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C Towards Energy-
Efficient Computing 

Hardware Based 
on Memristive 

Nanodevices

COMPUTING HARDWARE IS ONE 
of the crucial drivers of artificial intel-
ligence (AI) that impacts our daily lives. 
However, despite the significant improve-
ments made in recent decades, the energy 
consumption of computing hardware that 
powers AI, especially deep neural net-
works, remains considerably higher than 
that of human brains. Hardware inno-
vations based on emerging nanodevices 
like memristors offer potential solutions 
to energy-efficient computing systems. 
This review discusses the challenges asso-
ciated with developing energy-efficient 
computing hardware based on memris-
tive nanodevices and summarizes recent 
progress in memristive devices, crossbar 
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arrays, systems, and algorithms, aiming at 
addressing these issues from a bottom-up 
approach. Potential research directions are 
proposed to further improve future com-
puting hardware's energy efficiency.

INTRODUCTION
The energy efficiency of computing sys-
tems is becoming increasingly important 
with the development of technologies 
such as artificial intelligence (AI) [1], the 
Internet of Things (IoT) [2], and auton-
omous robotic agents [3]. Meanwhile, 
the energy consumption of training AI 
models has sharply risen due to the tre-
mendous increase in their parameters, 
complexity, and training data size [4]. 
On the other hand, with the increas-
ing demand for edge devices to perform 
complex tasks, low power consumption 
has become a critical requirement for 
the hardware that deploys data-intensive 
computing to facilitate AI algorithms [2]. 
However, traditional computing systems 
are facing a significant challenge, the von 
Neumann bottleneck. This issue arises 
because of constant data transfer between 
memory and processing unit, which 
limits the speed and energy efficiency. 

Another related challenge is the perfor-
mance mismatch between the memory 
and processing units, referred to as the 
memory wall issue. These challenges hin-
der the further improvement of com-
puting systems under the von Neumann 
architecture. To solve these problems, 
in-memory computing hardware, which 
allows computing to be performed at the 
same location where data is stored, has 
been explored from device to system lev-
els and proved promising as the next-gen-
eration computing scheme [5], [6], [7].

At the device level, memristive devices 
have emerged as leading candidates for 
in-memory computing because of their 
unique characteristics [8], [9], [10], [11]. 
These devices can store information as 
conductance values because their internal 
states can be modified by the voltages/
currents applied to them. In addition, 
memristive devices require no energy 
to hold their resistance, making them 
ideal as basic components of in-memory 
computing [12]. At the structural level, 
the small area and fast switching speed 
of memristive devices enable them to 
be organized as dense crossbar arrays or 
stacked as three-dimensional arrays to 

implement vector-matrix multiplications 
(VMMs), the most common operations 
in deep neural networks, in highly parallel 
fashion [13]. At the system level, memris-
tive devices and crossbar arrays empower 
analog in-memory computing to avoid 
data movement and digital-analog con-
versions from analog sensors and periph-
erals. Furthermore, they are used as 
neural circuits in brain-inspired comput-
ing, which seeks to develop computation-
al systems inspired by the human brain's 
structure, function, and learning mecha-
nisms [14], [15], [16]. As a result, the 
broad spectrum of innovations stemming 
from memristive devices can potentially 
improve the speed, area, and energy effi-
ciency of future computing systems and 
revolutionize high-performance comput-
ing. Despite the potential benefits, there 
are still challenges from the device to the 
system levels to fully utilize memristive 
nanodevices in in-memory computing for 
energy-efficient hardware systems.

In this review, we discuss the require-
ments for memristive hardware at differ-
ent levels to achieve efficient in-memory 
computing. We also present our recent 
efforts in addressing some of these 
essential requirements, as illustrated 
in Figure  1. Furthermore, we propose 
potential research directions that can 
further enhance the energy efficiency 
of hardware systems with the continued 
advancements of memristive technology.

