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ABSTRACT

In this work, we demonstrate CAJADE (Context-Aware Join-Aug-
mented Deep Explanations), a system that explains query results
by augmenting provenance with contextual information from other
related tables in the database. Given two query results whose differ-
ence the user wants to understand, we enumerate possible ways of
joining the provenance (i.e., contributing input tuples) of these two
query results with tuples from other relevant tables in the database
that were not used in the query. We use patterns to concisely ex-
plain the difference between the augmented provenance of the two
query results. CAJADE, through a comprehensive Ul enables the
user to formulate questions and explore explanations interactively.
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1 INTRODUCTION

In today’s data-driven world, data is analyzed using complex queries
to search for trends and anomalies, and subsequently to make de-
cisions based on data. Interpreting results of such queries is a
challenging task which requires the analyst to explore possible root
causes for a result. Provenance [3], information about what input
data was used to derive a result, provides a natural foundation for
several “explanation” frameworks that have been proposed by the
database community [5-8]. However, real world data exhibits inter-
table relationships that connect the provenance of a query with data
that has not been accessed by the query. Current approaches do not
take these crucial relationships into account. Thus, the explanations
they produce may lack important contextual information from parts
of the database that do not belong to the query’s provenance.

In this demonstration, we showcase CAJADE (Context Aware
Join Augmented Deep Explanations), a novel explanation sys-
tem that augments the provenance of a query using relations not
accessed by this query. CAJADE is open source and is available on
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github!. Using database constraints and user-provided information?
about how tables in the database are connected, CAJADE searches
for ways to augment the provenance of a query (i.e., contributing
input tuples) by joining it with tuples from other unused tables
while obeying these constraints. The augmented provenance pro-
duced by a particular join graph, which captures one possible way
to augment the provenance, is then summarized using selection pat-
terns. Specifically, a pattern consists of conjunctions of equality and
inequality predicates and represents the tuples in the augmented
provenance that satisfy the pattern. In CAJADE, we mainly focus
on explaining differences between two query result tuples ¢; and t;
selected by the user. Thus, a pattern with good quality should sum-
marize the difference between the join-augmented provenance of
t; and t3. Summarizing provenance with patterns is already expen-
sive [8]. With the expansion of the search space caused by consid-
ering context, designing the tractable search process becomes even
more challenging. We leverage a collection of optimizations and
heuristics that will be described briefly later. For more a detailed
description of the ideas presented in this demonstration, please
refer to our research paper published in SIGMOD’21 [4].

ExampLE 1. Consider a simplified NBA (National Basketball As-
sociation) database [1] with the following relations (the keys are
underlined). We will use a full version of this dataset in the demon-
stration with several additional tables [4]. Some example tuples from
these two relations are shown in Figure 1.

e Game(game_date, home, away, home_pts, away_pts, winner,
season): information for each game such as the competing teams
(home and away), scores for each team, and game date.

e PlayerGameStats(game_date,home, pts, rebs, mins): the
points, rebounds, and minutes played for each player in each game.

Query Q1 shown below returns the number of wins of team GSW
(Golden State Warriors) per season.

SELECT winner as team, season, count(x) as win
FROM Game

WHERE winner = 'GSW'

GROUP BY winner, season

As shown in Figure 1c, GSW won 73 games in the 2015-16 season,
which is the greatest number of games won in a single season by any
team in history (t2). Compared with just 3 seasons ago in 2012-13 with
47 wins (t1 ), GSW has drastically improved its winning record. Notice
that in Q1, only Game table (1a) was accessed. This table provides the
user with information about each game. However, such information
is not enough for understanding why GSW won more games in the
2015-16 season than in the other seasons, because in each season a

Lhttps://github.com/II TDBGroup/CaJaDe/
2Such information can also be obtained automatically using join discovery techniques,
e.g. [9].
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| game_date _home away home_pts away pts winner season

g1 | 2016-04-13 GSW MEM 125 104 GSW  2015-16

g2 | 2012-12-01 GSW  IND 103 92 GSW  2012-13

g3 | 2016-03-18 DAL GSW 112 130 GSW  2015-16

g4 | 2017-02-25 GSW  BKN 112 95 GSW  2016-17
(a) Game Table team season win
| player game date home pts rebs mins ty | GSW  2012-13 47
p1 [SCurry  2016-04-13 GSW 46 4 29.78 GSW  2013-14 51
p2 | D.Green 2016-04-13 GSW 11 9  29.78 GSW 201415 67
p3 | D.Green  2012-12-01 GSW 2 1 1110 ty | GSW  2015-16 73
pa | D.Green 2016-03-18 DAL 15 4 3613 GSW_ 2016-17 67

(b) PlayerGameStats table (c) Result of O

Figure 1: Simplified example NBA dataset.

