
Symmetry-enriched topological order from partially gauging symmetry-protected
topologically ordered states assisted by measurements

Yabo Li (李雅博),1, 2 Hiroki Sukeno (助野裕紀),1, 2 Aswin Parayil

Mana,1, 2 Hendrik Poulsen Nautrup,3 and Tzu-Chieh Wei (魏子傑)1, 2

1C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, New York 11794-3840, USA
2Department of Physics and Astronomy, State University of New York at Stony Brook, New York 11794-3840, USA

3Institute for Theoretical Physics, University of Innsbruck, Technikerstr, 21a, A-6020 Innsbruck, Austria
(Dated: September 23, 2023)

Symmetry protected topological (SPT) phases exhibit nontrivial short-ranged entanglement pro-
tected by symmetry and cannot be adiabatically connected to trivial product states while preserving
the symmetry. In contrast, intrinsic topological phases do not need ordinary symmetry to stabilize
them and their ground states exhibit long-range entanglement. It is known that for a given sym-
metry group G, the 2D SPT phase protected by G is dual to the 2D topological phase exemplified
by the twisted quantum double model Dω(G) via gauging the global symmetry G. Recently it was
realized that such a general gauging map can be implemented by some local unitaries and local
measurements when G is a finite, solvable group. Here, we review the general approach to gauging
a G-SPT starting from a fixed-point ground-state wave function and applying a N -step gauging
procedure. We provide an in-depth analysis of the intermediate states emerging during the N-step
gauging and provide tools to measure and identify the emerging symmetry-enriched topological order
(SET) of these states. We construct the generic lattice parent Hamiltonians for these intermediate
states, and show that they form an entangled superposition of a twisted quantum double (TQD)
with an SPT ordered state. Notably, we show that they can be connected to the TQD through a
finite-depth, local quantum circuit which does not respect the global symmetry of the SET order.
We introduce the so-called symmetry branch line operators and show that they can be used to
extract the symmetry fractionalization classes (SFC) and symmetry defectification classes (SDC) of
the SET phases with the input data G and [ω] ∈ H3(G,U(1)) of the pre-gauged SPT ordered state.
We illustrate the procedure of preparing and characterizing the emerging SET ordered states for
some Abelian and non-Abelian examples such as dihedral groups Dn and the quaternion group Q8.

I. INTRODUCTION

Topological order first originated from the study of
the fractional quantum Hall effect [1, 2]. It cannot be
described by local order parameters and is beyond Lan-
dau’s classification of matter. It exhibits ground-state
degeneracy dependent on the topology of the underlying
manifold and the excitations, displaying anyonic statis-
tics [3, 4]. More recently, it was recognized as possessing
some kind of long-range quantum entanglement [5] and
having nonzero topological entanglement [6–8]. In addi-
tion to fractional quantum Hall systems and certain spin
liquids [9], there are models that manifest topological
order, such as Kitaev’s toric code and quantum double
(QD) models [10], their twisted versions [11], Levin-Wen
string-nets [12] and more recently fractons [13, 14]. Topo-
logical features that characterize such a phase of matter
are robust to local perturbations, which is a property
highly desirable in quantum memories [15]. Some of the
topological models also offer the capability of topological
quantum computation (TQC) by exploiting the braiding
of anyons [10, 16–18], which has emerged as one of the
schemes for fault-tolerant quantum computation due to
its inherent robustness.

Interestingly, from the perspective of adiabatic con-
nection and quantum circuits, ground states of different
phases at zero temperature cannot be connected by ei-
ther adiabatic evolution or a finite-depth quantum cir-

cuits [19]. Intrinsic topologically ordered states therefore
cannot be created from a trivial ground state, such as
product states, with a quantum circuit of finite depth.
When all the local gates in the circuits are required to
respect a certain global symmetry, trivial gapped phases
can be further fine-grained into distinct classes: those
that can be created from product states with symmetric,
finite-depth circuits and those that cannot. The latter
classes are referred to as nontrivial symmetry-protected
topological (SPT) phases [20–22], and most of them can
be classified by cohomology [5, 23].

Quantum technology has been constantly improving
and evolving. Several medium-scale quantum comput-
ers are available. Recently, certain topologically ordered
states, such as those of the toric model, were created by
quantum circuits [24], and furthermore, some braiding
statistics has also been observed in experiments [25–29].
Yet, preparation of high-fidelity ground states and precise
manipulation of excitations in topological systems still re-
main challenging in the current era of noisy intermediate-
scale quantum (NISQ) devices [30].

For the family of the QD models and their twisted ver-
sions, i.e., twisted quantum double (TQD) models [11],
there is a well-known correspondence to models of SPT
phases [5, 31–33] via a procedure called gauging [34–37].
When two quantum states are topologically distinct with
respect to a symmetry G, then they cannot be trans-
formed to each other with a finite-depth, piecewise lo-
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cal unitary transformation that preserves the symmetry.
The classification and characterization of SPT phases
with global symmetry G in two dimensions is facilitated
by a function of gi ∈ G, namely a 3-cocycle ω3(g1, g2, g3),
which is a representative element of the 3rd cohomol-
ogy group of G, denoted by H3(G,U(1)) [5]. At the
same time, the TQD model is also characterized by the
3-cocycle: inequivalent choices of the 3-cocycle give rise
to distinct intrinsic topological phases [11]. Indeed, the
wave function of the TQD model with the gauge group G
is obtained by gauging the global symmetry G in the cor-
responding SPT wave function. An interesting question
is whether such a gauging map is physically possible.

It has been known that the ground state of the toric
code can be efficiently prepared by measuring half of
qubits in a 2D cluster state [38]. The use of mea-
surements thus can provide a route to creating long-
range entangled states with finite-depth operations [39–
41]. Ref. [42] demonstrated that ground states of QD
models with S3 and D4 groups can be prepared through
finite-depth local unitary operations supplemented with
on-site measurements. It was also argued in Ref. [39]
that a similar procedure should work for QD models
with any solvable group G, which was later elaborated
in Ref. [43] through repeated rounds of finite-depth op-
erations, where each round incorporates unitaries, mea-
surements, feedforward, and corrections. This scheme
was further generalized to the general TQD models with
solvable groups in [44], where the number of measure-
ment rounds was classified for various topological orders,
leading to a conjecture of a new hierarchy of topolog-
ical orders when one includes measurements as an in-
gredient. It is worth mentioning that further improve-
ment is possible for the QD models with D4 and Q8

groups, which can be prepared with a single round of
measurements, feedforward, and corrections [45]. Ex-
perimentally, measurement-based gauging is a promis-
ing method for realizing nontrivial topological orders in
small-scale systems requiring only local unitary opera-
tions, mid-circuit measurements, and feedforward correc-
tions [29, 46, 47].

The present work re-examines the measurement-based
gauging from the perspective of group representation the-
ory and provides a characterization of the transformation
and emergence of SPT, SET, and intrinsic topological
order during gauging. In general, for a solvable group
G, the corresponding TQD model can be prepared from
a G-SPT through a multi-step gauging procedure. In
this work, we provide two approaches that realize such
an N -step gauging which reduces to a one-step gauging
when G is abelian or to a two-step gauging when G is
dihedral. For non-solvable groups, it is argued that the
measurement-assisted gauging procedure cannot be im-
plemented by a finite-depth circuit [44].

Interestingly, we find that the intermediate states, that
emerge during the multi-step gauging, can be naturally
described as symmetry-enriched topological (SET) or-
ders [48–51]. We also show that, without respecting

global symmetry, there is a finite-depth quantum circuit
that takes the SET ground state to a ground state of a
corresponding twisted quantum double model (TQD).

The essential data of an SET order, besides the in-
trinsic anyon theory C, include the symmetry action as
an automorphism on C, the symmetry fractionalization
class, and the defectification class [51]. A key result of our
work is to characterize the resulting SET order given the
3-cocycle that describes the initial SPT wave function.
If the emergent SET order has a global symmetry that
does not change the anyon type, we develop a general for-
malism based on symmetry branch line operators for the
braiding phases between any abelian anyon in the theory
and the anyons obtained from fusing point defects, ex-
actly characterizing the symmetry fractionalization pat-
terns. If the SET order we enter has a global symmetry
that does change anyon types, we conjecture the form
and algebra of non-abelian symmetry branch line opera-
tors that can create the corresponding symmetry defects.
Then, by calculating the tensor product of such opera-
tors, one can derive the fusion rules of these symmetry
defects, which we believe is sufficient to characterize the
symmetry fractionalization patterns. We consider the di-
hedral SPT states as an example to illustrate this case.

The remainder of this paper is organized as follows. In
Sec. II, we review the duality between SPT states with
global symmetry group G and ground states of a twisted
quantum double model with a gauge group G in two di-
mensions. This duality is given by a formal gauging map,
which turns the global symmetry G into a gauge symme-
try. In Sec. III, we describe the general procedure of
N -step gauging G-SPT ordered states when G is a solv-
able group in terms of an algorithm (see Algorithm 1 be-
low). In Sec. IV and Sec. V, we discuss 1-step and 2-step
gauging respectively, and consider Abelian and dihedral
groups as illustrative examples. For the latter, we find
that after the first gauging step, the system remains in a
SET state where the remaining quotient group describes
the global symmetry. Sec. VI contains the discussion on
symmetry properties of the emergent SET phases from
the perspective of symmetry defects. Using the frame-
work of symmetry branch lines, we relate the transfor-
mation of symmetry defects under gauging to properties
of the SET phase. We give several examples to illustrate
our formalism. In Sec. VII. we make some concluding
remarks. The Appendix provides materials that support
the results in the main text. For example, we provide a
constant-depth unitary circuit to map an SET state to a
TQD state in Appendix E. In Appendix J, We also give
an alternative gauging prescription based on a different
presentation of solvable groups which is alternative but
equivalent to the standard one, as proven in Appendix K.
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II. FIXED-POINT SPTS, TWISTED QUANTUM
DOUBLES AND GAUGING

On an oriented triangulated lattice Λ, given a fi-
nite group G, we assign a Hilbert space Hv =
{∑g∈G cg |g⟩v |cg ∈ C} to each vertex v. Then we can
write a fixed-point G-SPT wave function. To do this,
we first assign a group cocycle to each simplex, where ω
is a representative in H3(G,U(1)) respecting the cocycle
condition,

ω(h, k, l)ω(g, hk, l)ω(g, h, k)

ω(gh, k, l)ω(g, h, kl)
= 1, (1)

for any g, h, k, l ∈ G.

FIG. 1: On an oriented triangulated plane, two typical
simplexes with opposite orientations are shown. Their
corresponding cocycles are ω(g3g

−1
2 , g2g

−1
1 , g1) and

ω(g3′g
−1
2′ , g2′g

−1
1′ , g1′)

−1.

The fixed-point SPT wave function is given by taking
a product over all such cocycles,

|ΨSPT⟩ =
∑

{gv}

∏

simplex∆123

ω(g3g
−1
2 , g2g

−1
1 , g1)

s(∆123)
⊗

v

|gv⟩v ,

(2)
where s(∆) = ±1 indicates the orientation of a simplex
∆123 (with a given branching structure, and {1, 2, 3} la-
bels the vertices on the simplex), the tensor product runs
over all vertices v on the lattice, and all the configurations
{gv} are summed over. Note that we use a convention
from Ref. [52], which is slightly different from Ref. [5], for
the sake of convenience in later discussions. This state
can be obtained by the action of a unitary operator Uω

on the product state
⊗

v

∑
g |g⟩v,

Uω =
∑

{gv}

∏

∆123

ω(g3g
−1
2 , g2g

−1
1 , g1)

s(∆123)
⊗

v

|gv⟩v ⟨gv| .

(3)
We define the left/right action of x on Hv as

Lx
+v |g⟩v = |xg⟩v , Lx

−v |g⟩v =
∣∣gx−1

〉
v
. (4)

Then the global symmetry action (in our convention)
Ux ≡∏v L

x
−v on SPT state yields

Ux |ΨSPT⟩ =
∑

{gv}

∏

∆

ωs(∆)({gv})
⊗

v

∣∣gvx−1
〉
v

=
∑

{gv}

∏

∆

ωs(∆)({gvx})
⊗

v

|gv⟩v

≡
∑

{gv}

∏

∆

Amp({gv}, x)ωs(∆)({gv})
⊗

v

|gv⟩v ,

(5)

where in the second line we used a change of variables
and we have defined a phase factor Amp in the fourth
line.
Suppose M is the two-dimensional spatial manifold on

which the Hilbert space is defined, and I = {x3|0 ≤ x3 ≤
1} is an interval in the (Euclidean) time direction. The
manifold M × I is now three-dimensional. We triangu-
late the M × I by 3-simplexes (tetrahedrons) with the
constraint that each time slice at x3 = 0 and x3 = 1
matches the original two-dimensional lattice; see Fig. 2.
The amplitude Amp is computed once the triangulation
of M × I is specified. We now give more details.

FIG. 2: The phase factor Amp({gv}, x) can be given by
the triangulation of such prisms, where gv′ = gvx.

We assign a 3-cocycle to each tetrahedron as in Fig. 3.
The phase factor can be seen to be [5]

Amp({gv}, x) =
∏

tetrahedron

ω(tetra)s(tetra). (6)

When the spatial manifold is closed, using cocycle con-

FIG. 3: A positively oriented tetrahedron. The
3-cocycle assigned to it is ω(g4g

−1
3 , g3g

−1
2 , g2g

−1
1 ).

ditions, one can show that Amp ≡ 1. Therefore, the SPT
state is invariant under the global symmetry transforma-
tion,

Ux |ΨSPT⟩ = |ΨSPT⟩ . (7)

Due to this symmetry, this state can be written schemat-
ically as (where we have suppressed the indices in ∆ for
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simplicity),

|ΨSPT⟩ =
∑

{gv}

∏

simplex∆

ω(g3g
−1
2 , g2g

−1
1 , g1)

s(∆)
⊗

v

|gv⟩v

=
∑

{gv}
Ω({gvg−1

v′ })
⊗

v

|gv⟩v, (8)

where Ω denotes the product of cocycles, and v and v′

are vertices connected by an edge, ⟨v, v′⟩ ∈ E.

A. Gauging global symmetry G

FIG. 4: The gauging map Γ maps from vertex DOFs to
edge DOFs

Under a gauging map as shown in Fig. 4, the vertex de-
grees of freedom (DOFs) are mapped to the edge DOFs,

Γ : |{gi}⟩v →
∣∣{gig−1

j }
〉
e
. (9)

This in turn maps the SPT state to an intrinsic topolog-
ically ordered state [53]

|ΨTQD⟩ =
∑

{ge}
Ω({ge})

⊗

e

|ge⟩ , (10)

which is a ground state of the twisted quantum dou-
ble (i.e., described by the Dijkgraaf-Witten theory)
Dω(G) [54]. The twisted quantum double can be formu-
lated on a triangulated lattice with a Kitaev’s Quantum
Double-like Hamiltonian [11],

H = −
∑

v

Av −
∑

p

Bp, (11)

where v and p stand for the vertices and plaquettes, re-
spectively, on the lattice. The vertex operator

Av =
1

|G|
∑

g∈G

(∏

e⊃v

Lg
±e

)
W̃ g

v , (12)

is hermitian and is a projector (see appendix A), where
Lg
+e and Lg

−e are left and right action of the group ele-
ment g on the edge e. When e emanates from the vertex
v to another vertex, we apply Lg

−e in Eq. (12), When e
flows to the vertex v, we apply Lg

+e.

The phase W̃ g
v is a product of the cocycles correspond-

ing to the tetrahedrons with appropriate orientations in
the prism in Fig. 5, where the correspondence between a

FIG. 5: The phase W̃ g
v is defined as the multiplication

of the phases corresponding to the tetrahedrons. Here,
gv′v = g.

FIG. 6: A negatively oriented tetrahedron. The
3-cocycle assigned to it is ω−1(g43, g32, g21).

tetrahedron and a 3-cocycle is established in Fig. 6. Fur-
thermore, this phase factor is the commutator between
the right action of g on vertex v and the unitary operator
introduced in Eq. (3),

W̃ g
v = (

∏

e⊃v

Lg
±e)

†Uω(
∏

e⊃v

Lg
±e)U

†
ω, (13)

where we use Lg
+e (Lg

−e) when the edge e ends at (em-
anates from) vertex v.
The plaquette operator is

Bp = δ
(∏

e∈p

ge, 1
)
, (14)

where δ(x, y) is the Kronecker delta function. The resul-
tant state from the gauging map is the ground state of
this Hamiltonian,

H Γ(|ΨSPT⟩) = E0 Γ(|ΨSPT⟩). (15)

The local excitations of TQD model are fractional
charges called anyons, which can be classified by a uni-
tary modular tensor category (UMTC); see, e.g., [55].
One thing to remark is that the convention here is slightly
different from the one used in [53] and [11] for the sake
of convenience in later discussions.

B. Gauging a subgroup of G

One can introduce a gauging map ΓN that corresponds
to gauging only a normal subgroup N of G. We have the
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quotient group Q = G/N with an embedding

s : Q→ G. (16)

Any element g ∈ G has a unique decomposition g =
qn, where q ∈ s(Q) and n ∈ N . Under the map, the
normal part of vertex DOFs are mapped to edge DOFs,
as illustrated in Fig. 7,

ΓN : |{gi}⟩v → |{qi}⟩v ⊗
∣∣{nin

−1
j }
〉
e
. (17)

This maps the SPT state to

FIG. 7: The gauging map ΓN maps the normal part
from vertex DOFs to edge DOFs.

|ΨSET⟩ =
∑

{qv}

∑

{ne},fluxless
Ω({qineq

−1
j })

⊗

v

|qv⟩
⊗

e

|ne⟩ .