REQUIREMENTS FOR EFFICIENT 
IN-MEMORY COMPUTING
MEMRISTIVE DEVICES
As building blocks for in-memory com-
puting hardware, a long list of properties 
of memristive devices must be consid-
ered, including the number of distin-
guishable conductance states, retention, 
endurance, device dimension, switching 
speed, and switching energy [17]. The 
number of distinguishable conductance 
states in a single memristor is important 
to achieve high storage density and com-
puting precision, as it represents the bits 
of data that can be stored in one device. 
Stable retention and high endurance of 
each device are also crucial for long-term 
data storage and consistent comput-
ing results when switching memristive 
devices to multilevel states, given that 

FIGURE 1  The requirements (left) for energy-efficient computing hardware and our corre-
sponding research (right) at different levels, from device study to algorithm development.
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memristive devices are used as nonvola-
tile memory for in-memory computing. 
Properties related to hardware perfor-
mance also need research attention, in 
addition to the requirements for in-mem-
ory computing. The nanoscale device 
dimension is important for integrating 
memristive devices into crossbar arrays 
and reducing total chip area. Fast switch-
ing speed and low switching energy to 
achieve different levels are preferred to 
minimize latency and power consump-
tion and improve the overall throughput 
of the computing system.

MEMRISTOR CROSSBAR ARRAYS
Addressing sneak path current is the 
primary challenge when integrating 
memristive devices into crossbar arrays 
for parallel VMMs. Sneak path current 
occurs when the current flows through 
unintended memristors in the array, 
leading to inaccurate reading and pro-
gramming of memristors in most passive 
crossbar arrays. Therefore, the ability to 
suppress the sneak path current is the 
basic requirement for designing mem-
ristor crossbar arrays. Also, high device 
density without sacrificing performance 
is critical for achieving high throughput 
in in-memory computing. Moreover, the 
f lexibility of memristor arrays to adapt 
to various computing schemas for differ-
ent applications needs to be considered. 
Beyond the array structure, compatibility 
with complementary metal–oxide–semi-
conductor (CMOS) technology is essen-
tial since most peripherals facilitating 

memristor crossbar arrays are designed 
based on CMOS circuits.

PERIPHERALS
The rapid progress in memrist ive 
devices and crossbar arrays has signifi-
cantly improved on-chip computing 
performance regarding throughput 
and energy efficiency [18]. But off-chip 
peripherals responsible for more than 
90% of the area, latency, and energy con-
sumption of the whole computing system 
[19], have become a primary obstacle to 
developing efficient in-memory comput-
ing systems. These peripherals mainly 
perform analog-digital conversions and 
critical functions other than VMMs in 
digital computing, such as data move-
ment and high-precision calculations. 
To address this challenge, a fully analog 
hardware implementation is necessary for 
peripherals used in memristive hardware. 
This eliminates the need for power-hun-
gry digital-to-analog converters (DACs) 
and analog-to-digital converters (ADCs). 
Furthermore, developing peripherals with 
low latency and high energy efficiency 
for signal transmission and data move-
ment is crucial to keep pace with the 
high data throughput caused by advance-
ments in memristive devices and arrays 
and enhance the overall performance of 
in-memory computing hardware.

HARDWARE-ALGORITHM CO-DESIGNS
Compared to traditional digital comput-
ers, memristive in-memory computing 
hardware differs in many aspects, includ-

ing computing with natural physical laws, 
analog information encoding, signal 
transmission, etc. [20], [21], [22] These 
differences require hardware-algorithm 
co-designs to develop energy-eff icient 
computing systems based on memristive 
devices. On the hardware side, because 
of the highly parallel computing schema, 
high-throughput interfaces, efficient data 
movement approaches, and reconfigu-
rable architectures are key requirements 
to consider when designing circuits and 
systems for different algorithms and 
applications. On the software side, algo-
rithms initially designed for high-preci-
sion digital computing must be adjusted 
or redeveloped to fit the relatively low-
precision computing in the analog 
domain without sacrificing performance. 
Also, algorithms that can effectively tol-
erate or even leverage the non-idealities 
of memristive devices should be designed 
for in-memory computing hardware 
rather than attempting to eliminate the 
non-idealities from devices. Hence, hard-
ware-algorithm co-designs complement-
ing each other are critical to developing 
future energy-efficient computing sys-
tems that enable various machine learn-
ing and brain-inspired algorithms.

