Check for
Updates

Overlay Spreadsheets

Oliver Kennedy
okennedy@buffalo.edu
University at Buffalo
Buffalo, USA

ABSTRACT

Efforts to scale spreadsheets either follow a ‘virtual® strat-
egy that layers a spreadsheet interface on top of an existing
database engine or a ‘materialized’ strategy based on re-
engineering a spreadsheet engine. Because databases are
not optimized for spreadsheet access patterns, the material-
ized approach has better performance. However, the virtual
approach offers several advantages that can not be easily
replicated in the materialized approach, including the ability
to re-apply user interactions to an updated input dataset. We
propose the overlay update model, a hybrid approach that
overlays user updates on an existing dataset (as in the virtual
approach) and indexes user updates (as in the materialized
approach). A key feature of our approach is storing updates
generated by bulk operations (e.g., copy/paste) as compact
“patterns"” that can be leveraged to reduce execution costs. We
implement an overlay spreadsheet over Apache Spark and
demonstrate that, compared to DataSpread (a materialized
spreadsheet), it can significantly reduce execution costs.

ACM Reference Format:

Oliver Kennedy, Boris Glavic, and Michael Brachmann. 2023. Over-
lay Spreadsheets. In Workshop on Human-In-the-Loop Data Analytics
(HILDA °23), June 18, 2023, Seattle, WA, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3597465.3605220

1 INTRODUCTION

Tools like Wrangler [12], Vizier [8, 10], and others [15] adopt
direct manipulation interfaces, similar to spreadsheets, as a
way to streamline the definition of data preparation work-
flows. While convenient for curation, these interfaces lack

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HILDA °23, June 18, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0216-7/23/06....$15.00
https://doi.org/10.1145/3597465.3605220

Boris Glavic
bglavic@iit.edu
Illinois Institute of Technology
Illinois, USA

Michael Brachmann
mbrachmann@breadcrumb-
analytics.com
Breadcrumb Analytics

Buffalo, USA
HHEH L
Hloooo = L
0007y —~ @
T
Workflow Spreadsheet Overlay

Figure 1: Approaches to scalable spreadsheet design

the free form data manipulation capabilities that make spread-
sheets ideal for data exploration and visualization.

Fundamental to spreadsheet interfaces in workflow sys-
tems is the need to support replay. When the source data or
workflow changes, it should be possible to re-run the (up-
dated) workflow on the updated data. This is enabled in sys-
tems like Wrangler and Vizier, where the fundamental data
model is a workflow of repeatable transformations (“Work-
flow’ in Figure 1). By contrast, a spreadsheet is a grid of in-
terdependent cells where the original data and user-applied
edits are indistinguishable (‘Spreadsheet® in Figure 1).

In this paper, we propose a model of spreadsheets that acts
like a classical spreadsheet, but where the user’s edits and the
source data are decoupled. The result is a spreadsheet that
can be ‘overlaid’ on top of any dataset (‘Overlay’ in Figure 1),
no matter whether the source data is a raw datafile or the
result of a workflow (e.g., in Vizier). Overlay Spreadsheets
provide the flexibility of spreadsheets, while also supporting
the replay capabilities needed for workflows.

As we discuss in this paper, this new overlay approach to
spreadsheets also enables a new approach to scaling spread-
sheets to larger data. Classical spreadsheets have historically
had challenges managing “big data” — as few as 100k rows
of data create problems for existing spreadsheet engines [16].
DataSpread [5, 6, 16] re-architects the spreadsheet runtime
and specializes database primitives like indexes and incre-
mental maintenance for spreadsheet access patterns. In spite
of these changes, DataSpread still faces a key challenge: like
classical spreadsheets, its unit of computation is the cell. Al-
though the overheads of starting a computation (e.g., locking,
state initialization, etc...) are typically low, they are repeated
for each and every cell that needs to be computed.

