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COMPUTING HARDWARE IS ONE - - L
of the crucial drivers of artificial intel-
ligence (AI) that impacts our daily lives.
However, despite the significant improve-

ments made in recent decades, the energy

consumption of computing hardware that
powers Al, especially deep neural net-
works, remains considerably higher than

that of human brains. Hardware inno-

vations based on emerging nanodevices
like memristors offer potential solutions
to energy-efficient computing systems.

This review discusses the challenges asso-
ciated with developing energy-efficient

-
computing hardware based on memris-
tive nanodevices and summarizes recent
progress in memristive devices, crossbar
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FIGURE 1 The requirements (left) for energy-efficient computing hardware and our corre-
sponding research (right) at different levels, from device study to algorithm development.

arrays, systems, and algorithms, aiming at
addressing these issues from a bottom-up
approach. Potential research directions are
proposed to further improve future com-
puting hardware's energy efficiency.

INTRODUCTION

The energy efficiency of computing sys-
tems is becoming increasingly important
with the development of technologies
such as artificial intelligence (AI) [1], the
Internet of Things (IoT) [2], and auton-
omous robotic agents [3]. Meanwhile,
the energy consumption of training Al
models has sharply risen due to the tre-
mendous increase in their parameters,
complexity, and training data size [4].
On the other hand, with the increas-
ing demand for edge devices to perform
complex tasks, low power consumption
has become a critical requirement for
the hardware that deploys data-intensive
computing to facilitate Al algorithms [2].
However, traditional computing systems
are facing a significant challenge, the von
Neumann bottleneck. This issue arises
because of constant data transfer between
memory and processing unit, which
limits the speed and energy efficiency.

Another related challenge is the perfor-
mance mismatch between the memory
and processing units, referred to as the
memory wall issue. These challenges hin-
der the further improvement of com-
puting systems under the von Neumann
architecture. To solve these problems,
in-memory computing hardware, which
allows computing to be performed at the
same location where data is stored, has
been explored from device to system lev-
els and proved promising as the next-gen-
eration computing scheme [5], [6], [7].
At the device level, memristive devices
have emerged as leading candidates for
in-memory computing because of their
unique characteristics [8], [9], [10], [11].
These devices can store information as
conductance values because their internal
states can be modified by the voltages/
currents applied to them. In addition,
memristive devices require no energy
to hold their resistance, making them
ideal as basic components of in-memory
computing [12]. At the structural level,
the small area and fast switching speed
of memristive devices enable them to
be organized as dense crossbar arrays or
stacked as three-dimensional arrays to

implement vector-matrix multiplications
(VMMs), the most common operations
in deep neural networks, in highly parallel
fashion [13]. At the system level, memris-
tive devices and crossbar arrays empower
analog in-memory computing to avoid
data movement and digital-analog con-
versions from analog sensors and periph-
erals. Furthermore, they are used as
neural circuits in brain-inspired comput-
ing, which seeks to develop computation-
al systems inspired by the human brain's
structure, function, and learning mecha-
nisms [14], [15], [16]. As a result, the
broad spectrum of innovations stemming
from memristive devices can potentially
improve the speed, area, and energy efti-
ciency of future computing systems and
revolutionize high-performance comput-
ing. Despite the potential benefits, there
are still challenges from the device to the
system levels to fully utilize memristive
nanodevices in in-memory computing for
energy-efficient hardware systems.

In this review, we discuss the require-
ments for memristive hardware at differ-
ent levels to achieve efficient in-memory
computing. We also present our recent
efforts in addressing some of these
essential requirements, as illustrated
in Figure 1. Furthermore, we propose
potential research directions that can
further enhance the energy efficiency
of hardware systems with the continued
advancements of memristive technology.

REQUIREMENTS FOR EFFICIENT
IN-MEMORY COMPUTING
MEMRISTIVE DEVICES

As building blocks for in-memory com-
puting hardware, a long list of properties
of memristive devices must be consid-
ered, including the number of distin-
guishable conductance states, retention,
endurance, device dimension, switching
speed, and switching energy [17]. The
number of distinguishable conductance
states in a single memristor is important
to achieve high storage density and com-
puting precision, as it represents the bits
of data that can be stored in one device.
Stable retention and high endurance of
each device are also crucial for long-term
data storage and consistent comput-
ing results when switching memristive
devices to multilevel states, given that
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FIGURE 2 (a) Transmission electron microscopy (TEM) of the 3 x 3 memristor crossbar array with 2 x 2 nm? device area and sub-12-nm pitch.
Scale bar: 10 nm. (b) The I-V curve for the 2-nm memristor in the array. Inset shows the materials stack and measurement voltage polarity of the

memristors [23].

memristive devices are used as nonvola-
tile memory for in-memory computing.
Properties related to hardware perfor-
mance also need research attention, in
addition to the requirements for in-mem-
ory computing. The nanoscale device
dimension is important for integrating
memristive devices into crossbar arrays
and reducing total chip area. Fast switch-
ing speed and low switching energy to
achieve different levels are preferred to
minimize latency and power consump-
tion and improve the overall throughput
of the computing system.