(18)
One point to notice is that the above state has a

global symmetry Q under action Ux
Q = Uxϕx, where

Ux ≡ ∏v L
x
−v is the right action of x ∈ s(Q) on all ver-

tices (e.g., g → gx−1) and ϕx ≡∏e ϕ
x
e is the conjugation

by x on all edges defined as

ϕx
e |n⟩e =

∣∣xnx−1
〉
e
. (19)

The second point is that the state |ΨSET⟩ is a ground
state of a Kitaev’s Quantum Double-like Hamiltonian,

H = −
∑

v

Av −
∑

p

Bp −
∑

v

Kv, (20)

where v and p stand for the vertices and plaquettes on
the lattice.

The vertex operator is

Av =
1

|N |
∑

n∈N

∑

q∈s(Q)

(∏

e⊃v

Ln
±e

)
W qnq−1

v |q⟩v ⟨q| . (21)

The phase W g
v is the product of the cocycles correspond-

ing to the tetrahedrons with appropriate orientations of
the prism in Fig. 8, where the correspondence between
tetrahedron and 3-cocycle is established in Fig. 9. The
plaquette operator is simply the following,

Bp = δ
(∏

e∈p

ne, 1
)
. (22)

The additional vertex operator Kv is

Kv =
1

|Q|
∑

q,q′∈s(Q)

W qq′−1

v |q⟩v ⟨q′| . (23)

FIG. 8: The phase W g
v is defined as the multiplication

of the phases corresponding to the tetrahedrons.
hv′v = x, qv′ = qv.

FIG. 9: A negatively oriented tetrahedron. The
3-cocycle assigned to it is

ω−1(g4h43g
−1
3 , g3h32g

−1
2 , g2h21g

−1
1 ).

We can always apply a finite-depth local unitary to
bring all the vertex DOFs to the identity element (see
appendix E) such that the state becomes

|ΨTQD⟩ =
∑

{ne}
Ω({ne}) |{ne}⟩e ⊗v |1⟩v . (24)

This is a TQD state with the 3-cocycle ν(n1, n2, n3) being
the restriction of ω(g1, g2, g3) on subgroup N . Thus we
obtain the anyons and their braiding, which is the same
as inDν(N). Therefore, the state |ΨSET⟩ is essentially an
SET phase with the global Q-symmetry, and it is in the
same phase of a TQDDν(N) if ignoring the Q-symmetry.

C. Classification of SETs

Here we briefly review some terminology relevant to
SET phases for the convenience of later discussions. This
section will be based on Refs. [51, 56]. In general, an in-
trinsic topological phase in 2+1d is an anyon theory char-
acterized by an UMTC, which is denoted by C. Assuming
the symmetry G preserves locality, an SET phase, which
is described by a G-crossed braided fusion category C

×
G ,

is enriched from an anyon theory C, by a G-symmetry
action as an automorphism on C, symmetry fractional-
ization class (SFC) and symmetry defectification class
(SDC) [51]. We first assume the symmetry actions are
unitary and always give the trivial automorphism on C,
i.e., the symmetry does not change anyon types. Con-
sider a state |Ψa,b,c,...⟩ with anyons {a, b, c, ...} present
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sufficiently far away from each other on a sphere. There-
fore, the anyons {a, b, c, ...} should be able to fuse into
the vacuum charge. The symmetry operators respect the
multiplication rules U(g)U(h) = U(gh). Under our as-
sumptions, the symmetry operator can be decomposed
as some local unitaries Ua(g), Ub(g), ..., near the anyons,

U(g) |Ψa,b,c,...⟩ = Ua(g)Ub(g) · · · |Ψa,b,c,...⟩ . (25)

Each local symmetry action can be projective,

Ua(g)Ua(h) = ηa(g, h)Ua(gh), (26)

where the phase ηa(g, h) only depends on anyon type a
and satisfy

ηa(g, h)ηb(g, h) = ηc(g, h), (27)

whenever the multiplicity is N c
ab ̸= 0. We notice that the

braiding phases B between an abelian anyon e and any
other anyons a, b, c satisfy the relation B(e, a)B(e, b) =
B(e, c) whenever the multiplicity is N c

ab ̸= 0. The sim-
ilarity of this to Eq. (27) suggests that the latter may
also arise from braiding anyons. It is indeed proved in
Ref. [51] that a phase ηa(g, h) with the above property is
related to the braiding phase between anyon a and some
other abelian anyon w(g, h) in the theory,

ηa(g, h) = B(w(g, h), a). (28)

We note that the braiding phase B(w, a) between anyons
w and a is defined in Ref. [51], and is related to the
square of the R symbol. Therefore, applying two con-
secutive localized symmetry actions U(g) and U(h) in a
region R will result in a symmetry action U(gh) in R
and an extra phase obtained by braiding anyon w(g, h)
around R. This braiding phase indicates the symmetry
fractionalization pattern of the SET.

We comment that one can redefine the local unitary
Ua(g) by an arbitrary phase factor va(g),

U ′
a(g) = va(g)Ua(g), (29)

where va(g) satisfies

va(g)vb(g) = vc(g), (30)

whenever the multiplicity is N c
ab ̸= 0. Again, the phase

factor va(g) can be written as a braiding phase be-
tween anyon a and an abelian anyon v(g), i.e., va(g) =
B(v(g), a). The abelian anyon after the redefinition will
be

w′(g, h) = v(g)× v(h)× v(gh)× w(g, h), (31)

where v(gh) is the dual anyon for the abelian anyon
v(gh). Further, according to the associativity condition
(Ua(g)Ua(h))Ua(k) = Ua(g)(Ua(h)Ua(k)), we have

w(h, k)× w(gh, k)× w(g, hk)× w(g, h) = 1. (32)

To conclude, the distinctive patterns of symmetry frac-
tionalization are characterized by the class [w(g, h)] in co-
homology group H2(Q,A), where A is the group formed
by abelian anyons via fusion algebra [56], and we have
used Q instead of G as the global symmetry for the SET
phase.
Another way to see the symmetry fractionalization

classes is to construct a Q-crossed category C×
Q from the

anyon theory including the point defects

CQ =
⊕

q∈Q

Cq, (33)

where C11 = C and 11 denotes the identity element in Q.

A distinctive Q-crossed category C×
Q is a candidate for an

SET order. According to Ref. [51], when the symmetry
does not change anyon types, one can always choose an
abelian defect from each sector Cq and label it as 0q. In
particular, 011 is the vaccum anyon. (When the symme-
try action does not permute anyon types, one can find a
bijective map f from C11 to Cq that preserves quantum
dimensions. This allows us to identify the inverse of the
vacuum anyon, f−1(011), as 0q.) The fusion of defects
respects the group multiplication structure,

0g × 0h = w(g, h)11 × 0gh, (34)

for some abelian anyon w. We denote the objects in C11
by small letters a, b, c, etc. Their fusion is given by

a× b =
∑

c∈C

N c
ab c, (35)

where N c
ab is the multiplicity in the fusion. The objects

in Cq is obtained by fusing 0q with objects in C11, i.e.,
aq ≡ a× 0q. Their fusion is given by

ag × bh =
∑

c∈C

N c
ab c× w(g, h)11 × 0gh. (36)

This abelian anyon w(g, h) is exactly what we have de-
fined above for projective phase ηa(g, h). The class
[w(g, h)] is in the cohomology group H2(Q,A), which
classifies the SFC.

In generic cases, when the symmetry does change
anyon types as an automorphism of C,

ρ : Q→ Aut(C), (37)

it turns out that not every sector Cq has an abelian ob-
ject. Therefore, we cannot write the fusion rule as in
Eq. (36).

The fusion rule of a Q-graded category C×
Q can be writ-

ten as

ag × bh =
∑

cgh

N
cgh
agbh

cgh. (38)

Consequently, each element [t] ∈ H2
ρ(Q,A) specifies a

potential way of modifying C×
Q (the SET order) via

ag × bh = t(g, h)×
∑

cgh

N
cgh
agbh

cgh. (39)
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Therefore, in generic cases, the potential symmetry
fractionalization classes are elements of anH2

ρ(Q,A) tor-
sor. In this work, we will not analyze the SDC in detail,
and we simply note that one can enter a different SDC
by stacking a Q-SPT state onto the SET state. In our
framework, after gauging the normal subgroup, a global
x-transformation will locally serve as an automorphism
ρx of C, mapping an anyon with flux n to an anyon with
flux xnx−1. Later in this work, we will analyze the phases
of some SETs in which the automorphism ρx on C is ei-
ther trivial or nontrivial.

III. N-STEP GAUGING OF 2D SPT VIA
MEASUREMENT

In this section, we present the procedure to gauge a
G-SPT state of a group G that can be factorized into N
abelian groups with N steps. (We note in this section,
N refers to the number of steps rather than a normal
subgroup. But it should be clear from the context.) A
similar method was proposed by [44] and [43]. In [44],
the authors considered the solvable group G and its de-
rived series which consists of normal subgroups which are
commutator subgroups of the previous group in the se-
ries. They proposed a gauging procedure for a particular
sequence of normal subgroups. In [43], on the other hand,
they proposed to implement the gauging procedure for a
solvable group inductively, i.e., implement the gauging
of a cyclic group, assuming the remaining quotient group
is already gauged. In our procedure, we do not restrict
ourselves to a particular derived series for the solvable
group. This in turn helps us to prepare different types
of SETs. We give the steps for gauging a G-SPT state
explicitly.

Before presenting the gauging procedure in Algo-
rithm 1, let us go through the most relevant definitions
first. A group G is a solvable group if there are subgroups
1 = G0 < G1 < · · · < GN = G such that Gk−1 is normal
in Gk, and Gk/Gk−1 ≡ Qk is abelian for k = 1, · · · , N .
Given the embedding map sk from each Qk into Gk ⊂ G,
every element g ∈ G can be written as

g = qNqN−1 · · · q2q1, (40)

where qk ∈ sk(Qk). Similarly, for another group element
h, we have the decomposition h = q̃N · · · q̃1. Under this
convention, we write down the multiplication between g
and h−1 as

gh−1 = qN · · · q3q2
(
q1q̃

−1
1

)
q̃−1
2 q̃−1

3 · · · q̃−1
N . (41)

Now, let us define the relevant unitaries and measured
observables that will be used in the gauging procedure.
We typically consider a state defined on a lattice (V,E)
with vertices i, j ∈ V and edges ⟨i, j⟩ ∈ E where the local
Hilbert space |g⟩ depends on the group G and is labeled
by its group elements g ∈ G. Given an embedding sk of
Qk into Gk as described above, we can define for all Qk

the following unitary controlled on vertices and targeting
the shared edge:

U
(i,j)
Qk

:=
∑

g1,g2,g3∈G

|g1, g2⟩ci,cj ⟨g1, g2| ⊗
∣∣qk(g1)g3qk(g2)−1

〉
⟨i,j⟩ ⟨g3| ,

(42)

where qk ∈ sk(Qk), qk(g) is the k-th component of the
normal decomposition of g and ci(cj) denotes the control
qudit on vertex i(j). This unitary will be used to entangle
vertex DOFs with edge DOFs.
Measurements of abelian subgroups will play an im-

portant role in the gauging procedure which is why we
will now introduce the generalized Pauli-observables for
an abelian group being product of cyclic groups Qk ≡∏lk

j=1 Zdj
k
, where djk are some integers indecating the

group order. (We note that it should be clear from
context whether the symbol Z represents a group or a
Pauli operator.) Any element q ∈ Qk can be written as

ai11 ai22 · · · a
ilk
lk

where aj are the generator of the subgroup

Zdj
k
⊂ Qk and therefore, a

dj
k

j = e ∀j = 1, ..., lk. Given

this representation, we write the local Hilbert space basis

as |i1, ..., ilk⟩ ≡
∣∣∣ai11 ai22 · · · a

ilk
lk

〉
. This allows us to define

the following generalized local Pauli operators by their
action on this basis:

Xt1
1 ⊗ · · · ⊗X

tlk
lk
|i1, ..., ilk⟩ = |i1 ⊕ t1, ..., ilk ⊕ tlk⟩ (43)

Zt1
1 ⊗ · · · ⊗ Z

tlk
lk
|i1, ..., ilk⟩ = ωi1t1

1 · · ·ωilk tlk
lk

|i1, ..., ilk⟩ ,
(44)

where ij ⊕ x indicates addition modulo djk and ωj is the

djk-th root of unity ∀j = 1, ..., lk. Importantly, this allows
us to define a Fourier-transformed basis as follows,

∣∣̃i1, ..., ĩlk
〉
= Zi1

1 ⊗ · · ·Z
ilk
lk
|+⟩ , (45)

where |+⟩ =∑
a
i1
1 a

i2
2 ···a

ilk
lk

∈Qk

|i1, ..., ilk⟩.
Note that in Algorithm 1, the local Hilbert space di-

mension is given by the non-abelian group G, so we un-
derstand all the above unitaries and bases as defined on
an embedded subspace given by sk. See the discussion
above Eq. (40).
We will now use the above equations to implement

an N -step gauging procedure. We will gauge the G-
symmetry of the state defined on the vertices of a lat-
tice sequentially in N steps. We present the procedure
in Algorithm 1 and consider the details below:

(1) Include ancillas. Add ancillas in the state |e⟩,
where e ∈ G is the identity element, on the edges
between the vertices.

(2) Entangle gauge and matter DOFs. Apply the fol-
lowing 2-controlled-shift operators with controls
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Algorithm 1 N -step gauging via measurements

Require: (a) Solvable G with 1 = G0 < G1 < · · · < GN = G such that Qk ≡ Gk/Gk−1 is abelian ∀k = 1, ..., N .
(b) G-SPT fixed point state |ΨSPT⟩ (defined in Eq. 8) on a lattice (V,E) with vertices i, j ∈ V and edges ⟨i, j⟩ ∈ E.

(c) U
(i,j)
Qk

as defined in Eq. 42

(d) Generalized Pauli operators as defined in Eqs. 43 and 44 acting on the abelian subspace defined by an embedding sk of
Qk in Gk.

k ← 1
(1) Add ancillas: |Ψgauge⟩ ← |ΨSPT⟩ ⊗

∏
⟨i,j⟩∈E |e⟩⟨i,j⟩ where e ∈ G is the identity element.

while k ≤ N do
(2) Entangle vertex and edge DOFs: |Ψgauge⟩ ←

∏
⟨i,j⟩∈E U

(i,j)
Qk
|Ψgauge⟩

(3) Measure vertex DOFs in the basis given by Eq. 45 with outcomes {̃iv1 , ..., ĩvlk}v∈V (neglecting normalization):

|Ψgauge⟩ ←
∏

v∈V

∣∣̃iv1 , ..., ĩvlk〉 〈̃iv1 , ..., ĩvlk ∣∣Ψgauge

〉
(4) Correct for random measurement outcomes by applying Z-operators on a set of edges ECor:

|Ψgauge⟩ ←
∏

e∈ECor
Ze |Ψgauge⟩, where Ze =

∏lk
j=1 Z

−pj;e
j (specifically, ECor and pj;e) can be deduced from the measurement

outcomes, given the symmetries (e.g., Eq. 55) and so-called transmutation rules (e.g., Figs. 10, 11 or 12).

k = k + 1 ▷ |Ψgauge⟩ is an SET state as analyzed in Sec. VI ∀k < N
end while

c1, c2 on neighboring vertices (oriented as c2 → c1)
and the target t on the in-between ancilla:

UQ1 =
∑

g1,g2,g3∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗
∣∣q1(g1)g3q1(g2)−1

〉
⟨1,2⟩ ⟨g3| .

(46)

Here we have used q1(g) to denote the part of the
decomposition g which lies in Q1; that is, for g =
qN · · · q1 with qk ∈ sk(Qk), q1(g) = q1.

(3) Measure {X1, X2, . . . , Xl1} on matter DOFs. Af-
ter measurement of the quotient part on each ver-
tex (i.e., in the bases defined in {Xj}), with the

outcome being {Xj = ω
−pj

j }l1j=1 on a vertex (ωj

being dj-th root of unity), there is a correspond-

ing (local) phase factor
∏l1

j=1 ω
−pjij
j from the wave

function overlap in step (3) of Algorithm 1. These
phase factors can be seen as some abelian chargeons
on vertices. See an example in Eq. (53).

(4) Correct phase factors. To obtain the ground state,
the local phase factors arising from step (3) can be
corrected as they can be expressed as a product
of phase operators acting on the edge DOFs (see
e.g., Fig. 10). Therefore, we can apply counter Z-
operators on a set of edges ECor, i.e.,

∏
e∈ECor

Ze,

where the exact form of Ze =
∏lk

j=1 Z
−pj;e

j can be
deduced from the measurement outcomes. Phys-
ically, due to our N-step gauging procedure, the
local phase factors always correspond to abelian
chargeons, therefore we can use ribbon operators
to move them around. For example, we can move
the phase factors on a vertex by performing Z op-
erators on its neighboring edge and by doing this

repeatedly we can move all the phase factors to one
single vertex (via the transmutation rule, see, e.g.
Fig. 10), therefore annihilating them altogether,
due to the symmetry constraint (see Eq. 55 and
the discussion below it). The set of such edges is
an example of ECor, but it is not necessarily op-
timized. (See also the following two sections for
concrete examples.) After measurement and cor-
rection, the vertex DOF is mapped from |g⟩ to
1

|Q1|
∑

q′1∈s1(Q1)

∣∣g(1)q′1
〉
, where g = qN · · · q2q1 and

g(1) = qN · · · q2. The resultant state is a G1-SET
ground state.

