions, which are standard assumptions in the liter-

ature (Zhu, Li and Kong (2012); Li and Hsing (2010)). Assumption (A.10) on

the simple multiplicity of the first E eigenvalues is only needed to investigate the

asymptotic properties of the eigenfunctions. It is also a standard assumption in

the literature.

3.2. Asymptotics of estimation procedure

We state the following theorems, for which detailed proofs can be found in

the Supplementary Material. The first theorem tackles the theoretical properties

of {β̃(s) : s ∈ S} obtained from step (III).

Theorem 1. Under (A.1) (or (A.1b)) and (A.2)–(A.9), we have the following

results:

(i) The asymptotic bias and covariance of β̃(s) for s ∈ (0, 1) are

Bias(β̃(s)|S) =
1

2
β̈(s)h2

βu2{1 + o(1)}, (3.1)

var(β̃(s)|S) = n−1

{
n−1

n∑
i=1

E(Xi{Σyi,G(s, s)}−1XT
i )

}−1

{1 + o(1)}.

(ii) If logM = o(Mhβ) and there exists γn → ∞, with n1/2γ1−q
n = o(1) and

n−1/2γn logM = o(1) for some q > 2 that satisfies (A.7), then as n → ∞,√
n{β̃(s) − E(β̃(s)|S)} converges weakly to a centered Gaussian process G(·) ∼
G(0, R), where R(s, s′) = {Q∗(s, s)}−1Q∗(s, s′){Q∗(s′, s′)}−1, with Q∗(s, s′) =

limn→∞ n
−1
∑n

i=1E(Xi{Σyi,G(s, s)}−1Σyi,G(s, s′){Σyi,G(s′, s′)}−1XT
i ).

Theorem 1 (i) provides a theoretical justification for steps (I)–(III) for the

refined estimator β̃(s). It has several important implications. First, the estimator

β̂(s) obtained in step (I) has the asymptotic covariance

n−1

{
n−1

n∑
i=1

E(XiX
T
i )

}−1

n−1
n∑
i=1

E(XiΣyi,G(s, s)XT
i )

{
n−1

n∑
i=1

E(XiX
T
i )

}−1

(details can be found in the proof of Theorem 1), which is larger than that of

β̃(s). The improvement by the refined estimator β̃(s) is the result of incorporat-

ing within-subject correlations between Ti longitudinal observations, and can lead
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to a substantial efficiency gain when estimating {β(s) : s ∈ S}. Second, if we use

the maximum likelihood (or the restricted maximum likelihood) estimators for

each observation at sm, the asymptotic covariance, given by {
∑n

i=1E(Xi{Σyi(sm,

sm)}−1XT
i )}−1, is larger than that of β̃(sm). The improvement achieved by β̃(sm)

is the result of incorporating the smoothness in the functional data. Therefore,

we can construct more efficient estimators of β(s) by simultaneously accounting

for the smoothness in the functional data and the within-subject covariance, be-

cause these functions are measured repeatedly and longitudinally. Moreover, the

asymptotic bias of β̃(s) is of order h2
β , which is similar to that of a nonparamet-

ric regression for independent responses. In contrast, the asymptotic variance of

β̃(s) is of order n−1.

Note that the efficiency gain discussed above does not conflict with the re-

sults of Lin and Carroll (2001), who show that the most efficient estimator of

the nonparametric function using kernel smoothing is achieved by ignoring the

dependence structure among the functional observations. In our setting, this

means that kernel smoothing in the direction of s should be implemented as

in Step (I), that is, by ignoring the dependence structure among functional ob-

servations. However, in the FMEM setting of longitudinal functional data, it

is possible to improve the β estimate as we did in Step (III) by incorporating

the covariance structure Σyi,G(s, s). The analogy here is with the standard linear

mixed-effects model with longitudinal data only (i.e., no functional components),

because the FMEM is an extension of the linear mixed-effects model. Clearly, in

a linear mixed-effects model, we need to perform a weighted least squares pro-

cedure to improve the efficiency of the β estimator. This was done in Step (III)

to refine the β estimator using a weighted least squares estimator with weights

from Σyi,G(s, s). Note that we could implement Step (III) only after we obtain-

ing a covariance estimate in Step (II), which relies on an initial unweighted least

squares estimator of β in Step (I). This explains why three steps are necessary

for the estimation of β.