MEMRISTOR CROSSBAR ARRAYS

Addressing sneak path current is the
primary challenge when integrating
memristive devices into crossbar arrays
for parallel VMMs. Sneak path current
occurs when the current flows through
unintended memristors in the array,
leading to inaccurate reading and pro-
gramming of memristors in most passive
crossbar arrays. Therefore, the ability to
suppress the sneak path current is the
basic requirement for designing mem-
ristor crossbar arrays. Also, high device
density without sacrificing performance
is critical for achieving high throughput
in in-memory computing. Morcover, the
flexibility of memristor arrays to adapt
to various computing schemas for differ-
ent applications needs to be considered.
Beyond the array structure, compatibility
with complementary metal-oxide—semi-
conductor (CMOS) technology is essen-
tial since most peripherals facilitating

memristor crossbar arrays are designed
based on CMOS circuits.

PERIPHERALS

The rapid progress in memristive
devices and crossbar arrays has signifi-
cantly improved on-chip computing
performance regarding throughput
and energy efficiency [18]. But oft-chip
peripherals responsible for more than
90% of the area, latency, and energy con-
sumption of the whole computing system
[19], have become a primary obstacle to
developing efficient in-memory comput-
ing systems. These peripherals mainly
perform analog-digital conversions and
critical functions other than VMMs in
digital computing, such as data move-
ment and high-precision calculations.
To address this challenge, a fully analog
hardware implementation is necessary for
peripherals used in memristive hardware.
This eliminates the need for power-hun-
gry digital-to-analog converters (DACs)
and analog-to-digital converters (ADCs).
Furthermore, developing peripherals with
low latency and high energy efficiency
for signal transmission and data move-
ment is crucial to keep pace with the
high data throughput caused by advance-
ments in memristive devices and arrays
and enhance the overall performance of
in-memory computing hardware.

HARDWARE-ALGORITHM CO-DESIGNS
Compared to traditional digital comput-
ers, memristive in-memory computing
hardware differs in many aspects, includ-

ing computing with natural physical laws,
analog information encoding, signal
1], [22] These
differences require hardware-algorithm

transmission, etc. [20], [2

co-designs to develop energy-efficient
computing systems based on memristive
devices. On the hardware side, because
of the highly parallel computing schema,
high-throughput interfaces, efficient data
movement approaches, and reconfigu-
rable architectures are key requirements
to consider when designing circuits and
systems for different algorithms and
applications. On the software side, algo-
rithms initially designed for high-preci-
sion digital computing must be adjusted
or redeveloped to fit the relatively low-
precision computing in the analog
domain without sacrificing performance.
Also, algorithms that can effectively tol-
erate or even leverage the non-idealities
of memristive devices should be designed
for in-memory computing hardware
rather than attempting to climinate the
non-idealities from devices. Hence, hard-
ware-algorithm co-designs complement-
ing each other are critical to developing
future energy-efficient computing sys-
tems that enable various machine learn-
ing and brain-inspired algorithms.

SUB-10 NANOMETER AND
MULTILEVEL MEMRISTOR DEVICES

At the device level, two breakthroughs
including small device dimensions
and 2048 conductance levels are dis-
cussed. These devices are measured with
remarkable single-device performance,
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FIGURE 3 (a) TEM of a Ta/Al,03/Hf05/ Pt memristor device. Scale bar: 5 nm. (b) 2048 conductance levels were measured by off-chip driving cir-
cuitry. Inset, zoom-in part of the measured conductance levels [25].

integrated into crossbar arrays, and
experimentally proved for information
storage and data processing.

