N)
)
Check for
updates

Efficient Approximation of Certain and Possible Answers for
Ranking and Window Queries over Uncertain Data

Su Feng Boris Glavic Oliver Kennedy
Illinois Institute of Technology Illinois Institute of Technology SUNY Buffalo
sfengl4@hawk.iit.edu bglavic@iit.edu okennedy@buffalo.edu

ABSTRACT

Uncertainty arises naturally in many application domains due to,
e.g., data entry errors and ambiguity in data cleaning. Prior work
in incomplete and probabilistic databases has investigated the se-
mantics and efficient evaluation of ranking and top-k queries over
uncertain data. However, most approaches deal with top-k and
ranking in isolation and do represent uncertain input data and
query results using separate, incompatible data models. We present
an efficient approach for under- and over-approximating results
of ranking, top-k, and window queries over uncertain data. Our
approach integrates well with existing techniques for querying un-
certain data, is efficient, and is to the best of our knowledge the first
to support windowed aggregation. We design algorithms for physi-
cal operators for uncertain sorting and windowed aggregation, and
implement them in PostgreSQL. We evaluated our approach on syn-
thetic and real world datasets, demonstrating that it outperforms
all competitors, and often produces more accurate results.

PVLDB Reference Format:

Su Feng, Boris Glavic, and Oliver Kennedy. Efficient Approximation of
Certain and Possible Answers for Ranking and Window Queries over
Uncertain Data. PVLDB, 16(6): 1346 - 1358, 2023.
doi:10.14778/3583140.3583151

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fengsu91/uncert-ranking-availability.

1 INTRODUCTION

Many application domains need to deal with uncertainty arising
from data entry/extraction errors [36, 51], data lost because of
node failures [39], ambiguous data integration [7, 31, 46], heuristic
data wrangling [13, 21, 58], and bias in machine learning training
data [26, 50]. Incomplete and probabilistic databases [18, 55] model
uncertainty as a set of so-called possible worlds. Each world is a
deterministic database representing one possible state of the real
world. The commonly used possible world semantics [55] returns for
each world the (deterministic) query answer in this world. Instead
of this set of possible answer relations, most systems produce either
certain answers [33] (result tuples that are returned in every world),
or possible answers [33] (result tuples that are returned in at least one

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583151

1346

world). Unfortunately, incomplete databases lack the expressiveness
of deterministic databases and have high computational complexity.

Notably, uncertain versions of order-based operators like SORT
/ LIMIT (ie., Top-K) have been studied extensively in the past [19,
41, 48, 54]. However, the resulting semantics often lacks closure.
That is, composing such operators with other operators typically
requires a complete rethinking of the entire system [52], because
the model that the operator expects its inputs to be encoded with
differs from the model encoding the operator’s outputs.

In [23, 24], we started addressing the linked challenges of com-
putational complexity, closure, and expressiveness in incomplete
database systems, by proposing AU-DBs, an approach to uncer-
tainty management that can be competitive with deterministic
query processing. Rather than trying to encode a set of possible
worlds losslessly, each AU-DB tuple is defined by one range of possi-
ble values for each of its attributes and a range of (bag) multiplicities.
Each tuple of an AU-DB is a hypercube that bounds a region of the
attribute space, and together, the tuples bound the set of possible
worlds between an under-approximation of certain answers and an
over-approximation of possible answers. This model is closed under
relational algebra [23] with aggregation [24] (RA99). That is, if an
AU-DB D bounds a set of possible worlds, the result of any RA%9Y
query over D bounds the set of possible query results. We refer to
this correctness criteria as bound preservation. In this paper, we
add support for bounds-preserving order-based operators to the
AU-DB model, along with a set of (nontrivial) operator implementa-
tions that make this extension efficient. The closure of the AU-DB
model under RAY, its efficiency, its property of bounding certain
and possible answers, and its capability to compactly represent
large sets of possible tuples using attribute-level uncertainty are
the main factors for our choice to extend this model.

When sorting uncertain attribute values, the possible order-by
attribute values of two tuples #; and f2 may overlap, which leads to
multiple possible sort orders. Thus, supporting order-based opera-
tors over AU-DBs requires encoding multiple sort orders. Unfortu-
nately, a dataset can only have one physical ordering. We address
this limitation by introducing a position attribute, decoupling the
physical order in which the tuples are stored from the set of possible
logical orderings. With a tuple’s position in a sort order encoded as
a numerical attribute, operations that act on this order (i.e., LIMIT)
can be redefined in terms of standard relational operators, which, al-
ready have well-defined semantics in the AU-DB model. In short, by
virtualizing sort order into a position attribute, the existing AU-DB
model is sufficient to express the output of SQL’s order-dependent
operations in the presence of uncertainty.

We start by (i) formalizing uncertain orders within the AU-DB
model and present a semantics of sorting and windowed aggrega-
tion operations that can be implemented as query rewrites. When

https://doi.org/10.14778/3583140.3583151
https://github.com/fengsu91/uncert-ranking-availability
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583151
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3583140.3583151&domain=pdf&date_stamp=2023-04-20

combined with existing AU-DB rewrites [23, 24], any RAY query
with order-based operations can be executed using a deterministic
DBMS. Unfortunately, these rewrites introduce SQL constructs that
necessitate computationally expensive operations, driving a central
contribution of this paper: (iii) new algorithms for sort, top-k, and
windowed aggregation operators for AU-DBs.

To understand the intuition behind these operators, consider
the logical sort operator, which extends each input row with a
new attribute storing the row’s position wrt. to ordering the input
relation on a list O of order-by attributes. If the order-by attributes’
values are uncertain, we have to reason about each tuple ¢’s lowest
possible position (the number of tuples that certainly precede it in
all possible worlds), and highest possible position (the number of
tuples that possibly precede it in at least one possible world). We can
naively compute a lower (resp., upper) bound by joining every tuple
t with every other tuple, counting pairs where ¢ is certainly (resp.,
possibly) preceded by the tuple it is paired with. We refer to this
approach as the rewrite method, as it can be implemented in SQL.
However, the rewrite approach has quadratic runtime. Inspired by
techniques for aggregation over interval-temporal databases such
as [47], we propose a one-pass algorithm to compute the bounds
on a tuple’s position that also supports top-k queries.

ExAMPLE 1 (UNCERTAIN SORTING AND Top-K). Fig. 1a shows a
sales DB, extracted from 3 press releases. Uncertainty arises for a
variety of reasons, including extraction errors (e.g., D3 includes term
5) or missing information (e.g., only preliminary data is available
for the 4th term in D1). The task of finding the two terms with the
most sales is semantically ambiguous for uncertain data. Consider
the following semantics for uncertain ranking: (i) U-top [54] (Fig. 1c)
returns the most likely ranked order; (ii) U-rank [54] (Fig. Ic) returns
the most likely tuple at each position (term 4 is more likely than any
other value for both the 1st and 2nd position); and (iii) Probabilistic
threshold queries (PT-k) [32, 59] return tuples that appear in the top-
k with a probability exceeding a threshold (PT), generalizing both
possible (PT > 0; Fig. 1d) and certain (PT > 1; Fig. 1e) answers.

With the exception of U-Top, none of these semantics return both
information about certain and possible results, making it difficult
for users to gauge the (i) trustworthiness or (ii) completeness of an
answer. Risk assessment on the results produced by these semantics
is difficult, preventing their use for critical applications in, e.g., the
medical or financial domains. Furthermore, the outputs of uncertain
ranking operators like U-Top are not valid as inputs to further
uncertainty-aware queries, because they lose information about
uncertainty in the source data. These disadvantages motivate our
choice of the AU-DB data model. First, AU-DBs naturally encode
query result reliability. By providing each attribute value (and tuple
multiplicity) as a range, users can quickly assess the precision of
an answer. Second, the model is complete: the full set of possible
answers is represented. Finally, the model admits a closed, efficiently
computable, and bounds-preserving semantics for RAY.

ExampLE 2 (AU-DB TOP-2 QUERY). Fig. If (left) shows an AU-DB,
which uses triples, consisting of a lower bound, a selected-guess value
(defined shortly), and an upper bound to bound the value range of
an attribute (Term, Sales) and the multiplicity of a tuple (N3). The
AU-DB bounds all of the possible worlds of our running example.

1347

D, ‘ Term ‘ Sales D, ‘ Term ‘ Sales Ds ‘ Term ‘ Sales

1 2 1 3 1 2

2 3 2 2 2 2

3] 7 3 4 5 4

4 4 4 6 4 7

Term ‘ Sales ‘ Sum Term ‘ Sales ‘ Sum Term ‘ Sales ‘ Sum
1 2 5 1 3 5 1 2 4
2 3 10 2 2 6 2 2 9
3 7 11 3 4 10 5 4 4
4

4 4 4 6 6 4 7
(a) An uncertain sales database with three possible worlds (with probability
.4, .3 and .3 respectively) with top-2 highest selling terms high-lighted and
the result of the rolling sum of sales for the current and next term.

Term Term TeSrm Term
4 4 4 4
3 4
(b) U-Top (c) U-Rank @ l;ST(0) (e) PT(1)
Term ‘ Sales ‘ N3 Term ‘ Sales ‘ Position N3
1 [2/2/3] | (1,1,1) 1 [2/2/3] [2/3/3] (0,0,0)
2 [2/3/3] | (1,1,1) 2 [2/3/3] [2/2/3] (0,0,0)
[3/3/5] | [4/7/7] | (1,L.1) [3/3/5] | [4/7/7] | [o/o/1] (1,1.1)
4 [4/4/7] | (1.1,0) 4 [4/4/7] | [0/1/1] (1,1,1)
(f) AU-DB bounding the worlds and top-2 result produced by our approach
Term ‘ Sales ‘ Sum N3
1 (2/2/3] | [4/5/6] | (LL1)
2 [2/3/3] | [6/10/10] | (1,1,1)
[3/3/51 | [4/7/7] | [4/11/14] | (1.1,1)
4 [4/4/7] [4/4/14] (1,1,1)

(g) AU-DB windowed aggregation result returned by our approach

Figure 1: Ranking, top-k, and windowed aggregation queries over
an incomplete (probabilistic) database and a bounding AU-DBs.
Intuitively, each world’s tuples fit into the ranges defined by the AU-
DB. The selected-guess values encode one distinguished world (here,
D1) — supplementing the bounds with an educated guess about which
possible world correctly reflects the real world 1, providing backwards
compatibility with existing heuristic data cleaning systems that return
one repair (possible world) from the space of all repairs [14, 38]. Fig. 1f
(right) shows the result of computing the top-2 answers sorted on
term. The rows marked in grey encode all tuples that could exist
in the top-2 result in some possible world. For example, the tuples
(3,4) (D1), (3,7) (D2), and (5,7) (D3) are all encoded by the AU-DB
tuple ([3/3/5],[4/7/7]) — (1,1, 1). Results with a row multiplicity
range of (0,0,0) are certainly not in the result. The AU-DB compactly
represents an under-approximation of certain answers and an over-
approximation of all the possible answers, e.g., for our example, the
AU-DB admits additional worlds with 5 sales in term 4.