SUB-10 NANOMETER AND 
MULTILEVEL MEMRISTOR DEVICES
At the device level, two breakthroughs 
including small device dimensions 
and 2048 conductance levels are dis-
cussed. These devices are measured with 
remarkable single-device performance, 

FIGURE 2  (a) Transmission electron microscopy (TEM) of the 3 × 3 memristor crossbar array with 2 × 2 nm2 device area and sub-12-nm pitch. 
Scale bar: 10 nm. (b) The I–V curve for the 2-nm memristor in the array. Inset shows the materials stack and measurement voltage polarity of the 
memristors [23].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on August 08,2023 at 15:56:07 UTC from IEEE Xplore.  Restrictions apply. 



4  |  IEEE NANOTECHNOLOGY MAGAZINE  |  2023	

integrated into crossbar arrays, and 
experimentally proved for information 
storage and data processing.

Achieving sub-10 nanometer(nm) 
memristive devices that can be inte-
grated into high-density crossbar arrays 
is a crucial step toward reducing chip 
area. However, the fabrication of high-
ly ordered conductive nanoelectrodes 
remains a significant challenge. In a 
recent study [23], metal nanostructures 
with ultrahigh height-to-width aspect 
ratio were first proposed and demon-
strated as electrodes of memristor cross-
bar arrays. This approach enabled the 
fabrication of memristor arrays with a 
2-nm feature size and a 6-nm half-pitch. 
A 3×3 crossbar array using the proposed 
nanostructure and a Pt/TiOx/HfO2/
Pt stack was fabricated (Figure  2). The 
resulting 2-nm memristors demonstrat-
ed a high dynamic range, with an average 
ON/OFF ratio of 454, while exhibiting 
bipolar nonvolatile switching behavior. 
In addition, the switching current of the 
2-nm memristor was 46 nA, leading to 
low programming power consumption. 
This 2-nm memristor and the 3×3 cross-
bar array achieved extreme scalability 
and high energy efficiency, providing 
promising potential for future advance-
ments in memristive devices and crossbar 
arrays [24].

In addition to area scalability, one 
crucial factor for memristive devices used 

in computing systems is the number of 
conductance levels that can be achieved 
in a single device. More conductance 
levels result in high computing precision 
and benefit the chip area and power con-
sumption, since more bits of data can be 
stored in a single device. While theoreti-
cally, a memristor device is analog and 
can be tuned to an infinite number of 
conductance levels, in practice, f luctua-
tions at each conductance level impose a 
constraint on the number of distinguish-
able levels that can be attained within a 
particular range of conductance values. 
Recent research revealed that the regu-
lar switching operation, whether SET 
or RESET, inevitably results in incom-
plete conduction channels in the form 
of either islands or blurred edges adja-
cent to the primary conduction channel. 
These secondary channels are less stable 
than the main conduction channel [25]. 
Therefore, a denoise process was devel-
oped for programming the Ta/Al2O3/
HfO2/ Pt memristor devices. By apply-
ing small voltage pulses with optimized 
amplitude and width, the denoising 
process substantially reduced the fluc-
tuation and tuned the memristor device 
to 2048 conductance levels. The device 
stack and measured 2048 conductance 
levels are shown in Figure 3, where the 
conductance levels were read by sweep-
ing D.C. voltages from 0 to 0.2 V, with 
target conductance ranging from 50 µS 

to 4144 µS, and a 2-µS between adja-
cent levels. The memristor devices were 
also integrated with CMOS circuits in 
256 × 256 one-transistor-one-memristor 
(1T1R) crossbar arrays in a commercial 
chip foundry, proving the potential of 
memristors in future computing systems 
with CMOS-based peripherals.

Developing small and multilevel 
devices with satisfactory retention, 
endurance, and switching speed pro-
vides a solid foundation for integrating 
memristive devices in high-density cross-
bar arrays and paves the way for further 
exploration of memristive hardware in 
in-memory computing systems.