(5) Repeat the procedure of entangling gauge DOFs on
edges and matter DOFs on vertices. Apply the fol-
lowing unitary similar to before:

UQ2 =
∑

g1,g2,g3∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗
∣∣q2(g1)g3q2(g2)−1

〉
⟨1,2⟩ ⟨g3| .

(47)

(6) Measure {X1, ..., Xl2} on the matter DOFs and cor-
rect the corresponding phase factors from the mea-
surement. This results in a G2-SET ground state.

(7) Repeat this process for all except the last quotient
group QN .

(8) At the last step, apply the gauging and measurement
procedure for QN . Specifically, first apply

UQN
=

∑

g1,g2,g3∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗
∣∣qN (g1)g3qN (g2)

−1
〉
⟨1,2⟩ ⟨g3| ,

(48)
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measure {X1, ..., XlN }, and then correct the corre-
sponding phase factors. This gives us a G-TQD
state.

It is worth remarking that in the expressions above,
we always use the multiplication rules of the entire group
G. For instance, if we take q2, q

′
2 ∈ s2(Q2), their prod-

uct q2q
′
2 is not necessarily in s2(Q2) (it is in s2(Q2)

only when the extension G2/G1 = Q2 is central). This
seemingly makes the remaining global symmetry algebra
non-closed, i.e., g(1)g′(1) would produce components in
the Q1 subgroup (recall that g(1) = qN · · · q2 for some
qk ∈ sk(Qk)). Nonetheless, instead of

∣∣g(1)
〉
in the above

step (4), we have 1
|Q1|

∑
q′1∈s1(Q1)

∣∣g(1)q′1
〉
, which can ab-

sorb the potential Q1 components, making the multipli-
cation closed. We can therefore define the global sym-
metry group of G1 SET as such. Moreover, the state af-
ter applying UQ2

is symmetric with Xq2 . It also follows
that the phase operators resulting from the measurement
of Xq2 can be corrected as the global symmetry gives a
constraint on measurement outcomes, which will be dis-
cussed later.

In the following, we will consider the 1-step gauging
for abelian groups in Sec. IV to illustrate correction pro-
cesses. Then we will consider the 2-step gauging for di-
hedral groups in Sec. V. The two-step and multi-step
gauging can be also applied to abelian groups as well,
and in the intermediate steps, SET states can emerge.
We will discuss the phase of such SET states in Sec. V.
Then in Sec. VI, we introduce the framework of the sym-
metry defect branch line and discuss the SET phases for
several more examples.

We give an alternative procedure for the N -step gaug-
ing in Appendix J. This gauging procedure is imple-
mented for a group G which admits sequential normal
subgroups (see Appendix J for definition). This criterion
is in fact equivalent to the group G being solvable (see
Appendix K for a proof). The two procedures differ in
the way in which the product of group elements are writ-
ten down (compare Eq. (41) and Eq. (J6)). Apart from
that, in the procedure given in this section, we gauge
the quotient groups in every step, while in the procedure
given in Appendix J we gauge normal subgroups in each
step. As mentioned earlier, in Ref. [44], the commutator
subgroups of the previous group in the series of a solvable
group G are gauged successively.

IV. 1-STEP GAUGING: ABELIAN GROUPS

In this section, we review the gauging procedure for
abelian groups [39, 44]. We start with the SPT state
given in Eq. (8). The gauging map can be implemented
by first transferring the corresponding group elements to
edges and then by measuring the vertices, where our state
is projected to a quantum double state with (unwanted)
charges whose configuration is given by the measurement
outcomes. The excitation due to the randomness of mea-

surement is then corrected by a certain finite-depth pro-
cedure. The steps are described in more detail as follows:

(0) Prepare the SPT state on vertices. We use local
control-phase gates to prepare the SPT state from
a direct product state.

(1) Include ancillas. Add ancillas in the state |e⟩,
where e ∈ G is the identity element, on edges be-
tween adjacent vertices. The ancillas become the
gauge DOFs

(2) Entangle gauge and matter DOFs Apply the follow-
ing controlled-controlled-shift operators with con-
trols c1 & c2 on the neighboring vertices of an edge
e (oriented as c2 → c1) and the target t being the
ancilla on the edge between the two controls:

UG =
∑

g1,g2∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗ Lg1
+eL

g2
−e, (49)

At this point, the (pre-measurement) state is

|Ψpre⟩ =
∑

{gv}
Ω({gv})

⊗

v∈V

|gv⟩v
⊗

⟨vv′⟩∈E

|gvg−1
v′ ⟩vv′ .

(50)

(3) Choose a measurement basis in the G algebra, then
project the matter DOFs onto the basis via mea-
surement. A natural basis can be chosen if we order
elements in G as an ordered list (g0, g1, · · · , gn−1),
where g0 = 1, n = |G|. (Note that the subscript j in
gj here denotes the labeling of the group elements of
G, not the vertex.) Then we simply use the Fourier

basis |k⟩ = ∑n−1
j=0 exp{2πijk/n} |gj⟩ /

√
n = Zk|+⟩

to perform measurements on vertex DOFs, where
we have defined |+⟩ ≡ ∑n−1

j=0 |gj⟩/
√
n. When

G = Zn, we project the matter DOFs onto this
basis via measuring the generalized (qudit) X op-
erator.

(4) Correct abelian chargeons in the G twisted quantum
double. The correction can be done with a finite-
depth circuit, which consists of strings of Pauli-Z
operators.

We give more explanation on the procedure for the case
with G = Zn below. For the Zn group, the wave function
can be written using the qudit system. The basis vector
|a⟩ (a ∈ {0, ..., n − 1 mod n}) and the generalized Pauli
operators satisfy

Z|a⟩ = ωa|a⟩, X|a⟩ = |a+ 1⟩, ZX = ωXZ, (51)

with ω = exp(2πi/n), which is much simpler than the
general abelianized basis in Eqs. (43) and (44). Starting
from a Zn SPT on a triangulated lattice, we first add an-
cillas to all the edges in a product state with |0⟩. Then
we apply the controlled gate in Eq. (49), which is a set of
controlled-X gates. Then the gauge DOFs are as given by
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the gauging map in Fig. 4. The next step is to disentan-
gle matter DOFs by measuring the X operator on all ver-
tices. After measurements, the matter DOF at a vertex
v is projected onto Zkv

v |+⟩v, where kv = 0, 1, · · · , n− 1,
and |+⟩ = ∑

i |i⟩ /
√
n. Suppose the measurement out-

come on the vertex v is Xv = ω−kv . We write the basis
associated with measurement outcomes {kv}v∈V as

|M⟩ :=
⊗

v

Zkv
v |+⟩v. (52)

Then the total wave function after measurements (with
the gauge part being projected to ⟨M |Ψ⟩pre) is written
as

|Ψ⟩post =
(∑

{gv}
Ω({gv})

∏

v

z−kv (gv)
⊗

e

∣∣gvg−1
v′

〉
e

)

⊗

v

Zkv |+⟩v , (53)

where za(gv) := ⟨gv|Za |gv⟩ = (ωa)gv and Ω is the phase
factor inherited from the SPT state (i.e., a product of
3-cocycles). Note that vv′ is the edge e; many edges can
share a vertex v but the factor zkv only appears once.
Due to measurement, the vertex DOFs have been disen-
tangled from the edge DOFs, and the edge DOFs form a
state that is a ground state of the Zn twisted quantum
double in the flux-free sector up to a factor zkv (gv), which
can be interpreted as an ekv chargeon on the vertex v.

In what follows, we describe how to remove the excita-
tions in |Ψ⟩post. First, the set of measurement outcomes
is restricted to

[∑
v kv

]
n
= 0, with [x]n being x mod n,

due to the global symmetry of the SPT state. The global
symmetry implies

∏

v∈V

Xv|Ψpre⟩ = |Ψpre⟩, (54)

so it should be satisfied that

⟨M |Ψpre⟩ = ⟨M |
∏

v∈V

Xv|Ψpre⟩,

=
(∏

v

ω−kv

)
⟨M |Ψpre⟩, (55)

which gives the constraint
∏

v ω
−kv = 1, meaning[∑

v kv
]
n
= 0.

Next, the measurement with |M⟩ gives us a phase∏
v ω

−kvgv when contracted with the basis ⊗v|gv⟩. Due

to the constraint
[∑

v kv
]
n
= 0, one can always find a

set of paths such that we can rewrite the phase factor as∏
v ω

−kvgv , or equivalently
∏

v z(gv)
−kv , in terms of the

phase operator Ze supported on the paths. Concretely,
we use a type of relations, which we call the transmuta-
tion rules, illustrated in Fig. 10. For G = Zn, the relation
is

z(gv) = z(gv′)z(gvg
−1
v′ ). (56)

We apply the phase operator on the paths to remove the
chargeons. Given that these operators commute, they
can be applied all at once. Hence, our gauging proce-
dure assisted by measurement requires only finite time
steps or a finite-depth quantum circuit (with intermedi-
ate measurements).

FIG. 10: The transmutation rule of z factor according
to relation z(gv′)z(gvg

−1
v′ ) = z(gv).

Let us give two remarks here. The reason that we
can correct the state by moving all factors to one vertex
is because of the fact that all chargeons in Dω(Zn) are
abelian anyons. This procedure can be straightforwardly
generalized to Zn × Zm × · · · group, where we measure
X × 1× · · · , 1×X × · · · , ..., etc. on all vertices after we
entangle gauge and matter DOFs. This occurred previ-
ously in the general N -step gauging in Sec. III. However,
to explain the detailed correction there would incur cum-
bersome notations. The example of Zn in this section
should now make the procedure clearer. Different mea-
surement outcomes will give rise to different chargeons in
the flux-free sector, which are all abelian anyons. (Note
that we do not have fluxons, as we began with a flat-flux
configuration followed by the controlled-controlled oper-
ation that does not create fluxons.) Therefore, the state
after measurement is still correctable within finite steps.

V. 2-STEP GAUGING: DIHEDRAL GROUP
AND INTERMEDIATE SET STATES

When we attempt to gauge nonabelian SPT states us-
ing measurement, although one can always choose a suit-
able basis such that the factors are correctable, one cru-
cial problem is that the phase factors that arise from
measurement do not necessarily correspond to abelian
anyons as in the Dω(Zn) case above; this makes cor-
rection with a finite depth circuit a nontrivial problem.
In Ref. [42, 43], there were two different ways proposed
to prepare the ground state of the S3 quantum double
model. In Ref. [43], a Z3 toric code ground state is pre-
pared first, and it is coupled to the Z2 product state
using controlled gates. Then the Z2 part is gauged via
the measurement-assisted one-step gauging in Ref. [39].
We will show in this section that, for the symmetry

group G being the extension of two abelian groups, by
choosing some abelianized basis, we can still perform a
2-step gauging procedure on G-SPT states via measure-
ment. In the case with G = S3, our procedure would be
equivalent to first preparing the Z3-TQD ground state,
and then coupling to the Z2-SPT state using entangling
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gates and controlled gates. The correction process for the
2-step gauging is still fairly simple, i.e., via finite-depth
quantum circuits. The complete procedure to gauge the
abelian N -symmetry (i.e., the normal subgroup) of a G-
SPT state and then to gauge the quotient Q-symmetry
of an SET is as follows:

(1) Include ancillas. Add ancillas in the state |e⟩,
where e ∈ G is the identity element, on edges be-
tween adjacent vertices. The ancillas will become
the gauge DOFs

(2) Entangle gauge and matter DOFs. Apply the
following controlled-controlled-shift operators with
controls c1 & c2 on neighboring vertices (oriented
as c2 → c1) and the target t on the ancilla on the
in-between edge e:

UN =
∑

g1,g2∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗ L
n(g1)
+e L

n(g2)
−e . (57)

The purpose of this step is to mimic the gauging
map in Eq. (17).

(3&4) Measure X(n) on matter DOFs and correct the zn
factors. After measurement, with the outcome be-
ing X(n) = ω−k, there is a corresponding phase

factor zkn. Using the transmutation rule for zn, one
can correct all those factors by moving them to one
single vertex, resulting in an SET ground state.

(5) Further entangling the quotient part of the gauge
and matter DOFs. We apply a controlled-conjugate
operator with the target e being the ancilla (ori-
ented as c2 → c1), and the control being c2:

UQ =
∑

g1,g2∈G

|q(g1), q(g2)⟩c1,c2 ⟨q(g1), q(g2)|⊗L
q(g1)
+e L

q(g2)
−e ,

(58)
where q(g) denotes the quotient part of g via an em-
bedding in Eq. (16). Notice that the normal part
of the matter DOF has been wiped out by measur-
ing X(n), while the quotient part Q = G/N still
remains, which makes the above controlled-gates
possible to implement. The edge DOFs are now
{q(g1)n(g1)n(g2)−1q(g2)

−1} = {g1g−1
2 }.

(6& 7) Measure X(q) on matter DOFs, and correct zq fac-
tors. Their correction is straightforward; we apply
Z(q) operators on edges to move all zq’s to one ver-
tex.

In the following, we will apply the above procedure to
several cases.

A. Gauging S3 SPT

The S3 group is G = ⟨a, x|a3 = e, x2 = e, xax = a−1⟩.
Any element g ∈ G can be written as g = xiaj , where

i = 0, 1, j = 0, 1, 2. We define the decomposition of a
group element respectively as

n(xiaj) = aj , (59)

q(xiaj) = xi, (60)

with the former being the normal part (N = Z3), and
the latter being the quotient part (s(Q) = s(Z2)) of S3.
We then define the shift operator in each part as

X(n) =
∑

i,j

∣∣xiaj+1
〉 〈

xiaj
∣∣ ,

X(q) =
∑

i,j

∣∣xi+1aj
〉 〈

xiaj
∣∣ .

(61)

The phase operators, which are known as the clock
operators, in each respective part, are

Z(n) =
∑

g

zn(g) |g⟩ ⟨g| , zn(x
iaj) = ωj ,

Z(q) =
∑

g

zq(g) |g⟩ ⟨g| , zq(x
iaj) = (−1)i,

(62)

where ω = ei
2π
3 . The gauging step (2) transforms

the ancilla DOF on edge e = ⟨v, v′⟩ from identity to
n(gv)n(gv′)−1.
Then in step (3) we measure X(n) on all the vertex

DOFs. Suppose the measurement outcome is X(n) =

e−i 2πkv
3 on vertex v (where kv = 0, 1, 2). The state after

the measurement is projected into

|Ψ3⟩ =
∑

{gv}

(∏

v

z−kv
n (gv)

)
Ω({gvg−1

v′ })
∣∣{n(gv)n(gv′)−1}

〉
e

⊗

v

(
Zkv

(n)

(∑

r∈N

|q(gv)r⟩v
))

.

(63)
The phase factor

∏
v z

−kv
n (gv) depends on the measure-

ment outcomes {kv}. In order to correct them, we employ
the transmutation rules for z factors

zn(h)zn(n(g)n(h)
−1) = zn(g). (64)

As in the case with Zn in the previous section, we have
[
∑

v kv]3 = 0 due to the N -symmetry. By inserting cor-
responding numbers of Zn operators on the edges, we can
move the factors zn on vertices around and cancel them
altogether. Equivalently, one can simultaneously apply
Zn operators supported on strings whose endpoints cor-
respond to nontrivial measurement outcomes. This gives
us the state

|Ψ4⟩ =
∑

{gv}
Ω({gvg−1

v′ })
∣∣{n(gv)n(gv′)−1}

〉
e

⊗

v

(
Zkv

(n)

(∑

r∈N

|q(gv)r⟩v
))

.
(65)
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FIG. 11: The transmutation rule for zn factors on step
(4).

After the gauging step (5), the edge DOFs are conju-
gated and shifted by UQ, giving rise to

|Ψ5⟩ =
∑

{gv}
Ω({gvg−1

v′ })
∣∣{gvg−1

v′ }
〉
e

⊗

v

(
Zkv

(n)

∑

r∈N

|q(gv)r⟩v
)
.

(66)

Step (6) is similar to step (3). By measurements, the
state is projected to

|Ψ6⟩ =
∑

{gv}

(∏

v

z−mv
q (gv)

)
Ω({gvg−1

v′ })
∣∣{gvg−1

v′ }
〉
e

⊗

v

(
Zmv

(q) Z
kv

(n)

(∑

g∈G

|g⟩v
))

,
(67)

where we have assumed that X(q) = e−i 2πmv
2 from the

measurement on vertex v (where mv = 0, 1). In order
to correct the phase factor

∏
v z

−mv
q (gv), we employ the

transmutation rules for zq factors:

zq(h)zq(gh
−1) = zq(g), (68)

which is illustrated in Fig. 12. This rule, just as the rule
for zn in step (4), allows us to move all the zq factors to
a single vertex and annihilate them. This is guaranteed
by the Q-global symmetry in |Ψ5⟩ (see Appendix C),

(∏

v

X(q)

)
|Ψ5⟩ = |Ψ5⟩, (69)

which implies that the measurement outcomes satisfy
[
∑

v mv]2 = 0 in this case, as the global symmetry is
Z2. After we apply the corresponding correcting phase
factors to edges, we thus obtain a G-TQD ground state.

FIG. 12: The transmutation rule for zq factors on step
(7).

