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ABSTRACT 
Prior work on explaining missing (unexpected) query results iden-
ti�es which parts of the query or data are responsible for the er-
roneous result or repairs the query or data to �x such errors. The 
problem of generating repairs is typically expressed as an optimiza-
tion problem, i.e., a single repair is returned that is optimal wrt. to 
some criterion such as minimizing the repair’s side e�ects. How-
ever, such an optimization objective may not concretely model a 
user’s (often hard to formalize) notion of which repair is “correct”. 
In this paper, we motivate hybrid explanations and repairs, i.e., that 
�x both the query and the data. Instead of returning one “optimal” 
repair, we argue for an approach that empowers the user to explore 
the space of possible repairs e�ectively. We also present a proof-of-
concept implementation and outline open research problems. 
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1 INTRODUCTION 
Both why and why-not provenance (see [11] for a survey) have 
been widely used for explaining unexpected and missing query 
results. Explanations for missing answers typically fall into two cat-
egories: (i) instance-based explanations [12, 16] (the input database 
is considered the only source of error) and (ii) query-based expla-
nations [4, 6] (explaining which parts of a query are problematic). 
Explanations aid users in understanding how errors in the data and 
query cause their queries to return an incorrect result. However, 
a user may also be interested in possible solutions for �xing such 
problems. How-to queries [18] compute an update to the input 
data that achieves the desired changes to the result of a query that 
maximizes a user-provided objective. Other work has studied the 
orthogonal problem of repairing the query instead, e.g., to return 
less spurious answers [19], to �x an empty query answer [15], or 
to construct a query from scratch that returns a desired result [13]. 
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However, both the query and input data may be erroneous and, 
thus, there is a need for hybrid explanations and repairs which 
consider both the input data as well as the query as potential causes 
for erroneous query results. Such hybrid repairs have been largely 
ignored in past work. Furthermore, most approaches model the 
problem of generating repairs as an optimization problem and re-
turn a single optimal (or approximately optimal) repair. Examples 
of optimization objectives that have been used are minimizing the 
side-e�ects on the query result (the updated query result minimally 
di�ers from the original query result), minimizing the changes to 
the query that are required to �x the user’s complaints, or opti-
mizing for a user-provided objective [18]. The advantage of such 
an approach is that the process of generating repairs can be fully 
automated. However, this only works if the objective of the op-
timization problem precisely models what constitutes a correct 
explanation / repair. Even though some systems allow the user to 
specify the objective, the user may not know enough about the 
unknown ground truth repair to specify an e�ective objective. 

E������ 1. Consider the income database and Datalog query 
shown in Fig. 1. This query determines low-income residents that 
are underpaid for the type of work they are doing (earn less pre-tax 
income than a job-speci�c threshold). The user issuing this query 
wants to understand why no CA carpenters in TX teachers are in 
the result (highlighted tuples in Q’s result). In this example, both 
errors in the data as well as the query are responsible for the missing 
answers:1 (i) the query uses pre-tax income, omitting several low-
income individuals and (ii) the tax for TX residents only includes state 
income tax (which is 0% in TX) instead of federal plus state tax. 

Data-based explanations for missing answers [17] justify why 
the query did fail to return TX teachers and CA carpenters based on 
missing input data. How-to queries [18] can be used to determine a 
possible repair of the input database such that the expected result 
is returned by the query. However, data-based explanations and 
repairs are oblivious to errors with the query itself. Query-based 
explanations [6, 8] and query repairs [20] can identify issues with 
the query and propose repairs such as subtracting both federal and 
state taxes from the income (� �) < 90, 000) or changing the thresh-
old in the predicate � < 90, 000. However, query-based explanations 
and repairs fail to recognize errors in the data as causes for the 
incorrect result. In summary, a hybrid of data- and query-based 
explanations (and repairs) is needed to address the missing answers 
in this example. Unfortunately, existing techniques cannot easily be 
combined as query and instance repairs can interfere. Furthermore, 
1Here we focus on expected, but missing answers, but the same arguments apply to 
unexpected answers which should be removed. 
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residents minincome 

State Jobtitle 
IL teacher 

Name State Income Jobtitle Tax 
Peter IL 45,000 teacher 8,400 
Alice IL 253,000 engineer 69,300 
Bob CA 183,000 carpenter 73,000 
Fred TX 90,000 teacher 0 
Fred TX 120,000 carpenter 0 