Implementing windowed aggregation requires determining the
(uncertain) membership of tuples in windows, which may be af-
fected both by uncertainty in sort position and in group-by at-
tributes. Furthermore, we have to reason about which of the tuples
possibly belonging to a window minimize / maximize the aggrega-
tion function result. It is possible to implement this reasoning in
SQL, albeit at the cost of range self-joins (this is the rewrite method
we will discuss in detail in [22] and evaluate in Sec. 8). We propose a
one-pass algorithm for windowed aggregation over AU-DBs, which
we will refer to as the native method.

The intuition behind our algorithm is to share state between mul-
tiple windows. For example, consider the window ROWS BETWEEN 3
PRECEDING AND CURRENT ROW. In the deterministic case, with each

! The process of obtaining a selected-guess world is domain-specific, but [23, 24]
suggest the most likely world, if it can be feasibly obtained.

new window one row enters the window and one row leaves. Sum-
based aggregates (sum, count, avg) can leverage commutativity and
associativity of addition, i.e., updating the window requires only
constant time. Similar techniques [8] can maintain min/max aggre-
gates in time logarithmic in the window size.

Non-determinism in the row position makes such resource shar-
ing problematic. First, tuples with non-deterministic positions do
not necessarily leave the window in FIFO order. We need to iterate
over tuples sorted on both the upper- and lower-bounds of their
possible sort positions. Second, the number of tuples that could
possibly belong to the window may be significantly larger than
the window size. Considering all possible rows for a k row win-
dow (using the AU-DB aggregation semantics from [24]) results
in a looser bound than if only subsets of size k are considered. For
that, we need access to rows possibly in a window sorted on the
bounds of the aggregation attribute values in decreasing (increas-
ing) order of their upper (lower) bound to find the k-subset with the
minimal/maximal aggregation result. Furthermore, we have to sep-
arately maintain tuples that certainly belong to a window (which
contribute to both bounds). To maintain sets of tuples such that
they can be accessed in several sort orders efficiently, we develop a
data structure which we refer to as a connected heap. A connected
heap is a set of heaps where an element popped from one heap
can be efficiently (O(logn)) removed from the other heaps even
if their sort orders differ from the heap we popped the element
from. This data structure allows us to efficiently maintain sufficient
state for computing AU-DB results for windowed aggregation. In
preliminary experiments, we demonstrated that, connected heaps
significantly outperform a solution based on classical heaps.

ExAMPLE 3 (WINDOWED AGGREGATION). Consider the following
windowed aggregation query:

SELECT *, sum(Sales) OVER (ORDER BY term ASC
BETWEEN CURRENT ROW AND 1 FOLLOWING) as sum FROM R;

Fig. 1g shows the result of this query over our running example AU-DB.
The column Sum bounds all possible windowed aggregation results for
each AU-DB tuple and the entire AU-DB relation bounds the windowed
aggregation result for all possible worlds. Notice that AU-DBs ignore
correlations which causes an over-approximation of ranges in the
result. For example, term 1 has a maximum aggregation result value
of 6 according to the AU-DB representation but the maximum possible
aggregation value across all possible world is 5.

2 RELATED WORK

We build on prior research in incomplete and probabilistic databases,
uncertain aggregation, uncertain top-k and uncertain sorting.

Probabilistic/Incomplete databases. Certain answer semantics [6,
28, 29, 33, 43, 44] only returns answers that are guaranteed to
be correct. Computing certain answers is coNP-complete in data-
complexity [6, 33]. However, under-approximations [17, 23, 28,
29, 43, 49] can be computed in PTIME. AU-DBs [24] build on the
selected-guess and lower bounds-based approach of [23], adding an
upper bound on possible answers and attribute-level uncertainty
with ranges to support aggregation. MCDB [34] and Pip [37] sample
from the set of possible worlds to generate expectations of possi-
ble outcomes, but can only obtain probabilistic bounds on their

1348

estimates. Queries over symbolic models for incomplete data like
C-tables [33] and m-tables [56] often have PTIME data complexity,
but obtaining certain answers from query results is intractable.

Aggregation in Incomplete/Probabilistic Databases. General
solutions for non-windowed aggregation over uncertain data re-
main an open problem [18]. Due to the complexity of uncertain
aggregation, most approaches focus on identifying tractable cases
and producing lossy representations [5, 15, 16, 35, 37, 42, 45, 52, 57].
These result encodings are not closed (i.e., not useful for subsequent
queries), and are also expensive to compute (often NP-hard). Sym-
bolic models [12, 25, 40] that are closed under aggregation permit
PTIME data complexity, but extracting certain / possible answers is
still intractable. We proposed AU-DBs [24] which are closed under
RAYI and achieve efficiency through approximation.

Uncertain Top-k. A key challenge in uncertain top-k ranking is
defining a meaningful semantics. The set of tuples certainly (resp.,
possibly) in the top-k may have fewer (more) than k tuples. U-
Top [54] picks the top-k set with the highest probability. U-Rank [54]
assigns to each rank the tuple which is most-likely to have this
rank. Global-Topk [59] first ranks tuples by their probability of
being in the top-k and returns the k most likely tuples. Probabilistic
threshold top-k (PT-k) [32] returns all tuples that have a probability
of being in the top-k that exceeds a pre-defined threshold. Expected
rank [19] calculates the expected rank for each tuple across all
possible worlds and picks the k tuples with the highest expected
rank. Ré et al. [48] proposed a multi-simulation algorithm that stops
when a guaranteed top-k probability can be guaranteed. Soliman
et al. [53] proposed a framework that integrates tuple retrieval,
grouping, aggregation, uncertainty management, and ranking in a
pipelined fashion. Each of these generalizations necessarily breaks
some intuitions about top-k, producing more (or fewer) than k
tuples, or producing results that are not the top-k in any world.

Uncertain Order. Amarilli et. al. extends the relational model
with a partial order to encode uncertainty in the sort order of a
relation [10, 11]. For more general use cases where posets can not
represent all possible worlds, Amarilli et. al. also develop a symbolic
model of provenance [9] whose expressions encode possible orders.
Both approaches are limited to set semantics.

3 NOTATION AND BACKGROUND

A database schema Scu(D) = {Sch(Ry),...,Sch(Ry)} is a set of re-
lation schemas Sch(R;) = (A1, ..., Apn). Use arity(ScH(R)) to de-
note the number of attributes in ScH(R). An instance D for schema
ScH(D) is a set of relation instances with one relation per schema
in ScH(D): D =A{Ry, ..., Ry }. Assuming a universal value domain
D, a tuple with schema ScH(R) is an element from D@ty (Scu(R))

A K-relation [27] annotates each tuple with an element of a
(commutative) semiring. In this paper, we focus on N-relations. An
N-relation of arity n is a function that maps each tuple (D") in the
relation to an annotation in N representing the tuple’s multiplicity.
Tuples not in the relation are mapped to multiplicity 0. N-relations
are required to have finite support (tuples not mapped to 0). Since
K -relations are functions from tuples to annotations, it is customary
to denote the annotation of a tuple ¢ in relation R as R(t). A K-
database is a set of K(-relations. Green et al. [27] did use the semiring
operations to express positive relational algebra (RA*) operations

R(t)
0

[za®] (0 =) if 6(1)

t':t=mp

ﬂ“”ﬂ@wmm={

[RUS] (t) = R(t) +5(t) [R x S] (t) = R(t) x S(t)

Figure 2: Evaluation semantics [-] that lift the operations of a semir-
ing K to RA" operations over K-relations.

over K-relations as shown in Fig. 2. Notably for us, positive bag-
relational algebra is equivalent to K-relational semantics for the
natural numbers semiring N = (N, +, X, 0, 1).

3.1 Incomplete N-Relations

An incomplete N-database D = {Dy,..., Dy} (resp., incomplete
N-relation R = {Ry,...,Rp}) is a set of N-databases D; (resp., N-
relations R;) called possible worlds. Queries over incomplete N-
databases use possible world semantics: The result of a query Q
over an incomplete N-database D is the set of relations R (possible
worlds) derived by evaluating Q over every world in D using the
semantics of Fig. 2. In addition to enumerating all possible query
results, past work has introduced the concept of certain and pos-
sible answers for set semantics, which are respectively the set of
tuples present in all worlds or in at least one world. Certain and
possible answers have been generalized [23, 30] to bag semantics
as the extrema of the tuple’s annotations across all possible worlds.
Formally, the certain and possible annotations of a tuple ¢ in R are:

CERTN (R, t) = min({R(t) | R € R})
possy (R, t) := max({R(t) | R € R})

3.2 AU-Databases (AU-DBs)

Using K-relations , we introduced AU-DBs [23] (attribute-annotated
uncertain databases), a special type of K-relation that summarizes
an incomplete K-relation by bounding its set of possible worlds. An
AU-DB differs from the classical relational model in two key ways:
First, a tuple is not defined as a point in D", but rather as a bounding
hypercube specified as upper and lower bounds (and a selected-
guess) for each attribute value. Every such hypercube represents
zero or more tuples contained inside it. Second, the annotation of
each hypercube tuple is also a range of possible annotations (e.g.,
multiplicities for range-annotated N-relations). Intuitively, an AU-
DB bounds a possible world if the hypercubes of its tuples contain
all of the possible world’s tuples, and the total multiplicity of tuples
in the possible world fall into the range annotating the hypercubes.
An AU-DB bounds an incomplete K-database D if it bounds all
of D’s possible worlds. To be able to model, e.g., the choice of
repair made by a heuristic data repair algorithm, the value and
annotation domains of an AU-DB also contain a third component:
a selected-guess (SGW) that encodes one distinguished world.
Formally, in an AU-DB, attribute values are range-annotated
values ¢ = [cl/cw/cT] from a range-annotated domain Dy that en-
codes the selected-guess value ¢*9 € D and two values (cl, cl eD)
that bound ¢% from below and above. For any ¢ € D; we have
¢l < ¢%9 < 1. We call a value ¢ € Dy certain if ¢! = ¢899 = I,
AU-DBs encode bounds on the multiplicities of tuples by using
N3 = (N3, 33 s O,]lNa) annotations on tuples in D;". The
annotation (kl, k59, kT) encodes a lower bound on the certain mul-
tiplicity of the tuple, the multiplicity of the tuple in the SGW, and

otherwise

1349

an over-approximation of the tuple’s possible multiplicity. Con-
sider the AU-DB relation R(A, B) with a tuple ([1/3/5], [a/a/a])
annotated with (1, 1, 2). This tuple represents the fact that each
world consists of either 1 and 2 tuples with B = a and A between 1
and 5. The SGW contains a tuple (3, a) with multiplicity 1.