Scaling Spreadsheets to Big Data. There has been consider-
able effort by the database community to ‘scale up’ spread-
sheets to big data [5, 6, 16]. Overlays create an opportunity

https://doi.org/10.1145/3597465.3605220
https://doi.org/10.1145/3597465.3605220
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597465.3605220&domain=pdf&date_stamp=2023-07-21

HILDA ’23, June 18, 2023, Seattle, WA, USA

for further scalability based on the following two observa-
tions: (i) Most of the ‘big’ data appears in the source dataset.
(ii) The user applies a small number of edits (that may affect
a large number of cells). The latter observation arises be-
cause users typically edit large numbers of cells by ‘pasting’
a formula into a range of cells. The pasted formula acts as a
template, and the pasted cells all follow a common pattern.
Like [6], we avoid storing formulas for each individual cell,
instead storing patterns and ranges of pasted cells.

Leveraging the user’s interest inn only a small subset of the
spreadsheet at any one time, overlay spreadsheets avoid com-
putations outside of this subset. Requests for cells originating
in the source data can be handled efficiently by standard rela-
tional storage engines, while only formula cells visible to the
user and their transitive dependencies need to be computed.

Unfortunately, common spreadsheet usage creates cells
with transitive dependencies that scale with data size. We
mitigate the prohibitively high cost of such cells by out-
sourcing their computation to a batch-processing engine like
Apache Spark. Although slower for small datasets, batch
engines scale to larger workloads more gracefully, making
them ideal for expensive computations that span many cells,
where individual cell values are not needed.

Overlay Spreadsheets. We propose Overlay Spreadsheets,
which present an interface analogous to a normal spread-
sheet, but where user edits are “overlaid” on top of a source
dataset that can easily be updated to a new version.

We outline a preliminary implementation of Overlay Spread-
sheets within Vizier 7, 8, 13], a multi-modal notebook-style
workflow system built on Apache Spark; Our implementa-
tion replaces its existing workflow-style spreadsheet. Our
objective is to demonstrate that a spreadsheet-style interface
can provide interactive latencies (i.e., like the materialized
approach), while still supporting replay and provenance
(i.e., like the virtual approach).

2 SPREADSHEET DATA MODEL
2.1 Spreadsheets

Let C and R denote domains of column and row labels.
Except where noted, R € Z. Let V and & D> V denote
domains of values and expressions, respectively. A spread-
sheet S : (C X R) — & is a partial mapping from cells
(c[r] € (C x R)) to expressions. We use S[c, r] to denote
S(c[r]). Let L € <V indicate “undefined” and define the do-
main DoM(S) to be the set of cells c[r] where S[c,r] # L.
An expression e € & is a formula defined over literals
from V, the standard arithmetic operators, and references
to other cells in the spreadsheet (c[r]). The expression e is
evaluated in the context of a spreadsheet ([- [s : & = V)
as follows: (i) Literals and arithmetic are evaluated in the

Kennedy et al.

Spreadsheet S

Evaluated Spreadsheet [- |5

Al + B1
20 | 60 | A2+ B2
25| 100 | A3 + B3
50 0 A4 + B4

Update U = {A[1] =20,C[3] =2 - A3 + B3}
Updated Spreadsheet U(S) Evaluated Update [- [(s)

Al + B1
20 | 60 A2 + B2
251100 | 2- A3 +B3
50 0 A4 + B4

Figure 2: Example spreadsheet with expressions shown
in dark green, and an update applied to the spreadsheet
with updated expressions and values shown in red.

usual way, and (ii) References to the spreadsheet are eval-
uated recursively ([¢[r] s = [S(c¢,7)]5)- By convention,
cyclic references evaluate to L. An expression’s dependen-
cies (deps (e)) are the cells referenced by e. Dependencies
induce a graph Gs (N, E) over the spreadsheet, with cells as
nodes (i.e., N = C X R), and dependencies as directed edges:

E= |) {clrl>c[r11¢[F] € deps(S[er]) }
c[r]leCxR
Denote by G; the graph (V, E*) where E* is the transitive
closure of E (i.e., G captures both direct and indirect depen-
dencies). Note that if all cell expressions are constants (i.e., a
spreadsheet without formulas), then [¢[r] |5 = S[c, r].