Theorem 1 (ii) establishes the weak convergence of the centered estimator

β̃(s) − E(β̃(s)), which is essential to the statistical inference for β(s) in Section

3.3. Let h = nα, M = nβ , and γn = nγ . Anything that satisfies α < 0,

α + β > 0, and −1/(2(1− q)) < γ < 1/2 will satisfy the assumptions, where

q > 2 is a constant that satisfies the moment condition given in (A.7).

The second theorem provides a theoretical analysis of the estimators of

Σe,G(s, s′) obtained from step (II). Similar results can be obtained for Σb,kk′(s, s′),

1 ≤ k, k′ ≤ pz, and are provided in the online Supplementary Material.
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Theorem 2. Under (A.1) (or (A.1b)), (A.2)–(A.8), and (A.10), if h1 = O((log n/

n)1/4) and h3 = O(log n/n)1/4, then we have the following results:

(i) sups,s′ |Σ̂e,G(s, s′)− Σe,G(s, s′)| = Op((log n/n)1/2);

(ii) For 1 ≤ l ≤ E, {
∫ 1

0 |ψ̂
e
l (s)− ψel (s)|2ds}1/2 = Op((log n/n)1/2);

(iii) For 1 ≤ l ≤ E, |λ̂el − λel | = Op((log n/n)1/2).

Theorem 2 characterizes the uniform convergence rates of Σ̂e,G(s, s′) and the

associated eigenvalues and eigenfunctions. It can be regarded as an extension

of Theorems 3.3–3.6 of Li and Hsing (2010), who established the strong uniform

convergence rates of these estimates under a simpler model.

3.3. Asymptotics of inference procedure

In this subsection, we derive the asymptotic theory of a global test for testing

linear hypotheses of β(·) and the theory for the SCB for each component of β(·).
These are key tools for statistical inferences for the coefficient functions.

We first consider linear hypotheses for β(s),

H0 : Cβ(s) = β0(s) for all s vs. H1 : Cβ(s) 6= β0(s) for some s, (3.2)

where C is a q × px matrix with rank q, and β0(s) is a given q × 1 vector of

functions. We define a global test statistic Sn as

Sn =

∫ 1

0
d(s)T

[
C

{
n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i

}−1

CT

]−1

d(s)ds, (3.3)

where d(s) = Cβ̃(s) − bias(Cβ̃(s)) − β0(s). For simplicity and computational

efficiency, we do not consider estimating the bias of Cβ̃(s) because our simulation

results show that it is negligible. It follows from Theorem 1 that under H0, we

have [
C

{
n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i

}−1

CT

]−1/2

d(s)⇒ GC(s),

where ⇒ denotes weak convergence and GC(·) is a centered Gaussian process

with covariance function {CQ∗(s, s)CT }−1/2R(s, s′){CQ∗(s′, s′)CT }−1/2. Thus,

we can derive the asymptotic distribution of Sn under the null hypothesis and

its asymptotic power under local alternative hypotheses.

Theorem 3. Under assumptions (A.1)–(A.9), if logM = o(Mhβ) and there

exists γn → ∞, with n1/2γ1−q
n = o(1) and n−1/2γn logM = o(1) for some q > 2

that satisfies (A.7), we have the following results:

(i) Sn ⇒
∫ 1

0 GC(s)TGC(s)ds under the null hypothesis H0,
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(ii) P (Sn ≥ Sn,α|H1n)
n→∞−→ 1 for a sequence of local alternatives H1n :

Cβ(s)−β0(s) = n−τ/2d(s), where τ is any scalar in [0, 1), Sn,α is the upper 100α

percentile of Sn under H0, and 0 <
∫
S ||d(s)||2ds <∞.

Theorem 3 can be regarded as a generalization of Theorem 7 of Zhang

and Chen (2007) and Theorem 2 of Zhang (2011). The test statistic Sn has

a weighted χ2-type asymptotic distribution under H0. Zhang and Chen (2007)

(after Theorem 7) discuss the estimation of the null distribution of Sn using a

χ2-approximation and bootstrapping, which also applies to the case we consider

here. It is easy to see that part (ii) still holds when the critical value Sn,α is

replaced by some estimated critical value.