THREE DIMENSIONAL MEMRISTOR 
CROSSBAR ARRAYS
Based on the progress made in memris-
tive devices, high-density crossbar arrays 
were constructed by extending the two-
dimensional (2D) to three-dimensional 
(3D) to increase the computing through-
put and packing density. Structural 
designs using the extra dimension were 
also explored to mitigate the sneak path 
current issue and enhance the flexibility 
of crossbar arrays for computing.

In an early demonstration [26], 3D 
crossbar arrays were fabricated with self-
rectifying memristors based on silicon, 
enabling compatibility with the CMOS 
foundry process. Figure  4 depicts the 
device stack of the self-rectifying memris-

FIGURE 3  (a) TEM of a Ta/Al2O3/HfO2/ Pt memristor device. Scale bar: 5 nm. (b) 2048 conductance levels were measured by off-chip driving cir-
cuitry. Inset, zoom-in part of the measured conductance levels [25].
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tors and the corresponding 3D crossbar 
arrays. The top and bottom electrodes 
of the Si/SiO2/Si memristor devices 
were made of p-type and n-type doped 
single crystalline silicon, which were 
transferred from fluid-supported mem-
branes. The switching layer of the device 
was a thin layer of silicon oxide produced 
chemically, and its switching mechanism 
was verified experimentally as the for-
mation and rupture of a sub-5 nm sili-
con-rich conduction channel within the 
oxide layer. The self-rectifying unipo-
lar memristors, possessing the intrinsic 
diode effect, effectively suppressed intra- 
and inter-layer sneak path currents, as all 
possible sneak paths in the crossbar array 
involved at least one reversely biased cell. 
This presented the feasibility of electri-

cal operations of 3D memristor arrays 
without external selectors. The 3D cross-
bar arrays with silicon-based memristors 
demonstrated that the 3D stack used a 
simplified fabrication process and can be 
integrated with CMOS-based peripheral 
circuits for further development as mem-
ory or computing components.

Other than the direct extension from 
2D to 3D crossbar arrays, interconnect 
designs between layers using the addi-
tional dimension in 3D arrays were also 
explored, allowing for more flexibility to 
accommodate different in-memory com-
puting schemas. As shown in Figure 5(a), 
a 3D circuit composed of eight layers of 
monolithically integrated memristive 
devices was fabricated to use the 3D 
structure to directly map and implement 

complex neural networks in hardware 
[27]. In conventional 2D crossbar arrays, 
2D image pixel matrices from many neu-
ral network applications needed to be 
unrolled to 1D vectors to fit the input 
rows of the crossbar array. This costs 
extra power consumption and limits 
the throughput of in-memory comput-
ing. In the purposely designed 3D array, 
memristors in each row bank were used 
as the weights of convolutional kernels in 
a convolutional neural network (CNN). 
As shown in Figure 5(b), the row banks 
constructed the 3D array for a 2D con-
volution operation without unrolling the 
2D inputs. This design takes 2D inputs 
for convolutions and enables bilateral 
2D data communications between 
input/output (IO) circuits and periph-

FIGURE 5  (a) Scanning electron micrograph (SEM) of the 3D memristive circuit with eight layers of monolithically integrated memristors. Scale 
bar: 2 µm. (b) The diagram of the implementation of parallel 2D convolution operations in all the row banks of the 3D array [27].

FIGURE 4  (a) TEM of a Si/SiO2/Si memristor. Scale bar: 2 nm. (b) The 3D stacked crossbar array with the all-silicon-based devices and isolation 
between different layers [26]. Scale bar: 200 nm.
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eral circuits underneath, significantly 
enhancing the throughput of in-memory 
computing. Moreover, it offers highly 
scalable and independent operations in 
row banks, allowing them to be pro-
grammed flexibly for different output 
pixels, filters, or kernels from different 
convolutional layers, highly improving 
the flexibility of 3D crossbar arrays.