Example 2.1. Consider the spreadsheet at the top of Fig-
ure 2. Columns A and B hold constant expressions, while
column C holds reference cells from columns A and B. Eval-
uating this spreadsheet assigns each cell a value, as in the
top right. For example, C[1] evaluates to [A[1] + B[1] |5 =
[A[1] Tg +1 B[1] Jg = 15+ 50 = 65.

2.2 Cell Updates

A cell update set U € C X R X & is a set of cell updates of the
form c[r] = e that assign to cell c[r] the expression e. Denote
by DomM(U) the domain of update U, containing all cells ¢[r]
defined in U (i.e., Je : ([c[r] = €] € U)). Applying an update
U to a spreadsheet S returns an updated spreadsheet:

U(e[r])
Sle, r]

if ¢[r] € Dom(U)
otherwise

uSlerl = {

An update may affect cells beyond its domain. For example,
the update shown in Figure 2 changes two cells A[1] and
C[3], but evaluating the updated spreadsheet U(S) results
in three cell changes (in red).

Overlay Spreadsheets

2.3 Spreadsheet Access to Datasets

To uniformly model source datasets, whether from relational
databases or other spreadsheets, we assume an input dataset
D with designated row and column labels Cp and Rp as
appropriate to the source data. In a relational table, these
are the table’s columns and the values of a key or rowid
attribute, respectively. For csv data, Rp C Z is the position
of the row in the file. We write D|[r, c¢] to denote the value at
column ¢ € Cp of row r € Rp in D. Denote by ¥ : Rp — Z
a reference frame, an injective map from rows in D to rows
of the spreadsheet. A spreadsheet overlay for a dataset D is
a pair (D,) that defines a spreadsheet Sp & with domains
C =Cp, R =DoM(F) as Sp.#[c,r] =D[c, F~1(r)]

2.4 Overlay Updates

An Overlay Update describes a set of changes to a spread-
sheet (or dataset). As we will discuss in Section 3.1, column
operations are purely cosmetic in our model, and we focus on
cell and row updates exclusively. Concretely, a spreadsheet
overlay O = (7, U) is a reference frame transformation 7~
and a set of pattern updates U, terms we now define.

Reference Frame Transformations. Recall that a refer-
ence frame maps the spreadsheet’s positional row references
to native record identifiers. Thus, to insert, delete, or move
rows in the spreadsheet, it is sufficient to modify the refer-
ence frame. Formally, a reference frame transformation 7~ is
an injective mapping Z — Z U L from initial row positions
to new row positions, or the value L for a deleted row (7~
is allowed to map multiple inputs to _L). The new reference
frame, after applying O is ¥' = 7 o ¥, where o denotes
function composition. As an example, consider deleting the
2nd row from Figure 2. The positions of rows 3 and 4 are
decreased by one, while row 1 retains its position

x ifx<2
T(x)=1<1L if x =2

x—1 otherwise

Row insertions and movement are handled analogously.
Note that row insertions, deletions, and movement are ex-
pressible in constant size, independent of the size of the data.

Pattern Updates. Spreadsheets allow a formula from one
cell to be pasted across a range of cells. In a classical spread-
sheet, bulk interactions like this modify each cell’s expression
individually. Overlay spreadsheets avoid the high cost that
individual modifications can entail by grouping together the
set of pasted cells into a single pattern.

A range C[R] is the Cartesian product C X [I, h] of a set
of columns (C € C) and row positions (R = [Lh] C Z). A
pattern update U is a set of pairs {(C;[R;], P;)} where C;[R;]
is a range and P; is a pattern expression, i.e., an expression

HILDA ’23, June 18, 2023, Seattle, WA, USA

Spreadsheet S

Figure 3: Example overlay update and result (updated
expressions and values are shown in red).

that may also contain cell references where rows are relative
offsets (written as +i or —i). Ranges in an update C;[R;] must
be pairwise disjoint. A pattern update (C;[R;], P;) assigns
an expression to every cell c[r] in C;[R;] by replacing any
relative references of the form c[+d] in P; with c[r + §]. We
use P;(c[r]) to denote instantiation of pattern P; for cell ¢[r].
For instance, to store a running sum of the values in col-
umn C into column D (for the spreadsheet from Figure 2):

