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ABSTRACT
In this work, we demonstrate C�J�DE (Context-Aware Join-Aug-
mented Deep Explanations), a system that explains query results
by augmenting provenance with contextual information from other
related tables in the database. Given two query results whose di�er-
ence the user wants to understand, we enumerate possible ways of
joining the provenance (i.e., contributing input tuples) of these two
query results with tuples from other relevant tables in the database
that were not used in the query. We use patterns to concisely ex-
plain the di�erence between the augmented provenance of the two
query results. C�J�DE, through a comprehensive UI, enables the
user to formulate questions and explore explanations interactively.
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1 INTRODUCTION
In today’s data-drivenworld, data is analyzed using complex queries
to search for trends and anomalies, and subsequently to make de-
cisions based on data. Interpreting results of such queries is a
challenging task which requires the analyst to explore possible root
causes for a result. Provenance [3], information about what input
data was used to derive a result, provides a natural foundation for
several “explanation” frameworks that have been proposed by the
database community [5–8]. However, real world data exhibits inter-
table relationships that connect the provenance of a query with data
that has not been accessed by the query. Current approaches do not
take these crucial relationships into account. Thus, the explanations
they produce may lack important contextual information from parts
of the database that do not belong to the query’s provenance.

In this demonstration, we showcase C�J�DE (Context Aware
Join Augmented Deep Explanations), a novel explanation sys-
tem that augments the provenance of a query using relations not
accessed by this query. C�J�DE is open source and is available on
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github1. Using database constraints and user-provided information2
about how tables in the database are connected, C�J�DE searches
for ways to augment the provenance of a query (i.e., contributing
input tuples) by joining it with tuples from other unused tables
while obeying these constraints. The augmented provenance pro-
duced by a particular join graph, which captures one possible way
to augment the provenance, is then summarized using selection pat-
terns. Speci�cally, a pattern consists of conjunctions of equality and
inequality predicates and represents the tuples in the augmented
provenance that satisfy the pattern. In C�J�DE, we mainly focus
on explaining di�erences between two query result tuples C1 and C2
selected by the user. Thus, a pattern with good quality should sum-
marize the di�erence between the join-augmented provenance of
C1 and C2. Summarizing provenance with patterns is already expen-
sive [8]. With the expansion of the search space caused by consid-
ering context, designing the tractable search process becomes even
more challenging. We leverage a collection of optimizations and
heuristics that will be described brie�y later. For more a detailed
description of the ideas presented in this demonstration, please
refer to our research paper published in SIGMOD’21 [4].

E������ 1. Consider a simpli�ed NBA (National Basketball As-
sociation) database [1] with the following relations (the keys are
underlined). We will use a full version of this dataset in the demon-
stration with several additional tables [4]. Some example tuples from
these two relations are shown in Figure 1.
• Game(game_date, home, away, home_pts, away_pts, winner,

season): information for each game such as the competing teams
(home and away), scores for each team, and game date.

• PlayerGameStats(game_date,home, pts, rebs, mins): the
points, rebounds, and minutes played for each player in each game.

Query &1 shown below returns the number of wins of team GSW
(Golden State Warriors) per season.

SELECT winner as team , season , count (*) as win

FROM Game

WHERE winner = �GSW�

GROUP BY winner , season

As shown in Figure 1c, GSW won 73 games in the 2015-16 season,
which is the greatest number of games won in a single season by any
team in history (C2). Compared with just 3 seasons ago in 2012-13 with
47 wins (C1), GSW has drastically improved its winning record. Notice
that in &1, only Game table (1a) was accessed. This table provides the
user with information about each game. However, such information
is not enough for understanding why GSW won more games in the
2015-16 season than in the other seasons, because in each season a

1https://github.com/IITDBGroup/CaJaDe/
2Such information can also be obtained automatically using join discovery techniques,
e.g., [9].
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game_date home away home_pts away_pts winner season
61 2016-04-13 GSW MEM 125 104 GSW 2015-16
62 2012-12-01 GSW IND 103 92 GSW 2012-13
63 2016-03-18 DAL GSW 112 130 GSW 2015-16
64 2017-02-25 GSW BKN 112 95 GSW 2016-17