The 3D memristive circuits pioneer 
the way for high-density crossbar arrays 
and achieve remarkable computing per-
formance. The preliminary exploration 
of the additional dimension also opens 
up new possibilities for various comput-
ing scenarios. 3D memristor crossbar 
arrays with compatible peripherals can 
serve as powerful computing cores for 
different algorithms and applications.

ANALOG NEURON CIRCUITS
Despite significant improvements in the 
energy efficiency of computing cores for 
VMMs through advances in memristive 
devices and crossbar arrays, the overall 
energy efficiency of computing hardware 
is still constrained by peripherals that 
facilitate memristive computing cores 
[28], [29]. This is because other opera-
tions in neural networks, such as activa-
tion functions, backward propagation, 
and derivative calculations, are still pro-
cessed in digital processors, which neces-
sitates the use of ADCs and DACs to 
convert analog and digital signals back 
and forth, resulting in additional latency 
and power consumption [30], [31]. In 
addition to device engineering to reduce 
analog-digital conversions[32], [33], 
[34], two analog neuron circuits were 

proposed to connect neighboring layers 
in neural networks implemented in mem-
ristor crossbar arrays to eliminate the 
need for analog-digital conversions.

One of the proposed neuron cir-
cuits involves the utilization of diffu-
sive memristors that exhibit dynamics 
similar to those found in the ion chan-
nels of biological neurons [35]. The dif-
fusive memristor device, composed of 
silver nanoparticles within a dielectric 
film, can imitate the neuron function 
that exhibits stochastic leaky integrate-
and-fire dynamics and has an integra-
tion time that can be adjusted by either 
silver migration alone or its interaction 
with circuit capacitance. These neuron 
devices implemented rectified linear 
units (ReLU) activations and were fur-
ther connected with nonvolatile mem-
ristors to construct a fully memristive 
artificial neural network, as illustrated in 
Figure 6(a). The network consisted of an 
8×8 1T1R array with synapse drift mem-
ristors and eight neuron circuits with dif-
fusive memristors fabricated on the same 
chip. Through this integrated network, 
we experimented with demonstrating 
unsupervised synaptic weight updating 
and pattern classification. The realiza-
tion of electronic neuronal functionality 
makes it possible to process the analog 
outputs from the crossbar arrays directly. 
It opens the door to developing fully 
analog neural networks based on mem-
ristive devices.

In addition to memristive neurons, 
analog ReLU circuits implemented with 
off-the-shelf components were also pro-
posed as neurons for multilayer neu-

ral networks using memristor crossbar 
arrays, eliminating unnecessary analog-
digital conversions, communication, and 
processing between layers of neural net-
works [36]. Each ReLU circuit was com-
posed of a half-wave current rectifier, a 
voltage follower, and an inverting ampli-
fier, all built with operational ampli-
fiers. The current rectifier generated a 
rectified output voltage directly from 
the input current, which was the output 
of the previous layer of the neural net-
work. The voltage follower was a unity 
gain buffer to isolate the first stage. The 
inverting amplifier was responsible for 
producing the necessary positive output 
voltage required for the ReLU activa-
tion. Additionally, it adjusted the output 
voltage to a range of 0 to 0.2 V through 
scaling for the inputs of the next layer. 
Figure 6(b) depicts a two-layer hardware 
neural network utilizing the proposed 
analog ReLU circuits. The fully analog 
network consisted of two 1T1R crossbar 
arrays serving as weight matrices for the 
two layers and 64 ReLU circuits working 
as activation neurons. With the Modi-
fied National Institute of Standards and 
Technology (MNIST) dataset, the full 
hardware network achieved recognition 
accuracy of 93.63% in the classification 
task. The experimental demonstration of 
the fully analog ReLU circuits proves the 
analog signal transmissions between lay-
ers of neural networks without analog-
digital conversions. It delivers higher 
computing throughput and energy effi-
ciency of multilayer neural networks.