Achieving sub-10 nanometer(nm)
memristive devices that can be inte-
grated into high-density crossbar arrays
is a crucial step toward reducing chip
area. However, the fabrication of high-
ly ordered conductive nanoelectrodes
remains a significant challenge. In a
recent study [23], metal nanostructures
with ultrahigh height-to-width aspect
ratio were first proposed and demon-
strated as electrodes of memristor cross-
bar arrays. This approach enabled the
fabrication of memristor arrays with a
2-nm feature size and a 6-nm half-pitch.
A 3x3 crossbar array using the proposed
nanostructure and a Pt/TiO/HfO,/
Pt stack was fabricated (Figure 2). The
resulting 2-nm memristors demonstrat-
ed a high dynamic range, with an average
ON/OFF ratio of 454, while exhibiting
bipolar nonvolatile switching behavior.
In addition, the switching current of the
2-nm memristor was 46 nA, leading to
low programming power consumption.
This 2-nm memristor and the 3x3 cross-
bar array achieved extreme scalability
and high energy efficiency, providing
promising potential for future advance-
ments in memristive devices and crossbar
arrays [24].

In addition to area scalability, one
crucial factor for memristive devices used

in computing systems is the number of
conductance levels that can be achieved
in a single device. More conductance
levels result in high computing precision
and benefit the chip area and power con-
sumption, since more bits of data can be
stored in a single device. While theoreti-
cally, a memristor device is analog and
can be tuned to an infinite number of
conductance levels, in practice, fluctua-
tions at each conductance level impose a
constraint on the number of distinguish-
able levels that can be attained within a
particular range of conductance values.
Recent research revealed that the regu-
lar switching operation, whether SET
or RESET, inevitably results in incom-
plete conduction channels in the form
of either islands or blurred edges adja-
cent to the primary conduction channel.
These secondary channels are less stable
than the main conduction channel [25].
Therefore, a denoise process was devel-
oped for programming the Ta/Al,O3z/
HtO,/ Pt memristor devices. By apply-
ing small voltage pulses with optimized
amplitude and width, the denoising
process substantially reduced the fluc-
tuation and tuned the memristor device
to 2048 conductance levels. The device
stack and measured 2048 conductance
levels are shown in Figure 3, where the
conductance levels were read by sweep-
ing D.C. voltages from 0 to 0.2 V, with
target conductance ranging from 50 pS

to 4144 pS, and a 2-pS between adja-
cent levels. The memristor devices were
also integrated with CMOS circuits in
256 x 256 one-transistor-one-memristor
(IT1R) crossbar arrays in a commercial
chip foundry, proving the potential of
memristors in future computing systems
with CMOS-based peripherals.
Developing
with
endurance, and switching speed pro-

small and multilevel

devices satisfactory  retention,
vides a solid foundation for integrating
memristive devices in high-density cross-
bar arrays and paves the way for further
exploration of memristive hardware in

in-memory computing systems.

THREE DIMENSIONAL MEMRISTOR
CROSSBAR ARRAYS

Based on the progress made in memris-
tive devices, high-density crossbar arrays
were constructed by extending the two-
dimensional (2D) to three-dimensional
(3D) to increase the computing through-
put and packing density. Structural
designs using the extra dimension were
also explored to mitigate the sneak path
current issue and enhance the flexibility
of crossbar arrays for computing.

In an early demonstration [26], 3D
crossbar arrays were fabricated with self-
rectifying memristors based on silicon,
enabling compatibility with the CMOS
foundry process. Figure 4 depicts the
device stack of the self-rectifying memris-
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FIGURE 4 (a) TEM of a Si/SiO»/Si memristor. Scale bar: 2 nm. (b) The 3D stacked crossbar array with the all-silicon-based devices and isolation

between different layers [26]. Scale bar: 200 nm.
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FIGURE 5 (a) Scanning electron micrograph (SEM) of the 3D memristive circuit with eight layers of monolithically integrated memristors. Scale
bar: 2 ym. (b) The diagram of the implementation of parallel 2D convolution operations in all the row banks of the 3D array [27].

tors and the corresponding 3D crossbar
arrays. The top and bottom electrodes
of the Si/SiO,/Si memristor devices
were made of p-type and n-type doped
single crystalline silicon, which were
transferred from fluid-supported mem-
branes. The switching layer of the device
was a thin layer of silicon oxide produced
chemically, and its switching mechanism
was verified experimentally as the for-
mation and rupture of a sub-5 nm sili-
con-rich conduction channel within the
oxide layer. The self-rectifying unipo-
lar memristors, possessing the intrinsic
diode effect, effectively suppressed intra-
and inter-layer sneak path currents, as all
possible sneak paths in the crossbar array
involved at least one reversely biased cell.
This presented the feasibility of electri-

cal operations of 3D memristor arrays
without external selectors. The 3D cross-
bar arrays with silicon-based memristors
demonstrated that the 3D stack used a
simplified fabrication process and can be
integrated with CMOS-based peripheral
circuits for further development as mem-
ory or computing components.