(a) Game Table
player game_date home pts rebs mins

?1 S.Curry 2016-04-13 GSW 46 4 29.78
?2 D.Green 2016-04-13 GSW 11 9 29.78
?3 D.Green 2012-12-01 GSW 2 1 11.10
?4 D.Green 2016-03-18 DAL 15 4 36.13

(b) PlayerGameStats table

team season win
C1 ⌧(, 2012-13 47

⌧(, 2013-14 51
⌧(, 2014-15 67

C2 ⌧(, 2015-16 73
⌧(, 2016-17 67

(c) Result of&1

Figure 1: Simpli�ed example NBA dataset.
*&1 : Why did⌧(, win 73 games in 2015-16 (C2) compared to 47 games in 2012-13 (C1).

(a) User question*&1

Condition on 41 = (PT.game_date=P.game_date ^
PT.home=P.home)

(b) Example join graph with pattern for*&1
(c) Legend

Figure 2: Example user question and explanation.

team plays the same number of games, and roughly the same number
of times against each opponent. That is, data provenance, which for
this query only contains tuples from the Game table, is insu�cient for
explaining the di�erence between the outcome for the two seasons.

The scenario from Example 1 demonstrates the need to consider
contextual information that is not contained in the provenance to
generate meaningful explanations. This is what C�J�DE is built for.
The explanation shown below gives a �avor of the top explanations
produced by C�J�DE to di�erentiate C1, C2 in Figure 1c.

GSW won more games in season 2015-16 because player
D.Green played >15.5 minutes and had >3 rebounds in
72 out of 73 games in 2015-16 compared to 9 out of 47 games
in 2012-13.

Given this explanation, the user can infer that D.Green was one
of the key contributors for the improvement of GSW’s winning
record since his playing minutes and rebounds signi�cantly im-
proved in the 2015-16 season compared with the 2012-13 season.
In C�J�DE, this explanation is represented using a join-graph as
shown in Figure 2b, which augments the provenance table (PT in
Figure 2b, contains only the Game table) with the PlayerGameStats
table not accessed by the query. The join graph shows the pattern’s
predicates that apply to di�erent tables (player=D. Green, mins
> 15.5, rebs > 3) alongside the di�erence in statistics (72 out of 73
tuples in 2015-16 vs. 9 out of 47 tuples in 2012-13 in the augmented
provenance of C2 and C1 satisfy the pattern, respectively).

2 CAJADE OVERVIEW
2.1 Augmented Provenance using Join Graphs
User questions. Given two tuples C1 and C2 in the result of a query
& evaluated over a database ⇡ , we �nd explanations that concisely
summarize the di�erence between the provenance of C1 and C2
augmented with additional contextual information.
Provenance Tables. We de�ne the provenance table (PT) for a
SELECT-FROM-WHERE-GROUP BY query as a subset of the join

result of the relation(s) accessed by the query, i.e., the joined re-
lations that contribute to the query result. We use PT (&,⇡) to
denote the provenance table for query & and database ⇡ . In Exam-
ple 1, query &1 accesses a single table: Game, therefore, PT (&1,⇡)
contains all the tuples from Figure 1a where ⌧(, is the winner.
For a result tuple C 2 & (⇡), we use PT (&,⇡, C) ✓ PT (&1,⇡) to
denote the provenance of C . In Example 1, PT (&1,⇡, C1) contains
all tuples from table Game where GSW won in the 2012-13 season.
Schema Graphs. To augment the provenance of a query with
contextual information, we need to explore plausible options of
joining the tables from the query’s provenance with other tables in
the database providing context. C�J�DE expects as input a schema
graph, a graphwhose vertices represent the relations in the database
and whose edges encode what join conditions can be used. C�J�DE
can automatically generate a schema graph from the foreign key
constraints of a database. Additionally, the user can specify the
graph manually, e.g., using existing data discovery tools [9] to
determine what tables can be joined. The problem of discovering
join-ability of tables is orthogonal to the problem we address in
C�J�DE: how to e�ciently compute explanations with context.
Join Graphs. While the schema graph encodes all possible ways
the provenance table can be augmented by joining with other tables
in the database, a join graph encodes a single augmentation using
a subset of tables as permitted by the schema graph. A join graph
contains a distinguished node %) representing the relations from
& , i.e., the Game table from Figure 2. The other nodes of a join graph
are labeled with relations, e.g., PlayerGameStats from Figure 2.
Edges in a join graph are labeled with join conditions allowed by
the schema graph. Each join graph encodes one of the possible
ways of how to augment PT (&,⇡).
Augmented Provenance. Given a provenance table PT (&,⇡)
and a join graph, we derive an augmented provenance table (APT)
by joining PT (&,⇡) with other relations in the join graph using
the join conditions encoded by the edges of the join graph. The
APT produced by augmenting PT (&1,⇡) (i.e., the Game table in
Figure 1a) using the join graph in Figure 2b includes each game
paired with the players participating in this game, i.e., the pairs
(61, ?1), (61, ?2), (62, ?3), (63, ?4).