Bounding Databases. As noted above, an AU-DB summarizes an
incomplete N-relation by defining bounds over the possible worlds
that comprise it. To formalize bounds over N-relations, we first
define what it means for a range-annotated tuple to bound a set of
deterministic tuples. Let t be a range-annotated tuple with schema
(ai,...,an) and t be a tuple with the same schema as t. t bounds ¢
(denoted t C t) iff Vi € {1,...,n} : tail <ta; <ta!

Note that a single AU-DB tuple may bound multiple deterministic
tuples, and conversely that a single deterministic tuple may be
bound by multiple AU-DB tuples. Informally, an AU-relation bounds
a possible world if we can distribute the multiplicity of each tuple
in the possible world over the AU-relation’s tuples. This idea is
formalized through tuple matchings. A tuple matching 7 M from
an n-ary AU-relation R to an n-ary relation R is a function (Dj)" X
D" — N that fully allocates the multiplicity of every tuple of R:

VteD" VtZt: TM(tt)=0 VYteD": Z TM(tt) = R(t)
teD;"

R bounds R (denoted R C R) iff there exists a tuple matching 7 M

where the total multiplicity allocated to each t € R falls within the

bounds annotating t:

Vt € D" : Z TM(t,t) > R(t)! and Z TM(tt) <R®)T
teD” teD”

An AU-DB relation R bounds an incomplete N-relation R (de-
noted R C R) iff it bounds every possible world (i.e,YRe R:RC
R), and if projecting down to the selected guess attribute of R results
in a possible world of R. As shown in [23, 24], (i) AU-DB query se-
mantics is closed under RA*, set difference and aggregations, and
(ii) queries preserve bounds. That is, if every relation R; € D bounds
the corresponding relation of an incomplete database R; € D (i.e.,
Vi : R; € R;), then for any query Q, the results over D bound the
results over D (i.e., Q(D) C Q(D)).

Expression Evaluation. In [24], we defined a semantics [e]¢ for
evaluating primitive-valued expressions e over the attributes of
a range tuple t. These semantics preserves bounds: given any ex-
pression e and any deterministic tuple ¢t bounded by t (i.e., t E t),
the result of deterministically evaluating the expression ([e];) is
guaranteed to be bounded by the ranged evaluation [e]s.

Vict:c=[e]n(che,c)=[e]y — cl<c<cl

[24] proved this property for any e composed of attributes, con-
stants, arithmetic and boolean operators, and comparisons. For
example, [at/a9/al]+ bt /659 /61] = [ab + b a9 + B39 /al +bT]

4 DETERMINISTIC SEMANTICS

Before introducing the AU-DB semantics for ranking and windowed
aggregation, we first formalize the corresponding deterministic
algebra operators that materialize sort positions of rows as data.

Sort order. Assume a total order < for the domains of all at-
tributes. For simplicity, we only consider sorting in ascending order.

The extension for supporting both ascending and descending or-
der is straightforward. For any two tuples ¢ and ¢’ with schema
(A1,...,Ay) and sort attributes O = (4;,,...,4A;,,) we define:
t<ot ©3je{1,...,m}:
Vke{l,....j=1}: t.Ay =t" Ay At A <A

The less-than or equals comparison operator <p generalizes this
definition in the usual way. Note that SQL sorting (ORDER BY) and
some window bounds (ROW BETWEEN ...) may be non-deterministic.
For instance, consider a relation R with schema (A, B) with two
rows 11 = (1,1) and £z = (1,2) each with multiplicity 1; Sorting
this relation on attribute A (the tuples are indistinguishable on this
attribute), can return the tuples in either order. Without loss of
generality, we ensure a fully deterministic semantics (up to tuple
equality) by extending the ordering on attributes O, using the re-
maining attributes of the relation as a tiebreaker: The total order
¢ <6°t“l t’ for tuples from a relation Ris defined as t < sch(r)-0 ¢’
(assuming some arbitrary order of the attributes in Sch(R)). We first
introduce operators for windowed aggregation, because sorting
can be defined as a special case of windowed aggregation.

4.1 Windowed Aggregation

A windowed aggregate is defined by an aggregate function, a sort
order (ORDER BY), and a window bound specification. A window
boundary is relative to the defining tuple, by the order-by attribute
value (RANGE BETWEEN...), or by position (ROWS BETWEEN). In the in-
terest of space, we will limit our discussion to row-based windows,
as range-based windows are strictly simpler. A window includes
every tuple within a specified interval of the defining tuple. Win-
dowed aggregation extends each input tuple with the aggregate
value computed over the tuple’s window. If a PARTITION BY clause
is present, then window boundaries are evaluated within a tuple’s
partition. In SQL, a single query may define a separate window for
each aggregate function (SQL’s OVER clause). This can be modeled
by applying multiple window operators in sequence.

ExaMPpLE 4 (Row-Basep WiNDows). Consider the bag relation
below and consider the windowed aggregation sum(B) sorting on A
with bounds [—-2, 0] (including the two preceding tuples and the tuple
itself). The window for the first duplicate of t1 = (a,5,3) contains
tuple t1 with multiplicity 1, the window for the second duplicate of t;
contains t; with multiplicity 2 and so on. Because each duplicate of t;
ends up in a different window, there are three result tuples produced
for t1, each with a different sum(B) value. Furthermore, tuples ty =
(b,3,1) and t3 = (b, 3,4) have the same position in the sort order,
demonstrating the need to use <g’ml to avoid non-determinism in
what their windows are. We have t <!t t3 and, thus, the window
for ta contains ty with multiplicity 1 and t; with multiplicity 2 while
the window for t3 contains t1, ty and t3 each with multiplicity 1.

A|B|C|sum@B) N
a|5|3 5 1
a|5|3 10 1
al|s5)|3 15 1
b|3|1 131
b| 3|4 11 1

The semantics of the row-based window aggregate operator
w is shown in Fig. 3. The parameters of w are partition-by at-
tributes G, order-by attributes O, an aggregate function f(A) with

1350

[Lu]

Dr(a)x; 6; 0B (1) = Tseh(r) X (ROW(R))

1 ift=t o f(ma(Wryi))oi
ROWR)(t) = AL € [0,R(t") — 1]
0 otherwise
, R(t) ift'.G=1tG
Pre(t') =
Re(t) {0 otherwise

Wri(t)) = | cover(Pry, t') N bounds(Pry, t, i) |
pos(R t,i) = i + Z R(t')

t <g)tal[
cover(R, t) = [pos(R, t,0), pos(R, t,R(t) — 1)]
bounds(R, t,i) = [pos(R, t,i) + 1, pos(R, t,i) + u]
Figure 3: Windowed Aggregation
A C Sch(R), and an interval [, u]. For simplicity, we hide some
arguments (G,0,L,u) in the definitions and assume they passed to
intermediate definitions where needed. The operator outputs a
relation with schema Sch(R) o X.

The heavy lifting occurs in the definition of relation ROW (R),
which “explodes” relation R, adding an attribute i to replace each
tuple of multiplicity n with n distinct tuples. ROW (R) computes
the windowed aggregate over the window defined for the pair (¢, i),
denoted as Wy ;(¢"). To construct this window, we define the mul-
tiplicity of tuple ¢ in the partition for tuple ¢ (denoted as Pr (1)),
the range of sort positions the tuple t covers (cover(R, t)), and the
range of positions in its window (bounds(R, t, i)). The multiplicity
of tuple ¢ in the window for the ith duplicate of ¢ is the size of the
overlap between the bounds bounds(R, t,1), and the cover of ¢’.

4.2 Sort Operator

We now define a sort operator sORTo—,;(R) which extends each
row of R with an attribute 7 that stores the position of this row in
R according to <g’t“l, This operator is just “syntactic sugar” as it
can be expressed using windowed aggregation.

DEFINITION 1 (SORT OPERATOR). Consider a relation R with schema
(A1, ..., Ap), list of attributes O = (By,...,Bm) where each B; is
in Sch(R). The sort operator SORTo—,(R) returns a relation with
schema (A1, ...,Ap, 7) as defined below.

_ [-o0,0]
SORTO—7(R) = ”SCh(R)’T_1_’T(wcount(1)—>f; 0; 0

(R))

Top-k queries can be expressed using the sort operator followed
by a selection. For instance, the SQL query shown below can be
written as 74 B(0r<3(SORTA—(R))).

SELECT A,B FROM R ORDER BY A LIMIT 3;

5 AU-DB SORTING AND TOP-K SEMANTICS

We now develop a bound-preserving semantics for sorting and
top-k queries over AU-DBs. Recall that each tuple in an AU-DB
is annotated with a triple of multiplicities and that each (range-
annotated) value is likewise a triple. Elements of a range-annotated
value ¢ = [¢1/cz/c3] or multiplicity triple (ny, ng, n3) are accessed
as: ¢l = c1, €89 = ¢, and ol = c3. We use bold face to denote
range-annotated tuples, relations, values, and databases. Both the

uncertainty of a tuple’s multiplicity and the uncertainty of the
values of order-by attributes create uncertainty in a tuple’s position
in the sort order. The former, because it determines how many
duplicates of a tuple appear in the sort order which affects the
position of tuples which may be larger wrt. the sort order and the
latter because it affects which tuples are smaller than a tuple wrt.
the sort order. As mentioned before, a top-k query is a selection over
the result of a sort operator which checks that the sort position of
a tuple is less than or equal to k. A bound-preserving semantics for
selection was already presented in [24]. Thus, we focus on sorting
and use the existing selection semantics for top-k queries.

Comparison of Uncertain Values. Before introducing sorting
over AU-DBs, we first discuss the evaluation of < over tuples with
uncertain values (recall that <g’ tal is defined in terms of <0). Per
[24], a Boolean expression over range-annotated values evaluates
to a bounding triple (using the order L < T where L denotes false
and T denotes true). The result of an evaluation of an expression
e is denoted as [e]. For instance, [[1/1/3] < [2/2/2]]=[L/T/T],
because the expression may evaluate to false (e.g., if the first value
is 3 and the second values is 2), evaluates to true in the selected-
guess world, and may evaluate to true (if the 15¢ value is 1 and
the 2" value is 2). The extension of < to comparison of tuples
on attributes O using <¢ is shown below. For example, consider
tuples t1 = ([1/1/3], [a/a/a]) and t; = ([2/2/2], [b/b/D]) over
schema R(A, B). We have t; <4 tz = [L/T/T], because t; could
be ordered before ty (if t1.A is 1), is ordered before tp in the selected-
guess world (1 < 2), and may be ordered after tp (if t1.A is 3).