Other than the direct extension from
2D to 3D crossbar arrays, interconnect
designs between layers using the addi-
tional dimension in 3D arrays were also
explored, allowing for more flexibility to
accommodate different in-memory com-
puting schemas. As shown in Figure 5(a),
a 3D circuit composed of eight layers of
monolithically integrated memristive
devices was fabricated to use the 3D
structure to directly map and implement

complex neural networks in hardware
[27]. In conventional 2D crossbar arrays,
2D image pixel matrices from many neu-
ral network applications needed to be
unrolled to 1D vectors to fit the input
rows of the crossbar array. This costs
extra power consumption and limits
the throughput of in-memory comput-
ing. In the purposely designed 3D array,
memristors in each row bank were used
as the weights of convolutional kernels in
a convolutional neural network (CNN).
As shown in Figure 5(b), the row banks
constructed the 3D array for a 2D con-
volution operation without unrolling the
2D inputs. This design takes 2D inputs
for convolutions and enables bilateral
2D data
input/output (IO) circuits and periph-

communications between
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FIGURE 6 Analog neuron circuits with memristive synapses. (a) Optical micrograph of a fully memristive neural network with 8x8 1T1R cells as
synapses connecting to eight diffusive memristors as neurons [35]. (b) The fully analog two-layer neural network consists of two 1T1R crossbar
arrays (left and right) and fully analog hardware neuron circuits made of off-the-shelf-electronics (middle) [36].

eral circuits underneath, significantly
enhancing the throughput of in-memory
computing. Moreover, it offers highly
scalable and independent operations in
row banks, allowing them to be pro-
grammed flexibly for different output
pixels, filters, or kernels from different
convolutional layers, highly improving
the flexibility of 3D crossbar arrays.

The 3D memristive circuits pioneer
the way for high-density crossbar arrays
and achieve remarkable computing per-
formance. The preliminary exploration
of the additional dimension also opens
up new possibilities for various comput-
ing scenarios. 3D memristor crossbar
arrays with compatible peripherals can
serve as powerful computing cores for
different algorithms and applications.

ANALOG NEURON CIRCUITS

Despite significant improvements in the
energy efficiency of computing cores for
VMMs through advances in memristive
devices and crossbar arrays, the overall
energy efficiency of computing hardware
is still constrained by peripherals that
facilitate memristive computing cores
[28], [29]. This is because other opera-
tions in neural networks, such as activa-
tion functions, backward propagation,
and derivative calculations, are still pro-
cessed in digital processors, which neces-
sitates the use of ADCs and DACs to
convert analog and digital signals back
and forth, resulting in additional latency
and power consumption [30], [31]. In
addition to device engineering to reduce
analog-digital conversions[32], [33],
[34], two analog neuron circuits were

proposed to connect neighboring layers
in neural networks implemented in mem-
ristor crossbar arrays to eliminate the
need for analog-digital conversions.

One of the proposed neuron cir-
cuits involves the utilization of diffu-
sive memristors that exhibit dynamics
similar to those found in the ion chan-
nels of biological neurons [35]. The dif-
fusive memristor device, composed of
silver nanoparticles within a dielectric
film, can imitate the neuron function
that exhibits stochastic leaky integrate-
and-fire dynamics and has an integra-
tion time that can be adjusted by either
silver migration alone or its interaction
with circuit capacitance. These neuron
devices implemented rectified linear
units (ReLU) activations and were fur-
ther connected with nonvolatile mem-
ristors to construct a fully memristive
artificial neural network, as illustrated in
Figure 6(a). The network consisted of an
8x8 1T1R array with synapse drift mem-
ristors and eight neuron circuits with dif-
fusive memristors fabricated on the same
chip. Through this integrated network,
we experimented with demonstrating
unsupervised synaptic weight updating
and pattern classification. The realiza-
tion of electronic neuronal functionality
makes it possible to process the analog
outputs from the crossbar arrays directly.
It opens the door to developing fully
analog neural networks based on mem-
ristive devices.