2.2 Patterns as Explanations
InC�J�DE, an explanation includes (a) a join graph and (b) a pattern
(conjunction of predicates) that summarizes sets of tuples from the
APT produced by the join graph. Intuitively, a pattern with good
quality matches as many tuples as possible from the augmented
provenance PT (&,⇡, C1) of one result tuple C1 appearing in the
user question, and as few tuples as possible from the augmented
provenance PT (&,⇡, C2) of the other result tuple C2. We adapt the
notion of F-score as the scoring metric. A tuple C from the APT
matches a pattern if C satis�es all predicates of the pattern. For
example, in Example 1, the pattern (player=D.Green, mins >
15.5, rebs > 3), matches tuples (61, ?2) and (63, ?4) in the APT.
Over the full NBA dataset, this pattern matches 72 out of 73 tuples
from the 2015-16 season and 9 out of 47 tuples in the 2012-13
season. Thus, for C2 in comparison with C1, the “recall” is 72

73 and the
“precision” is 72

72+9 = 72
81 . The F-score for this explanation pattern

distinguishing C2 from C1 is 2 ⇥ (72/73)⇥(72/81)
(72/73)+(72/81) ⇡ 0.94.
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Figure 3: C�J�DE’s Main GUI: After connecting to the database, the corresponding schema graph is shown in 5�. The user
runs an aggregation query in 2� over the schema shown in 1�, formulates a question by selecting two result tuples in 3�, can
browse explanations (patterns) through their descriptions shown in 4� and endorse/dislike explanations to re�ne them further,
explore explanations produced by di�erent join graphs shown in 7�, visualize an explanation in terms of its join graph in 6�,
and explore distribution of attributes covered by a pattern as histograms in 9�.
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Figure 4: C�J�DE’s system architecture
2.3 Implementation and Optimizations
The architecture of C�J�DE is shown in Figure 4. C�J�DE takes
provenance produced by GProM (https://github.com/IITDBGroup/
gprom) and the schema graph as inputs. The join graph generator
enumerates the join options based on the schema graph and the
relations from the query’s provenance. The provenance augmen-
tation component takes each join graph and PT to materialize the
augmented provenance table (APT). The pattern miner mines pat-
terns from the APTs. Finally, C�J�DE ranks the patterns based on
a weighted score combining the F-score and diversity.

Note that even for a single join graph, the search space for pat-
terns is large: polynomial in the number of distinct values per
attribute, but exponential in the number of attributes. Further-
more, even for moderately-sized schema graphs, the number of
join graphs (subgraphs of the schema graph) for a given query can

be huge. We apply a suite of novel optimizations and heuristics to
enable C�J�DE to scale to large datasets. These include: (i) cluster-
ing similar or correlated attributes to reduce the search space of
patterns and avoid redundant explanations (e.g., if a pattern with
birth date is produced then a pattern with age can be ignored); (ii)
we train a classi�er to determine which attributes are most pre-
dictive of the di�erence between the two query results appearing
in the user question to prune additional attributes from pattern
generation; (iii) Given an APT, we use a variant of the LCA (Least
Common Ancestor) method from [2] that handles categorical at-
tributes. Intuitively, this step will help identify the most frequently
appearing combinations of attribute values as pattern candidates.
We then re�ne the subset of these pattern candidates that have su�-
ciently high recall by adding numerical attributes. Since the search
space for numerical predicates is signi�cantly larger than the search
space for categorical predicates, it is bene�cial to avoid re�ning un-
promising patterns (with low recall); (iv) we enumerate join graph
candidates by size by iteratively extending previously explored join
graphs one edge at a time. This enables us to not further extend a
join graph if extensions are unlikely to yield good patterns. For a
detailed description of our techniques and optimizations see [4].