Job Threshold 
teacher 55,000 
engineer 100,000 
carpenter 90,000 

Q 

CA carpenter 
A2 : Qlowin ((, � , � ) :� residents(# ,(, � , � ,) ), I < 90,000 

A1 : Q((, � ) :� Qlowin ((, � , � ), minincome( � ,) ), � < ) 

TX teacher 

Figure 1: Query that determines which jobs are underpaid in 
a particular state (low income residents with this job earn 
less pre-tax income than a job-speci�c threshold). 

even if we ignore the lack of support for hybrid explanations, identi-
fying the correct ground truth repair requires a solid understanding 
of the application domain as well as the semantics of the intended 
query. This type of information is often hard to formalize for a user 
as it requires extensive knowledge about the ground truth repair. 
At the other end of the spectrum, simply enumerating all possible 
repairs is also not an option as the number of candidate solution is 
already too large for data-based repairs [17]. 

In this paper, we argue that these are fundamental problems of 
approaches that treat explanations and repairs as an optimization 
problem or enumerate all candidates. We envision an approach 
that combines user-directed exploration of the search space and 
techniques for summarizing large sets of repairs and explanations 
to provide guidance to the user. Furthermore, we argue that for a 
middle ground between enumerating all solutions and optimizing 
for a single solution by �ltering solutions that are obviously inferior. 
To provide an example, we may group input data changes based 
on which attributes that are updated or what are common charac-
teristics of rows that are e�ected, e.g., “this class of repairs updates 
the tax column of rows where state is TX”. As a proof of concept, we 
demonstrate how an extension of an existing approach for explain-
ing missing and existing answers for non-recursive Datalog [16, 17] 
can generate hybrid explanations and how hybrid repairs can be 
extracted from explanations. However, as this is just a �rst step to-
wards realizing our vision, we also discuss open research problems 
and how they relate to existing work in the �eld. 

2 HYBRID QUERY-INSTANCE REPAIRS 
We now formalize the problem of hybrid query-instance repairs. We 
assume as input a set �+ of tuples that should occur in the result of 
the query, but are currently missing, as well as a set �� of tuples that 
are currently in the query result, but should be removed. Updates 
can be modeled using deletion and insertion. We use set semantics 
here, but an extension to bag semantics should be feasible. Instead 
of specifying a single objective, we de�ne thresholds on side e�ects 
for the input database, query results, and query to exclude repairs 
that are trivial (e.g., rewriting & as & � �� [ �+). Furthermore, 
we assume a distance function 3& for queries and 3⇡ for instances 
(e.g., the size of the symmetric di�erence). 

De�nition 2.1 (Hybrid Repair). We are given as input a query 
& , database ⇡ , and side e�ect thresholds. Given a hypothetical 
update to A = & (⇡) expressed as C = (�+ , ��) such that �� ✓ A 
and �+ \A = ;, a solution to the hybrid repair problem is a pair 

(& 0 , ⇡ 0 ) such that: 

3& (&, & 0 )  _& 3⇡ (⇡ [ �+ � ��, ⇡ 0 )  _>DC?DC 

3⇡ (⇡, ⇡ 0 )  _8=?DC 
0 | �� � & (⇡ 0 ) | + | �+ \ & 0 (⇡ 0 ) | � _�| �+ | + | �� |

0 0where & is the modi�ed query and ⇡ is the updated database. 

Intuitively, the above de�nition allows for any repair where the 
side e�ects on the input database and query are within the thresh-
olds (_8=?DC and _& ). Furthermore, we also limit the side e�ect on 
the query result (changes other than the ones requested by the user) 
by threshold _>DC?DC and require that the repair implements at least 
a certain fraction _� of the changes �� and �+. By de�ning repairs 
using thresholds we can exclude trivial repairs without the pitfalls 
of optimizing for a single “optimal” repair: maximizing an objective 
function that may be a poor substitute for repair correctness. 

E������ 2 (R������ E������ R�����). The user’s complaint 
from Ex. 1 is �+ = {(⇠�, 20A?4=C4A ), ()- , C402⌘4A )} and �� = ;. 
For example, a possible data-based repair (assuming appropriate 
thresholds) is to reduce the income of teacher Fred (TX) and of car-
penter Bob (CA) such that both � < 90, 000 and � < ) evaluate to 
true for these two rows (e.g., by setting them to 42,999 and 89,999, 
respectively). One query-based repair is to increase the constant in the 
condition � < 90, 000 and relax the condition � < ) , e.g., by replacing 
it with � < ) + 2 for a su�ciently large constant 2 . 