B. Z3 SET with Z2 Symmetry

Let us begin by recalling that the gauging map ΓN in
Eq. (17) gauges the normal subgroup N of G. In our
procedure, after we correct the zn factors in step (3), the

state is essentially a ground state of the Z3 SET phase.
In what follows, we first look into the entanglement struc-
ture of the wave function after gauging the normal sub-
group Z3. Then we identify the class of this SET phase,
namely, the unitary modular tensor category (UMTC) C
that contains all anyonic excitations, the Z2 symmetry
action as an automorphism of C, the symmetry fraction-
alization class and defectification class [51].
We write the element in S3 as g̃ = (G, g) ≡ xGag with

some slight abuse of the notation, where G = 0, 1 and
g = 0, 1, 2. It should be clear from the context when G
is a number or a group. A representative of the cocycle
in H3(S3, U(1)) is

ω(g̃, h̃, l̃)

= exp

{
2πip1
9

g(−1)H+L(h(−1)L + l − [h(−1)L + l]3)

}

× exp{πip2GHL},
(70)

where p1 = 0, 1, 2, and p2 = 0, 1. As pointed out in
Sec. II, the anyon theory (UMTC) C is determined by
the restriction of ω on subgroup Z3 (i.e., setting G =
H = L = 0),

ν(g, h, l) = exp

{
2πip1
9

g(h+ l − [h+ l]3)

}
. (71)

Different values of p1 are in one-to-one correspondence
with different Z3 twisted quantum double phasesDν(Z3).
An anyon in these phases is characterized by its flux a ∈
Z3, and a projective representation of Z3, satisfying

µa(g)µa(h) = exp

{
2πip1a

9
(g + h− [g + h]3)

}
µa(gh),

(72)

which means µa(g) = e
2πiap1g

9 v(g), where v(g) is an or-
dinary representation of Z3.
Using Lyndon-Hochschild-Serre spectral sequence [22,

57, 58], we can decompose the cohomology class of the
S3 group as

H3(S3, U(1)) = H3(Z3, U(1))⊕H3(Z2, U(1)). (73)

This suggests that this SET state is composed of a TQD
Dν(Z3) and a Z2-SPT state. A natural question is
whether the wave function of the whole system is de-
composed into a product of the two corresponding parts.
It turns out that we can write the 3-cocycle in Eq. (70)

as

ω(g̃, h̃, l̃) = ωn · ωq · ω′(g̃, h̃, l̃), (74)

where the phase ωn is defined from the 3-cocycle of Z3,

ωn(g3g
−1
2 , g2g

−1
1 , g1)

≡ ν
(
n(g3)n(g2)

−1, n(g2)n(g1)
−1, n(g1)

)

= ν
(
ϕq(g2)

−1

(n(g3g
−1
2 )), ϕq(g1)

−1

(n(g2g
−1
1 )), n(g1)

)
,
(75)
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FIG. 13: One plaquette on a triangulated lattice.

and ν is a representative in H3(N,U(1)). Every pla-
quette on the spatial manifold is associated with such a
phase. The product of them over all plaquettes gives

Ων({n(gv)n(gv′)−1}) =
∏

∆

ν({n(gv)})s(∆). (76)

The sum of the above phase over all possible {gv} con-
figurations gives the wave function of a ground state of
Dν(Z3).

The phase ωq is defined from the 3-cocycle of Z2, α ∈
H3(Z2, U(1)),

ωq(g̃, h̃, l̃) = exp{πip2GHL} =: α(G,H,L). (77)

The product of this type of phases gives

Ωq({q(gv)q(gv′)−1}) =
∏

∆

α({q(gv)})s(∆). (78)

The sum of the above phases over all possible {gv} config-
urations results in the wave function of a Z2-SPT state.
The ω′ part in Eq. (74) is

ω′(g̃, h̃, l̃) = exp

{
2πip1
3

(−1)Hg(1− δh,0)δL,1

}
, (79)

which is nontrivial when p1 ̸= 0. Similarly, we define the
product of this type of phases over the spatial manifold
as Ω′,

Ω′({q(gv)}, {n(gv)}) =
∏

∆

ω′({q(gv)}, {n(qv)})s(∆).

(80)
Thus the resulting state after gauging Z3 from an S3-

SPT state is

|ΨSET⟩ =
∑

{gv}
Ω′({q(gv)}, {n(gv)n(gv′)−1})

(
Ωn

∣∣{n(gv)n(gv′)−1}
〉
e

)⊗(
Ωq |{q(gv)}⟩v

)
,

(81)
which is an entangled state between a Z3-TQD ground
state and a Z2-SPT state. When p1 = 0, we have ω′ =

Ωn = 1, hence the wave function of the system becomes

|Ψ⟩ =
∑

{gv}
Ωq

∣∣{n(gv)n(gv′)−1}
〉
e

⊗
|{q(gv)}⟩v

=
∑

{gv}

( ∣∣{n(gv)n(gv′)−1}
〉
e

)⊗(
Ωq |{q(gv)}⟩v

)

= |Z3 TC⟩ ⊗ |Z2 SPT⟩ ,
(82)

which is a product state of a Z3 Toric code ground state
and a Z2-SPT state.

Having obtained the SET wave functions, we now dis-
cuss the effect of the global symmetry action. The Z2

symmetry action Ux =
∏

v L
x
−v in the S3-SPT state is

mapped to Ux
Q = Uxϕx, under which an anyon with

flux ai will be mapped to one with flux ϕx(a) = a[−i]3 .
And a chargeon will be mapped to its antiparticle un-
der the symmetry. According to Sec. II C, the possible
SFC will be given by elements in a H2

ρ(Z2,A) torsor.
With different values of p1, the abelian group A could
be either Z3 ×Z3 or Z9. In either cases, the cohomology
group H2

ρ(Z2,A) turns out to be trivial, and so is its tor-
sor. Therefore, the TQD Dν(Z3) has only one possible
Z2 symmetry fractionalization pattern. Moreover, differ-
ent values of p2 in the 3-cocycle of S3 result in different
Z2 symmetry defectification classes (SDC) in the SETs,
which are obtained by gauging the normal Z3 group. This
is expected because as seen from Eq. (81), different p2
values represent different Z2-SPT states entangled with
some Z3-TQD state.
Let us remark that this construction for S3 has a natu-

ral generalization on D2n+1 groups, where one first gauge
Z2n+1, resulting in an Z2n+1 SET on which the Z2 sym-
metry acts to conjugate the gauge DOFs. Different par-
ent SPT phases will result in different anyon theories and
different SDCs, but always some unique symmetry frac-
tionalization pattern. One can further gauge the quotient
Z2 symmetry to obtain D2n+1 TQD.

C. Gauging D2n SPT

Now we discuss the process of 2-step gauging a generic
D2n SPT state via measurement under a similar type of
abelianized basis. As in S3, an element in group D2n can
be written as

g = xiaj , i = 0, 1, j = 0, 1, · · · , 2n− 1, (83)

where x2 = 1 and a2n = 1. We will thus use a generalized
definition of operators as for S3 in Eqs. (59), (60), (61),
and (62).

After applying the control gate to set the DOFs on
edges, e.g., ⟨ij⟩, to n(gi)n(gj)

−1, measuring X(n) on ver-
tices, and correcting all chargeon excitations, the resul-
tant state is a ground state in a Z2n-SET phase with a
global Z2 symmetry at this intermediate stage. Accord-
ing to the multiplication rule of D2n, just as in S3, the
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symmetry transformation Ux conjugates all the gauge
DOFs.

As an illustration, we will consider the D4 group. Us-
ing the Lyndon-Hochschild-Serre sequence, the cohomol-
ogy group can be decomposed as

H3(D4, U(1)) =H3(Z4, U(1))⊕H3(Z2, U(1))

⊕H2(Z2, H
1(Z4, U(1))).

(84)

Again, the cocycle factorizes as

ω = ωn · ωq · ω′ · ωnq, (85)

where ωn and ωq are defined similarly as for the S3 group
in the last section, while ω′ and ωnq depend on both
quotient and normal parts of the vertex DOFs. From this
decomposition, it is clear that after gauging the normal
Z2n, we have an entangled state between the Z2n-TQD
state and the Z2-SPT state. Because of the additional
entanglement via ωnq, we expect to have a nontrivial SFC
from gauging the Z4 symmetry of a D4-SPT state.
Indeed, in the next section, we will show that the cur-

rent 2-step gauging setup could result in different SFCs.
To do so, we first introduce symmetry branch line opera-
tors and other necessary tools to determine the SFC. We
will also discuss several examples, including the above
Z4-SET phase.

VI. SYMMETRY DEFECT IN SPT AND SET

In this section, we will apply the notion of symmetry
branch lines introduced in Ref. [51] and formulate corre-
sponding symmetry branch line operators in SPT phases,
as well as their relation to ribbon operators in TQD. We
then show the gauging procedure transforms such oper-
ators in SPT phases into symmetry branch lines in SET
phases and discuss how their fusions relate to the sym-
metry fractionalization classes (SFC) in a few examples.

A. Symmetry Branch Lines

To introduce symmetry branch lines, we start with the
symmetry action in an SPT wave function. We recall in
Eq. (2) the SPT wave function on a triangulated spatial
manifold,

|ΨSPT⟩ =
∑

{gv}

∏

∆

ω(g3g
−1
2 , g2g

−1
1 , g1)

s(∆)
⊗

v

|gv⟩ . (86)

When the manifold is closed, the global symmetry action
Ux ≡ ∏v L

x
−v leaves the entire SPT state invariant. We

can also consider the symmetry action on a sub-manifold
R [23], such as the one shown in Fig. 15a,

Ux
R

∏

∆

ωs(∆) |{gv}⟩ =
∏

∆

AmpR({gv}, x)ωs(∆) |{gv}⟩ .

(87)

Triangulating the frustum created by lifting vertices in
R, we have multiple tetrahedrons. We associate each
tetrahedron in the frustum as in Fig. 15a to a 3-cocycle,
such as the one in Fig 3, to which we assign a phase factor
ω(g4g

−1
3 , g3g

−1
2 , g2g

−1
1 ). The product of all such cocycles

composes the factor AmpR , namely,

AmpR =
∏

tetra∈R

ω(tetra)s. (88)

Using the cocycle conditions, it turns out that AmpR

only depends the DOFs around ∂R and does not depend
on those DOFs deep inside R, see Fig. 15b, and its ex-
pression is

AmpR = Θ̃
gvxg

−1
v

∂R

∏

tetra∈∂R

ω(tetra)s, (89)

where the extra factor to the product on the r.h.s. is

Θ̃
gnxg

−1
n

∂R = θgnxg−1
n

(gng
−1
n−1, gn−1g

−1
1 ) · · · θg3xg−1

3
(g3g

−1
2 , g2g

−1
1 ),

(90)
when ∂R contains vertices equipped with the branching
structure, 1 → 2 → 3 → · · · → n ← 1, see Appendix D.
In fact, one can introduce an operator Bx

∂R that is sup-
ported only on ∂R such that [23]

“Bx
∂R” |ΨSPT⟩ = Ux

R |ΨSPT⟩ . (91)

FIG. 14: |hij⟩e is located on edge e = ⟨i, j⟩, |gi⟩v and
|gj⟩v are located on the two endpoints i and j.

To do this carefully, we need to first introduce a pre-
gauge structure [59]. Namely, we introduce a G-DOF hij

on every edge ⟨i, j⟩ (which we will be set to the identity
group element |1⟩e to begin with). One can think of the
edge DOFs as the discrete gauge field. After introducing
such a gauge field, one may write the local symmetry
action on both vertex v and the surrounding edges e ⊃ v.
This is also called the “gauge transformation” operator
on a vertex v as

Gx
v ≡ Lx

−v

∏

e⊃v

Lx
±e, (92)

where e ⊃ v denotes those edges with one end being v and
where Lxe

±e is the left (right) actions of xe on |h⟩e, when
the edge e flows to (emanates from) v. Furthermore, the
“interactions” should also be written in a gauge invariant
way. Namely, instead of the original SPT Hamiltonian,
one can write the gauge invariant version as follows,

HSPT-pre = −
∑

v

∑

g∈G

1

|G|L
g
+vW

g
v , (93)
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where the W phase was previously introduced in Sec. II.
Taking any ground state of this Hamiltonian, we can

impose the gauging map in the presence of the pre-gauge
structure,

Γ : |{gi}⟩v |hij⟩e →
∣∣{gihijg

−1
j }

〉
e
, (94)

under which, the state would be mapped to a ground
state of the TQD model. One special ground state of
this Hamiltonian would be

|ΨSPT-pre⟩ = |ΨSPT⟩
⊗

e

|1⟩e , (95)

where we have taken the original SPT state, which has
|h⟩e ≡ |1⟩e on all edges. One can easily verify that
Gx
v |ΨSPT-pre⟩ is still a ground state, for any vertex v on

lattice and x ∈ G. We define the gauge transformation
over a region R as Gx

R ≡
∏

v∈R Gx
v . If the spatial lattice

Γ is closed, we write Gx ≡ ∏v∈Γ Gx
v and one can check

that

Gx |ΨSPT-pre⟩ = |ΨSPT-pre⟩ . (96)

Therefore, the operator Gx mimics the behavior of global
symmetry operator Ux after introducing the pre-gauge
structure.

Now we introduce the definition of symmetry branch
line operators B̃x

∂R on states with trivial edges |h⟩e ≡
|1⟩e,

B̃x
∂R |ΨSPT-pre⟩ = Gx

R |ΨSPT-pre⟩ , (97)

but unlike Gx
R , the operator B̃x

∂R only takes effect on ∂R.

We find that the following expression of B̃x
∂R ,

B̃x
∂R =

∑

gv

Lx
∂RW̃

gvxg
−1
v

∂R Θ̃
gvxg

−1
v

∂R |gv⟩v ⟨gv| , (98)

where v is a reference vertex on ∂R as shown in Fig. 15b

and Θ̃
gvxg

−1
v

∂R is defined in eq. (90). The phase W̃
gvxg

−1
v

∂R

is the product of cocycles associated to the tetrahedrons
in Fig. 15b, with gv′g−1

v = gvxg
−1
v ,

W̃
gvxg

−1
v

∂R =
∏

tetra∈∂R

ω(tetra)s. (99)

The operator Lx
∂R is a product of shift operators on the

edges crossed by ∂R. In general, Lx
l with x ∈ G on a

ribbon l is defined as follows,

g1 g2 g3 g4

Lx
l

g5 g6 g7

g1 g2 g3 g4

=

g5 g6 g7

1 1 1

1 1 1

111

x x x

l

(100)

We note that the branch line operator B̃x
∂R cannot be

written as a product of local terms on ∂R. This oper-
ation B̃x

∂R can be regarded as the non-onsite symmetry
action on the boundary ∂R, and its definition can be ex-
tended to the case whenever there is no flux in the state
(i.e., for every plaquette,

∏
e he = 1.). From direct cal-

culation using Eq.(97) and the fact that Gx
RG

y
R = G

xy
R ,

one can easily show that the multiplication rule of B̃x
∂R ,

B̃x
∂RB̃

y
∂R = B̃

xy
∂R , (101)

is exactly the multiplication rule of the group G, as ex-

pected for the symmetry branch lines. One can also show
the multiplication rule of B̃x

∂R directly using the form in
Eq. (98), see Appendix D. Indeed, if we use the operator

∏

v

( 1

|G|
∑

x∈G

Gx
v

)
(102)

to project any ground state onto the gauge invariant sec-
tor, we would also have a TQD ground state. The oper-
ator above in Eq. (102) can be seen as a superposition of
different meshes of symmetry branch lines.
There are two important remarks here. The first is that
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(a)

(b)

FIG. 15: (a) Symmetry action inside of region R “lifts”
R such that all the simplex in the region correspond to

ω̃. (b) This symmetry action can be equivalently
regarded as the insertion of symmetry branch line on

∂R.

inserting a symmetry branch line on an SPT state is to
create a point symmetry defect 0x, move it along ∂R and
annihilate it with 0x−1 . The multiplication rule above
indicates that the fusion between point defects is 0x ·
0y = 0xy. Second, we can consider the global symmetry
action Gy on the state with a branch line on ∂R, i.e.,

B̃x
∂R |ΨSPT-pre⟩. It turns out that

GyB̃x
∂R |ΨSPT-pre⟩ =GyGx

R |ΨSPT-pre⟩
=GyGx

RGy−1 |ΨSPT-pre⟩
=G

yxy−1

R |ΨSPT-pre⟩
=B̃

yxy−1

∂R |ΨSPT-pre⟩ ,

(103)

where G
y
R ≡

∏
v∈R Gy

v . In other words, the global sym-
metry transformation ρy on 0x is ρy(0x) = 0yxy−1 .

B. More on Symmetry Branch Lines

To discuss further the symmetry branch lines, we first
remind the readers of some definitions in group cohomol-
ogy. Given a 3-cocycle ω(g, h, l) as a representative of
element in H3(G,U(1)), the slant product is defined as

[60]

θx(g, h) ≡
ω(x, g, h)ω(g, h, (gh)−1xgh)

ω(g, g−1xg, h)
, (104)

which is naturally a conjugated 2-cocycle, i.e., a repre-
sentative in H2(G,U(1)[G]). Namely, it satisfies the fol-
lowing condition,

δ̃θx(g, h, l) ≡
θg−1xg(h, l)θx(g, hl)

θx(gh, l)θx(g, h)
= 1. (105)

When θ is a representative of the trivial element in
H2(G,U(1)[G]), there exists a conjugated 1-cochain ϵ,
such that

θx(g, h) = δ̃ϵx(g, h) ≡
ϵg−1xg(h)ϵx(g)

ϵx(gh)
. (106)

There is another product that will also become useful
later:

γg(x, y) ≡
ω(x, y, g)ω(g, g−1xg, g−1yg)

ω(x, g, g−1yg)
, (107)

which, however, is not a 2-cocycle nor a conjugated one.
For a general state with a nontrivial pre-gauge struc-

ture, we give a conjecture for the expression of symmetry
branch lines. We can follow the similar idea as in the pre-
vious section to introduce the branch line operator Bx

∂R

from the symmetry action in the region R, when all the
plaquettes on ∂R are fluxless (i.e.