Although these neuron circuits only 
demonstrated the functionality of small 

FIGURE 6  Analog neuron circuits with memristive synapses. (a) Optical micrograph of a fully memristive neural network with 8×8 1T1R cells as 
synapses connecting to eight diffusive memristors as neurons [35]. (b) The fully analog two-layer neural network consists of two 1T1R crossbar 
arrays (left and right) and fully analog hardware neuron circuits made of off-the-shelf-electronics (middle) [36].
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neural networks in analog hardware, 
they verified the potential of fully ana-
log neural networks and their contribu-
tions to the computing throughput and 
energy efficiency of in-memory comput-
ing systems. The promising results dem-
onstrate the possibility of implementing 
other critical functions of neural net-
works in the analog domain, further 
enhancing the energy efficiency of future 
computing hardware. Additionally, they 
highlight the importance of system-level 
designs for computing hardware based 
on memristive devices.

HARDWARE AND ALGORITHM 
CO-DESIGN
Memristive hardware innovations were 
primarily used to accelerate VMMs in 
traditional neural networks [37], [38], 
[39]. But merely implementing tradi-
tional algorithms designed for high-pre-
cision digital computing is difficult to 
achieve optimal performance due to the 
non-idealities of memristive devices. The 
intrinsic dynamics and inevitable conduc-
tance drift of these devices can negatively 
affect computing precision. Therefore, 
hardware and algorithm co-designs are 
required to optimize algorithms for 
memristive hardware considering the 
unique characteristics of memristors and 
build circuits and architectures specifi-
cally designed to suit novel algorithms 
and applications. Insightful research 
has been conducted to address energy-
hungry problems in neural networks by 

leveraging the non-ideal properties and 
intrinsic noise of memristors [40], [41], 
[42]. Based on hardware progress dis-
cussed in previous sections, hardware-
friendly methods that incorporate the 
non-idealities of memristive devices in 
the training of neural network algo-
rithms were also proposed.

A self-adaptive in-situ learning algo-
rithm designed for memristor crossbar 
arrays in multilayer neural networks was 
developed [43]. Because the memristors 
in the crossbar arrays can be tuned grad-
ually by controlling the voltages applied 
to the top electrode of memristors and 
gates of transistors, which control the 
compliance current across the devices, 
linear and symmetric conductance tun-
ing can be realized with minimal cycle-
to-cycle and device-to-device variations. 
Based on this device programming 
schema, the gradients calculated from 
the outputs of the memristor crossbar 
arrays were directly converted to volt-
age values and applied to memristors to 
change their conductance representing 
the weights of neural networks. This 
process of gradually tuning the synaptic 
weights of hardware neural networks was 
called in-situ training. For comparison, 
ex-situ training, a training diagram pro-
gramming the conductance to weight 
values trained by software, was also per-
formed for a two-layer neural network 
based on memristor crossbar arrays for 
MNIST dataset classification. The accu-
racy degradation with the increase of 

non-responsive devices, which are stuck 
in a low-conductance state and consid-
ered defect devices, is illustrated in Fig-
ure  7(a). The comparison showed that 
the in-situ training process can compen-
sate for non-idealities in the hardware, 
resulting in significantly greater defect 
tolerance than using ex-situ training 
weights in neural networks.

Given the promising results of the in-
situ method in hardware training, it was 
combined with spatiotemporal weight 
sharing and applied to recurrent convo-
lutional neural networks using memris-
tor crossbar arrays [44]. Because of the 
structure of crossbar arrays, the weights 
of multiple kernels in one convolutional 
layer can be unrolled and programmed 
to multiple columns of the memris-
tor arrays. This way, multiple kernels 
in one convolutional layer can share 
the input data simultaneously and per-
form the operations in a single cycle. 
Taking this one step further, the same 
weights of the long short-term memory 
(LSTM) network were also mapped to 
memristor conductance in different col-
umns to be shared across all time steps 
in LSTM. This weight sharing in both 
convolutional layers and all time steps 
of the LSTM network was called spa-
tiotemporal weight sharing and effec-
tively reused the weights programmed 
to memristor crossbar arrays. Memristive 
convolutional-LSTM utilizing the spa-
tiotemporal weight sharing and in-situ 
training achieved comparable accuracies 

FIGURE 7  Tolerance of memristor non-idealities using in-situ training. (a) The impact of non-responsive devices on the inference accuracy of 
MNIST dataset with in-situ and ex-situ training approaches [43]. (b) The smoothed accuracy using in-situ training and weight sharing for the 
convolutional-LSTM network, the experimental curve, the simulation with programming noise, and the simulation with ideal programming [44].
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with ideal simulations according to the 
comparison between the experimental 
accuracies and the simulations (with or 
without noise) shown in Figure  7(b). 
The weight sharing and in-situ training 
led to reduced trainable parameters and 
high tolerance to noise caused by non-
idealities of memristive devices.