Next, we construct SCBs for the coefficient functions, which can then be used

for statistical inferences for FMEM. For a given confidence level α, we construct

a SCB for each βl(s), 1 ≤ l ≤ px, as follows:

P (β̂L,αl (s) < βl(s) < β̂U,αl (s) for all s ∈ [0, 1]) = 1− α, (3.4)

where β̂L,αl (s) and β̂U,αl (s) are the lower and upper limits, respectively, of the

SCB. Specifically, a 1− α SCB for βl(s) is:(
β̂l(s)− bias(β̂l(s))−

Cl(α)√
n
, β̂l(s)− bias(β̂l(s)) +

Cl(α)√
n

)
, (3.5)

where Cl(α) is the critical value of sups∈S |G(s)| associated with β̂l(s) in Theorem

1.

To carry out the inference procedure developed above, we approximate both

Cl(α) and Sn,α. Because the asymptotic distribution of Sn is quite complicated

and it is difficult to directly approximate the percentiles of Sn under the null

hypothesis, we use a wild bootstrap method to approximate the critical values of

Sn. The wild bootstrap idea has been used by Zhu, Li and Kong (2012); details

are presented in the Appendix. Let G(q)(·) be the bootstrapped samples for q =

1, . . . , Q, where Q is the total number of wild bootstrap samples. The following

theorem lays a foundation for the wild bootstrap method used to construct a

SCB of β(s) and to approximate the null distribution of Sn.

Theorem 4. Under assumptions (A.1)–(A.9) and given data, the bootstrapped

process G(q)(s) converges in distribution to G(0, R), which is defined in part (ii)

of Theorem 1, as n→∞.

4. Simulation Studies

In this section, we present four sets of simulations to examine the finite-
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sample performance of the proposed estimation and inference procedures. In

the first two simulations, we consider two competing methods: wavelet-based

functional mixed models (WFMM) (Morris and Carroll (2006)) and functional

additive mixed models (FAMM) (Scheipl, Staicu and Greven (2015)). All com-

putations for these numerical examples were carried out on a computer with

Windows 7, a 3.60 GHz quard-core Intel Core i7 CPU, and 16 GB DDR3 1,066

MHz memory. The computation time for FMEMs can be reduced further by

using other computer languages, such as C++.

All simulated data sets were generated from the following model:

yij(s) = xTijβ(s) + zTijbi(s) + eij,G(s) + eij,L(s),

bi(s) =

2∑
k=1

bikψ
b
k(s), eij,G(s) =

2∑
k=1

eijkψ
e
k(s), (4.1)

where xij = (1, xij,1, xij,2)T , zij = (1, xij,2), bik ∼ N(0, λbk), eijk ∼ N(0, λek), and

eij,L(s) ∼ N(0,Σe,L), for i = 1, . . . , n. Each subject was observed up to three

times in this sample, among which 5%, 30%, and 65% have only one, two, and all

three observations, respectively. We set sm = (m − 0.5)/M . The first covariate

xij,1 was simulated from N(0, 1) and fixed across time for subject i. The second

covariate xij,2 was assumed to vary over time, where the increments xij,2−xi(j−1),2

were independently sampled from a uniform distribution on [0, 1]. Both covariates

were standardized to have a zero mean and unit variance. Moreover, we set

λbk = λek = 21−k for k = 1, 2, and Σe,L = 0.01. The functional coefficients and

eigenfunctions were selected as

β1(s) = s2, β2(s) = (1− s)2, β3(s) = 4s(1− s)− 0.4,

ψb1(s)T = (ψb11(s), ψb12(s)) = (sin(2πs), cos(2πs)), ψe1(s) =
√

3(2s− 1),

ψb2(s)T = (ψb21(s), ψb22(s)) =

(
1√
2
, sin(2πs)

)
, ψe2(s) =

√
5(6s2 − 6s+ 1).

We fitted an FMEM, WFMM, and FAMM to each simulated data set and

calculated all unknown quantities. The average computation times per simulated

data set with n = 100 and M = 40 for the FMEM, WFMM, and FAMM are,

respectively, 19.6 seconds, 2.32 seconds, and 1.15 hours.