∏
e∈∂p he = 1), and

the flux on each plaquette p ∈ R (
∏

e∈∂p he) is in the
centralizer group Zx, see Appendix D for details. If we
start from vertex v and go along ∂R, the holonomy, i.e.,
the product of group elements on all the edges along the
path, is gv

∏
e heg

−1
v , and the resulting symmetry branch

line is

Bx
∂R =

∑

g

B
x,g
∂R ϵgvxg−1

v
(g), (108)

with the operator on the r.h.s. being

B
x,g
∂R ≡

∑

gv

Lx
∂RW

gvxg
−1
v

∂R Θ
gvxg

−1
v

∂R δg,gv(
∏

e he)g
−1
v
|gv⟩v ⟨gv| ,

(109)
where ϵx(g) is a 1-cochain defined in Eq. (106), and v is

a reference vertex. The phase W
gvxg

−1
v

∂R is the product of
cocycles associated to the tetrahedrons in Fig. 15b, with
hv′v = x and gv′ = gv, namely,

W
gvxg

−1
v

∂R =
∏

tetra∈∂R

ω(tetra)s. (110)

The operator Θ
gvxg

−1
v

∂R is defined in Eq. (D15), and Lx
∂R

is defined as follows.
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g1 g2 g3 g4

Lx
l

g5 g6 g7

g1 g2 g3 g4

=

g5 g6 g7

k1 k2 k3

h1 h2 h3

h3h2h1

x k1 h−1
1 xh1 k2 (h1h2)

−1x(h1h2) k3

l

(111)

In order to make Lx
∂R well-defined, we require that x

and
∏

e he commute. For an SPT state, we have that∏
e he = 1, and this is trivially satisfied. With the above

discussions, we can derive the multiplication of branch
line operators (see Appendix D for the proof),

B
x,g
∂R B

y,g′

∂R = B
xy,g
∂R γg(gvxg

−1
v , gvyg

−1
v ) δg,g′ . (112)

We also note that given a 3-cocycle ω, the phase factor
ϵ is not unique. One can always replace ϵx by ϵxvx, where
vx satisfies δ̃vx(g, h) ≡ 1. This corresponds to a different
choice of 0x in Cx, and we will illustrate this with concrete
examples below.

We recall the gauging map in the presence of the pre-
gauge structure,

Γ : |{gi}⟩v |hij⟩e →
∣∣{gihijg

−1
j }

〉
e
. (113)

Under this, the operator Bx
∂R is mapped to

Γ(Bx
∂R) =

1

|G|
∑

k∈G

Lkxk−1

∂R W kxk−1

∂R Θkxk−1

∂R ϵkxk−1(kgk−1).

(114)
Notice that after gauging, the gv dependence of the op-
erator is summed over as in the sum of k ∈ G above.
Therefore, the resultant operator under the gauging map
does not depend on any reference vertex.

In the case when ω ≡ 1, we can choose ϵ ≡ 1, then the
operator Γ(Bx

∂R) is reduced to the trace of the ribbon
operator that creates an x-fluxed anyon in the quantum
double (see, e.g., Ref. [61]),

FCx,1
∂R =

1

|Zx|
∑

a∈Zx

F
ci,biab

−1
j

∂R , (115)

where on the left-hand side, Cx is the conjugacy class of
x, 1 is the trivial representation of the centralizer group

Zx. In order to construct the operators FCx,1
∂R , one enu-

merates the elements of the conjugacy class as Cx = {ci},
together with a suitable subset {bi}|Cx|

i=1 ⊂ G such that

ci = bixb
−1
i . The operator FCx,1

∂R on the left-hand side
is a ribbon operator labeled by topological charges, and

F
ci,binb

−1
j

∂R on the right-hand side is a ribbon operator in
a basis labeled by group elements.
For a generic 3-cocycle ω, when x is in the center of G,

the x-fluxed anyon is abelian. Then we have the following
relation via the map Γ,

Γ(Bx,g
∂R ) = F x,g

∂R , (116)

where F x,g
∂R is a ribbon operator defined in TQD for

abelian groups in Ref. [49].
The algebra of ribbon operators can be inferred from

the quasi-Hopf algebra [60, 62]. To be more concrete,
suppose we insert an x-flux on ribbon l. Operator F x,g

l
thus satisfies the multiplication rule

F x,g
l F y,g′

l = F xy,g
l δg,g′γg(x, y), (117)

which is consistent with our result of the branch line mul-
tiplication in Eq. (112), since we expect the gauging map
to preserve the operator algebra, which is quasi-Hopf in
this case.
One thing to notice is that, in order to write down

Bx
∂R , we have assumed the existence of ϵ. This is not

always possible. When such ϵ does not exist, even when
x is in the center of G, the x-fluxed anyon can still be
nonabelian [60]. For example, if ω is a type-3 cocycle of
Z2 ×Z2 ×Z2, the anyons in the TQD are generally non-
abelian. Therefore, one could not expect to write down
ribbon operators as we have defined above. However,
when we gauge one of the Z2 groups from the SPT, we
would enter an SET order with global symmetry Z2×Z2.
It turns out that we can try to write the branch line op-
erators in the SET order, and from the algebra of which,
one can infer the symmetry fractionalization patterns.
We will leave this for further discussion later in this pa-
per.

Throughout this paper, we have mostly used branch
lines on closed curves. As we have seen earlier, for closed
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branch line operators, we need to specify a reference ver-
tex v. Imagine if we could define branch line operators
on an open ribbon that starts from vertex v1 and ends
at vertex vn, we have two natural reference vertices. In
the case when G is abelian, the gauging map will take
such operators to ribbon operators defined in [63]. If we
assume that the multiplication rule stays the same, then
we have

Bx
l Bx−1

l =
∑

g1,gn

βgnxg
−1
n

(gng
−1
1 ) |g1, gn⟩v1,vn

⟨g1, gn| ,

(118)
where the factor

βx(g) ≡ ϵx(g)ϵx−1(g)γg(x, x
−1) (119)

is the only object that is ‘pumped’ out when we apply
the anomalous non-onsite transformation and its inverse
accordingly. One can check from the cocycle condition
(see also Ref. [62]) that

βg−1xg(h)βx(g)

βx(gh)
= 1, (120)

showing that βx(g) satisfies the ‘twisted’ cocycle condi-
tion. One can thus use this to write

βgnxg
−1
n

(gng
−1
1 ) = βgnxg

−1
n

(gn)βg1xg
−1
1

(g1)
−1. (121)

If v is one of the endpoints of the defect operators, then
we essentially pump a factor βgvxg

−1
v

(gv) to the state.

The phase factor βx(g) is a conjugated 1-cocycle, i.e.,
βx(g) ∈ H1(G,U(1)[G]) ≃ ⊕iH

1(Zi, U(1)), where i la-
bels conjugacy classes of G, and Zi is the corresponding
centralizer group. We will call this factor the SPT pump-
ing factor, since, by fusing defect operators, we pump
a lower dimensional SPT state (in this case a 0d SPT
state) on the boundary of the line l after the applica-

tion of Bx
l Bx−1

l . This is a generalization of a previous
abelian case analyzed in Ref. [64]. If G is abelian, for
every element x ∈ G, the factor βx(g) is a 1d represen-
tation of group G, i.e., one pumps a 0d G-SPT state on
the endpoints of an open ribbon.

FIG. 16: An open defect on a triangulated lattice.

C. Symmetry Branch Lines in SET Phase

As discussed in previous sections, we can gauge a nor-
mal subgroup N of G. Then we enter an N SET phase

with global symmetry Q = G/N . Any group element g
in G can be decomposed as g = q(g)n(g). The SET wave
function is

|ΨSET⟩ =
∑

{qv},{ne}
Ω({qineq

−1
j })

⊗

v

|qv⟩
⊗

e

|ne⟩ .

(122)
When the group element x ∈ G commutes with all the

elements n ∈ N in the normal subgroup, a branch line
operator Bx

∂R we introduced for the G-SPT state will
be mapped to another operator Hx

∂R under the gauging
map ΓN . Further, the operators defined as such respect
the same multiplication rules as Bx

∂R do. Denoting qv =
q(gv), the operator Hx

∂R is written as

Hx
∂R =

∑

g

Hx,g
∂R ϵqvxq−1

v
(g)δg,qv(

∏
e ne)q

−1
v

, (123)

with Hx,g
∂R = Lx

∂RW
qvxq

−1
v

∂R Θ
qvxq

−1
v

∂R |qv⟩ ⟨qv| . (124)

When x ∈ N , the operator is a ribbon operator creat-
ing a gauge flux in the SET. When n(x) = 1, i.e., x = s(q)
for some element q ∈ Q, the operator creates a flux that
corresponds to an element in the global symmetry group
and thus is a branch line operator. The multiplication
rule of such operators is

Hx,g
∂R Hy,g′

∂R = Hxy,g
∂R γg(qvxq

−1
v , qvyq

−1
v ) δg,g′ , (125)

which, in turn, leads to

Hx
∂R Hy

∂R =
∑

g

Hxy,g
∂R βqvxq

−1
v ,qvyq

−1
v

(g)δg,qv(
∏

e ne)q
−1
v

,

(126)
where the phase factor β on the r.h.s. is

βx,y(g) = ϵx(g)ϵy(g)γg(x, y). (127)

When we take two branch line operators Hx,g
l and

Hy,g
l , i.e., both n(x) = n(y) = 1, and multiply them

together, then the resulting Hxy,g
l is not necessarily a

branch line operator, because n(xy) is not always triv-
ial. As we will see in more details later, this indicates a
nontrivial symmetry fractionalization class (SFC) of the
SET order.

We can always apply a finite-depth local unitary to
take all the vertex DOFs to the identity element (see
appendix E), such that the state becomes

|Ψ⟩ =
∑

{ne}
Ω({ne}) |{ne}⟩e ⊗v |1⟩v . (128)

This is a TQD with the 3-cocycle ν(n1, n2, n3) being the
restriction of ω(g1, g2, g3) on subgroup N . An abelian
anyon in this model is determined by its flux (i.e., con-
jugacy class Ca) and charge (i.e., a conjugated 1-cochain

µa such that δ̃µa = θa|N , i.e., µa = ϵa|N ). The symmetry
action on the anyons are given by

ρx : a-flux → x−1ax-flux, (129)

ρx : µa → µ′
x−1ax. (130)
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the cocycles to those with g(2) = h(2) = l(2) = 0) and is
used as the ‘twisting’ of Kitaev’s Z2 QD model.
Therefore, when k1 = 0 it is a toric code model, and

when k1 = 1 it is a double-semion model. Since Z2 × Z2

is the trivial central extension of Z2 by Z2, the symmetry
action on anyons is trivial.

The second Z2 group {1, x} represents the global sym-
metry and therefore we can consider the multiplication
of two branch line operators Hx

∂R , which according to
Eq. (126), gives

Hx
∂RH

x
∂R =

∑

g

βx,x(g)δg,
∏

e te . (135)

From Eq. (127) and Eq.(132), we find the braiding phase
between w and a t-fluxed anyon b,

B(w, b) = ϵx(g)
2γg(x, x) = θx(g, g)γg(x, x) = (−1)k3g

(1)

.
(136)

For the conjugated 1-cochain we have used µg(x
2) =

µg(11) = 1. Notice that since g2 = 11 for g ∈ G, we
have θx(g, g) = ϵx(g)

2/ϵx(g
2) by definition but ϵx(g

2) =
ϵx(11) = 1 so the second equality above follows. There-
fore, different choices of t-fluxed b anyon and different
choices of ϵx cochain (i.e., different choices of 0x) give
rise to the same braiding phase.

Now we discuss the consequence of the resultant braid-
ing B(w, b) in different cases. As mentioned above, when
k1 = 0, we have a toric code model. From our previous
general analysis in Sec. VIC, we can infer that the anyon
w braiding with b (m or em) gives rise to a phase (−1)k3 .
Therefore,

0x × 0x = 0 or e, k3 = 0 or 1. (137)

As mentioned earlier, when k1 = 1, we have a double-
semion model. The fluxless anyon w braiding with b (s
or s̄) results in a phase (−1)k3 . Therefore,

0x × 0x = 0 or ss̄, k3 = 0 or 1. (138)

The discussion of k1 and k3 above completely specifies
the SFC of the SET in this case. We have not discussed
the consequence of k2, but if we further gauge the second
Z2, different values of ki will give rise to different topo-
logical orders, due to the 1-to-1 correspondence between
the SPT and TQD phases [34, 53]. Therefore, we know
that the intermediate SETs with different values of k2
must belong to different phases. Since all the topological
order parameters of SET, except the SDC, are already
fixed by k1 and k3, we can safely conclude that k2 = 0, 1
corresponds to two defectification classes, respectively.
Different defectifications intuitively can be regarded as
stacking or gluing different SPT phases [51] to the SET.
This particular case of SET phase was previously dis-
cussed in Ref. [49].

If we further gauge the global symmetry Z2 in the SET,
then it becomes a twisted quantum double Dω(Z2×Z2).
As we discussed earlier in Sec. VIB, for abelian groups,

the symmetry branch line operators will be mapped
to ribbon operators creating certain abelian anyons af-
ter gauging. Indeed, from the Slant product, the 1-

conjugated cochain could be chosen as ϵt2(g) = ik2g
(2)

.
The operator Hx

∂R is mapped to a ribbon operator cre-
ating a t2-flux anyon η,

F η
l = F t2,1

l + ik2F t2,t2
l + F t2,t1

l + ik2F t2,t1t2
l . (139)

Since the gauge group is Z2 × Z2, the fusing of two such
ribbon operators becomes a ribbon operator exciting a
flux-less anyon (chargeon) a, (F η

l )
2 = F a

l , similar to
Eq. (135),

F a
l = F 1,1

l + F 1,t2
l + (−1)k3F 1,t1

l + (−1)k3F 1,t1t2
l .

(140)
For example, when k1 = k2 = k3 = 0, the anyon η

is just a boson m in toric-code model, and the anyon a
is the vacuum anyon. For any values of the parameters,
we will see that the multiplication rules of branch line
operators become the fusion rules of anyons under the
gauging map.

E. SETs from partially gauging Z4 SPT

We will use both multiplicative and additive represen-
tations of abelian groups interchangeably, e.g., g = 2
means g = x2 in multiplicative representation (for x be-
ing the generator of Z4). We take representative cocycles
in H3(Z4, U(1)) = Z4 as

ωg,h,l = exp

{
2πip

16
g(h+ l − [h+ l]4)

}
, (141)

where p = 0, 1, 2, 3. The slant product θxk(g, h) =

exp
{

2πip
16 k(g + h− [g + h]4)

}
corresponds to a projec-

tive representation given by ϵxk(g) = ξkg, where ξ ≡
exp
{

2πip
16

}
.

An SET phase can be obtained by gauging the normal
Z2 = {1, t} group, where t ≡ x2. By restricting ω in
H3(Z2, U(1)), we have ν(g, h, l) = eπipghl, where now
g, h, l = 0, 1 are Z2-valued. Therefore, when p = 0 or 2,
it is a toric code, and when p = 1 or 3, it is a double-
semion model. Since Z4 is a central extension of Z2 by
Z2, the symmetry action on anyons is trivial.
Let us recall that the branch line operators in the SET

ground state are

Hx
∂R ≡

∑

g

ϵx(g)H
x,g
∂R =

∑

g

ξgHx,g
∂R . (142)

The product of two such branch line operators Hx
∂R

gives rise to a factor (see Eq. (127))

βx,x(g) = ϵx(g)
2γg(x, x) = e

2πipg
8 , (143)

for g = 0, 2. The charge of g-fluxed anyon b is given by

µg(h) = e
2πipgh

16 +
2πirgh

4 , (144)
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for g, h ∈ {0, 2} = s(Q). Furthermore, rg = 0, 1 corre-
sponds to different choices of charges of anyon b. Thus,
the braiding phase between anyon w and b should be
given as

B(w, b) = βx,x(g)µg(t) = e
2πipg

4 (−1)rg . (145)

When p = 0, we have a toric code model. When g = 0,
B(w, b) = (−1)r0 where charge of anyon b is given by
µ0(t) = (−1)r0 . There are two chargeons 0 and e, cor-
responding to r0 = 0 or 1, respectively. Therefore, the
braiding phase between w and 0 (e) is 1 (−1), accord-
ing to Eq. (145). Moreover, when g = 2, the braid-
ing B(w, b) = (−1)r2 where the charge of b is given by
µ2(h = t) = (−1)r2 according to Eq. (144). Therefore
we could say that the braiding phase between w and m
(em) is 1 (−1), which corresponds to r2 = 0, 1 respec-
tively. Therefore, we have a toric code with the following
SFC:

0x × 0x = m. (146)

When p = 1, this is a double-semion model. The braid-
ing phase is B(w, b) = (−1)g/2+rg where the charge of the

g-fluxed anyon b is given by µg(h = t) = e
πi
2 · g2+πirg ac-

cording to Eq. (144). When g = 0, two chargeons 0 and
ss̄ correspond to r0 = 0 and 1 respectively. Anyon w
braiding with ss̄ gives −1. When g = 2, the braiding
phase between w and s (s̄) is −1 (1), which corresponds
to r2 = 0, 1 respectively. Therefore we have a double-
semion model with SFC:

0x × 0x = s. (147)

When p = 2, this is a toric code model. The braid-
ing phase is B(w, b) = (−1)rg where the charge of the

g-fluxed anyon b is given by µg(h = t) = eπi(
g
2+rg) ac-

cording to Eq. (144). When g = 0, two chargeons 0
and e correspond to r0 = 0 and 1 respectively. Anyon
w braiding with 0 (e) gives 1 (−1). When g = 2, the
braiding phase between w and em (m) is 1 (−1), which
corresponds to r2 = 0, 1 respectively. Therefore, we have
a toric code with SFC:

0x × 0x = em. (148)

When p = 3, this is a double-semion model. The braid-
ing phase is B(w, b) = (−1)g/2+rg , where the charge of

the g-fluxed anyon b is given by µg(h = t) = e
3πi
2 · g2+πirg

according to Eq. (144). When g = 0, two chargeons 0
and ss̄ correspond to r0 = 0 and 1, respectively. Anyon
w braiding with ss̄ gives −1. When g = 2, the braiding
phase between w and s̄ (s) is −1 (1), which corresponds
to r2 = 0, 1 respectively. Therefore, we have a double-
semion code with SFC:

0x × 0x = s̄. (149)

One could check that, if we choose other ϵx instead of
what we used above, we would derive exactly the same
fusion rule as above.