Both repairs from the example above are minimal in terms of 
their result and input data (or query2) side-e�ects. The issue is 
not just that the correct repair for this example is a hybrid repair, 
but also that it does not have minimal side-e�ects! Furthermore, 
even if we optimize for a user-provided metric, it is questionable 
whether the user would be able to formalize a metric that would 
cause an optimization-based algorithm to select the correct repair as 
this fundamentally requires already a solid understanding of what 
caused the error (tax values are incorrectly recorded for TX, and 
the predicate in A2 should use � �) < 90, 000 instead of � < 90, 000). 
A user that has understood the nature of the problem to that extend 
would likely be able to determine the correct repair without further 
guidance. Thus, this example motivates the need for user-guided 
repair search. We will expand on that in Sec. 5. 

3 RELATED WORK 
Data- and Instance-based Explanations for Existing and Miss-
ing Answers. Provenance has been the basis of most approaches 
for instanced-based [16, 21] (tracing errors to the input data) and 
query-based explanations [8, 12] of existing and missing answers. 
Hybrid Explanation for Missing Answers. [10] presents the 
Conseil system which computes hybrid explanations for missing 
answers over non-monotonic queries. The instance-part of an expla-
nation produced by Conseil encodes multiple possible repairs com-
pactly using c-tables and supports user-provided side-constraints. 
However, generating repairs with Conseil is still a one-shot pro-
cess instead of an interactive exploration of the search space. This 
requires the development of new techniques that can dynamically 
2If we assume query side-e�ects are measured as the total number of modi�ed goals 
and restrict repairs to modifying predicate goals which of course is only one possible 
meaningful choice. 
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react to changing constraints on allowable repairs during the user’s 
exploration of the search space. 
Query Repairs. Techniques that repair a query typically change 
selected operators such that the missing result is returned: query 
re�nement targets the use case where a query returns too many 
(unexpected) answers [20] and query relaxation addresses the issue 
of an empty query result [19]. Query reverse engineering (QRE) [13] 
reconstructs a query based on data examples. Given a database ⇡ 
and the result & (⇡) of an unknown query & , QRE generates a query 
0 & such that & 0 (⇡) = & (⇡). 

Instance Repairs. Repairing the input data to achieve a desired 
query result is an instance of the view update problem [5]. How-
to queries [18] phrase this problem as an optimization problem, 
enabling the user to specify the objective function. 
Data + Constraint Repair. The problem of hybrid repairs is also 
related to the problem of simultaneously repairing a set of integrity 
constraints and a dataset violating the constraints (e.g., see [3]). 
Summarizing, Querying, and Exploring Provenance. We envi-
sion interactive exploration and querying to play an important role 
in exploring hybrid repairs. We expect work on �ltering [7] and 
querying provenance [2, 14], on an interactive exploration of prove-
nance, and on (approximate) provenance summarization [1, 17] to 
play an important role. However, more work is needed to support 
e�cient interactive exploration of the search space. 

4 HYBRID EXPLANATIONS AND REPAIRS 
As a proof of concept, we extend our past work [16] which generates 
instance-based explanations for missing and existing answers of 
Datalog queries to support hybrid explanations and discuss how to 
“read-out” repairs from these explanations. 

Given an input query & and database ⇡ , a hybrid explanation 
H�E��� justi�es the existence/absence of a result tuple C of & based 
on the success/failure to derive C using the rules of & . Such explana-
tions are generated in the form of graphs whose nodes correspond 
to existing and missing tuples as well as successful/failed goals in 
the body of grounded Datalog rules (rules instantiated with values 
from the database). These graphs contain four types of nodes: tu-
ple nodes (oval) represent EDB and IDB facts (tuples of the input 
database and tuples produced by rules, respectively); rule nodes (rec-
tangle) represent a grounded rule and are labeled with an identi�er 
for the rule (e.g., A1) and the arguments it was instantiated with; 
instance goal nodes (superscript � ) represent goals of an instantiated 
rule and are labeled with their arguments and an identi�er for the 
rule and their position in the rule’s body; predicate goal nodes (su-
perscript % ) represent comparison predicates. The color of a tuple 
node indicates whether the tuple exists (green) or not (dark red). 
The same color scheme is used to indicate success / failure of rule 
and goal nodes. 