The in-situ training algorithm and 
the spatiotemporal weight sharing in 
convolutional-LSTM are pioneering 
works designed to incorporate device 
non-idealities during the training process 
and fully take advantage of the hardware 
structure. These hardware-algorithm co-
designs achieve robust training and par-
allelism, resulting in higher accuracy and 
computing throughput. Furthermore, 
these works demonstrate the necessity of 
hardware-algorithm co-designs in devel-
oping energy-efficient computing hard-
ware systems.

SUMMARY AND PERSPECTIVE
In summary, research at different lev-
els to facilitate the development of 
energy-eff icient computing hardware 
using memristive nanodevices has been 
presented. The sub-10 nanometer pas-
sive array and 1T1R array with memris-
tors achieving 2048 conductance levels 
offered solid device solutions to high-
density crossbar arrays with stable reten-
tion and high endurance. The innovative 
3D structural designs, including the 
CMOS-compatible arrays and f lexible 
arrays for complex networks, improved 
the packing density and computing 
throughput, providing energy-efficient 
computing cores for analog in-memo-
ry computing. The fully analog neuron 
circuits were proposed and experimen-
tally verified in hardware multilayer neu-
ral networks, attempting to eliminate 
analog-digital conversions to boost the 
overall performance of in-memory com-
puting systems. Hardware-algorithm 
co-designs were also preliminarily imple-
mented to utilize the intrinsic non-ide-
alities of memristive devices in network 
training and share weights mapped to 
the conductance of memristors in cross-
bar arrays. These research advancements 
made it feasible to achieve an estimated 
chip performance of 118 tera operations 
per second per Watt (TOPS/W) [44]. In 

the future, further improvements can be 
expected through the implementation of 
system-level innovations.

While the comprehensive research 
presented paves the path to exploring 
efficient in-memory computing based on 
memristive devices, challenges remain 
between these proof-of-concept imple-
mentations and computing hardware sys-
tems with energy efficiency like human 
brains. As such, we propose several 
potential directions for further research 
to bridge the gap. For memristive 
devices, investigating memristors with 
thousands of conductance levels for com-
puting is worth considering, as they have 
only been proven to function as memory 
in crossbar arrays [25]. Fully utilizing the 
thousands of conductance levels in cross-
bar arrays to improve computing preci-
sion will further enhance the accuracy 
of neural networks, making them com-
petitive with digital computers. Based on 
multilevel devices, creative structure and 
interconnect innovations are encouraged 
to explore the additional dimension in 
3D crossbar arrays. The 3D circuit pro-
posed in [27] was only designed to avoid 
unrolling for 2D inputs and perform 
2D convolutions in parallel. Explor-
ing other designs can create more pos-
sibilities for building 3D crossbar arrays 
supporting highly parallel matrix opera-
tions. For peripheral circuits, although 
the designed analog neuron circuits are 
preliminary implementations and only 
parts of the computing systems, realiz-
ing additional functions in the analog  
domain is a promising path to follow to 
avoid extra analog-digital conversions. 
Along with the hardware progress, more 
attention should be drawn to hardware-
algorithm co-designs, as interdisciplin-
ary research in this direction is still 
nascent but has already shown promise. 
In conclusion, while improving the per-
formance of memristive devices, com-
puting cores, and essential peripherals 
remains crucial for the energy efficiency 
of in-memory computing, system-level 
research integrating circuits, interfaces, 
architectures, and algorithm designs for 
in-memory computing based on mem-
ristive nanodevices is the top priority 
for the development of energy-efficient 
computing hardware systems.
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