[ UQj:Why did GSW win 73 games in 2015-16 (¢) compared to 47 games in 2012-13 (¢1). ]

(a) User question UQ;

predicates
12-13 season
15-16 season

(c) Legend

[ rebs >3 ]— -I I;layerGameS[a[s (P) )'- -[ player=D. Green ]

Condition on ey = (PT.game_date=P.game_date \
PT.home=P.home)

(b) Example join graph with pattern for UQ,
Figure 2: Example user question and explanation.

team plays the same number of games, and roughly the same number
of times against each opponent. That is, data provenance, which for
this query only contains tuples from the Game table, is insufficient for
explaining the difference between the outcome for the two seasons.

The scenario from Example 1 demonstrates the need to consider
contextual information that is not contained in the provenance to
generate meaningful explanations. This is what CAJADE is built for.
The explanation shown below gives a flavor of the top explanations
produced by CAJADE to differentiate t1, t; in Figure 1c.

GSW won more games in season 2015-16 because player
D.Green played >15.5 minutes and had >3 rebounds in
72 out of 73 games in 2015-16 compared to 9 out of 47 games
in 2012-13.

Given this explanation, the user can infer that D. Green was one
of the key contributors for the improvement of GSW’s winning
record since his playing minutes and rebounds significantly im-
proved in the 2015-16 season compared with the 2012-13 season.
In CAJADE, this explanation is represented using a join-graph as
shown in Figure 2b, which augments the provenance table (PT in
Figure 2b, contains only the Game table) with the PlayerGameStats
table not accessed by the query. The join graph shows the pattern’s
predicates that apply to different tables (player=D. Green, mins
> 15.5, rebs > 3) alongside the difference in statistics (72 out of 73
tuples in 2015-16 vs. 9 out of 47 tuples in 2012-13 in the augmented
provenance of tp and t; satisfy the pattern, respectively).

2 CAJADE OVERVIEW
2.1 Augmented Provenance using Join Graphs

User questions. Given two tuples t; and ¢, in the result of a query
Q evaluated over a database D, we find explanations that concisely
summarize the difference between the provenance of t; and t;
augmented with additional contextual information.

Provenance Tables. We define the provenance table (PT) for a
SELECT-FROM-WHERE-GROUP BY query as a subset of the join

result of the relation(s) accessed by the query, i.e., the joined re-
lations that contribute to the query result. We use P7 (Q, D) to
denote the provenance table for query Q and database D. In Exam-
ple 1, query Q; accesses a single table: Game, therefore, P7 (Q1, D)
contains all the tuples from Figure 1a where GSW is the winner.
For a result tuple t € Q(D), we use PT (Q,D,t) € PT (Q1,D) to
denote the provenance of ¢. In Example 1, $7 (Q1, D, t1) contains
all tuples from table Game where GSW won in the 2012-13 season.

Schema Graphs. To augment the provenance of a query with
contextual information, we need to explore plausible options of
joining the tables from the query’s provenance with other tables in
the database providing context. CAJADE expects as input a schema
graph, a graph whose vertices represent the relations in the database
and whose edges encode what join conditions can be used. CAJaADE
can automatically generate a schema graph from the foreign key
constraints of a database. Additionally, the user can specify the
graph manually, e.g., using existing data discovery tools [9] to
determine what tables can be joined. The problem of discovering
join-ability of tables is orthogonal to the problem we address in
CAJADE: how to efficiently compute explanations with context.

Join Graphs. While the schema graph encodes all possible ways
the provenance table can be augmented by joining with other tables
in the database, a join graph encodes a single augmentation using
a subset of tables as permitted by the schema graph. A join graph
contains a distinguished node PT representing the relations from
Q, i.e., the Game table from Figure 2. The other nodes of a join graph
are labeled with relations, e.g., PlayerGameStats from Figure 2.
Edges in a join graph are labeled with join conditions allowed by
the schema graph. Each join graph encodes one of the possible
ways of how to augment P7 (Q, D).