In addition to memristive neurons,
analog ReLU circuits implemented with
off-the-shelf components were also pro-
posed as neurons for multilayer neu-

ral networks using memristor crossbar
arrays, eliminating unnecessary analog-
digital conversions, communication, and
processing between layers of neural net-
works [36]. Each ReLU circuit was com-
posed of a half-wave current rectifier, a
voltage follower, and an inverting ampli-
fier, all built with operational ampli-
fiers. The current rectifier generated a
rectified output voltage directly from
the input current, which was the output
of the previous layer of the neural net-
work. The voltage follower was a unity
gain buffer to isolate the first stage. The
inverting amplifier was responsible for
producing the necessary positive output
voltage required for the ReLU activa-
tion. Additionally, it adjusted the output
voltage to a range of 0 to 0.2 V through
scaling for the inputs of the next layer.
Figure 6(b) depicts a two-layer hardware
neural network utilizing the proposed
analog ReLU circuits. The fully analog
network consisted of two 1T1R crossbar
arrays serving as weight matrices for the
two layers and 64 ReL U circuits working
as activation neurons. With the Modi-
fied National Institute of Standards and
Technology (MNIST) dataset, the full
hardware network achieved recognition
accuracy of 93.63% in the classification
task. The experimental demonstration of
the fully analog ReLU circuits proves the
analog signal transmissions between lay-
ers of neural networks without analog-
digital conversions. It delivers higher
computing throughput and energy efti-
ciency of multilayer neural networks.
Although these neuron circuits only
demonstrated the functionality of small
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FIGURE 7 Tolerance of memristor non-idealities using in-situ training. (a) The impact of non-responsive devices on the inference accuracy of
MNIST dataset with in-situ and ex-situ training approaches [43]. (b) The smoothed accuracy using in-situ training and weight sharing for the
convolutional-LSTM network, the experimental curve, the simulation with programming noise, and the simulation with ideal programming [44].

neural networks in analog hardware,
they verified the potential of fully ana-
log neural networks and their contribu-
tions to the computing throughput and
energy efficiency of in-memory comput-
ing systems. The promising results dem-
onstrate the possibility of implementing
other critical functions of neural net-
works in the analog domain, further
enhancing the energy efficiency of future
computing hardware. Additionally, they
highlight the importance of system-level
designs for computing hardware based
on memristive devices.

HARDWARE AND ALGORITHM
CO-DESIGN

Memristive hardware innovations were
primarily used to accelerate VMMs in
traditional neural networks [37], [38],
[39]. But merely implementing tradi-
tional algorithms designed for high-pre-
cision digital computing is difficult to
achieve optimal performance due to the
non-idealities of memristive devices. The
intrinsic dynamics and inevitable conduc-
tance drift of these devices can negatively
affect computing precision. Therefore,
hardware and algorithm co-designs are
required to optimize algorithms for
memristive hardware considering the
unique characteristics of memristors and
build circuits and architectures specifi-
cally designed to suit novel algorithms
and applications. Insightful research
has been conducted to address energy-
hungry problems in neural networks by

leveraging the non-ideal properties and
intrinsic noise of memristors [40], [41],
[42]. Based on hardware progress dis-
cussed in previous sections, hardware-
friendly methods that incorporate the
non-idealities of memristive devices in
the training of neural network algo-
rithms were also proposed.

A self-adaptive in-situ learning algo-
rithm designed for memristor crossbar
arrays in multilayer neural networks was
developed [43]. Because the memristors
in the crossbar arrays can be tuned grad-
ually by controlling the voltages applied
to the top electrode of memristors and
gates of transistors, which control the
compliance current across the devices,
linear and symmetric conductance tun-
ing can be realized with minimal cycle-
to-cycle and device-to-device variations.
Based on this device programming
schema, the gradients calculated from
the outputs of the memristor crossbar
arrays were directly converted to volt-
age values and applied to memristors to
change their conductance representing
the weights of neural networks. This
process of gradually tuning the synaptic
weights of hardware neural networks was
called in-situ training. For comparison,
ex-situ training, a training diagram pro-
gramming the conductance to weight
values trained by software, was also per-
formed for a two-layer neural network
based on memristor crossbar arrays for
MNIST dataset classification. The accu-
racy degradation with the increase of

non-responsive devices, which are stuck
in a low-conductance state and consid-
ered defect devices, is illustrated in Fig-
ure 7(a). The comparison showed that
the in-situ training process can compen-
sate for non-idealities in the hardware,
resulting in significantly greater defect
tolerance than using ex-situ training
weights in neural networks.