(L{running = (D[l], (C, +0))> (D[2 - 4]’ (C’ +0) + (D’ _1))

Semantics for Overlay Updates. An overlay update O
applied to a spreadsheet S defines the spreadsheet O(S)
computed by applying the reference frame update and then
applying all pattern updates (with O = (7, {(C;, R;, P;)})):

Pl-(c[r]) if 3i: c[r] e C; [R,]
oS)[e,r] =5S[e, T ()] f I :TG)=r
€L otherwise

Example 2.2. Consider our example update (Orunning =
(7ia> Urunning) Where Ti4(x) = x). Figure 3 shows the result
of applying Orunning to our running example spreadsheet.

Several remarks are in order. First, overlays can be used to
encode common spreadsheet update operations in constant
space (per update), including bulk updates via copy/paste.
Second, [17] uses similar ideas to compress the dependencies
in a spreadsheet using ranges and patterns, but focuses ex-
clusively on the dependency graph rather than expressions.

2.5 Replacing Source Data

An overlay designed for source data (D, ¥) may be applied
to a dataset (D', ¥') as long as each r € Rp there is a corre-
sponding row r’ € Rp such that ¥/ (F~1(r)) = r’. This is
possible if, e.g., Rp = Rp is a semantic key for the dataset.

HILDA ’23, June 18, 2023, Seattle, WA, USA

3 SYSTEM DESIGN

Our prototype overlay spreadsheet is implemented within
the Vizier reproducible notebook platform [7, 8, 13]. Vizier
leverages Apache Spark [1] for data provenance, processing,
and data import/export. Our prototype is designed to accept
any Spark dataframe as a data source.

Client applications connect through a thin Presentation
layer that mediates concurrent access to the spreadsheet
and translates our internal model of a spreadsheet to a more
natural interface. The Execution layer evaluates spreadsheet
cells and materializes cells currently visible to the user. The
Indexing layer provides efficient access to formulas, and a
LRU cache provides efficient access to source dataframes.

3.1 Presentation Layer

User-facing client applications connect to the overlay spread-
sheet through a presentation layer that serializes concurrent
updates, and provides clients with the illusion of a fixed grid
of cells. Column operations (insertion, deletion, reordering)
are handled at this layer, so lower levels can reference the
small set of columns solely by column identity. Other updates
are serialized and forwarded to lower levels.

The presentation layer expects the Executor to provide
efficient random access to cell values and supports updating
ranges of cells with pattern expressions.

3.2 Executor

The executor provides efficient access to cell values and gen-
erates notifications about cell state changes. Cell values are
derived from two sources: (i) A data source (D, ¥) defines
a base spreadsheet Sp[c,r] = D[c, F~1(r)], and (ii) A se-
quence of overlay updates (O ... Ok; where O; = (75, U;))
that extend the spreadsheet S = (O o ... 0 O;)(Sp). These
sources are implemented by a cache around Sp and the up-
date index, as discussed below.

The naive approach to materializing S (e.g., as in [6]) topo-
logically sorts cells based on dependencies and evaluates
cells in this order. The Executor side-steps the linear (in the
data size) cost of the naive approach through two insights:
(i) Updates applied over multiple cells are already available
as patterns, and (ii) Only a small fraction of cells will be
visible at any one time. Assuming the dependencies of a
range of cells can be computed efficiently (we return to this
assumption in Section 3.3), only the visible cells and their
dependencies need to be evaluated. The Executor only eval-
uates expressions for rows that are (close to being) visible to
the user, and the transitive closure of their dependencies.

Some dependency chains (e.g., running sums) still require
computation for each row of data. Although we leave a de-
tailed exploration of this challenge to future work, we ob-
serve that the fixed point of such pattern expressions can

Kennedy et al.

Figure 4: A range map maps disjoint ranges to values.

often be rewritten into a closed form. For example, any cell in
arunning sum column is equivalent to a sum over the preced-
ing cells. Our preliminary experiments (Section 4) suggest
promise in a hybrid evaluation strategy that evaluates visi-
ble cells individually and computes cells defined by patterns
through closed form windowed aggregation queries.