F. SETs from partially gauging Z3
2 SPT

The third cohomology group of Z
(1)
2 × Z

(2)
2 × Z

(3)
2 has

seven generators, three of which are of type-1, three of
which are of type-2, and one of type-3 [60]. Assume the
three generators of the Z3

2 group are t, x1 and x2, then we
can denote any group elements as g = (g(1), g(2), g(3)) ≡
tg

(1)

xg(2)

1 xg(3)

2 , where g(1), g(2), g(3) ∈ {0, 1}. For simplic-
ity, in this section, we will demonstrate the analysis for
representatives of some of the 3-cocycles, and then de-
rive the general result without further explanation. The
representatives that we take are

ωg,h,l = eπi(k1g
(1)h(1)l(1)+k2g

(1)h(2)l(3)), (150)

where k1, k2 = 0, 1.
In the SET phase obtained from gauging the group

Z
(1)
2 , the anyon theory is the same as that of a TQD

Dν(Z2), where

ν(g, h, l) = eπik1g
(1)h(1)l(1) (151)

is a representative in H3(Z2, U(1)) obtained by the re-
striction of ω in the first Z2 group. Therefore, when
k1 = 0 it is a toric code model, and when k1 = 1 it is a

double-semion model. Since Z
(1)
2 ×Z

(2)
2 ×Z

(3)
2 is the triv-

ial central extension of Z
(2)
2 ×Z

(3)
2 by Z

(1)
2 , the symmetry

actions on anyons are trivial.
Since the slant product of the cocycle given above be-

longs to a class [θ] that is not the trivial element in
H2(Z3

2 , U(1)[Z3
2 ]), it is impossible to find ϵh(g), such that

θh(k, g) = δ̃ϵh(k, g) ≡
ϵh(g)ϵh(k)

ϵh(kg)
, (152)

for any g, h, k ∈ Z3
2 . However, in defining the symme-

try branch line operators, we only need phase factors

ϵh(g) where the group element h ∈ Z
(2)
2 × Z

(3)
2 and

g ∈ N = Z
(1)
2 . Indeed in this case, there exists such a

phase factor that satisfies Eq.(152) when restricting the
group elements h, g in their corresponding subgroups.
The slant product of the cocycle is trivial,

θh(k, g) = (−1)h(2)k(1)g(3)+h(3)k(1)g(2)

= 1, (153)

when h ∈ Z
(2)
2 × Z

(3)
2 and k, g ∈ Z

(1)
2 . Therefore, we can

choose ϵh(g) ≡ 1.
In general, when the symmetry group is Q = Z2 ×

Z2, we take two elements h1, h2 ∈ s(Q) ⊂ G that are

the embedding of elements h̃1, h̃2 ∈ Q. The consistency
condition of embedding is

q(h1h2) = s(h̃1h̃2). (154)

The fusion rule of C×
Q is of the form,

0h̃1
× 0h̃2

= w(h̃1, h̃2)× 0h̃1h̃2
. (155)
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From our previous analysis, the braiding phase be-
tween 0h̃1

× 0h̃2
and anyon b = (g, µg) is B1 =

βh1,h2
(g)µg(n(h1h2)). According to Eq. (154), the braid-

ing phase between 0h̃1h̃2
and anyon b is B2 = ϵq(h1h2)(g).

As a result, the braiding phase between abelian anyon
w(h̃1, h̃2) and b should be the ratio

B(w(h̃1, h̃2), b) =
ϵh1

(g)ϵh2
(g)

ϵq(h1h2)(g)
γg(h1, h2)µg(n(h1h2)).

(156)

Later on for simplicity, we will use w(h1, h2) to denote

w(h̃1, h̃2). Since we choose ϵh(g) ≡ 1 in this case and
n(h1h2) ≡ 1, we have

B(w(h1, h2), b) = γg(h1, h2) = eπik2gh
(2)
1 h

(3)
2 , (157)

for g ∈ Z
(1)
2 . Since the group extension of Z

(2)
2 × Z

(3)
2

by Z
(1)
2 corresponds to the trivial element in H2(Z

(2)
2 ×

Z
(3)
2 , Z

(1)
2 ), we know that the abelian anyon w(h1, h2) is

always a chargeon for any h1, h2 ∈ Z
(2)
2 × Z

(3)
2 . When

k1 = 0, we have a Z2 toric code model. From the above
braiding phase we can conclude that when k2 = 0,

w(h1, h2) ≡ 1; (158)

when k2 = 1,

w(h1, h2) =

{
e, h

(2)
1 = h

(3)
2 = 1,

1, others.
(159)

On the other hand, when k1 = 1, we have a Z2 double-
semion model. From the above braiding phase we can
conclude that when k2 = 0,

w(h1, h2) ≡ 1; (160)

when k2 = 1,

w(h1, h2) =

{
ss̄, h

(2)
1 = h

(3)
2 = 1,

1, others.
(161)

One can check that all the abelian anyons w(h1, h2)’s
above satisfy the cocycle condition,

w(h2, h3)w(h1, h2h3)

w(h1h2, h3)w(h1, h2)
= 1. (162)

If one chooses different ϵh(g) other than what we
used above, the derived anyon w(h1, h2) will be dif-
fered by a coboundary. Therefore we conclude, differ-
ent values of k2 will give different symmetry fractional-
ization patterns that correspond to different elements in

H2(Z
(2)
2 × Z

(3)
2 ,A), where A = Z2 × Z2 is the group of

abelian anyons.
One can generalize the above result to an arbitrary 3-

cocycle. The cohomology group of Z3
2 can be decomposed

as such:

H3(Z3
2 , U(1)) = Z2 × Z3

2 × Z2

anyon theory SDC SFC1

× Z2 × Z2

SFC1 SFC2 .

type-1 of Z
(1)
2 type-1 and 2 of Z

(2)
2 ×Z

(3)
2

type-2 of Z
(1)
2 ×Z

(2)
2

type-2 of Z
(1)
2 ×Z

(3)
2 type-3 of Z

(1)
2 ×Z

(2)
2 ×Z

(3)
2

(163)

In this example, we have illustrated 2 out of the 7 gen-
erators in H3(Z3

2 , U(1)) as in Eq. (150) and showed that
k1 gives the anyon theory and k2 (which is associated
with the type-3 cocycle) gives a symmetry fractionaliza-
tion pattern named SFC2 in the above diagram. To un-
derstand the rest of SET properties, we note that the two
SFC1’s are the symmetry fractionalization pattern asso-

ciated with type-2 cocycles of Z
(1)
2 ×Z

(2)
2 and Z

(1)
2 ×Z

(3)
2 ,

respectively, which were already discussed in Sec. VID.
The SDC part is the symmetry defectification class as-

sociated with cocycles of Z
(2)
2 ×Z

(3)
2 , both of type-1 and

type-2. In the cases when the Z3
2 -SPT phase corresponds

to the cohomology class which is trivial in the first Z2

subgroup in Eq. (163), one can choose a representative

that is of some specific form. Then after gauging Z
(1)
2

subgroup, according to Ref. [63], one can determine the
symmetry fractionalization patterns of the SET order,
which agrees with our general results above.



23

G. SETs from partially gauging D4 SPT

Now we consider the non-central extension of Z2 by Z4.
We write the element in D4 as g̃ = (G, g) ≡ xGag. We
construct a representative of 3-cocycle in H3(D4, U(1))
as follows:

ω(g̃, h̃, l̃)

= exp

{
2πip1
16

g(−1)H+L(h(−1)L + l − [h(−1)L + l]4)

}

× exp{πip2GHL+ πip3gHL},
(164)

where p1 = 0, 1, 2, 3, and p2, p3 = 0 or 1. There are four
nontrivial abelian normal subgroups in D4, which leads
to four options in the first step when gauging this group.
We will consider three of them here.

Gauging Z2. The first option is to gauge the normal
subgroup Z2 = {1, a2}, resulting in a state in an SET
that has the same anyon theory as Dν(Z2), where

ν(g, h, l) = exp

{
2πip1
16

ghl

}
(165)

is the restriction of ω on Z2, i.e. g, h, l ∈ {1, a2}. When
[p1]2 = 0 it is a toric code model, and when [p1]2 = 1 it
is a double-semion model. Since the group extension of
Z2 × Z2 by Z2 is central, the symmetry actions on the
anyons are trivial. Therefore, according to Eq. (156), the
braiding phase B(w(h1, h2), b) is given by

B(w(h1, h2), b) =
ϵh1

(g)ϵh2
(g)

ϵq(h1h2)(g)
γg(h1, h2)µg(n(h1h2)).

(166)
We write the embedding of quotient group elements

g = (g(1), g(2)) ∈ Z2 × Z2 ≡ {1, t1} × {1, t2} (167)

in D4 as

s(g) = xg(1)

ag
(2)

. (168)

From the group multiplication rule, one can infer that
the abelian anyons w(t2, t1), w(t2, t2), w(t1t2, t1) and
w(t1t2, t2) have nontrivial flux, while w(h1, h2) for other
h1, h2 are chargeons. We list the detailed symmetry frac-
tionalization patterns below.

When [p1]2 = 0, we have a Z2 toric code model. From
the above braiding phase we can conclude that the SFC
is characterized by [w(h1, h2)] ∈ H3(Z2 × Z2, Z2 × Z2),
where

w(h1, h2) =





m, (h1, h2) = (t2, t1), (t2, t2),

(t1t2, t1), (t1t2, t2)

1, others.

(169)

When [p1]2 = 1, we have a Z2 double-semion model.
From the above braiding phase we can conclude that, the

SFC is characterized by [w(h1, h2)] ∈ H3(Z2 × Z2, Z2 ×
Z2), where

w(h1, h2) =





s, (h1, h2) = (t2, t1), (t1t2, t2), (t2, t2),

s̄, (h1, h2) = (t1t2, t1),

ss̄, (h1, h2) = (t1, t1), (t1, t1t2), (t1t2, t1t2),

1, others.

(170)
Other parameters of the cohomology group

H3(D4, U(1)), including p1−[p1]2
2 , p2 and p3, will give rise

to different SDCs that form an H3(Z2 × Z2, U(1)) = Z3
2

torsor.

Gauging Z4. The second option is to gauge the normal
subgroup Z4, resulting in a state in an SET that has the
same anyon theory as Dν(Z4), where

ν(g, h, l) = exp

{
2πip1
16

g(h+ l − [h+ l]4)

}
(171)

is the restriction of ω on Z4. Different values of p1 exactly
correspond to different Z4 TQD models. The symmetry
action takes e to e3, and takes m to m3e2p1 according to
Eq. (131), which is not a trivial automorphism on C. One
can still manage to write a phase factor B(w, b) = βx,x(g)
for g ∈ N = Z4. (We remind readers that x is one of the
generators of the group D4 such that x2 = 1.) However,
two obvious problems will emerge from this factor. The
first one is that unlike in the case when symmetry does
not change the anyon type, when we change the repre-
sentative 3-cocycle for the D4-SPT state by a cobound-
ary, ω′ = ω · δα, the “braiding phase” is not invariant

anymore, B(w, b)′ = B(w, b)α(g
−1xg,g−1xg)
α(x,x) . The second

problem seems to be even worse. In a generic case, it
might be impossible to find an abelian object in sector
Cx such as the 0x from before. Therefore, there may not
exist an abelian anyon w as the fusion between 0x and
itself. Indeed, in sector Cx, there are 4 objects of quan-
tum dimension 2. If we nonetheless pick one of them and
still name it 0x, by counting the dimension, we can write
a fusion rule of the form,

0x × 0x = a+ b+ c+ d, (172)

where a, b, c, d ∈ C are abelian anyons.
Motivated by the ribbon operator in the quantum dou-

ble model as in Eq. (115), we choose b1 = 1 and b2 = a
and we write a matrix-valued operator on an open ribbon
as

(Hx
l )ii′ =

∑

n∈{1,a2}
H

bixb
−1
i ,binb

−1

i′
l ϵbixb−1

i
(binb

−1
i′ ), (173)

where the matrix indices i, i′ = 1, 2, and the operator
Hx,g

l satisfies the same multiplication rule as in Eq. (125),

Hx,g
l Hy,g′

l = Hxy,g
l γg(x, y)δg,g′ . (174)

We conjecture that the operator as in Eq. (173) creates
an object in sector Cx on the endpoint of l. We call this
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object 0x even though it is of dimension 2. Then the
object 0x × 0x should be created on the endpoint of l
by operator (Hx

l )
⊗2. It can be shown that, when we

change the representative 3-cocycle for the D4-SPT state
by a coboundary, ω′ = ω · δα, the matrix (Hx

l )
⊗2 differs

by a similar transformation. Therefore, the fusion rule
remains invariant under different representative choices.
According to the detailed analysis in Appendix F, we see
that different values of p3 give different SFCs where the
fusion rules are shifted by anyon [e2] ∈ H2

ρ(Z2,A).

Gauging Z2 × Z2. One could also gauge the Z2 × Z2 =
{1, x, t, xt} in D4, resulting a state in the phase of

Dν′
(Z2 × Z2). We write t ≡ a2 and g = xg(1)

tg
(2)

=

xg(1)

a2g
(2)

. The 3-cocycle ω restricted in this group is
obtained from Eq. (164) and is given as

ν′(g, h, l) = exp
{2πip1

4
g(2)(−1)h(1)+l(1)

(
h(2)(−1)l(1) + l(2)

− [h(2)(−1)l(1) + l(2)]2
)
+ πip2g

(1)h(1)l(1)
}
,

=(−1)p1(g
(2)h(2)l(2)+g(2)h(2)l(1))+p2g

(1)h(1)l(1) .
(175)

Notice that there is no contribution from the third part

in Eq. (164) as eπip3(2g
(2))h(1)l(1) ≡ 1. In Appendix H, we

analyze the fluxes and charges of all the anyons in the
theory from 3-cocycle [ν′]. Let b1 = 1 and b2 = x, one
can write the matrix-valued operator on an open ribbon
l as

(Ha
l )ii′ =

∑

n∈{1,t}
H

biab
−1
i ,binb

−1

i′
l ϵbiab−1

i
(binb

−1
i′ ), (176)

where the matrix indices have the range i, i′ = 1, 2. As
we conjectured, the object 0a × 0a should be created on
the endpoint of l by operator (Ha

l )
⊗2. According to the

detailed analysis in Appendix G, we see that different
values of p3 give different SFCs where the fusion rules
are shifted by anyon [e(1)] ∈ H2

ρ(Z2,A).

H. SETs from partially gauging S3 SPT

Now with the conjecture made in Sec. VIG, we can
revisit our first example in Sec. VB. Recall that we write
the element in S3 as g̃ = (G, g) ≡ xGag. We construct a
representative of 3-cocycle inH3(S3, U(1)) as in Eq. (70).
Gauging the normal subgroup Z3 of a S3-SPT state, re-
sults in a state in an SET phase that has the same anyon
theory as Dν(Z3), where

ν(g, h, l) = exp

{
2πip1
9

g(h+ l − [h+ l]3)

}
(177)

is the restriction of ω on Z3. Different values of p1 exactly
correspond to different Z3 TQD models. The symmetry
action takes e to e2, and takes m to m2e2p1 according to
Eq. (131), which is also not a trivial automorphism on

C, as we have seen something similar in the previous D4

case.

In sector Cx, there is only one object of quantum di-
mension 3. We name it 0x. By the dimension counting,
we can write a fusion rule of the form,

0x × 0x =

9∑

i=1

ai, (178)

where ai ∈ C are abelian anyons. Let b1 = 1, b2 = a and
b3 = a2, one can write a matrix-valued operator on an
open ribbon as

(Hx
l )ii′ = H

bixb
−1
i ,bib

−1

i′
l ϵbixb−1

i
(bib

−1
i′ ), (179)

where the matrix indices are in the range i, i′ = 1, 2, 3.
As we conjectured in the last example, the object 0x ×
0x should be created on the endpoint of l by operator
(Hx

l )
⊗2. According to the detailed analysis in Appendix

I, we can obtain the fusion rule of the Z3 SET from the
conjectured branch line operator,

0x × 0x = 1 + e+ e2 +m+ em+ e2m+m2 + em2 + e2m2.
(180)

From the analysis in Sec. VIG, we know that there is only
one symmetry fractionalization pattern for every value of
p1. This unique SFC result is consistent with the fact
that the fusion in the above equation is the same for all
values of p2 (with a fixed p1, i.e., fixing a distinct anyon
theory), and thus p2 gives different SDCs, unrelated to
the SFC.