Simulation 1. The first simulation evaluates the performance of the estimates

for βj(·). We set n = 100 and M = 40 and 60, and then simulated 1,000 data sets

from model (4.1), as described above. Table 1 summarizes the mean integrated

absolute error (MIAE) and mean integrated squared error (MISE) of all estimated

coefficient functions, based on 1,000 simulations. The results in Table 1 indicate
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Table 1. Simulation 1. MIAE×10−2 and MISE ×10−2 and their standard deviations
×10−2. MIAE denotes the mean integrated absolute error and MISE denotes the mean
integrated square error. Standard deviations are shown in parentheses. For each case,
100 simulated data sets were used.

Method MIAE×10−2 MISE×10−2

M β1(·) β2(·) β3(·) β1(·) β2(·) β3(·)
WFMM 40 1.63 (0.73) 1.67 (0.77) 1.88 (0.78) 0.04 (0.04) 0.05 (0.04) 0.06 (0.04)

60 1.37 (0.61) 1.39 (0.63) 1.55 (0.64) 0.03 (0.03) 0.03 (0.03) 0.04 (0.03)
FAMM 40 3.36 (2.11) 2.84 (1.88) 4.26 (3.27) 0.23 (0.56) 0.16 (0.35) 0.38 (0.77)

60 3.03 (1.93) 2.51 (1.58) 3.95 (3.29) 0.18 (0.36) 0.13 (0.21) 0.34 (0.95)
FMEM 40 1.57 (0.72) 1.44 (0.65) 1.69 (0.70) 0.04 (0.03) 0.03 (0.03) 0.05 (0.03)

60 1.29 (0.60) 1.23 (0.55) 1.37 (0.53) 0.03 (0.03) 0.03 (0.01) 0.03 (0.03)

ψ ψ ψ ψ

Figure 1. Simulations 2: the estimates of the first two eigenfunctions ψb
l,k(·), for l, k =

1, 2, and their pointwise confidence intervals. The red solid, green dashed, and blue solid,
curves are, respectively, the true eigenfunctions, the pointwise means, and the pointwise
5th and 95th percentiles of the estimated eigenfunctions based on 1,000 replications.

satisfactory performance of our estimators because all MIAE and MISE values

are quite small. As expected, the errors all decrease as the number of grid points

increases. Moreover, the FMEM outperforms the WFMM and FAMM in terms

of both the MIAE and the MISE. However, this comparison may be unfair to the

WFMM, because it is designed for spiky data, not intrinsically smooth functional

data.

Simulation 2. The second simulation evaluates the accuracy of the estima-
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ψ ψ

Figure 2. Simulations 2: the estimates of the first two eigenfunctions ψe
k, k = 1, 2, and

their pointwise confidence intervals. The red solid, green dashed, and blue solid, curves
are, respectively, the true eigenfunctions, the pointwise means and the pointwise 5th and
95th percentiles of the estimated eigenfunctions based on 1,000 replications.

tors of the eigenvalues and eigenfunctions of the covariance functions Σb(., .),

Σe,G(., .), and Σe,L. We used the same parameter values as those in Simulation

1. We set c = 0.1 and n = 50 and 100, and generated 1,000 data sets for each

combination. The accuracy of all of the estimators improves with the sample

size. The estimated eigenfunctions are plotted in Figures 1 and 2, in which the

mean and pointwise 5th and 95th percentiles of the estimated functions are plot-

ted with the true eigenfunctions. Figure 3 shows the boxplots for the estimates

of the eigenvalues and σ2, which are quite close to their true values.

Simulation 3. The third simulation evaluates the type-I error rate and the

power of the global test statistics, Sn. We are interested in testing H0 : β3(s) = 0,

for all s, against H1 : β3(s) 6= 0, for some s. All parameters in the FMEM were

specified as above, except that β3(s) was set as 4cs(1 − s) − 0.4c. Here we first

set c = 0 to assess the type-I error rate of Sn, and then set c = 0.04, 0.06, 0.08,

and 0.1 to examine the power of Sn at different effect sizes. Furthermore, we

set n = 50 and 100 and used 1,000 replications to estimate the rejection rate of
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λ λ

λ λ

×
σ

Figure 3. Simulation 2: boxplots of the differences between the estimated eigenvalues λ̂bk
and λ̂ek, for k = 1, 2, and their true values (left panel), and those between the estimated
σ2 and its true values (right panel) based on 1,000 replications.

α α

Figure 4. Simulation 3: Power curves as functions of c. The rejection rates of Sn using
the wild bootstrap method are calculated at five different values of the effect size c
(c = 0, 0.04, 0.06, 0.08 and 0.1) for two sample sizes (n = 50 and 100) at the 0.01 (a) and
0.05 (b) significance levels based on 1,000 replications.