Updates. When the executor receives a cell update, it uses
the index to identify invalidated cells and begins re-evaluating
them in topological order. An update to the reference frame
is applied to both the index and the data source. Following
typical spreadsheet semantics, an insertion or row move up-
dates references in dependent formulas, so no re-evaluation
is typically required. If a row with dependent cells is deleted,
the dependent cells need to be updated to indicate the error.

3.3 Update Index

The update index stores sequence of updates (O = Oy o
... 0 0y) and provide efficient access to the cells of an over-
lay spreadsheet (denoted Sp) where undefined cells have
the value L. This entails: (i) cell expressions Sgp|c,r] (for
cell evaluation); (ii) upstream dependencies of a range (for
topological sort and computing the active set), and (iii) down-
stream dependents of a range (for cell invalidation after an
update). The key insight behind the index is that updates are
stored as pattern-range tuples instead of as individual cells.

Range Maps. The update index is built over a one-dimen-
sional range map, an ordered map with integer keys. In ad-
dition to the usual operations of an ordered map (e.g., put,
get, successorOf), we define the operation bulkPut (low,
high, value) which is equivalent to a put on every element
in the range from low to high. Implemented naively (e.g. a
size N binary tree), this operation is O((high—1ow)-log(N)).

A range map avoids the (high — low) factor by storing
an ordered sequence of disjoint ranges, each mapping one
specific value as illustrated in Figure 4. A binary tree provides
efficient membership lookups over the ranges. With a range
map, the set of distinct values appearing in a range can be
accessed in O(log(N) + M) time (where M is the number of
distinct values), and has similar deletion and insertion costs.

Cell Access. The index layer maintains a “forward” index:
An unordered map 7 that stores a range map I [c] for each
column. The expression for a cell c[r] is stored at I [c][r].

Upstream Reachability. The execution layer needs to be
able to derive the set of cells on which a specific target cell (or

Overlay Spreadsheets

Algorithm 1 upstream(C, R)

Require: C,R[]: A range to compute the upstream of.
Ensure: upstream: Cells on which ¢[R] is a dependency.
1: upstream « {}
2: work «— { (¢,R,{}) |ceC}
3: while (¢, R’, lineage) « work.dequeue do
for (R”,pattern) « forwardIndex(c’,R’) do
for (cg4, Ry, of fset)«deps(pattern,c’,R") do
(cg, Rq) < (cq, Rg) — upstream
if (cq4, Rq) is non-empty then
upstream « upstream+ (cq, Rg)
queue.enqueue(cy, Ry,
10: {p — (o’ +offset)| (p’ > 0’) € lineage}
11: U{pattern — offset})

R A A

range) depends. We refer to this set as the target’s upstream.
Algorithm 1 illustrates how to use breadth-first search to
obtain the full upstream set for a given target range. Each
item in the BFS’s work queue consists of a column, a row set,
and a lineage; We will return to the lineage shortly. For each
work item enqueued, we query the forward index to obtain
patterns in the range (line 4), and iterate over the set of their
dependencies (line 5). If we discover a new dependency (lines
6-7), the newly discovered range is added to the return set
and the work queue. We will explain lines 10-12 shortly.

The deps operation (Line 5; Algorithm 2) computes the
immediate dependencies of a range of cells ¢[R] that share
a pattern. Concretely, it returns a set of cells deps such
that for each cell c[r] € deps, there exists at least one cell
c[r]” € c[R] such that c[r] is in the transitive closure of
deps (c[r]’). The algorithm uses a recursive traversal (lines
6-7) to visit every cell reference (offset or explicit): For offset
references (lines 2-3), the provided range of rows is offset
by the appropriate amount. For explicit cell references (lines
4-5), the explicit reference is used.