[t<o] =3ie{l...n}:Vje{l,...,i-1}:
[tA; =t A Y A JrA; <At

[t<ot']9=3Fie{1,....,n}:Vje{1,...,i—1}:
[[t.Aj = t,.Aj]]Sg A [[t.Ai < t’.AiﬂSg

[t<ot])T=3ie{1,...n}:Vje{l,....i—1}:
[[t.AJ' = tl.Aj]]T A [[t.Ai < t/.Al']]T

To simplify notation, we will use t <g t’ instead of [t <o t'].

Tuple Rank and Position. To define windowed aggregation and
sorting over AU-DBs, we generalize pos using the uncertain ver-
sion of <. The lowest possible position of the first duplicate of
a tuple t in an AU-DB relation R is the total multiplicity of tuples
t’ that certainly exist (R(t')} > 0) and are certainly smaller than t
(ie, [t <o t]} = T). The selected-guess position of a tuple is the
position of the tuple in the selected-guess world, and the greatest
possible position of t is the total multiplicity of tuples that possibly
exist (R(t)T > 0) and possibly precede t (ie., [[t' <o t]]T =T). The
sort position of the i h duplicate (with the first duplicate being 0) is
computed by adding i to the position bounds of the first duplicate.

pos(R,O,t,)t =i+ 3y p1 R()Y (1)
Pos(R, O, t,1)*9 = i + 3} (p<)59 R(Y')* @
pos(RO,t, 1)1 =i+ %y _ o1 RE)T ®)

SORTO—(R)(t) =
(1,1,1) if t=t opos(R,O,t',i) Ai€ |0, R(t’)l)
(0,1,1) if t=t opos(RO,t,i) A€ R(t')l,R(t’)sg)
(0,0,1) if t=t opos(RO,t,i)Aie R(t')sg,R(t')T)
(0,0,0) otherwise
Figure 4: Range-annotated sort operator semantics.

5.1 AU-DB Sorting Semantics

To define AU-DB sorting, we split the possible duplicates of a tuple
and extend the resulting tuples with a range-annotated value de-
noting the tuple’s (possible) positions in the sort order. The certain
multiplicity of the i* duplicate of a tuple t in the result is either
1 for duplicates that are guaranteed to exist (i < R(t)l) and 0 oth-
erwise. The selected-guess multiplicity is 1 for duplicates that do
not certainly exist (in some possible world there may be less than
i duplicates of the tuple), but are in the selected-guess world (the
selected-guess world has i or more duplicates of the tuple). Finally,
the possible multiplicity is always 1.

DEFINITION 2 (AU-DB SORTING OPERATOR). Let R be an AU-DB
relation and O C Sch(R). The result of applying the sort operator
SORTO—,; to R is defined in Fig. 4

Every tuple in the result of sorting is constructed by extending
an input tuple t’ with the range of positions pos(R, O, t', i) it may
occupy wrt. the sort order. The definition decomposes t into a
base tuple t’, and a position triple for each duplicate of t in R.
We annotate all certain duplicates as certain (1, 1, 1), remaining
selected-guess (but uncertain) duplicates as uncertain (0, 1,1) and
non-selected guess duplicates as possible (0,0, 1).

ExaMPLE 5 (AU-DB SoRTING). Consider the AU-DB relation R
shown on the left below with certain, selected guess and possible
multiplicities from N3 assigned to each tuple. For values or multi-
plicities that are certain, we write only the certain value instead of
the triple. The result of sorting the relation on attributes A, B using
AU-DB sorting semantics and storing the sort positions in column
POS (SORT A B—pos(R)) is shown below on the right. Observe how the
1th input tuple t; = (1, [1/1/3]) was split into two result tuples occu-
pying adjacent sort positions. The 3% input tuple t3 = ([1/1/2],2)
could be the 1*P in sort order (if its A value is 1 and the B values of
the duplicates of t1 are equal to 3) or be at the 3¢ position if two
duplicates of t1 exist and either A is 2 or the B values of t1 are all < 3.

3 A ‘ B ‘ pos N3
le | [1/11;/3] (ﬁ 2) 1 [1/1/3] | [0/0/1] (1,11)
l2/331 | 15 (011) 1| a3l | 112 (00)
a2 | 2 ary M2z plo/y2el (1L
” [2/3/3] 15 | [2/2/3] (0.11)

5.2 Bound Preservation

We now prove that our semantics for the sorting operator on AU-DB
relations is bound preserving, i.e., given an AU-DB R that bounds an
incomplete bag database R, the result of a sort operator SORTo—,;
applied to R bounds the result of sORTo_,; evaluated over R.

THEOREM 1 (BOUND PRESERVATION OF SORTING). Given an AU-
DB relation R and incomplete bag relation R such that R C R, and

O C Sch(R). We have:
SORTO—7(R) C SORTO—7(R)

Proof Sketch: We prove the theorem by taking a tuple matching
T M for each possible world R in the input (that is guaranteed to
exist, because R C R) and construct a tuple matching 7 M’ for the
output of sorting based on which sorRTo—,;(R) C sORTo—;(R)
holds. In the proof we make use of the fact that the sort operator
distributes the multiplicity of an input tuple ¢ to multiple output
tuples which each are extensions of ¢ with a sort position, keeping
all other attributes the same as in the input. []

6 AU-DB WINDOWED AGGREGATION

We now introduce a bound preserving semantics for windowed
aggregation over AU-DBs. We have to account for three types of
uncertainty: (i) uncertain partition membership if a tuple may not
exist (R(t)l = 0) or has uncertain partition attributes; (ii) uncertain
window membership if a tuple’s partition membership, position, or
multiplicity are uncertain; and (iii) uncertain aggregation results
from either preceding type of uncertainty, or if we are aggregating
over uncertain values. We compute the windowed aggregation
result for each input tuple in multiple steps: (i) we first use AU-DB
sorting to split each input tuple into tuples whose multiplicities are
at most one. This is necessary, because the aggregation function
result may differ among the duplicates of a tuple (as is already the
case for deterministic windowed aggregation); (ii) we then compute
for each tuple t an AU-DB relation P+(R) storing the tuples that
certainly and possibly belong to the partition for that tuple; (iii)
we then compute an AU-DB relation Wy encoding which tuples
certainly and possibly belong to the tuple’s window; (iv) since row-
based windows contain a fixed number of tuples, we then determine
from the tuples that possibly belong to the window, the subset that
together with the tuples that certainly belong to the window (these
tuples will be in the window in every possible world) minimizes /
maximizes the aggregation function result. This then enables us to
bound the aggregation result for each input tuple from below and
above. For instance, for a row-based window [—2, 0], we know that
the window for a tuple t will never contain more than 3 tuples. If
we know that two tuples certainly belong to the window, then at
most one additional possible tuple can belong to the window.

6.1 Windowed Aggregation Semantics

As before, we omit windowed aggregation parameters (G,0,Lu,f,A)
from the arguments of intermediate constructs and assume they
are passed along where needed.

Partitions We start by defining AU-DB relation £;(R) which
encodes the multiplicity of tuple t’ in the partition for t based on
partition-by attributes G. This is achieved using selection, compar-
ing a tuple’s values in G with the values of t.G on equality. AU-DB
selection sets the certain (selected-guess, or possible multiplicity)
of a tuple to 0 if the tuple possibly (in the selected-guess world, or
certainly) does not fulfill the selection condition.

Pt(R) = [o6=t6(R)]

Certain and Possible Windows. We need to be able to reason
about which tuples (and with which multiplicity) belong certainly

1352

t

. certain windqw

tl I LI . I
possible window
not in Winiow B | t3 |
I 1 I 1
certainly in possibly in
Il Il Il Il

T
01 2 3 4 5 6 7 8 9 10 11 12

Figure 5: Possible and certain window membership of tuples in the

window [-1,4] for t based on their possible sort positions.

to the window for a tuple and which tuples (with which multiplic-
ity) could possibly belong to a window. For a tuple t, we model the
window’s tuples as an AU-DB relation ‘Wh + where a tuple’s lower
bound multiplicity encodes the number of duplicates of the tuple
that are certainty in the window, the selected-guess multiplicity
encodes the multiplicity of the tuple in the selected-guess world,
and the upper bound encodes the largest possible multiplicity with
which the tuple may occur in the window minus the certain multi-
plicity. In the remainder of this paper we omit the definition of the
select-guess, because it can be computed using the deterministic
semantics for windowed aggregation. For completeness, we include
it in the extended version of this paper [22]. We formally define
Wht in Fig. 6. Recall that in the first step we used sort to split the
duplicates of each tuple into tuples with multiplicity upper bound
of 1. Thus, the windows we are constructing here are for tuples
instead of for individual duplicates of a tuple. A tuple t’ is guaran-
teed to belong to the window for of a tuple t with a multiplicity
of n = R(t')! (the number of duplicates of the tuple that certainly
exist) if the tuple certainly belongs to the partition for t and all
possible positions that these n duplicates of the tuple occupy in the
sort order are guaranteed to be contained in the smallest possible
interval of sort positions contained in the bounds of the window
for t. Tuple t’ possibly belongs to the window of t if any of its
possible positions falls within the interval of all possible positions
of t. As an example consider Fig. 5 which shows the sort positions
that certainly (red) and possibly (green) belong to tuple t’s window
(window bounds [-1,4]). For any window [, u], sort positions cer-
tainly covered by the window start from latest possible starting
position for t’s window which is trl +1 (6 + (—1) = 5 in our exam-
ple) and end at the earliest possible upper bound for the window
which is t.7} +u (4 + 4 = 8 in our example). Furthermore, Fig. 5
shows the membership of three tuples in the window. Tuple t1 does
certainly not belong to the window, because none of its possible
sort positions are in the window’s set of possible sort positions,
tz does certainly belong to the window, because all of its possible
sort positions are in the set of positions certainly in the window.
Finally, t3 possibly belongs to the window, because some of its sort
positions are in the set of positions possibly covered by the window.

Combining and Filtering Certain and Possible Windows. As
mentioned above, row-based windows contain a fixed maximal
number of tuples based on their bounds. We use size([l,u]) to
denote the size of a window with bounds [1, u], i.e., size([Lu]) =
(u — 1) + 1. This limit on the number of tuples in a window should
be taken into account when computing bounds on the result of an
aggregation function. For that, we combine the tuples certainly in
the window (say there are m such tuples) with a selected bag of up
to size([l,u]) — m rows possibly in the window that minimizes (for
the lower aggregation result bound) or maximizes (for the upper

W (') {Pt(R)(t')i if [pos(P:(R), 0,1, 0)!, pos(Pe(R), 0,1, 0)1] C [pos(P(R), O,t,0)T + I, pos(Pe(R), O, t,0) +u]
Rt =
0

otherwise

if ([pos(Pt(R),0,t,0)%, pos(P¢(R), 0,t,0)1] N [pos(Pt(R), O, t,0)} + I, pos(Pe(R), 0, t,0)T + u]) # 0

L= ()
Waa(t)! = {OPt(R)(t)T = Waea(t)

otherwise

Figure 6: Certain and possible window membership for row-based windowed aggregation over AU-DBs

aggregation result bound) the aggregation function result for an
input tuple. Let us use possn(R, t) to denote size([[,u]) — m:

possn(R, t) = size([L,u]) — Z Wae(t))
&

Which bag of up to possn(R, t) tuples minimizes / maximizes the
aggregation result depends on what aggregation function is applied.
For sum, the up to possn(R, t) rows with the smallest negative
values are included in the lower bound and the up to possn(R, t)
rows with the greatest positive values for the upper bound. For
count no additional row are included for the lower bound and up
to possn(R) rows for the upper bound.