Sn. The p-value of Sn was approximated using the wild bootstrap method with

Q = 500 bootstrap samples.

Fig. 4 presents the rejection rates of Sn across all effect sizes at the two
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Table 2. Autism spectrum disorder data analysis: demographic information for partici-
pants.

Visit Number of subjects Age: mean(std) (years) Age: range (years)
1 58 10.53 (5.96) [0, 18]
2 148 12.25 (4.62) [0, 21]
3 160 12.29 (5.14) [1, 22]
4 19 1.84 (1.42) [1, 6]
5 7 1.57 (0.79) [1, 3]
6 10 2.70 (0.67) [2, 4]
7 6 3.17 (0.75) [2, 4]
8 5 3.40 (1.14) [2, 5]
9 3 3.67 (1.15) [3, 5]

Gender Male/Female 126/127

significance levels α = 0.05 and 0.01. The type-I error rates are well maintained

at the two significance levels for n = 100. Specifically, at α = 0.05 (or 0.01),

the type I error rates of Sn are 0.066 (or 0.014) for n = 50 and 0.055 (or 0.012)

for n = 100. As expected, the statistical power for rejecting the null hypothesis

increases with the sample size, the effect size c, and the significance level.

5. Data Analysis

The data set was taken from the national database for autism research

(NDAR) (http://ndar.nih.gov/), an NIH-funded research data repository that

aims to accelerate progress in autism spectrum disorder (ASD) research through

data sharing, data harmonization, and the reporting of research results. A total of

416 MRI scans are selected for 253 normal children (126 males and 127 females),

following the standard protocol. Table 3 contains demographic information and

the distribution of scan availability.

The diffusion tensor imaging (DTI) data were processed by two key steps,

including a weighted least squares estimation method (Basser, Mattiello and

LeBihan (1994)) to construct the diffusion tensors, and a pipeline for tract-based

spatial statistics (TBSS) (Smith et al. (2006)) to register DTIs from multiple

subjects to create a mean image and a mean skeleton. Specifically, maps of frac-

tional anisotropy (FA) were computed for all subjects from the DTI after Eddy

current correction and automatic brain extraction using the FMRIB software li-

brary. FA maps were then fed into the TBSS tool, which is also part of the FSL.

In the TBSS analysis, the FA data for all subjects were aligned into a common

space by a nonlinear registration method. Then, the the mean FA images were

http://ndar.nih.gov/
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(a)

−

−

−

−

−

Figure 5. Data analysis: (a) 3D visualization of the corpus callosum in the sagittal
view, with the FA skeleton template overlaid. (b) and (c) FAs along the corpus callosum
obtained from two selected subjects A (b) and B (c) with two or three visits. Different
visits for the same subjects are indicated by color. (d) and (e) FA values varying by age
at selected locations: arclength = 18.66 (d) and arclength = 31.49 (e) along the corpus
callosum for all 253 subjects, with green and blue lines corresponding to subjects A and
B, respectively. Red dashed lines represent the fitted lines for the male group.
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Figure 6. 95% simultaneous confidence bands for the coefficient functions. The solid
curves are the estimated coefficient functions and the dashed curves are the 95% simul-
taneous confidence bands. The thin horizontal line is the line crossing the origin (0,
0).

created and thinned to obtain a mean FA skeleton, which represents the centers

of all white matter tracts common to the group. Subsequently, each subject’s

aligned FA data sets were projected onto this skeleton. Although several DTI

fiber tracts were tracked, we chose to focus on the corpus callosum (see Fig. 5

(a)) to illustrate the applicability of our method in assessing the effects of covari-

ates of interest, such as patient age and gender. In this case, there are M = 45

grid points along each fiber tract. The FA values were extracted at each grid

point multiple times (one to nine times) along the selected fiber tracts for all 253

infants.

The goal of the data analysis is to delineate the development of skeleton

diffusion properties over time. We fitted FMEM (2.1) and (2.2) with xi =

(1,Gender, log(Age), {log(Age)}2)T and zi = (1, log(Age))T to the selected FA

tracts obtained from all 253 subjects. The coefficient functions associated with

log(Age) and {log(Age)}2 were included to detect age effects in the FA changes.