Algorithm 2 deps(pattern,c,R)

Require: pattern: An expression pattern
Require: c[R]: A range of cells
Ensure: deps: Dependencies of ¢[R]’s pattern
1: deps « {}
2: if pattern is an offset reference ¢’'[§’] then
3 deps « deps U {(¢’,R+&",8")}
4: else if pattern is a direct reference ¢’[7'] then
5 deps « deps U {(c’,r",0)}
6: else
7 deps « deps U

childepattern

deps(child, ¢, R)

Optimizing Recursive Reachability. Consider a running
sum, such as the one in Example 2.2. The kth element will

HILDA ’23, June 18, 2023, Seattle, WA, USA

—¥— Vizier 102 4
10° 4 Vizier (Simulated Batching) P

= —e— DataSpread 8 vizier
e lo— —o [10* 4 Vizier (Simulated Batching)
E 101 £ —e— DataSpread

[

102 10° 10* 10? 10° 10%
Number of rows First visible row

(a) Scale Data, View First (b) Fix Data, Move View

—¥— Vizier X —¥— Vizier
10° A Vizier (Simulated Batching) 10~ Vizier (Simulated Batching)
—e— DataSpread —e— DataSpread

e

Time (s)

o .
102 10° 10* 10? 10° 104
Number of rows Number of rows

(c) Scale Data, View Last (d) Scale Data, View First

Figure 5: Time to initialize the spreadsheet (a-b) and
cost to update one cell (c-d)

have O(k) upstream dependencies, and so naively following
Algorithm 1 is in O(k). However, observe that a single pat-
tern is responsible for all of these dependencies, suggesting
that a more efficient option may be available.

This dependency chain arises from recursion over single
pattern; most cells depend on other cells defined by the same
pattern. We refer to such a pattern as recursive, even if it
does not create dependency cycle over individual cells.

As with cell execution, the transitive closure of the depen-
dencies of a recursive pattern has a closed-form represen-
tation. In our running example, the upstream of any D[k]
is exactly D[1 — (k — 1)] and C[1 — k]. The lineage field
of Algorithm 1 is used to track the set of patterns visited,
and the offset(s) at which they were visited. If the pattern
being visited already appears in the lineage, then we know it
is recursive and that we can extend out the sequence of up-
stream cells across the remaining cells of the pattern. When
the offset is +1, the elements of this sequence are efficiently
representable as a range of cells, computable in O(1) time.

Downstream Reachability. When a cell’s expression is
updated, cells that depend on it (even transitively) must be
recomputed, so the index must support downstream reacha-
bility queries. For efficient downstream lookups, the index
maintains a “backward” index relating ranges to the set of
patterns that depend on all cells in the range. The resulting
algorithm over the backward index is analogous to deps.

4 EXPERIMENTS

In this section we explore the performance of the overlay
approach. Concretely, we are interested in two questions: (i)
How does data size affect the performance of each system? (ii)
How does dependency chain length affect the performance
of each system? Experiments were run on an 8-core 2.3 GHz
Intel i7-11800H running Linux (Kernel 5.19), with 32G of
DDR4-3200 RAM, and a 2TB 970 EVO NVME solid state drive.

HILDA ’23, June 18, 2023, Seattle, WA, USA

We compare three systems: (i) DataSpread: Dataspread ver-
sion 0.5 [4]; (ii) Vizier: Our prototype implementation of
overlay spreadsheets; and (iii) Vizier (Simulated Batch-
ing): Simulated hybrid batch processing (see Setup, below).
All experiments were performed with a warm cache.

Setup. We address our questions through a microbenchmark
modeled after TPC-H query 1 [9]: The spreadsheet is defined
by the TPC-H lineitem dataset with N rows and four addi-
tional columns defined by the patterns:

ext_price[+0]

base_price[+0] * (1 - discount[+@])
disc_price[+0] * (1 + tax[+0])
charge[1]

charge[+0] + sum_charge[-1]

base_price[1-N]
disc_price[1-N]
charge[1-N]
sum_charge[1]
sum_charge[2-N]

The sum_charge column is a running total, creating a depen-
dency chain that grows linearly with row index. As the user
scrolls down the page (under normal usage), the runtime to
compute visible cells grows linearly. Each system loads the
spreadsheet with a viewable area of 50 rows and updates a
single cell. We measure (i) the cost of initialization and (ii) the
cost of a single update. Time is measured until quiescence.
To emulate batch processing, we replace the formula for the
sum_change[i — 1] (where i is the first visible row) with a
formula that computes the analogous aggregate query.