Augmented Provenance. Given a provenance table 7 (Q, D)
and a join graph, we derive an augmented provenance table (APT)
by joining P7 (Q, D) with other relations in the join graph using
the join conditions encoded by the edges of the join graph. The
APT produced by augmenting P7 (Q1, D) (i.e., the Game table in
Figure 1a) using the join graph in Figure 2b includes each game
paired with the players participating in this game, i.e., the pairs
(91, p1). (91, p2). (92. P3). (93, p4).

2.2 Patterns as Explanations

In CAJADE, an explanation includes (a) a join graph and (b) a pattern
(conjunction of predicates) that summarizes sets of tuples from the
APT produced by the join graph. Intuitively, a pattern with good
quality matches as many tuples as possible from the augmented
provenance P7 (Q, D, t1) of one result tuple t; appearing in the
user question, and as few tuples as possible from the augmented
provenance P7 (Q, D, t2) of the other result tuple ¢,. We adapt the
notion of F-score as the scoring metric. A tuple t from the APT
matches a pattern if ¢ satisfies all predicates of the pattern. For
example, in Example 1, the pattern (player=D.Green, mins >
15.5, rebs > 3), matches tuples (g1, p2) and (g3, p4) in the APT.
Over the full NBA dataset, this pattern matches 72 out of 73 tuples
from the 2015-16 season and 9 out of 47 tuples in the 2012-13

season. Thus, for ¢, in comparison with t;, the “recall” is % and the

72
72+9

distinguishing tp from #; is 2 X

“precision” is = %. The F-score for this explanation pattern
(T2/T3)X(72/81) 0 o4
(72/73)+(72/81) ~ V7
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Figure 3: CAJADE’s Main GUI: After connecting to the database, the corresponding schema graph is shown in (3. The user
runs an aggregation query in (2) over the schema shown in @, formulates a question by selecting two result tuples in 3, can
browse explanations (patterns) through their descriptions shown in @ and endorse/dislike explanations to refine them further,
explore explanations produced by different join graphs shown in (7), visualize an explanation in terms of its join graph in (©,
and explore distribution of attributes covered by a pattern as histograms in (9.

Inputs CaJaDE
Join Graph Generator Schema Graph Pattern Ranking
PT PT oo - + Diversification
Selected R4
[ Tuples
l Provenance Augmentation Pattern Miner
NEEER G+
Query Provenance 'm
result table
.

GProM Provenance table

Figure 4: CAJADE’s system architecture

2.3 Implementation and Optimizations

The architecture of CAJADE is shown in Figure 4. CAJADE takes
provenance produced by GProM (https://github.com/IITDBGroup/
gprom) and the schema graph as inputs. The join graph generator
enumerates the join options based on the schema graph and the
relations from the query’s provenance. The provenance augmen-
tation component takes each join graph and PT to materialize the
augmented provenance table (APT). The pattern miner mines pat-
terns from the APTs. Finally, CAJADE ranks the patterns based on
a weighted score combining the F-score and diversity.

Note that even for a single join graph, the search space for pat-
terns is large: polynomial in the number of distinct values per
attribute, but exponential in the number of attributes. Further-
more, even for moderately-sized schema graphs, the number of
join graphs (subgraphs of the schema graph) for a given query can
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be huge. We apply a suite of novel optimizations and heuristics to
enable CAJADE to scale to large datasets. These include: (i) cluster-
ing similar or correlated attributes to reduce the search space of
patterns and avoid redundant explanations (e.g., if a pattern with
birth date is produced then a pattern with age can be ignored); (ii)
we train a classifier to determine which attributes are most pre-
dictive of the difference between the two query results appearing
in the user question to prune additional attributes from pattern
generation; (iii) Given an APT, we use a variant of the LCA (Least
Common Ancestor) method from [2] that handles categorical at-
tributes. Intuitively, this step will help identify the most frequently
appearing combinations of attribute values as pattern candidates.
We then refine the subset of these pattern candidates that have suffi-
ciently high recall by adding numerical attributes. Since the search
space for numerical predicates is significantly larger than the search
space for categorical predicates, it is beneficial to avoid refining un-
promising patterns (with low recall); (iv) we enumerate join graph
candidates by size by iteratively extending previously explored join
graphs one edge at a time. This enables us to not further extend a
join graph if extensions are unlikely to yield good patterns. For a
detailed description of our techniques and optimizations see [4].