I. SETs from Dn SPT

Here we comment on the SET phase obtained from
gauging the N = Zn subgroup in the Dn SPT state.
When n = 2m+ 1 is odd, from the similar argument we
used for the S3-SPT state, there is only one symmetry
fractionalization pattern of such SET. The cohomology
group can be decomposed as

H3(D2m+1, U(1)) = H3(Z2m+1, U(1))⊕H3(Z2, U(1))

= Z2m+1 ⊕ Z2.
(181)

Therefore just as in S3 = D3 case, a representative 3-
cocycle [ω] ∈ H3(D2m+1, U(1)) will have two parameters
p1 = 0, ..., 2m and p2 = 0, 1. Different values of p1 give
different anyon theory of the SET order, while different
values of p2 give different SDCs. Furthermore, there is
only one object 0x in sector Cx of dimension 2m+1, and
from a similar calculation, one expects the fusion rule to
be

0x × 0x =
∑

a∈C

a. (182)
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When n = 2m is even, the cohomology group can be
decomposed as

H3(D2m, U(1)) =H3(Z2m, U(1))⊕H3(Z2, U(1))

⊕H2(Z2, H
1(Z2m, U(1)))

=Z2m ⊕ Z2 ⊕ Z2.

(183)

Therefore just as in D4 case, a representative 3-cocycle
[ω] ∈ H3(D2m, U(1)) will have three parameters p1 =
0, ..., 2m − 1, p2 = 0, 1 and p3 = 0, 1. Different values
of p1 give different anyon theory of the SET order and
different values of p2 give different SDCs. Furthermore,
different values of p3 will differ in the fusion of 0x×0x by
anyon em, and, therefore, correspond to different sym-
metry fractionalization patterns.

J. SETs from partially gauging Q8 SPT

Another group extension of Z2 by Z4 is the Q8 group.
We write the element in Q8 as g̃ = (G, g) ≡ xGag just
as for D4. The only difference is that x2 = a2 in-
stead of identity now. A representative of 3-cocycle in
H3(Q8, U(1)) is [60]

ω(g̃, h̃, l̃) = exp
{2πip

8

(
− 2GHL+

g(−1)H+L
(
h(−1)L + l − [h(−1)L + l + 2HL]4

))}
,

(184)
where p = 0, 1, 2, 3. We note that despite the fact that
H3(Q8, U(1)) = Z8, we only present half of the cocycles
here, as we are not aware of the other half. After gaug-
ing the normal subgroup Z2 = {1, a2}, we obtain an SET
states in which the anyon theory is the same as inDν(Z2)

where ν(g, h, l) = exp
{

2πip
8 ghl

}
, with g, h, l = 0, 2 rep-

resenting elements from the set {1, a2}. Therefore, p =
0, 1, 2, 3 all correspond to the Z2 toric code model after
gauging. The symmetry action on anyons are trivial since
the group extension is central. According to Eq. (156),
the braiding phase B(w(h1, h2), b) is given by

B(w(h1, h2), b) =
ϵh1

(g)ϵh2
(g)

ϵq(h1h2)(g)
γg(h1, h2)µg(n(h1h2)).

(185)
Let us write the quotient group elements as Z2×Z2 ≡

{1, t1} × {1, t2}, where the embedding of t1(t2) is x(a).
After carrying out the detailed calculations from the
cocycles above, the SFC corresponds to [w(h1, h2)] ∈
H2(Z2 × Z2, Z2 × Z2), where

w(h1, h2) =





m, (h1, h2) = (t1, t1), (t2, t1), (t2, t2),

(t1, t1t2), (t1t2, t2),

1, others.

(186)
Therefore, the parameter p characterizes different

SDCs of the SET order. One expects that for the other 4

classes of cocycles in H3(Q8, U(1)), the anyon theory af-
ter gauging the normal Z2 subgroup would be Z2 double-
semion model, and from similar calculations, one can de-
termine the SFC accordingly.

VII. CONCLUSION

Recently, it has been realized that a wide class of topo-
logically ordered states described by the (twisted) quan-
tum double models with solvable gauge groups can be
prepared with finite depth local operations as long as
local measurements are included [42–47]. We have re-
examined such a measurement-based gauging approach
which transforms a non-trivial SPT state into a cor-
responding TQD state. We provided two alternative
gauging procedures: one using a particular decomposi-
tion in terms of successive quotient groups and another
one exploiting a new and equivalent definition of solv-
able groups. This flexibility in our method may allow us
different options in preparing mid-gauging SET states.
In the case of non-abelian groups, the gauging pro-

cedure involves multiple steps where intermediate steps
only partially gauge the system so that some symme-
try remains. Starting from an initial G-SPT state, we
have presented an in-depth analysis of the intermediate
states and have found them to be topologically ordered
states enriched by the remaining ungauged symmetry.
We have constructed the generic lattice (parent) Hamil-
tonian for these states, and showed that they are con-
nected to twisted quantum double (TQD) ground states
via a finite-depth local unitary circuit (without measure-
ments) which does not respect the global symmetry.
Furthermore, we have shown that the algebra of the

symmetry branch line operators can be used to extract
the symmetry fractionalization classes and infer symme-
try defectification classes of the SET phases given the
input data G and [ω] ∈ H3(G,U(1)). When the SET
order in the intermediate step of the N -step gauging has
a global symmetry that does not change the anyon type,
using the algebra of symmetry branch line operators, we
have developed a general formula for the braiding phases
between any abelian anyon in the theory and the anyons
obtained from fusing point defects, which exactly charac-
terize the symmetry fractionalization patterns. We have
given various examples for this case. When the SET or-
der we enter has a global symmetry that does change
anyon types, we conjectured the form and algebra of non-
abelian symmetry branch line operators that can create
the corresponding symmetry defects. Then by calculat-
ing the tensor product of such operators, we showed that
fusion rules of these symmetry defects can be derived,
which is sufficient to characterize the symmetry fraction-
alization patterns. We have used the dihedral SPT states
and the associated SET states as examples to illustrate
this latter case.

In this work, we mainly focused on the SFC, and
a framework to characterize the SDC is left for fu-



26

ture study. We note that, according to Ref. [51], the
SDC forms a H3(Q,U(1)) torsor, and two defectifica-
tion classes are differed by an element in H3(Q,U(1)).
One can always enter another SDC by applying a uni-
tary Uω′ to vertex DOFs (where [ω′] ∈ H3(Q,U(1))).
This is equivalent to stacking a Q-SPT state onto the
current SET state.

Our method to probe SET phases using fusion was
inspired by Ref. [44] and it turns out to be specifically
useful when the gauge group (or the normal subgroup
in the case of multi-step gauging) is abelian. We expect
our formalism holds for non-abelian TQD models with
some global symmetry. We leave as open questions how
to consistently define ribbon operators for probing more
complex SET phases with non-abelian gauge groups. For
this purpose, it may be useful to re-examine some litera-
ture regarding the quasi-Hopf algebra [60, 62, 65].

As a technical issue, in writing down the branch line
operators, we have assumed the existence of ϵx(g) (see
Eq. (106)) for the 3-cocycle [ω] ∈ H3(G,U(1)). However,
this factor may not exist in general. We did encounter

this situation in the example of gauging the Z
(1)
2 symme-

try in the Z
(1)
2 ×Z

(2)
2 ×Z

(3)
2 -SPT phase when the cocycle

is of type-3. Nonetheless, when restricting x and g to
some specific subgroups, we can still define ϵx(g), and we
used them for the branch line operators to characterize
the symmetry fractionalization patterns. It is not clear
how to overcome the non-existence of ϵx(g) in general,
and this is also left for future exploration.

As conjectured by the hierarchy of topological or-
ders conceptualized in Ref. [44], topologically ordered

states with non-solvable groups or even more general
anyon models without any group structure cannot be pre-
pared using finite-depth measurement-assisted circuits.
Nonetheless, it was recently shown in Ref. [66] that the
Fibonacci anyon state can be prepared using logL-depth
circuits with mid-circuit measurements (where L is the
linear size of the system). It would be worth exploring
mid-gauging topological phases beyond solvable groups
and group-based anyon theories.
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Appendix A: Some properties of twisted quantum double (TQD) Hamiltonian

In this section, we check some properties of twisted quantum double (TQD) Hamiltonian. Although some proofs
of the claims here are given in the original paper [11], we demonstrate those in our notation. The TQD Hamiltonian
is given by

H = −
∑

v

Av −
∑

p

Bp, (A1)

where Av is the vertex operator and Bp is the plaquette operator explicitly given by

Av =
1

|G|
∑

g∈G

(∏

e⊃v

Lg
±e

)
W̃ g

v =
1

|G|
∑

g∈G

Av,g, (A2a)

Bp = δ
(∏

e∈p

ge, 1
)
. (A2b)

The operator
(∏

e⊃v L
g
±e

)
denote the operator which implement left action (Lg

+e) or right action(L
g
−e) on the edges

adjacent to the vertex v when the edge flows to vertex v or emanates from vertex v respectively. W̃ g
v is the phase

operator defined as follows

W̃ g
v =

(∏

e⊃v

Lg
±e

)†

Uω

(∏

e⊃v

Lg
±e

)
U†
ω, (A3)

where Uω is the phase operator which assigns a phase to a given configuration of edges in the TQD ground state(see

Eq. (10)). The purpose of W̃ g
v is to change the phase factor in TQD wave-function after the operation

∏
e⊃v L

g
±e is

applied on the vertex v.
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Claim A.1. The action of W̃ g
v on vertex v can be interpreted geometrically as a product of cocylces of tetrahedrons

in Fig. 5 with appropriate signs in the exponent.

Proof. To prove this equivalence, we mention the following fact: given a tetrahedron with a branching structure,
equating one with the product of (a) cocycles (with appropriate signs in the exponent) on the faces and (b) the
cocylce on the tetrahedron (also with appropriate sign in the exponent) gives the cocycle condition. The signs in the
exponent can be found using the following rule:

• First we define the orientation of a face of a tetrahedron. Consider the branching structure of a face. Curl your
fingers on the right hand along the direction of two arrows which point one after the other. The direction your
thumb points at gives you the orientation of the face.

• For the tetrahedron, consider the vertex where all the arrows end and the face opposite to it. If the orientation
of the face points inward to the tetrahedron, the sign is +1, otherwise it is -1.

• For a face, simply consider its orientation. If the orientation points inward to the tetrahedron, assign the sign
to be +1, otherwise assign -1.

As an example, consider the following tetrahedron given in Fig. 19.

FIG. 19: Tetrahedron with orientation

The product of cocycles with appropriate signs in the exponent gives the cocycle condition,

ω(g4g
−1
2 , g2g

−1
1 , g1)ω(g4g

−1
3 , g3g

−1
2 , g2)

ω(g4g
−1
3 , g3g

−1
2 , g2g

−1
1 )ω(g3g

−1
2 , g2g

−1
1 , g1)ω(g4g

−1
3 , g3g

−1
1 , g1)

= 1. (A4)

Now, multiplying all the cocycle conditions coming from all the tetrahedron adjacent to vertex v as in Fig. 5, one
can clearly see that the cocycles coming from the faces shared by two tetrahedron cancel in pairs since the signs in
the exponent coming from the two adjacent tetrahedrons of a face are opposite. Finally, the remaining product of
cocycles can be rewritten as

∏

tetra

ω(tetra)s(tetra) =
∏

∆

1

ω(∆′)s(∆′)ω(∆)s(∆)
=
∏

∆

(
ω(∆′)
ω(∆)

)s(∆)

, (A5)

where ∆ and ∆′ denote the triangles in the original and the lifted plane (after action by Av), s(∆) and s(∆′) denote
the signs in the exponent for the cocycle coming from ∆ and ∆′. The last equality in Eq. (A5) follows from the fact
that s(∆′) = −s(∆). The expression which follows the last equality is exactly what Eq. (A3) achieves.

Claim A.2. Av is hermitian, i.e, A†
v = Av.

Proof. By definition, we have

A†
v,g =

((∏

e⊃v

Lg
±e

)
W̃ g

v

)†

= (W̃ g
v )

∗
(∏

e⊃v

Lg
±e

)†

, (A6)

where (W̃ g
v )

∗ denote the complex conjugate of W̃ g
v . We note that

(∏
e⊃v L

g
±e

)†
=
(∏

e⊃v L
g−1

±e

)
. From the definition

Eq. (A3), we have

(W̃ g
v )

∗ = Uω

(∏

e⊃v

Lg
±e

)†

U†
ω

(∏

e⊃v

Lg
±e

)
. (A7)
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Now we compute A†
v,g:

(W̃ g
v )

∗
(∏

e⊃v

Lg
±e

)†

= Uω

(∏

e⊃v

Lg
±e

)†

U†
ω (A8a)

=

(∏

e⊃v

Lg
±e

)†(∏

e⊃v

Lg
±e

)
Uω

(∏

e⊃v

Lg
±e

)†

U†
ω (A8b)

=

(∏

e⊃v

Lg−1

±e

)(∏

e⊃v

Lg−1

±e

)†

Uω

(∏

e⊃v

Lg−1

±e

)
U†
ω (A8c)

=

(∏

e⊃v

Lg−1

±e

)
W̃ g−1

v = Av,g−1 . (A8d)

Hence it holds that

A†
v =

1

|G|
∑

g∈G

A†
v,g =

1

|G|
∑

g∈G

Av,g−1 = Av. (A9)

Claim A.3. Av is a projector. A2
v = Av.

Proof. Note the following observation.

Av,gAv,h = Uω

(∏

e⊃v

Lg
±e

)
U†
ωUω

(∏

e⊃v

Lh
±e

)
U†
ω (A10a)

= Uω

(∏

e⊃v

Lgh
±e

)
U†
ω = Av,gh. (A10b)

Hence, we can square Av and arrive at

A2
v =

1

|G|2
∑

g,h∈G

Av,gAv,h =
1

|G|2
∑

g,h∈G

Av,gh =
1

|G|
∑

g∈G

Av,g = Av. (A11)

Claim A.4. Bp is hermitian as well as a projector.

Proof. This follows trivially from the definition Eq. (14).

Claim A.5. [Av, Av′ ] = 0 for any vertices v and v′.

Proof. First we prove [Av,g, Av′,h] = 0 when v ̸= v′.

[Av,g, Av′,h] =

[
Uω

(∏

e⊃v

Lg
±e

)
U†
ω, Uω

( ∏

e⊃v′

Lh
±e

)
U†
ω

]

= Uω

[∏

e⊃v

Lg
±e,

∏

e⊃v′

Lh
±e

]
U†
ω = 0.

(A12)

The last line is trivial when v and v′ are not adjacent. When they are adjacent, the two vertices have opposite
(right/left) action on the edge DOF. So their commutator is again zero. Hence [Av,g, Av′,h] = 0 when v ̸= v′. This
imply [Av, Av′ ] = 0 when v ̸= v′. When v = v′, the commutator is trivially zero. So [Av, Av′ ] = 0, ∀ v and v′.

Claim A.6. [Av, Bp] = 0 ∀ v and p.

Proof. When the vertex v is not on the boundary of the plaquette p, the two terms commute trivially. When the
vertex is on the boundary of p, we consider the two edges which are adjacent to the vertex v as well as lie on the
boundary of p. Now consider three cases.
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• Case 1: Both edges point toward the vertex v. Action of Av,g on this configuration is given by left multiplying
g on the corresponding edges. This preserves the fluxless condition imposed by the Bp operator.

• Case 2: Both edges point away from the vertex v. Action of Av,g on this configuration is given by right
multiplying g−1 on the corresponding edges. This preserves the fluxless condition imposed by the Bp operator.

• Case 3: One edge point toward the vertex v and the other edges point away from it. Action of Av,g on this
configuration is given by left multiplying by g and right multiplying by g−1 respectively. This also preserves the
fluxless condition.

From this observation it follows that [Av, Bp] = 0 ∀ v and p.

Claim A.7. [Bp, Bp′ ] = 0 ∀ plaquettes p and p′.

Proof. The proof follows straightforwardly from the fact Bp = 1 on the configurations for which there is no flux around
plaquette p, and zero otherwise.

Now we consider the quantum double like Hamiltonian in the presence of a global symmetry given in Eq. (20)

H = −
∑

v

Av −
∑

p

Bp −
∑

v

Kv, (A13)

where Av, Bp and Kv are defined in Eq. (21), Eq. (22) and Eq. (23) respectively. Again Av is hermitian as well as
a projector. Similarly Bp is also hermitian as well as a projector. Av and Bp commute among themselves and with
each other. The proofs follow by repeating the steps in the twisted quantum-double case. Now we consider the last
term Kv.

Claim A.8. Kv is hermitian as well as a projector.

Proof. Let us write

Kv =
1

|Q|

|Q|−1∑

k,l=0

Kv,kl, (A14)

where Kv,kl = W
qkq

−1
l

v |qk⟩v ⟨ql|. We can write the phase operator W
qkq

−1
l

v as

W
qkq

−1
l

v |qk⟩v ⟨ql| = Uω |qk⟩v ⟨ql|U†
ω. (A15)

Using the Hermitian conjugation of the above equation, we have

K†
v,kl = Uω |ql⟩ ⟨qk|U†

ω = Kv,lk. (A16a)

Hence, we have K†
v = Kv. Next, we prove K2

v = Kv using the following steps,

K2
v =

1

|Q|2
|Q|−1∑

k,l,m,n=0

Uω |qk⟩v ⟨ql|U†
ωUω |qm⟩v ⟨qn|U†

ω (A17a)

=
1

|Q|2
|Q|−1∑

k,l,m,n=0

Uω |qk⟩v ⟨qn|U†
ωδl,m (A17b)

=
1

|Q|

|Q|−1∑

k,l=0

Kv,kn = Kv. (A17c)

Claim A.9. Kv commute with Av′ , Bp and Kv′ ∀ v and v′.
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Proof. First we prove [Kv,Kv′ ] = 0. For this, we show [Kv,kl,Kv′,mn] = 0 when v ̸= v′, as shown below,

[Kv,kl,Kv′,mn] =
[
Uω |qk⟩v ⟨ql|U†

ω, Uω |qm⟩v′ ⟨qn|U†
ω

]
(A18a)

= Uω

[
|qk⟩v ⟨ql| , |qm⟩v′ ⟨qn|

]
U†
ω = 0. (A18b)

Hence [Kv,Kv′ ] = 0 ∀ v and v′. Note that Kv operator only changes the vertex DOF on the lattice, so Kv does not
change the fluxless condition around any of the plaquettes. Hence, [Kv, Bp] = 0.