For each tuple t, we define AU-DB relation R‘WRg where each
tuple’s lower/upper bound multiplicities encode the multiplicity of
this tuple contributing to the lower and upper bound aggregation
result, respectively. We only show the definition for sum, the defi-
nitions for other aggregation functions are similar. In the definition,
we make use R} and RT:

RY(1) = R(1) RT(t) =R(»)'

Note that R and R are bags (N-relations) over range-annotated
tuples. Furthermore, we define min-k(R, t, A) (and max-k(R, t, A))
that are computed by restricting ‘Wh ¢ to the tuples with the smallest
negative values (largest positive values) as lower (upper) bounds on
attribute A that could contribute to the aggregation, keeping tuples
with a total multiplicity of up to possn(R, t). Note that the determin-
istic conditions / expressions in the definition of min-k(R, t, A) (and
max-k(R, t, A)) are well-defined, because single values are extracted
from all range-annotated values. For max (resp., min) and similar
idempotent aggregates, it suffices to know the greatest (resp., least)
value possibly in the window.

RWr(t') = Wae()! + min-k(R 1, A) (')

RWRe(t') = Wae(t') + max-k(R, 1, A)(t)
min-k(R,t, A) = 07 possn(R.t) (SORT 41, (541 o (Wie!)))
max-k(R,t, A) = 07 <possn(Rt) (SORT 41, (0410 (Wit 1))

Windowed Aggregation. Using the filtered combined windows
we are ready to define row-based windowed aggregation over AU-
DBs. To compute aggregation results, we utilize the operation @
defined in [24] for aggregation function f that combines the range-
annotated aggregation attribute value of a tuple with the tuple’s
multiplicity bounds. For instance, for sum, ®gym is multiplication,
e.g., if a tuple with A value [10/20/30] has multiplicity (1, 2, 3) it
contributes [10/40/90] to the sum. Here,) denotes the application
of the aggregation function over a set of elements (e.g., 3, for sum).
Note that, as explained above, the purpose of expand(R) is to split
a tuple with n possible duplicates into n tuples with a multiplicity
of 1. Furthermore, note that the bounds on the aggregation result

1353

may be the same for the ith and jth duplicate of a tuple. To deal
with that we apply a final projection to merge such duplicate result
tuples.

DEFINITION 3 (ROW-BASED WINDOWED AGGREGATION). Let R be

an AU-DB relation. We define window operator w}l(’z]) XG0 %

O _x. 6 0P = Tseh () x (ROW(R))

ROW (R)(t o aggres(t)) = expand(R)(t)
aggres(t) = @ t'.A ®f R(Wexpand(R),t(t’)
v

expand(R) = 7geh(R), 7,y (SORTSch(R) ;4 (R))

ExaMPLE 6 (AU-DB WINDOWED AGGREGATION). Consider the

AU-DB relation R shown below and query cos[;;’(()]c)_)SumA; A B(R),

i.e., windowed aggregation partitioning by A, ordering on B, and com-
puting sum(C) over windows including 1 preceding and the current
row. For convenience we show an identifier for each tuple on the left.
As mentioned above, we first expand each tuple with a possible multi-
plicity larger then one using sorting. Consider tuple t3. Both t; and
to may belong to the same partition as t3 as their A value ranges
overlap. There is no tuple that certainly belongs to the same partition
as t3. Thus, only tuple t3 itself will certainly belong to the window.
To compute the bounds on the aggregation result we first determine
which tuples (in the expansion created through sorting) may belong to
the window for t3. These are the two tuples corresponding to the dupli-
cates of t1, because these tuples may belong to the partition for t3 and
their possible sort positions ([0/0/1] and [1/1/2]) overlap with the
sort positions possibly covered by the window for tz ([0/1/2]). Since
the size of the window is 2 tuples, the bounds on the sum are computed
using the lower / upper bound on the C value of t3 ([2/4/5]) and no
additional tuple from the possible window (because the C value of t1
is positive) for the lower bound and the largest possible C value of one
copy (we can only fit one additional tuple into the window) of t1 (7)
for the upper bound. Thus, we get the aggregation result [2/11/12]

as shown below. A | B c N?
t 1 [1/1/3] 7 (112)
t2 [2/3/31| 15 4 (011)
3 [1/1/2] 2 | l2/4/51 1
A | B | ¢ | sumc 13
r 1 [1/1/3] 7 [7/7/14] 1
r2 1 [1/1/3] 7 [7/7/14] (0,0,1)
3 [1/1/2] 2| [2/4/5] | [2/11/12] 1
e [2/3/31| 15 4 [4/4/9] (0,11)

6.2 Bound Preservation
We now prove this semantics for group-based and row-based win-
dowed aggregation over AU-DBs to be bound preserving.

THEOREM 2 (BOUND PRESERVATION FOR WINDOWED AGGREGA-
TION). Consider an AU-DB relation R and incomplete bag relation

R such that R C R, and O C Sch(R). For any row-based windowed

. [Lu]
aggregation DL(4)5X; G; O

(Lu] [Lu]
9riayox: 6.0 R E@rin x. 6.0

we have:

(R)

Proof Sketch: As in the proof for sorting over AU-DBs, we consider
WLOG one of the possible worlds R € R and a tuple matching 7" M
based on which R is bounding R. We then construct a tuple matching
T M’ for the output of windowed aggregation. In the proof, we
utilize the fact that windowed aggregation produces one output
tuple t for each input tuple ¢’ such that ¢ extends the input tuple
t’ with the aggregation result for t’s window and has the same
multiplicity as the input tuple ¢’. Thus, we only need to show that
the bounds on the aggregation function result bound the values in
the result for the possible world R and that tuples with multiplicity
n are split into n output tuples with multiplicity 1. [

7 NATIVE ALGORITHMS

We now introduce optimized algorithms for ranking and windowed
aggregation over AU-DBs that are more efficient than their SQL
counterparts presented in [22]. Through a connected heap data
structure, these algorithms leverage the fact that the lower and
upper position bounds are typically close approximations of one
another to avoid performing multiple passes over the data. We
assume a physical encoding of an AU-DB relation R as a classical
relation [24] where each range-annotated value of an attribute
A is stored as three attributes A!, A9, and AT. In this encoding,
attributes t.#), £.#%9, and t.#' store the tuple’s multiplicity bounds.

7.1 Non-deterministic Sort, Top-k

Algorithm 1 sorts an input AU-DB R. The algorithm assigns to each
tuple its position 7 given as lower and upper bounds: trb trd,
respectively. Given a parameter k, the algorithm can also be used
to find the top-k elements; otherwise we set k = | R| (the maximal
possible size of the input relation). Algorithm 1 takes as input the
relational encoding of an AU-DB relation R sorted on Ol, the lower-
bound of the sort order attributes. Recall from Equation (1) that to
determine a lower bound on the sort position of a tuple t we have to
sum up the smallest multiplicity of tuples s that are certainly sorted
before t, i.e., where s.01 <gyml t.0!. Since 5.0! <€)°t“l .01 holds
for any tuple, we know that these tuples are visited by Algorithm 1
before t. We store tuples in a min-heap todo sorted on o' and
maintain a variable rank! to store the current lower bound. For
every incoming tuple t, we first determine all tuples s from todo
certainly preceding t (s.01 < t.0!) and update rank! with their
multiplicity. Since t is the first tuple certainly ranked after any such
tuple s and all tuples following t will also certainly ranked after s,
we can now determine the upper bound on s’s position. Based on
Equation (3) this is the sum of the maximal multiplicity of all tuples
that may precede s. These are all tuples u such thats.0T > w0l ie,
all tuples we have processed so far. We store the sum of the maximal
multiplicity of these tuples in a variable rank! which is updated for
every incoming tuple. We use a function emit to compute s’s upper
bound sort position, adapt s.#t (for a top-k query, s may not exist
in the result if its position may be larger than k), add s to the result,
and adapt rank! (all tuples processed in the following are certainly

1354

Input: R (sorted on Oh), k e N (ork = |RT|)
1 todo « minheap(OT) ; rank! « 0 ; rank? «— 0 ;res «— 0
2 fort € Rdo

3 while todo.peek().0T < t.0! do // emit tuples
4 emit(todo.pop())

5 if rank! > k then // tuples certainly out of top-k?
6 ‘ return res

7 t.Tl — rankl // set position lower bound
8 todo.insert(t) // insert into todo heap
9 rank! += t.#7 // update position upper bound

=
15

while not todo.isEmpty() do
‘ emit(todo.pop())

// flush remaining tuples

return res

def emit(s)
5.zl — min(k, rankT) // position upper bound capped at k
if rank! > k then
‘ s#b o0
res « res Usplit({s})
rank! += s.#!
Algorithm 1: Non-deterministic sort (top-k) on attributes O

// s may not be in result if s.z! >k

// update position lower bound

ranked higher than s). Function split splits a tuple with t.# > 1
into multiple tuples as required by Def. 2. If we are only interested
in the top-k results, then we can stop processing the input once
rank! is larger than k, because all following tuples will be certainly
not in the top-k. Once all inputs have been processed, the heap may
still contain tuples whose relative sort position wrt. to each other is
uncertain. We flush these tuples at the end. Algorithm 1’s worst-
case runtime is O(n - log n) and worst-case memory requirement is
O(n) for n = |R| (see [22]).

7.2 Connected Heaps

In our algorithm for windowed aggregation that we will present
in Sec. 7.3, we need to maintain the tuples possibly in a window
ordered increasingly on 71 (for fast eviction), sorted on Al to com-
pute min-k(R, t, A), and sorted decreasingly on AT to compute
max-k(R, t, A). We could use separate heaps to access the smallest
element(s) wrt. to any of these orders efficiently. However, if a tuple
needs to be deleted, the tuple will likely not be the root element in
all heaps which means we have to remove non-root elements from
some heaps which is inefficient (linear in the heap size). Of course
it would be possible to utilize other data structures that maintain or-
der such as balanced binary trees. However, such data structures do
not achieve the O(1) lookup performance for the smallest element
that heaps provide. Instead, we introduce a simple, yet effective,
data structure we refer to as a connected heap.