3 DEMONSTRATION
In this demonstration, we will use real world datasets including
this NBA dataset [1], which contains statistics about teams, players,
games etc. from the 2009-10 season to the 2018-19 season. The main
user interface using the NBA dataset is shown in Figure 3. The
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(a) (b) (c)
Figure 5: (a) An explanation (pattern and its join graph). Predicates of the pattern (orange background) are connected to the
table they apply to. (b) The user can up- and downvote patterns. (c) Distribution of the values of one attribute from a pattern
predicate (values matching the predicate are shown in red and values not matching the predicates are shown in blue).

system with multiple datasets to select from will be accessible to
the users as a web application during the demonstration. A typical
user session is described below.

1. Run aggregate query and formulate question. After connect-
ing to the database, the user can familiarize themselves with the
database schema ( 1�) and the schema graph encoding allowable
join paths ( 5�). Once the user has gained an initial understanding of
the schema, the user can run a group-by/aggregate query ( 2�). After
the query is executed, the query results are shown in 3�. Users can
inspect these results, and if they want to understand the di�erence
between two output tuples of interest, they can choose the tuples
by clicking (will be highlighted in two di�erent colors).

2. Join graphs and explanations. C�J�DE produces results in-
crementally so that the user can start exploring explanations right
away without waiting. While C�J�DE is running in the background,
the list of join graphs ( 7�) along with their top-k explanation pat-
terns ( 4�) are continuously updated. Histograms of the F-scores of
patterns are plotted above each join graph to give user an overview
of the pattern quality for each join graph. The overall distribution
of F-scores of the patterns is shown in 8�. Users can hover over an
explanation to see the pattern description. Furthermore, selecting a
join graph in 7� restricts the patterns shown in 4� to patterns for
this join graph.

3. Interpreting a pattern and stating preferences. We provide
additional ways to help the user interpret an explanation pattern.
First, when the user selects a pattern, the join graph along with
the pattern predicate is shown in 6�. As shown in Figure 5a, the
selected example pattern has a join graph with 3 nodes (tables): the
provenance table (PT), player_game_stats, and player. The pat-
tern predicates applying to attributes from each table ' are shown
as nodes in the graph connected to ' (Figure 5a). Furthermore, this
visualization shows the fraction of tuples satisfying the patterns
for the two selected output tuples in their corresponding colors (in
green and purple, saying that 9 out of 47 and 72 out of 73 tuples
from the provenance satisfy the explanation pattern for the green
(C1) and purple (C2) result tuples selected in 3�). The user can state
their preference for or against patterns as shown in 4� in Figure 3
and Figure 5b by clicking thumbs up/down. Internally, C�J�DE will
prioritize patterns that are similar to patterns upvoted by the user
and dissimilar to patterns downvoted by the user. Finally, based on
the feedback we got from our previously user study [4], in order
to help the user understand how the constant from a predicate in

a pattern compares with other values from the attribute’s domain
(e.g., how frequently do we encounter 15.48 mins playtime or 3.25
rebounds), we let the user select one of the predicates from the
current pattern as shown in 9� in Figure 3 and Figure 5c. We then
plot two histograms showing the distribution of the values for the
attribute used in the predicate, one for each of the output tuples
C1, C2 selected in the user question. In this example, we are looking
at player Draymond Green’s minutes played per game for the two
seasons involved in the user question: the selected pattern predi-
cate is minutes>15.48. As shown in the histogram, Green played
all the games over 25 minutes in the 2015-16 season, whereas in
the 2012-13 season, he played for a signi�cantly lower number of
minutes in the majority of the games (and in fact played for < 15.48
minutes in many games as shown in blue). This di�erence may
contribute towards the signi�cantly better performance of GSW in
2015-16 compared to 2012-13 (Green is known to be an important
player for GSW). C�J�DE is the �rst system that automatically
�nds such interesting explanations and helps users to better un-
derstand the di�erence of two query results incorporating relevant
contextual information from tables that are unused in the query.
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