Moving View. Figure 5(a,c) shows costs for a fixed dataset
size of approximately 600,000 rows, varying the viewable
rows. Due to the running sum, later rows require more com-
putation. Costs for Vizier and Dataspread grow significantly
with the length of the dependency chain, while batch pro-
cessing can compute the updated sum significantly faster.

Scaling Data. Figure 5(b,d) shows costs when varying data
size, with the view fixed on the first cell. Because dependen-
cies in the visible area are of constant size, Vizier is faster.

5 RELATED WORK

Although spreadsheets present a convenient interface to data,
they lack the scalability to manage large data. A common
approach to scaling spreadsheets (the “virtual” approach)
adds an interface to an existing database or workflow sys-
tem providing spreadsheet-style direct manipulation oper-
ations [2, 10-12, 15]. The resulting systems bear varying
levels of resemblance to existing spreadsheets, usually intro-
ducing concepts from relational databases like explicit tables,
attributes, and records. Wrangler [12] is an ETL workflow
development tool with an interface inspired by spreadsheets.
Users open a small sample of a dataset in Wrangler and
use spreadsheet-style operations to indicate desired changes
to the dataset. Vizier [7, 8, 13, 14] is a computational note-
book system that allows users to define workflow stages
through a spreadsheet-style interface. Other approaches
more directly mimic relational databases: The Spreadsheet

Kennedy et al.

Algebra [11, 15] allows users to specify any SPJGA-query
purely through spreadsheet-style user interactions. Related
Worksheets [2, 3] re-imagines the spreadsheet interface with
record structure and inline display of foreign-key references.

A second approach (the “materialized” approach) instead
redesigns the spreadsheet engine using database concepts;
An example is DataSpread [5, 6, 16]. A key challenge is that
classical database techniques, which exploit common struc-
tures in a dataset, are not directly applicable. [5] explores
data structures that can leverage partial structure; for ex-
ample, when a range of cells are structured as a relational
table. [6] explores strategies for quickly invalidating cells
and computing dependencies, by leveraging a (lossy) com-
pressed dependency graph that can efficiently bound a cell’s
downstream. [17] introduces a different type of compressed
dependency graph which is lossless, instead exploiting re-
peating patterns in formulas. This is analogous to our own
approach, but focuses on the dependency graph rather than
expressions, limiting opportunities for optimization.

In summary, DataSpread introduced multiple efficient al-
gorithms for storing, accessing, and updating spreadsheets.
The virtual approach is often less efficient, but has the advan-
tage of supporting light-weight versioning and provenance.
Crucially, it also enables replaying a user’s updates, originally
applied to one dataset, on a new dataset (e.g., to re-apply
curation work on an updated version of the data). Our over-
lay approach has the potential to retain these benefits while
enabling performance competitive with DataSpread.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced overlay spreadsheets as a po-
tential direction for reproducible spreadsheets in workflow
and provenance analysis systems like Vizier. Overlay spread-
sheets decouple the user’s edits from the source data they
are applied to, enabling replayability. We demonstrated how
a compact, declarative encoding of formulas, in turn enables
optimized evaluation of recursive patterns.

Recursive patterns remain the source of several open chal-
lenges for us. Most notably, in the absence of recursive pat-
terns, the depth of a dependency chains is bounded by the
number of user interactions. We suggested two strategies for
improving performance in the presence of recursive patterns:
(i) Closed-form computation of dependencies, and (ii) using
bulk processing to avoid individual cell evaluation.

We also observe two additional challenges of adapting a
dataset to new source data. Row identity is a critical challenge
for updating source data, as each row in the updated dataset
needs to be mapped to its corresponding row in the original.
Additionally, the spreadsheet itself may need to change, for
example extending patterns to incorporate newly introduced
rows in the dataset.