A connected heap is comprised of H heaps which store pointers
to a shared set of records. Each heap has its own sort order. A record
stored in a connected heap consists of a tuple (the payload) and
H backwards pointers that point to the nodes of the individual
heaps storing this tuple. These backward pointers enable efficient
deletion (O(H - logn)) of a tuple from all heaps when it is popped
as the root of one of the component heaps. In [22] we explain how
the standard sift-up and sift-down heap operations are used to
restore the heap property in O(log n) when removing a non-root
element from a component heap. When a tuple is inserted into a
connected heap, it is inserted into each component heap in O(log n)

S

| . poss I|_|
;t—ll|cert celrt[Z] |
t2
c-rank! — ts /cert[S] ts
I]]]]]]]]]
I T T T T T T T T T
0o 1 2 3 4 5 6 7 8 9

Figure 7: Example state for Algorithm 2, N=5, c-rank!=2.

in the usual way with the exception that the backwards pointers are
populated. In [22], we experimentally compare the performance of
heaps with connected heaps. Even for small databases (10k tuples)
and a small fraction of uncertain order-by values (1%), connected
heaps outperform heaps by a factor of ~ 2. Larger databases / more
uncertain data result in larger heaps and, thus, better performance.

ExaMPLE 7 (CONNECTED HEAP). Consider the connected heap
shown below on the left storing tuples t; = (1,3), tz = (2,6), t3 =
(3,2), and t4 = (4,1). Heap hy (hy) is sorted on the first (second) at-
tribute. Calling pop() on hy removesty from hy. Using the backwards
pointer from t1 to the corresponding node in hy (shown in red), we
also remove t; from hy. The node pointing to t1 from hy is replaced
with the right most leaf node of hy (pointing to t2). In this case the
heap property is not violated and, thus, no sift-down / up is required.

T Result of h1.pop()

ian
‘
©,

‘
SGDelhe
E) o '

7.3 Ranged Windowed Aggregation

Without loss of generality, we focus on window specifications with
only a ROWS PRECEDING clause; a FOLLOWING clause can be simulated
by offsetting the window, i.e., a window bound of [-N, 0]. Algo-
rithm 2 uses a function compBounds to compute the bounds on
the aggregation function result based on the certain and possible
content of a window. We present the definition of this function
for several aggregation functions in [22]. Algorithm 2 follows a
sweeping pattern similar to Algorithm 1 to compute the windowed
aggregate in a single pass over the data which has been prepro-
cessed by applying SORTo_,;(R) and then has been sorted on 7.
The algorithm uses a minheap openw which is sorted on 7! to store
tuples for which have not seen yet all tuples that could belong to
their window. Additionally, the algorithm maintains the following
data structures: cert is a map from a sort position i to a tree storing
tuples t that certainly exist and for which t.rd = i sorted on 7.
This data structure is used to determine which tuples certainly be-
long to the window of a tuple; (poss, paggl, paggT) is a connected
minheap where poss, paggl, and pagg! are sorted on T, Al, —AT,
respectively. This connected heap stores tuples possibly in a win-
dow. The different sort orders are needed to compute bounds on
the aggregation function result for a window efficiently (we will
expand on this later). Finally, we maintain a watermark c-rank!
for the lower bound position of the certain part of windows.
Algorithm 2 first inserts each incoming tuple into openw (Line 7).
If the tuple certainly exists, it is inserted into the tree of certain
tuples whose lower bound position is t.r}. Note that each of these
trees is sorted on 71 which will be relevant later. Next the algorithm

1355

Input: f, X,0, N, A, soRTo—,. (R) sorted on 7l
openw «— minheap(rT)

[

// tuples with open windows

2 cert « Map(int,Tree(TT)) // certain window members by pos.

3 (poss, paggl, pagg!) « connected-minheap(z!, AL, AT)

c-rank! « 0 // watermark for certain window

5 res «— 0

6 fort € Rdo

7 openw .insert(t)

if t.#! > 0 then // insert into potential certain window
‘ cert[t.z!].insert(t)

while openw .peek().rT <trldo

s « openw .pop()

while c-rank! <s.z! - N do

cert[c-rank!] = null

// close windows

// evict certain win.
13
14 c-rank! + +

15 s.X « compBounds (f,s,cert,poss) // compute agg.

16 while poss .peek.fT <s.tt = Ndo // evict poss. win.
| poss .pop()

res <« resU {s}

17

18

19 poss .insert(t)
Algorithm 2: Aggregate f(A) — X, sort on O, N preceding

// insert into poss. win.

determines for which tuples from openw, their windows have been
fully observed. These are all tuples s which are certainly ordered
before the tuple t we are processing in this iteration (s.7T < trd).
To see why this is the case, first observe that (i) we are processing
input tuples in increasing order of ! and (ii) tuples are “finalized”
by computing the aggregation bounds in monotonically increasing
order of 1. Given that we are using a window bound [-N, 0],
all tuples s that could possibly belong to the window of a tuple t
have to have s.z! < t.z]. Based on these observations, once we
processed a tuple t with trl > sl fora tuple s in openw, we
know that no tuples that we will process in the future can belong
to the window for s. In Line 11 we iteratively pop such tuples
from openw. For each such tuple s we evict tuples from cert and
update the high watermark c-rank! (Line 12). Recall that for a
tuple u to certainly belong to the window for s we have to have
s.71 =N > t.rl. Thus, we update c-rank! to s.zT — N and evict from
cert all trees storing tuples for sort positions smaller than s.zT — N.
Afterwards, we compute the bounds on the aggregation result for s
using cert and poss (we will describe this step in more detail in the
following). Finally, we evict tuples from poss (and, thus, also paggl
and paggT) which cannot belong to any windows we will close
in the future. These are tuples which are certainly ordered before
the lowest possible position in the window of's, i.e., tuples u with
wrl <s.sb— N (see Fig. 5). Evicting tuples from poss based on the
tuple for which we are currently computing the aggregation result
bounds is safe because we are emitting tuples in increasing order
of 71, i.e., for all tuples u emitted after s we have wrl > 1l Fig. 7
shows an example state for the algorithm when tuple s is about to
be emitted. Tuples fully included in the red region (tz and t3) are
currently in cert[i] for sort positions certainly in the window for s.
Tuples with sort position ranges overlapping with the green region
are in the possible window (these tuples are stored in poss). Tuples
like t4 with upper-bound position higher than s will be popped and
processed after s. Once all input tuples have been processed, we
have to close the windows for all tuples remaining in openw. This

process is the same as emitting tuples before we have processed all
inputs and, thus, is omitted from Algorithm 2.

Algorithm 2 uses function compBounds to compute the bounds
on the aggregation function result for a tuple t using cert, pagg!
and pagg! following the definition from Sec. 6.1. First, we fetch
all tuples that are certainly in the window from cert based on
the sort positions that certainly belong to the window for t ([t -
N, t.Tl]) and aggregate their A bounds. Afterwards, we use paggl
and pagg’ to efficiently fetch up possn(R, t) tuples possibly in the
window for t to calculate the final bounds based on max-k and min-
k. The worst-case runtime of the algorithm is O(N - n - logn). As
mentioned before, the detailed algorithm and further explanations
are presented in [22].

8 EXPERIMENTS

We evaluate the efficiency of our rewrite-based approach and the
native implementation of the algorithms from Sec. 7 in Postgres
and also evaluate the accuracy of the approximations they produce.

Compared Algorithms. We compare against several baselines:
Det evaluates queries deterministically ignoring uncertainty in the
data. We present these results to show the overhead of the different
incomplete query evaluation semantics wrt. deterministic query
evaluation; MCDB [34] evaluates queries over a given number of
possible worlds sampled from the input incomplete database using
deterministic query evaluation. MCDB10 and MCDB20 are MCDB
with 10 and 20 sampled worlds, respectively. For MCDB, we treat
the highest and lowest possible value across all samples as the
upper and lower bounds and compare against the tight bounds
produced by the other algorithms (since computing optimal bounds

is often intractable). Given a exact bound [c, d], we define the recall
min(b,d)—max(a,c)

of a bound [a, b] as T

%. The recall/accuracy for a relation is then the

average recall/accuracy of all tuples. For PT-k [32], we set its
threshold to 1 (0) to compute all certain (possible) answers. Symb
represents ranking and aggregation results as symbolic expressions
similar to [9, 12]. We use an SMT solver (Z3 [20]) to compute
tight bounds on the possible sort positions / aggregation results
for tuples. Rewr is our rewrite-based approach [22] that has to
process the input relation twice for sorting and uses range self-
joins to determine the content of windows. Imp is implemented as
a native extension for Postgres 13.3. All experiments are run on a
2X6 core 3300MHz 8MB cache AMD Opteron 4238 CPUs, 128GB
RAM, 4x1TB 7.2K HDs (RAID 5) with the exception of PT-k which
was provided by the authors as a Windows binary. We run PT-k
on a separate Windows machine with an 8-core 3800MHz 32MB
cache AMD Ryzen 5800x CPU, 64G RAM, and 2TB HD. PT-k is
single-threaded and in-memory. Since we deactivated intra-query
parallelism in Postgres, but still have to go to disk, the comparison
is in favor of PT-k. We report the average of 10 runs.

and the accuracy of [a, b]

8.1 Microbenchmarks on Synthetic Data

To evaluate how specific characteristics of the data affect our sys-
tem’s performance and accuracy, we generated synthetic data con-
sisting of a single table with 2 attributes for sorting and 3 attributes
for windowed aggregation. Attribute values are uniform randomly

1356

distributed. Except where noted, we default to 50k rows and 5% un-
certainty with a maximum 1k attribute range on uncertain values.

8.1.1 Sorting and Top-k Queries. Scaling Data Size. Fig. 11 shows
the runtime of sorting, varying the dataset size. Since Symb and PT-
k perform significantly worse, we only include these methods for
smaller datasets (Fig. 11a). MCDB and our techniques significantly
outperform Symb and PT-k (~2+ OOM). Rewr is roughly on par
with MCDB20 while Imp outperforms MCDB10. Given their poor
performance and their lack of support for windowed aggregation,
we exclude Symb and PT-k from the remaining microbenchmarks.

Varying k, Ranges, and Rate. Fig. 8 shows runtime of top-k (k
is specified) and sorting queries (k is not specified) when varying
(i) the number of tuples returned (k), (ii) the size of the ranges of
uncertain order-by attributes (range), and (iii) the fraction of tuples
with uncertain order-by attributes. Imp is the fastest method, with
an overhead of deterministic query processing between 3.5 (top-
k) and 10 (full sorting). Rewr has higher overhead over Det than
MCDB. Notably, the performance of MCDB and Rewr is independent
of all three varied parameters. Uncertainty and range have small
impact on the performance of Imp while computing top-k results is
significantly faster than full sorting when k is small.