Given the promising results of the in-
situ method in hardware training, it was
combined with spatiotemporal weight
sharing and applied to recurrent convo-
lutional neural networks using memris-
tor crossbar arrays [44]. Because of the
structure of crossbar arrays, the weights
of multiple kernels in one convolutional
layer can be unrolled and programmed
to multiple columns of the memris-
tor arrays. This way, multiple kernels
in one convolutional layer can share
the input data simultaneously and per-
form the operations in a single cycle.
Taking this one step further, the same
weights of the long short-term memory
(LSTM) network were also mapped to
memristor conductance in different col-
umns to be shared across all time steps
in LSTM. This weight sharing in both
convolutional layers and all time steps
of the LSTM network was called spa-
tiotemporal weight sharing and effec-
tively reused the weights programmed
to memristor crossbar arrays. Memristive
convolutional-LSTM utilizing the spa-
tiotemporal weight sharing and in-situ
training achieved comparable accuracies
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with ideal simulations according to the
comparison between the experimental
accuracies and the simulations (with or
without noise) shown in Figure 7(b).
The weight sharing and in-situ training
led to reduced trainable parameters and
high tolerance to noise caused by non-
idealities of memristive devices.

The in-situ training algorithm and
the spatiotemporal weight sharing in
convolutional-LSTM  are pioneering
works designed to incorporate device
non-idealities during the training process
and fully take advantage of the hardware
structure. These hardware-algorithm co-
designs achieve robust training and par-
allelism, resulting in higher accuracy and
computing throughput. Furthermore,
these works demonstrate the necessity of
hardware-algorithm co-designs in devel-
oping energy-efficient computing hard-
ware systems.

SUMMARY AND PERSPECTIVE

In summary, research at different lev-
els to facilitate the development of
energy-efficient computing hardware
using memristive nanodevices has been
presented. The sub-10 nanometer pas-
sive array and 1T1R array with memris-
tors achieving 2048 conductance levels
offered solid device solutions to high-
density crossbar arrays with stable reten-
tion and high endurance. The innovative
3D structural designs, including the
CMOS-compatible arrays and flexible
arrays for complex networks, improved
the packing density and computing
throughput, providing energy-efficient
computing cores for analog in-memo-
ry computing. The fully analog neuron
circuits were proposed and experimen-
tally verified in hardware multilayer neu-
ral networks, attempting to eliminate
analog-digital conversions to boost the
overall performance of in-memory com-
puting systems. Hardware-algorithm
co-designs were also preliminarily imple-
mented to utilize the intrinsic non-ide-
alities of memristive devices in network
training and share weights mapped to
the conductance of memristors in cross-
bar arrays. These research advancements
made it feasible to achieve an estimated
chip performance of 118 tera operations
per second per Watt (TOPS/W) [44]. In

the future, further improvements can be
expected through the implementation of
system-level innovations.

While the comprehensive research
presented paves the path to exploring
efficient in-memory computing based on
memristive devices, challenges remain
between these proof-of-concept imple-
mentations and computing hardware sys-
tems with energy efticiency like human
brains. As such, we propose several
potential directions for further research
to bridge the gap. For memristive
devices, investigating memristors with
thousands of conductance levels for com-
puting is worth considering, as they have
only been proven to function as memory
in crossbar arrays [25]. Fully utilizing the
thousands of conductance levels in cross-
bar arrays to improve computing preci-
sion will further enhance the accuracy
of neural networks, making them com-
petitive with digital computers. Based on
multilevel devices, creative structure and
interconnect innovations are encouraged
to explore the additional dimension in
3D crossbar arrays. The 3D circuit pro-
posed in [27] was only designed to avoid
unrolling for 2D inputs and perform
2D convolutions in parallel. Explor-
ing other designs can create more pos-
sibilities for building 3D crossbar arrays
supporting highly parallel matrix opera-
tions. For peripheral circuits, although
the designed analog neuron circuits are
preliminary implementations and only
parts of the computing systems, realiz-
ing additional functions in the analog
domain is a promising path to follow to
avoid extra analog-digital conversions.
Along with the hardware progress, more
attention should be drawn to hardware-
algorithm co-designs, as interdisciplin-
ary research in this direction is still
nascent but has already shown promise.
In conclusion, while improving the per-
formance of memristive devices, com-
puting cores, and essential peripherals
remains crucial for the energy efficiency
of in-memory computing, system-level
research integrating circuits, interfaces,
architectures, and algorithm designs for
in-memory computing based on mem-
ristive nanodevices is the top priority
for the development of energy-efticient
computing hardware systems.
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