Overlay Spreadsheets

REFERENCES

[1] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data
Processing in Spark. In SIGMOD.

Eirik Bakke and Edward Benson. 2011. The Schema-Independent
Database UI: A Proposed Holy Grail and Some Suggestions. In CIDR.
219-222.

Eirik Bakke, David R. Karger, and Rob Miller. 2011. A spreadsheet-
based user interface for managing plural relationships in structured
data. In CHI 2541-2550.

Mangesh Bendre, Bofan Sun, Ding Zhang, Xinyan Zhou, Kevin Chen-
Chuan Chang, and Aditya G. Parameswaran. 2015. DATASPREAD:
Unifying Databases and Spreadsheets. PVLDB 8, 12 (2015), 2000-2003.

Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou, Kevin Chen-
Chuan Chang, and Aditya G. Parameswaran. 2018. Towards a Holistic
Integration of Spreadsheets with Databases: A Scalable Storage Engine
for Presentational Data Management. In ICDE. 113-124.

Mangesh Bendre, Tana Wattanawaroon, Kelly Mack, Kevin Chang, and
Aditya G. Parameswaran. 2019. Anti-Freeze for Large and Complex
Spreadsheets: Asynchronous Formula Computation. In SIGMOD. 1277-
1294.

Mike Brachmann, Carlos Bautista, Sonia Castelo, Su Feng, Juliana
Freire, Boris Glavic, Oliver Kennedy, Heiko Mueller, Remi Rampin,
William Spoth, and Ying Yang. 2019. Data Debugging and Exploration
with Vizier. In SIGMOD.

Michael Brachmann, William Spoth, Oliver Kennedy, Boris Glavic,
Heiko Mueller, Sonia Castelo, Carlos Bautista, and Juliana Freire. 2020.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

HILDA ’23, June 18, 2023, Seattle, WA, USA

Your notebook is not crumby enough, REPLace it. In CIDR.
The Transaction Processing Performance
TPC Benchmark H (Decision Support),

https://www.tpc.org/tpch/default5.asp.

Juliana Freire, Boris Glavic, Oliver Kennedy, and Heiko Mueller. 2016.
The Exception That Improves The Rule. In HILDA.

H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian,
Yunyao Li, Arnab Nandi, and Cong Yu. 2007. Making database systems
usable. In SIGMOD. 13-24.

Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer.
2011. Wrangler: interactive visual specification of data transformation
scripts. In CHI. 3363-3372.

Oliver Kennedy, Boris Glavic, Juliana Freire, and Mike Brachmann.
2022. The Right Tool for the Job: Data-Centric Workflows in Vizier.
IEEE-DEB (2022).

Poonam Kumari, Michael Brachmann, Oliver Kennedy, Su Feng, and
Boris Glavic. 2021. DataSense: Display Agnostic Data Documentation.
In CIDR.

Bin Liu and H. V. Jagadish. 2009. A Spreadsheet Algebra for a Direct
Data Manipulation Query Interface. In ICDE. 417-428.

Sajjadur Rahman, Kelly Mack, Mangesh Bendre, Ruilin Zhang, Kar-
rie Karahalios, and Aditya G. Parameswaran. 2020. Benchmarking
Spreadsheet Systems. In SIGMOD. 1589-1599.

Dixin Tang, Fanchao Chen, Christopher De Leon, Tana Wattanawa-
roon, Jeaseok Yun, Srinivasan Seshadri, and Aditya G. Parameswaran.
2023. Efficient and Compact Spreadsheet Formula Graphs. CoRR
abs/2302.05482 (2023). arXiv:2302.05482

2018.
2.18.0.

Council.
Revision

https://arxiv.org/abs/2302.05482

	Abstract
	1 Introduction
	2 Spreadsheet Data Model
	2.1 Spreadsheets
	2.2 Cell Updates
	2.3 Spreadsheet Access to Datasets
	2.4 Overlay Updates
	2.5 Replacing Source Data

	3 System Design
	3.1 Presentation Layer
	3.2 Executor
	3.3 Update Index

	4 Experiments
	5 Related Work
	6 Conclusions and Future Work
	References