Configurations Det Imp Rewr | MCDB10 | MCDB20
r=1k,u=5% 31.5ms | 233.1ms | 786.7ms 310.1ms 639.3ms
r=10k,u=5% 30.9ms | 286.1ms | 792.6ms 314.3ms 621.2ms
r=1k,u=20% 31.8ms | 266.3ms | 794.9ms 325.8ms 651.2ms

r=1k,u=5%k=2 13.4ms 48.3ms | 750.4ms 149.1ms 295.2ms
r=1k,u=5%,k=10 | 13.4ms 48.2ms | 751.1ms 150.4ms 296.1ms

Range(r),Uncertainty(u),k or full sorting
Figure 8: Sorting and Top-K Microbenchmarks - Performance

Q @

g} 'S MGCDB10 — g}g MCDB10 ,

Ao — S16n\cbe20 —

8 a[Imp/Rewr —— gl4 Imp/Rewr —— .

31.2 212 -
©

> 1 > 1

308 208 ¥_—_ -

©0.6 50.6 -

£04 £04 '

§02 7% 2% 3% 4% 5% 6% 7% 8% 9% 02 500 Tk 2k 2k 2k 3k 4k 4k 4k Bk

Attribute Uncertainty Attribute Range

(a) Varying uncertainty (b) Varying range

Figure 9: Sorting microbenchmarks - approximation quality

Accuracy. Fig. 9 shows the error of the bounds generated by Imp
(Rewr produces identical outputs) and MCDB. Recall that Imp is
guaranteed to over-approximate the correct bounds, while MCDB
is guaranteed to under-approximate the bounds, because it does
not compute all possible results. We measure the size of the bounds
relative to the size of the correct bound (as computed by Symb and
PT-k), and then take the average over all normalized bound sizes.
In all cases our approach produces bounds that are closer to the
exact bounds than MCDB (~30% over-approximation versus ~70%
under-approximation in the worst case). We further note that an
over-approximation of possible answers is often preferable to an
under-approximation because no possible results will be missed.

8.1.2 Windowed Aggregation. Scaling Data Size. Fig. 12 shows
the runtime of windowed aggregation when varying dataset size.
We compare two variants of our rewrite-based approach which
uses a range overlap join to determine which tuples could possibly
belong to a window. Rewr(Index) uses a range index supported by
Postgres. We show index creation time and query time separately.
We exclude Symb, because for more than 1k tuples, Z3 exceeds the
maximal allowable call stack depth and crashes. The performance

ge

[SYI P— e
S1[MCDBIO — _ Sie[McDBI0 —)
SlaMcDB20 — ~ Sialmcoeo — .
32 ImM - Sqo[imp/Rewr —
B S
B0.8 - B0.8r
508 _ %0'67¥_\
£04 - E04f
®0.2 @0.2
w 1% 2% 3% 4% 5% 6% 7% 8% 9% w 500 1k 2k 2k 2k 3k 4k 4k 4k 5k
Attribute Uncertainty Attribute Range
(a) Varying uncertainty (b) Varying range
Figure 10: Window microbenchmarks - approximation quality
8
107 Det’ Det
107 Hmp — mp —
6| Rewr Rewr
10 fMCDB10— MCDB10—
48| MCDB20— MCDB20—
310°Fsymb
EjptPTh —
g10°
S102 /
10!
10°
10" B 20 o0 il 7 o8 i 20 o7 ot 6 B v g
Data size Data size
(a) Smaller datasets (b) Larger datasets
Figure 11: Sorting performance varying dataset size
10° foet Det '
5 fImp —_ 105 Himp —_
10 fRewr MCDB10—
MCDB10 _— 4 [MCDB20—
—q04fucDB20 — 10
@ Rewr(index) / @ g3
E B} Index_create / E10
% o2 / 2102
S S
10"} = 10!
10° . 100
10"] 0 27 217 216 - 10" 2B 20 o2 pid 6 Hi8 % 2227
Data size Data size
(a) Smaller datasets (b) Larger datasets

Figure 12: Windowed aggregation performance varying dataset size

Configurations Det Imp MCDB10 | MCDB20
w=3,r=1k,u=5% 85.3ms 895.3ms 948.6ms 1850.4ms

Order-by w=3,r=10k,u=5% 87.1ms 899.7ms 931.3ms 1877.5ms

+ Window size 88.7ms 903.2ms 944.7ms 1869.7ms
w=6,r=1k,u=5% 86.2ms 1008.3ms 953.1ms 1885.1ms

(a) Order-by, Window size (w), Range (r), Uncertainty (u)

Configurations Det Rewr | MCDB10 | MCDB20
Order-by w=3,r=1k,u=5% 105.1ms 73.5s | 1209.4ms | 2127.1ms

+ Partiton-by w=3,r=10k,u=5% 101.7ms 75.28 1231.3ms 2142.9ms
+ Window size w=3,r=1k,u=20% | 104.2ms 81.1s 1201.1ms 2102.3ms

(b) Order-by + partition-by, Window size (w), Range (r), Uncertainty (u)
Figure 13: Windowed aggregation microbenchmarks - Performance

of Imp is roughly on par with MCDB10. Rewr(Index) is almost as
fast as MCDBZ20, but is 5 X slower than Imp.

Varying window spec, Ranges, and Rate. Fig. 13 shows the run-
time of windowed aggregation varying the value ranges of uncer-
tain attribute (on all columns), percentage of uncertain tuples, and
window size. For Imp (Fig. 13a) we use a query without partition-by.
We also compare runtime of our rewriting based approach (Fig. 13b)
using both partition-by and order-by on 8k rows. Imp exhibits sim-
ilar runtime to MCDB10 and outperforms MCDB20. Rewr is slower
than MCDB by several magnitudes due to the range-overlap join.

8.2 Real World Datasets

We evaluate our approach on real datasets (Iceberg [3], Chicago
crime data [4], and Medicare provider data [1]) using realistic sort-
ing and windowed aggregation queries [2]. To prepare the datasets,
we perform data cleaning methods (entity resolution and missing
value imputation) that output a AU-DB encoding of the space of
possible repairs. Fig. 14 shows the performance of real queries on
these datasets reporting basic statistics (uncertainty and #rows).
For sorting and top-k queries that contain aggregation which
is common in real use-cases, we only measure the performance

1357

Datasets Imp Det MCDB20 Rewr Symb | PT-k

& Queries (time) (time) (time) (time) (time) | (time)
Iceberg [3] Rank 0.816ms | 0.123ms 2.337ms 1.269ms | 278ms 1s
(1.1%, 167K) ~ Window 2.964ms | 0.363ms 7.582ms 1.046ms | 589ms N.A.
Crimes [4] Rank 1043.505ms | 94.306ms | 2001.12ms | 14787.723ms | >10min | >10min
(0.1%, 1.45M) Window 3.050ms | 0.416ms 8.337ms 2.226ms | >10min N.A.
Healthcare [1] Rank 287.515ms | 72.289ms | 1451.232ms | 4226.260ms 15s 8s
(1.0%, 171K) Window | 130.496ms | 15.212ms | 323.911ms | 13713.218ms | >10min N.A.

Figure 14: Real world data - performance

Datasets & Measures Imp/Rewr | MCDB20 | PT-k/Symb
Iceberg bound accuracy | 0.891 1 1
[3] bound recall 1 0.765 1
Crimes bound accuracy | 0.996 1 1
[4] bound recall 1 0.919 1
Healthcare bound accuracy | 0.990 1 1
[1] bound recall 1 0.767 1

Figure 15: Real world data - sort position accuracy and recall

Datasets Grouping/Order | Grouping/Order | Aggregation | Aggregation

& Methods accuracy recall accuracy recall
Iceber: Imp/Rewr 0.977 1 0.925 1
; e MCDB20 1 0745 1 0.604
s Symb 1 1 1 1
Crimes Imp/Rewr 0.995 1 0.989 1
[4] MCDB20 1 0.916 1 0.825
Symb 1 1 1 1
Imp/Rewr 0.998 1 0.998 1
Heal['ﬁcm MCDB20 1 0.967 1 0.967
Symb 1 1 1 1

Figure 16: Real world data - windowed aggregation accuracy and recall

of the sorting/top-k part over pre-aggregated data (see [24] for an
evaluation of the performance of aggregation over AU-DBs). In
general, our approach (Imp) is faster than MCDB20. Symb and PT-k
are significantly more expensive. Fig. 15 shows the approximation
quality for our approach and MCDB. Our approach has precision
close to 100% except for sorting on the Iceberg dataset which has
a larger fraction of uncertain tuples and wider ranges of uncer-
tain attribute values due to the pre-aggregation. MCDB has lower
recall on Iceberg and Healthcare sorting queries since these two
datasets have more uncertain tuples (10 times more than the Crimes
dataset). Fig. 16 shows the approximation quality of our approach
and MCDB for windowed aggregation queries. We measured both
the approximation quality of grouping of tuples to windows and for
the aggregation result values. For Crimes and Iceberg, the aggre-
gation accuracy is affected by the partition-by/order-by attribute
accuracy and the uncertainty of the aggregation attribute itself. The
healthcare query computes a count, i.e., there is no uncertainty in
the aggregation attribute and approximation quality is similar to
the one for sorting. Overall, we provide good approximation quality
at a significantly lower cost than the two exact competitors.

9 CONCLUSIONS AND FUTURE WORK

In this work, we present an efficient approach for under-approxi-
mating certain answers and over-approximating possible answers
for top-k, sorting, and windowed aggregation queries over incom-
plete databases. Our approach based on AU-DBs [24] is unique in
that it supports windowed aggregation, is also closed under under
full relational algebra with aggregation, and is implemented as effi-
cient one-pass algorithms in Postgres. We significantly outperform
existing algorithms for ranking uncertain data and our approach is
applicable to more expressive queries and bounds all certain and
possible answers. In future work, we plan to extend our approach to
deal more expressive classes of queries, e.g., recursive and fix-point
computations as used in ML model training, and will investigate
index structures for AU-DBs to further improve performance.

REFERENCES

(9]

[10]

[11]

[12]

[13]

[14]

[22]

[25]

[26]

[27]

[28]

https://data.medicare.gov/data/hospital-compare. Medicare Hospital Dataset.
(https://data.medicare.gov/data/hospital-compare).
https://github.com/fengsu91/uncert-ranking-availability. Paper Artifacts. (https:
//github.com/fengsu91/uncert-ranking-availability).
https://nsidc.org/data/g00807. Iceberg Dataset. (https://nsidc.org/data/g00807).
https://www kaggle.com/currie32/crimes-in-chicago. Chicago Crimes Dataset.
(https://www.kaggle.com/currie32/crimes-in-chicago).

Serge Abiteboul, T.-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre
Senellart. 2010. Aggregate queries for discrete and continuous probabilistic XML.
In ICDT. 50-61.

Serge Abiteboul, Paris C. Kanellakis, and Gosta Grahne. 1991. On the Represen-
tation and Querying of Sets of Possible Worlds. Theor. Comput. Sci. 78, 1 (1991),
158-187.