In addition, as shown in Fig. 5, there are random subject-to-subject variations

in the FA measures at each grid point along this tract, as well as in the age effect

on FA measures. We included random intercept and age effects in the model to

account for the inter-subject variations.

We applied the FMEM, WFMM, and FAMM to this data set and estimated

all unknown quantities, but only discuss the results based on the FMEM here.

The results for the WFMM and FAMM are provided in the Supplementary Ma-

terial. The computation times for the FMEM, WFMM, and FAMM are, respec-

tively, 55.8 seconds, 7.9 seconds, and 6.078 hours.

For the FMEM, we constructed the estimated functional coefficients of β(s)
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and their 95% SCBs, along with the global test statistic Sn, to test for the sig-

nificance of the gender and age effects on the FA values. The p-value of Sn was

approximated using the resampling method with Q = 1, 000 replications. Fig-

ure 6 presents the estimated coefficient functions corresponding to the intercept,

gender, log(Age), and {log(Age)}2, along with their 95% SCBs. The intercept

function describes the overall trend of the FA along the corpus callosum. In gen-

eral, the central regions of the corpus callosum show smaller FA values, whereas

the peripheral regions show larger FA values. In Figure 6, the SCB contains

the horizontal line crossing (0, 0) for the gender effect, whereas the horizontal

line is out of the 95% SCB for the age effect, indicating a significant age effect.

This agrees with our analysis results based on Sn for the gender and age ef-

fects. We obtained p-values of 0.215 and < 0.0001 for the gender and age effects,

respectively, indicating a significant age effect but no gender effect.

Supplementary materials

available in the attached file include the proofs of Lemmas 1–13, Theorems

1–3, and Corollary 1.
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Appendix

Wild bootstrap method for critical values of Sn

We have shown that the asymptotic distribution of Sn is very complicated

hence it is difficult to directly approximate the percentiles of Sn under the null

hypothesis. Instead, we propose using a wild bootstrap method to obtain critical

values of Sn. The wild bootstrap consists of the following three steps.

Step 1. Fit (2.1) and (2.2) under the null hypothesis H0, which yields β̂∗(sm),

û∗ij,G(sm) and ε̂∗ij(sm) = yij(sm) − xTij β̂
∗(sm) − û∗ij,G(sm) for all i, j and m =

1, . . . ,M .
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Step 2. Generate a random sample τ
(q)
i and τij(sm)(q) from a N(0, 1) gener-

ator for all i, j and m = 1, . . . ,M and then construct

ŷij(sm)(q) = xTij β̂
∗(sm) + τ

(q)
i û∗ij,G(sm) + τij(sm)(q)ε̂∗ij(sm).

Then, based on ŷij(sm)(q), we recalculate β̂(s)(q), and d(s)(q) = Cβ̂(s)(q)−β0(s).

Subsequently, we compute

S(q)
n = n

∫ 1

0
d(s)(q)T

[
C

{
n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i

}−1

CT

]−1

d(s)(q)ds.

Step 3. Repeat Step 2 Q times to obtain {S(q)
n : q = 1, . . . , Q} and then cal-

culate p = Q−1
∑Q

q=1 1(S
(q)
n ≥ Sn). If p is smaller than a pre-specified significance

level α, say 0.05, then one rejects the null hypothesis H0.

Wild bootstrap methods for simultaneous confidence bands of β(·)

Although there are several methods of determining Cl(α) including random

field theory (Worsley et al. (2004)), we develop an efficient resampling method

to approximate Cl(α) as follows (Kosorok (2003)).

• We calculate r̂i(sm) = yi(sm)−XT
i β̃(sm) for all i, j, and m.

• For q = 1, . . . , Q, we independently simulate {τ (q)
i : i = 1, . . . , n} from

N(0, 1) and calculate a stochastic process G(s)(q) given by
√
n[Ipx ⊗ (1, 0)]vec(Σ(s, h1)−1

n∑
i=1

τ
(q)
i

M∑
m=1

Kh(sm − s){sh(sm − s)⊗Xi}Σ̂yi,G(s, s)−1r̂i(sm)).

• We calculate sups∈[0,1] |elG(s)(q)| for all q, where el is a px × 1 vector with

the l-th element 1 and 0 otherwise, and use their 1−α empirical percentile

to estimate Cl(α).
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