Similar to the explanations in PUG [16], existing IDB tuples 
(query result tuples) are connected to the successful grounded rules 
that derive the tuple while missing tuples are connected to all 
grounded rules that could have derived the tuple (but failed). A 
grounded rule succeeds if all of its goals succeeds and, thus, the suc-
cess of the goals justi�es the success of the rule. That is, successful 
rule nodes are connected to successful goal nodes for each goal of 
the rule. A grounded rule evaluates to false if at least one of its goal 

g1 
1 (Z ̂ , teacher , 90k)O g3 

1 (90k < 55k)V 

Wl ow in (Z^ , teacher , 90k) 

g1 
1 (Z^ , teacher , 45k)O 

Wl ow in (Z^ , teacher , 45k) 

W (Z ̂ , t eacher ) 

r1 (Z^ , teacher , 45k, 55k) r1 (Z^ , teacher , 90k, 55k) 

r2 (Z^ , teacher , 45k, L red, 0) r2 (Z^ , teacher , 90k, L red, 0) r2 (Z^ , teacher , 90k, L red, 8400) 

g1 
2 (L r ed, Z ̂ , 45k, teacher , 0)O 

r es dents(L r ed, Z^ , 45k, teacher , 0) 

g2 
2 (90k < 90k)V g1 

2 (L r ed, Z ̂ , 90k, teacher , 8400)O 

r es dents(L r ed, Z^ , 90k, teacher , 8400) 

Figure 2: Partial hybrid explanations for (TX,teacher) 2 �� 

evaluates to false. Thus, the failed goals of a grounded rule justify 
the failure of the rule. As shown in [16], ignoring the predicate 
goals, this type of graphs are expressive enough to encode prove-
nance polynomials and their extension for negation [9], but also 
encode information about the query structure. By adding predicate 
goal nodes, hybrid explanations also model how the success and 
failure of comparison predicates a�ect the success/failure of the 
grounded rules of a query. 

E������ 3. Fig. 2 shows a partial hybrid explanation for the miss-
ing result Q(TX, teacher), i.e., why no teachers in TX are underpaid. 
We show three example possible causes: (i) Data-based (left-most) 
- the tuple node Q(TX, teacher) connects to the failed rule ground-
ing which derives the instance goal through A1. This derivation fails 
based on the absence of the tuple (�A43,)- , 45:, C402⌘4A , 0) in the 
relation residents; (ii) Query-based (middle) - connects the tuple 
node to the failed predicate goals 61

3 (90: < 55:)% and 62
2 (90: < 

90:)% through the failed grounded rule A1 ()- , C402⌘4A , 90:, 55:) and 
A2 ()- , C402⌘4A , 90:, �A43, 0), respectively; (iii) Hybrid (right-most) -
shows an example combination of a data-based and query-based expla-
nation: tax should include, e.g., the federal tax for Fred that is 8400 (en-
coded in the failed tuple node A4B834=CB (�A43,)- , 90:, C402⌘4A , 8400)
and the failed instance goal node 612 (�A43,)- , 90:, C402⌘4A , 8400)� ). 
Also the comparison predicates of A1 and A2 are too strict as shown by 
the failed predicate goals in the graph. 

Hybrid Repairs. We now show how to compute repairs based on a 
hybrid explanation. In [16], we proved that the PUG’s explanations 
generalize the dual provenance polynomials of the semiring frame-
work extension for �rst-order logic [10] by assigning a provenance 
token for each tuple node in the leaves and considering rule nodes 
as conjunctions (·) and goal nodes and rooted tuple nodes as alterna-
tives (+) and dealing with negation as in [9] by separate tokens for 
positive (existing) and negated (missing) tuples. Then, the hybrid 
repair problem can be recast as a constraint optimization problem 
by translating H�E��� to a set of linear constraints based on the 
expected query result. The problem is solvable using o�-the-shelf 
solvers. However, the cost of running a constraint solver over a 
problem whose size is polynomial in data is in general not an option 
because of the high computational complexity of constraint solving. 
Furthermore, constraint solvers typically return only a single result 
and, thus, do not directly allow us to involve the user in the search 
for the correct repair. We will discuss possible solutions in Sec. 5. 