Parag Agrawal, Anish Das Sarma, Jeffrey Ullman, and Jennifer Widom. 2010.
Foundations of uncertain-data integration. PVLDB 3, 1-2 (2010), 1080-1090.
Robert Albright, Alan]J. Demers, Johannes Gehrke, Nitin Gupta, Hooyeon Lee,
Rick Keilty, Gregory Sadowski, Ben Sowell, and Walker M. White. 2008. SGL: a
scalable language for data-driven games. In SIGMOD. 1217-1222.

Antoine Amarilli, M Lamine Ba, Daniel Deutch, and Pierre Senellart. 2014. Prove-
nance for Non-deterministic Order-Aware Queries. Prepr int: http://a3nm. net/pub-
lications/amarilli2014provenance. pdf (2014).

Antoine Amarilli, M. Lamine Ba, Daniel Deutch, and Pierre Senellart. 2017.
Possible and Certain Answers for Queries over Order-Incomplete Data. In Proc.
TIME. 4:1-4:19.

Antoine Amarilli, Mouhamadou Lamine Ba, Daniel Deutch, and Pierre Senellart.
2019. Computing possible and certain answers over order-incomplete data. Theor.
Comput. Sci. 797 (2019), 42-76.

Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggre-
gate queries. In PODS. 153-164.

George Beskales, Thab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2014. Sampling
from Repairs of Conditional Functional Dependency Violations. VLDBJ 23, 1
(2014), 103-128.

Michael Brachmann, William Spoth, Oliver Kennedy, Boris Glavic, Heiko Miiller,
Sonia Castel, Carlos Bautista, and Juliana Freire. 2020. Your notebook is not
crumby enough, REPLace it. In CIDR.

Douglas Burdick, Prasad M. Deshpande, T. S. Jayram, Raghu Ramakrishnan, and
Shivakumar Vaithyanathan. 2007. OLAP over uncertain and imprecise data.
VLDBJ 16, 1 (2007), 123-144.

Arbee L. P. Chen, Jui-Shang Chiu, and Frank Shou-Cheng Tseng. 1996. Evaluating
Aggregate Operations Over Imprecise Data. IEEE Trans. Knowl. Data Eng. 8, 2
(1996), 273-284.

Marco Console, Paolo Guagliardo, and Leonid Libkin. 2019. Fragments of Bag
Relational Algebra: Expressiveness and Certain Answers. In ICDT. 8:1-8:16.
Marco Console, Paolo Guagliardo, Leonid Libkin, and Etienne Toussaint. 2020.
Coping with Incomplete Data: Recent Advances. In PODS. ACM, 33-47.
Graham Cormode, Feifei Li, and Ke Yi. 2009. Semantics of Ranking Queries for
Probabilistic Data and Expected Ranks. In ICDE. 305-316.

Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT
Solver. In ETAPS, C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. 337-340.
Wenfei Fan. 2008. Dependencies revisited for improving data quality. In PODS.
159-170.

Su Feng, Boris Glavic, and Oliver Kennedy. 2022. Efficient Approximation of
Certain and Possible Answers for Ranking and Window Queries over Uncertain
Data (extended version). (2022). arXiv:2302.08676 [cs.DB]

Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2019. Uncertainty
Annotated Databases - A Lightweight Approach for Approximating Certain
Answers. In SIGMOD.

Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2021. Efficient Uncer-
tainty Tracking for Complex Queries with Attribute-level Bounds. In SIGMOD.
528-540.

Robert Fink, Larisa Han, and Dan Olteanu. 2012. Aggregation in Probabilistic
Databases via Knowledge Compilation. PVLDB 5, 5 (2012), 490-501.

Stefan Grafberger, Paul Groth, and Sebastian Schelter. 2022. Towards data-centric
what-if analysis for native machine learning pipelines. In DEEM@SIGMOD. 3:1-
3:5.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance
Semirings. In PODS.

Paolo Guagliardo and Leonid Libkin. 2016. Making SQL Queries Correct on
Incomplete Databases: A Feasibility Study. In PODS.

1358

[29

[30

(31]
(32]
(33]

(34]

(35]

&
2

(37

(38]

[39

[40]
[41]

[42

"~
&

[44

[45

[46]

[47]

=
&

[49

[50

[51]
[52]

(53]

[55]

[56

[57]

(58]

[59]

Paolo Guagliardo and Leonid Libkin. 2017. Correctness of SQL Queries on
Databases with Nulls. SIGMOD Record 46, 3 (2017), 5-16.

Paolo Guagliardo and Leonid Libkin. 2019. On the Codd semantics of SQL nulls.
Inf. Syst. 86 (2019), 46-60.

Alon Halevy, Anand Rajaraman, and Joann Ordille. 2006. Data integration: the

teenage years. In VLDB. 9-16.
Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. 2008. Ranking Queries on

Uncertain Data: A Probabilistic Threshold Approach. In SIGMOD. 673-686.
Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-
tional Databases. 7. ACM 31, 4 (1984), 761-791.

Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine,
and Peter] Haas. 2008. MCDB: a monte carlo approach to managing uncertain
data. In SIGMOD.

T. S. Jayram, Satyen Kale, and Erik Vee. 2007. Efficient aggregation algorithms
for probabilistic data. In SODA. 346-355.

Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer
Widom. 2006. Declarative Support for Sensor Data Cleaning. In PERVASIVE.
83-100.

O. Kennedy and C. Koch. 2010. PIP: A database system for great and small
expectations. In ICDE. 157-168.

Poonam Kumari, Said Achmiz, and Oliver Kennedy. 2016. Communicating Data
Quality in On-Demand Curation. In QDB.

Willis Lang, Rimma V. Nehme, Eric Robinson, and Jeffrey F. Naughton. 2014.
Partial results in database systems. In SIGMOD. 1275-1286.

Jens Lechtenbérger, Hua Shu, and Gottfried Vossen. 2002. Aggregate Queries
Over Conditional Tables. 7. Intell. Inf. Syst. 19, 3 (2002), 343-362.

Jian Li, Barna Saha, and Amol Deshpande. 2009. A Unified Approach to Ranking
in Probabilistic Databases. PVLDB 2, 1 (2009), 502-513.

Xi Liang, Zechao Shang, Sanjay Krishnan, Aaron J. Elmore, and Michael J.
Franklin. 2020. Fast and Reliable Missing Data Contingency Analysis with
Predicate-Constraints. In SIGMOD. 285-295.

Leonid Libkin. 2016. SQL’s Three-Valued Logic and Certain Answers. TODS 41,
1(2016), 1:1-1:28.

Witold Lipski. 1979. On Semantic Issues Connected with Incomplete Information
Databases. TODS 4, 3 (1979), 262-296.

Raghotham Murthy, Robert Ikeda, and Jennifer Widom. 2011. Making Aggrega-
tion Work in Uncertain and Probabilistic Databases. IEEE Trans. Knowl. Data
Eng. 23, 8 (2011), 1261-1273.

Dan Olteanu, Lampros Papageorgiou, and Sebastiaan J van Schaik. 2013. Pigora:
An Integration System for Probabilistic Data. In ICDE. 1324-1327.

Danila Piatov and Sven Helmer. 2017. Sweeping-Based Temporal Aggregation.
In Advances in Spatial and Temporal Databases, Michael Gertz, Matthias Renz,
Xiaofang Zhou, Erik Hoel, Wei-Shinn Ku, Agnes Voisard, Chengyang Zhang,
Haiquan Chen, Liang Tang, Yan Huang, Chang-Tien Lu, and Siva Ravada (Eds.).
Springer International Publishing, Cham, 125-144.

Christopher Re, Nilesh Dalvi, and Dan Suciu. 2007. Efficient Top-k Query Evalu-
ation on Probabilistic Data. In ICDE. 886-895.

Raymond Reiter. 1986. A sound and sometimes complete query evaluation
algorithm for relational databases with null values. 7. ACM 33, 2 (1986), 349-370.
Babak Salimi, Romila Pradhan, Jiongli Zhu, and Boris Glavic. 2022. Interpretable
Data-Based Explanations for Fairness Debugging. In SIGMOD. 247-261.

Sunita Sarawagi et al. 2008. Information extraction. Foundations and Trends® in
Databases 1, 3 (2008), 261-377.

Mohamed A. Soliman, Thab F. Ilyas, and Kevin Chen-Chuan Chang. 2008. Proba-
bilistic top-k and ranking-aggregate queries. TODS 33, 3 (2008), 13:1-13:54.
Mohamed A. Soliman, Thab F. Ilyas, and Kevin Chen-Chuan Chang. 2008. Prob-
abilistic Top-k and Ranking-Aggregate Queries. TODS 33, 3, Article 13 (2008),
54 pages.

Mohamed A. Soliman, Thab F. Ilyas, and Kevin Chen-Chuan Chang. 2007. Top-k
Query Processing in Uncertain Databases. In ICDE. 896-905.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic
databases. Synthesis Lectures on Data Management 3, 2 (2011), 1-180.

Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey F. Naughton,
and Val Tannen. 2017. m-tables: Representing Missing Data. In ICDT.

Mohan Yang, Haixun Wang, Haiquan Chen, and Wei-Shinn Ku. 2011. Querying
uncertain data with aggregate constraints. In SIGMOD. 817-828.

Ying Yang, Niccolo Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An On-demand Approach to ETL. PVLDB 8, 12 (2015),
1578-1589.

Xi Zhang and Jan Chomicki. 2008. On the semantics and evaluation of top-k
queries in probabilistic databases. In ICDE. 556-563.

https://data.medicare.gov/data/hospital-compare
https://data.medicare.gov/data/hospital-compare
https://github.com/fengsu91/uncert-ranking-availability
https://github.com/fengsu91/uncert-ranking-availability
https://github.com/fengsu91/uncert-ranking-availability
https://nsidc.org/data/g00807
https://nsidc.org/data/g00807
https://www.kaggle.com/currie32/crimes-in-chicago
https://www.kaggle.com/currie32/crimes-in-chicago
https://arxiv.org/abs/2302.08676

	Abstract
	1 Introduction
	2 Related Work
	3 Notation and Background
	3.1 Incomplete N-Relations
	3.2 AU-Databases (AU-DBs)

	4 Deterministic Semantics
	4.1 Windowed Aggregation
	4.2 Sort Operator

	5 AU-DB Sorting and Top-k Semantics
	5.1 AU-DB Sorting Semantics
	5.2 Bound Preservation

	6 AU-DB Windowed Aggregation
	6.1 Windowed Aggregation Semantics
	6.2 Bound Preservation

	7 Native Algorithms
	7.1 Non-deterministic Sort, Top-k
	7.2 Connected Heaps
	7.3 Ranged Windowed Aggregation

	8 Experiments
	8.1 Microbenchmarks on Synthetic Data
	8.2 Real World Datasets

	9 Conclusions and Future Work
	References