3 DEMONSTRATION

In this demonstration, we will use real world datasets including
this NBA dataset [1], which contains statistics about teams, players,
games etc. from the 2009-10 season to the 2018-19 season. The main
user interface using the NBA dataset is shown in Figure 3. The
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Figure 5: (a) An explanation (pattern and its join graph). Predicates of the pattern (orange background) are connected to the
table they apply to. (b) The user can up- and downvote patterns. (c) Distribution of the values of one attribute from a pattern
predicate (values matching the predicate are shown in red and values not matching the predicates are shown in blue).

system with multiple datasets to select from will be accessible to
the users as a web application during the demonstration. A typical
user session is described below.

1. Run aggregate query and formulate question. After connect-
ing to the database, the user can familiarize themselves with the
database schema () and the schema graph encoding allowable
join paths (). Once the user has gained an initial understanding of
the schema, the user can run a group-by/aggregate query (). After
the query is executed, the query results are shown in (3. Users can
inspect these results, and if they want to understand the difference
between two output tuples of interest, they can choose the tuples
by clicking (will be highlighted in two different colors).

2. Join graphs and explanations. CAJADE produces results in-
crementally so that the user can start exploring explanations right
away without waiting. While CAJADE is running in the background,
the list of join graphs (D)) along with their top-k explanation pat-
terns (@) are continuously updated. Histograms of the F-scores of
patterns are plotted above each join graph to give user an overview
of the pattern quality for each join graph. The overall distribution
of F-scores of the patterns is shown in (8. Users can hover over an
explanation to see the pattern description. Furthermore, selecting a
join graph in (7) restricts the patterns shown in (@ to patterns for
this join graph.

3. Interpreting a pattern and stating preferences. We provide
additional ways to help the user interpret an explanation pattern.
First, when the user selects a pattern, the join graph along with
the pattern predicate is shown in (§). As shown in Figure 5a, the
selected example pattern has a join graph with 3 nodes (tables): the
provenance table (PT), player_game_stats, and player. The pat-
tern predicates applying to attributes from each table R are shown
as nodes in the graph connected to R (Figure 5a). Furthermore, this
visualization shows the fraction of tuples satisfying the patterns
for the two selected output tuples in their corresponding colors (in
green and purple, saying that 9 out of 47 and 72 out of 73 tuples
from the provenance satisfy the explanation pattern for the green
(t1) and purple (t) result tuples selected in (3). The user can state
their preference for or against patterns as shown in @ in Figure 3
and Figure 5b by clicking thumbs up/down. Internally, CAJADE will
prioritize patterns that are similar to patterns upvoted by the user
and dissimilar to patterns downvoted by the user. Finally, based on
the feedback we got from our previously user study [4], in order
to help the user understand how the constant from a predicate in
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a pattern compares with other values from the attribute’s domain
(e.g., how frequently do we encounter 15.48 mins playtime or 3.25
rebounds), we let the user select one of the predicates from the
current pattern as shown in (9) in Figure 3 and Figure 5c. We then
plot two histograms showing the distribution of the values for the
attribute used in the predicate, one for each of the output tuples
t1, ta selected in the user question. In this example, we are looking
at player Draymond Green’s minutes played per game for the two
seasons involved in the user question: the selected pattern predi-
cate is minutes>15.48. As shown in the histogram, Green played
all the games over 25 minutes in the 2015-16 season, whereas in
the 2012-13 season, he played for a significantly lower number of
minutes in the majority of the games (and in fact played for < 15.48
minutes in many games as shown in blue). This difference may
contribute towards the significantly better performance of GSW in
2015-16 compared to 2012-13 (Green is known to be an important
player for GSW). CAJADE is the first system that automatically
finds such interesting explanations and helps users to better un-
derstand the difference of two query results incorporating relevant
contextual information from tables that are unused in the query.
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