E������ 4. Using the hybrid explanation in Ex. 3, a user can 
obtain valid repairs that cause Q(TX, teacher) to appear in the result 
of A1. However, not all of these repairs are correct and meaningful. For 
example, the data-based explanation (left-most in Fig. 2) leads to a 
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repair that inserts tuple (�A43,)- , 45:, C402⌘4A , 0) which causes A2 
to succeed which in turns causes A1 to derive the expected result. This 
explanation yields a valid repair and is side-e�ect free. However, 45: is 
not the correct income for Fred. Based on the query-based explanation 
(middle derivation in the �gure), changing the comparisons in A1 and 
A2 is a valid repair and is minimal in terms of query modi�cations. 
However, it may introduce a large number of side-e�ects on the query 
result. Importantly, both repairs do not �x the error with the missing 
federal tax for TX residents. The hybrid derivation (right-most) guides 
the user to obtain the correct repair: the instance goal that describes 
the tax amount should be changed as well as the comparisons of the 
query need to be changed. However, there are still many possible 
options for how to repair this part of the data and query. 

Preliminary Evaluation. We conducted a preliminary evaluation 
to measure the runtime in seconds for computing H�E��� using a 
real-world dataset3 (varying size from 270 to 270K rows). We use a 
simple conjunctive query with a comparison and compute H�E��� 
for a particular missing result. The experiments are conducted on 
a machine with 2 ⇥ 3.30 Ghz 8 cores Intel Xeon CPU and 128GB 
memory. Computing H�E��� for the missing result takes about 10s 
of seconds. Even for this simple case for a selective comparison, the 
number of failed derivations is already between 3 · 105 and 2.2 · 106, 
demonstrating the infeasibility of enumerating all possible repairs. 

5 CONCLUSIONS AND DISCUSSION 
In this paper, we introduced our vision for hybrid repairs and moti-
vated why modeling the problem as an unsupervised optimization 
problem is often insu�cient. Moving from providing a single expla-
nation/candidate repair to a larger selection of options, there can be 
a set of con�icting requirements for which an optimal solution does 
not exist or where it is virtually impossible to specify a metric that 
captures the characteristics of the ground truth repair. In this case, 
it is essential to provide users with the necessary tools to control 
the search for the correct repair by providing information about 
the search space and about speci�c repairs as well as allow users to 
state and update requirements such a repair should ful�ll. Thus, to 
realize our vision, we outline several open research questions that 
have to be addressed in the following. 
Restricting the Space of Viable Repairs. In De�nition 2.1, we 
did only slightly restrict the space of possible repairs. However, this 
is obviously too general for many use cases and may still result in 
a very large space of repairs. Hence, one of the �rst challenges that 
needs to be addressed is to study restrictions of the search space to 
exclude further meaningless repairs without being too restrictive 
(e.g., only allowing repairs with minimal side-e�ects). For example, 
such restrictions may come in the form of requiring speci�c parts 
of the query or input database to not be modi�ed by the repair, 
limiting the percentage of changed tuples for subsets of the input 
data, or restrict repairs to changes of predicate goals [8]. 
User-guided Exploration. Even when signi�cantly restricting 
the search space, full exploration of the search space will not be 
an option. To empower the user to e�ciently navigate the search 
space, we need e�ective visualizations of repairs at �exible levels 
of abstraction (e.g., the user may want to �rst see a summary of 
the changes that constitute a repair such as a compact description 
3https://www.kaggle.com/leomauro/argodatathon2019 
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of the rows that would be modi�ed), the ability to sort a set of 
repairs and the ability to change the sort order dynamically, e.g., 
sorting the repairs based on their side-e�ect size or based on a 
user-de�ned query (the data of how many high-value customers 
will be a�ected by the repair?). Furthermore, the user should be able 
to pose and update restrictions on the search space based on new 
knowledge uncovered during the search process. Such restrictions 
should include positive feedback (e.g., the user may identify a subset 
of updates made by a repair as correct and may only want to explore 
repairs that apply these updates) as well as negative feedback (e.g., 
exclude all repairs that change the income of persons). 
Summarizing Repairs to Guide Exploration. In addition to 
presenting information about a single repair at �exible levels of 
details, we should also aid the user to understand sets of repairs 
that share common characteristics. This requires summarizing sets 
of repairs compactly and to compute statistics about such sets (e.g., 
all repairs that update the tax rate in TX will at least have G side 
e�ects). As enumerating large sets of repairs is likely not an option, 
this necessitates the development of approximation techniques to 
ensure that such statistics can be computed e�ciently. 
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