Now let us prove [Kv, Av′ ] = 0 by the following steps,

[Kv, Av′ ] =
[ 1

|Q|

|Q|−1∑

k,l=0

Uω |qk⟩v ⟨ql|U†
ω,

1

|G|
∑

g∈G

Uω

∏

e⊃v′

Lg
±eU

†
ω

]
(A19a)

=
1

|Q|

|Q|−1∑

k,l=0

1

|G|
∑

g∈G

[
Uω |qk⟩v ⟨ql|U†

ω, Uω

∏

e⊃v′

Lg
±eU

†
ω

]
(A19b)

=
1

|Q|

|Q|−1∑

k,l=0

1

|G|
∑

g∈G

Uω

[
|qk⟩v ⟨ql| ,

∏

e⊃v′

Lg
±e

]
U†
ω = 0. (A19c)

From the above equations, we thus conclude that Kv commutes with Av′ , Bp and Kv′ .

Appendix B: Group Extension

Suppose we are given two groups Q and N , then one can construct an extension of Q by N which we denote by G
if one has the following short exact sequence

1→ N
i−→ G

π−→ Q→ 1. (B1)

where i denote the inclusion map and π denote the projection map. Given this short exact sequence, one can define
a choice of embedding of Q in G

Q
s−→ G, (B2)

such that π ◦ s = idQ. Although the inclusion i and projection π are homomorphisms, the section s is not a
homomorphism (however, we have s(1Q) = 1G). The failure to become a homomorphism is captured by a cocycle in
the group cohomology H2(Q,N). The failure of the section to be a homomorphism is given by

s(q1q2)
−1s(q1)s(q2) = i(ω(q1, q2)), (B3)

where ω ∈ H2(Q,N). We consider conjugation operation ϕ : Q→ Aut(N) which satisfies

i(ϕq−1
2 (n1)) = s(q2)

−1i(n1)s(q2). (B4)

Note that the conjugation operation is dependent on the choice of s. We denote an element g ∈ G as g = (q, n), where
q ∈ Q and n ∈ N . With the given choice of section s, one can equivalently write

g = s(q)i(n). (B5)

Suppose g1 = (q1, n1) and g2 = (q2, n2) then

g1.g2 = (q1, n1).(q2, n2) = (q1q2, ω(q1, q2)ϕ
q−1
2 (n1)n2). (B6)

The associativity condition on the group multiplication gives the cocycle condition for ω,

ω(q1, q2q3)ω(q2, q3) = ω(q1q2, q3)ϕ
q−1
3 [ω(q1, q2)], (B7)

when N is abelian. Note that this cocycle condition is different from the one where the conjugation acts on ω(q2, q3)
considered in [44].
As an example, consider the central extension of Z2 by Z2. Since H2(Z2,Z2) = Z2, there are two possible extensions.

• Case 1: ω is trivial. In this case, we have G = Z2 × Z2 since Aut(Z2) consists only of the identity map.

• Case 2: ω is the nontrivial class. Then the group G is Z4. Suppose we denote N = Z2 = {1, t1} and
Q = Z2 = {1, t2}, then G = Z4 is generated by (t2, 1).
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Appendix C: Q-global symmetry in two-step gauging

Here we show the Q-global symmetry of |Ψ5⟩ in (66):

U(q)|Ψ5⟩ = |Ψ5⟩, (C1)

with

|Ψ5⟩ :=
∑

{gv}
Ω({gvg−1

v′ })|{gvg−1
v′ }⟩e

⊗

v

(
Zkv

(n)

∑

r∈N

|q(gv)r⟩v
)
,

U(q) :=
∏

v

X(q).
(C2)

We have that
∑

r∈N X(q1)|q(gv)r⟩ :=
∑

r∈N |s(q1)q(gv)r⟩ =
∑

r∈N |q(s(q1)gv))n(s(q1)q(gv))r⟩ =
∑

r′∈N |q(gvs(q1))r′⟩,
where the first equality is by definition (see (61)), the second equality is by the definitions of q(. . . ) and n(. . . ) in
Eq. (59), and in the last equality we have relabeled the group element r ∈ N by r′ = n(s(q1)q(gv))r and used
q(s(q1)gv) = q(gvs(q1)). (Note that in the second equality, for G = S3 the element n(s(q1)q(gv)) is trivial, but for
G = Q8, for example, it is nontrivial, and thus we kept it present in the equation.) We find that the change of variable
gv = g̃vs(q1)

−1 gives us

U(q1)|Ψ5⟩ =
∑

{g̃v}
Ω({g̃v g̃−1

v′ })|{g̃v g̃−1
v′ }⟩e

⊗

v

(
Zkv

(n)

∑

r′∈N

|q(g̃v)r′⟩v,
)
, (C3)

and thus the state is invariant.

Appendix D: Branch line operator Bx
∂R

With a pre-gauge structure we have introduced the gauge transformation as

Gx
v ≡ Lx

−v

∏

e⊃v

Lx
±e. (D1)

To write down the branch line operator on ∂R, we impose some gauge transformation in region R, the effect of which
can be contained only on its boundary. In Sec. VIA, we claim that when the edge configuration is trivial (i.e., he = 1
for all edges), the operator Gx

R =
∏

v∈R Gx
v has this property. Now we make some more detailed analysis. Recall that

|ΨSPT-pre⟩ = |ΨSPT⟩
⊗

e

|1⟩e . (D2)

Now we insert a Gx
R on the state, we have the following,

Gx
R |ΨSPT-pre⟩ =

∏

v∈R

Lx
−v

(∏

e⊃v

Lx
±e

)
|ΨSPT⟩

⊗

e

|1⟩e

=
∑

{gv}

∏

∆

ω({gv})s(∆)
⊗

vi∈R

∣∣gvix−1
〉 ⊗

vo /∈R

|gvo⟩
⊗

e

( ∏

e′∩∂R

Lx
±e′
)
|1⟩

=
∑

{gv}

∏

∆

ω({gvix}, {gvo})s(∆)
⊗

v

|gv⟩
⊗

e

( ∏

e′∩∂R

Lx
±e′
)
|1⟩

=
∑

{gv}
AmpR({gv}, x)

∏

∆

ω({gv})s(∆)
⊗

v

|gv⟩
⊗

e

( ∏

e′∩∂R

Lx
±e′
)
|1⟩ .

(D3)

As shown above in Fig. 20a, given the configuration {gv}, the product of cocycles
∏

∆ ω({gvix}, {gvo})s(∆) corre-

sponds to the upper surface, while
∏

∆ ω({gvi}, {gvo})s(∆) corresponds to the lower surface. According to the cocycle
conditions, their ratio corresponds to the tetrahedrons that they enclose,

AmpR =
∏

tetra∈R

ω(tetra)s. (D4)
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(a) (b)

FIG. 20: (a) Symmetry action inside of region R “lifts” R such that all the simplex in the region correspond to ω̃.
(b) This symmetry action can be equivalently regarded as the insertion of symmetry branch line on ∂R.

FIG. 21: There are 3 tetrahedrons when 1 plaquette is lifted.

In Sec. VIA, we claim that according to cocycle conditions, this phase factor only depends on the configurations
on ∂R. Now we take the simplest case when R only encloses one plaquette to illustrate. As shown in Fig. 21, when
the plaquette (123) is lifted, there are three tetrahedrons, where the vertices on the upper surface are associated with
gi′ = gix. According to the rule introduced in Sec. II, the three tetrahedrons correspond to the expression,

ω(g3xg
−1
3 , g3g

−1
2 , g2g

−1
1 )ω(g3g

−1
2 , g2g

−1
1 , g1xg

−1
1 )

ω(g3g
−1
2 , g2xg

−1
2 , g2g

−1
1 )

= θg3xg−1
3

(g3g
−1
2 , g2g

−1
1 ), (D5)

where θx(g, h) is the slant product introduced in Eq. (104). Therefore, in this simplest case, we have

AmpR = θg3xg−1
3

(g3g
−1
2 , g2g

−1
1 )

∏

tetra∈∂R

ω(tetra)s. (D6)

For simplicity and without loss of generality, we assume ∂R with branching structure 1 → 2→ 3→ · · · → n← 1,
then by using cocycle conditions, we can show that the tetrahedrons inside a union of prisms (see Fig. 20b), which is
formed by lifted plaquettes, will give rise to

Θ̃
gnxg

−1
n

∂R = θgnxg−1
n

(gng
−1
n−1, gn−1g

−1
1 ) · · · θg3xg−1

3
(g3g

−1
2 , g2g

−1
1 ). (D7)

Therefore,

AmpR = Θ̃
gnxg

−1
n

∂R

∏

tetra∈∂R

ω(tetra)s. (D8)

The shift operator
∏

e′∩∂R Lx
±e′ in Eq. (D3) is exactly the operator Lx

∂R defined in Eq. (100). Therefore we arrive
at

B̃x
∂R |ΨSPT-pre⟩ = Gx

R |ΨSPT-pre⟩ , (D9)
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when

B̃x
∂R =

∑

gv

Lx
∂RW̃

gvxg
−1
v

∂R Θ̃
gvxg

−1
v

∂R |gv⟩v ⟨gv| . (D10)

For a state with nontrivial configuration {he}, there could be fluxes on some plaquette, i.e., for some plaquette
p,
∏

e∈∂p he ̸= 1. For the purpose of illustration, we now focus on states that have fluxes only on 1 plaquette, and

only violates terms that are on this plaquette in HSPT-pre in Eq. (93). To write down the branch line operators for
these states, we repeat a similar procedure: we impose some gauge transformation on region R, the effect of which
would be only on its boundary. It turns out that when all the plaquettes on ∂R are fluxless (i.e.,

∏
e∈∂p he = 1),

and the flux on each plaquette p ∈ R (
∏

e∈∂p he) is in the centralizer group Zx (since the flux on a plaquette is
ambiguous up to a conjugation when choosing a different starting point, we assume that the whole conjugacy class of
flux [

∏
e∈∂p he] ⊂ Zx), we can indeed find such a gauge transformation as we now explain. We first choose a reference

vertex v in R, then for any vertex v′, we can find a path l that flows from v to v′ and define hv′v =
∏

e∈l he. Given
that all the fluxes are assumed to be in Zx, i.e., they commute with x, therefore, different choices of path l will give
rise to the same gauge transformation (taking hvv = 1),

Gx
v,R ≡

∏

v′∈R

G
hv′vxh

−1

v′v
v′ , (D11)

which will leave all edge DOFs invariant except for the ones on ∂R, and the shift on those edges is exactly the operator
Lx
∂R defined in Eq. (111). Now since there are plaquettes in R that have nontrivial fluxes, we cannot write the phase

part of the gauge transformation as

AmpR =
∏

tetra∈R

ω(tetra)s. (D12)

However, since we assume the plaquettes on ∂R are all fluxless, we still have a well defined factor
∏

tetra∈∂R ω(tetra)s,
the holonomy along ∂R is h ≡∏e∈∂R he ̸= 1. We conjecture the branch line operator to be

Bx
∂R =

∑

g

B
x,g
∂R ϵgvxg−1

v
(g), (D13)

with

B
x,g
∂R ≡

∑

gv

Lx
∂RW

gvxg
−1
v

∂R Θ
gvxg

−1
v

∂R δg,gv(
∏

e he)g
−1
v
|gv⟩v ⟨gv| . (D14)

Again we suppose that ∂R has the branching structure 1→ 2→ 3→ · · · → n← 1. Then, we have

Θ
gnxg

−1
n

∂R = θgnxg−1
n

(gnhn,n−1g
−1
n−1, gn−1h

−1
n,n−1hg

−1
1 ) · · · θg3xg−1

3
(g3h3,2g

−1
2 , g2h2,1g

−1
1 )θ−1

gnxg
−1
n

(gnhg
−1
n , gnhn,1g

−1
1 ),

(D15)
where h ≡ hn,n−1 · · ·h2,1h

−1
n,1 is the holonomy along ∂R. We can calculate the multiplication rule for Bx

∂R . First off,

notice that operator Lx
∂RW

gnxg
−1
n

∂R and Θ
gnyg

−1
n

∂R commute for any x, y ∈ G. Using the cocycle condition, one can show
that

Lx
∂RW

gnxg
−1
n

∂R L
y
∂RW

gnyg
−1
n

∂R = Lx
∂RW

gnxyg
−1
n

∂R γgnhn,n−1g
−1
n−1

(gnxg
−1
n , gnyg

−1
n ) · phase, (D16)

where the ‘phase’ in the above equation corresponds to Fig. 22. Using the correspondence between tetrahedrons and
cocycles, one can write

Lx
∂RW

gnxg
−1
n

∂R L
y
∂RW

gnyg
−1
n

∂R =L
xy
∂RW

gnxyg
−1
n

∂R γgnhn,n−1g
−1
n−1

(gnxg
−1
n , gnyg

−1
n ) · · ·

γg2h2,1g
−1
1

(g2xg
−1
2 , g2yg

−1
2 )γ−1

gnhn,1g
−1
1

(gnxg
−1
n , gnyg

−1
n ).

(D17)

By using the definition, we can compute the following product of the two phases,

Θ
gnxg

−1
n

∂R Θ
gnyg

−1
n

∂R =θgnxg−1
n

(gnhn,n−1g
−1
n−1, gn−1h

−1
n,n−1hg

−1
1 )θgnyg−1

n
(gnhn,n−1g

−1
n−1, gn−1h

−1
n,n−1hg

−1
1 ) · · ·

θg3xg−1
3

(g3h3,2g
−1
2 , g2h2,1g

−1
1 )θg3yg−1

3
(g3h3,2g

−1
2 , g2h2,1g

−1
1 )

θ−1

gnxg
−1
n

(gnhg
−1
n , gnhn,1g

−1
1 )θ−1

gnyg
−1
n

(gnhg
−1
n , gnhn,1g

−1
1 ).

(D18)
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FIG. 22: Geometric diagram illustrating the phase combination in Equation D16. Here gv′g−1
v = y and gv′′g−1

v′ = x
for v ∈ V (which are enumerated by 1,2,3,4).

Using the identity,

θg(x, y)θh(x, y)γx(g, h)γy(x
−1gx, x−1hx) = θgh(x, y)γxy(g, h), (D19)

one can derive that

Lx
∂RW

gnxg
−1
n

∂R Θ
gnxg

−1
n

∂R L
y
∂RW

gnyg
−1
n

∂R Θ
gnyg

−1
n

∂R = L
xy
∂RW

gnxyg
−1
n

∂R Θ
gnxyg

−1
n

∂R γgnhg−1
n

(gnxg
−1
n , gnyg

−1
n ). (D20)

When the pre-gauge structure is trivial (i.e. he ≡ 1), the phases W
gnxg

−1
n

∂R and Θ
gvxg

−1
v

∂R are reduced to W̃
gnxg

−1
n

∂R and

Θ̃
gvxg

−1
v

∂R , resepctively, and also the holonomy is trivial, h ≡ 1. Therefore, we arrive at the multiplication rule,

B̃x
∂RB̃

y
∂R = B̃

xy
∂R . (D21)

For a more general pre-gauge structure, where the fluxes are in Zx, one has

B
x,g
∂R B

y,g′

∂R = B
xy,g
∂R γg(gvxg

−1
v , gvyg

−1
v ) δg,g′ . (D22)

Appendix E: Finite-depth local unitary to map an SET state to a TQD state

For an SPT state, we define an operator

Ô = Uω

(∏

v

Vq
v

)
U†
ω, (E1)

where Uω is the operator that brings a direct product state to a G-SPT state,

Uω =
∑

{gv}

∏

∆

ω(g3g
−1
2 , g2g

−1
1 , g1)

s(∆)
⊗

v

|gv⟩ ⟨gv| , (E2)

and Vq
v is the Fourier transform of the quotient part. Namely, suppose |Q| = m, we label the embedding of Q in G as

s(Q) = {q0, · · · , qm−1}, where q0 = 1. Then we write

Vq
v =

1√
m

m−1∑

k,l=0

e
2πikl

m L
qkq

−1
l

+v δ(q(gv), ql), (E3)

whose hermitian conjugate is calculated to be

(Vq
v )

† =
1√
m

m−1∑

k,l=0

e−
2πikl

m L
qkq

−1
l

+v δ(q(gv), ql). (E4)
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We note that this Fourier transform is indeed unitary: (Vq
v )

†Vq
v = 1. Applying Ô on the G-SPT state brings a G-SPT

state to an N -SPT state:

Ô |ΨG-SPT⟩ = Uω

(∏

v

Vq
v

)
U†
ω |ΨG-SPT⟩

= Uω

(∏

v

Vq
v

)⊗

v

(∑

g∈G

|g⟩v
)

= Uω

⊗

v

( ∑

n∈N

|n⟩v
)

=
∑

{nv}

∏

∆

ω(n3n
−1
2 , n2n

−1
1 , n1)

s(∆)
⊗

v

|nv⟩

=
∑

{nv}

∏

∆

ν(n3n
−1
2 , n2n

−1
1 , n1)

s(∆)
⊗

v

|nv⟩

= |ΨN-SPT⟩ ,

(E5)

where ν is the restriction of ω on N and naturally a cocycle in H3(N,U(1)). The operator Vq
v on different vertices

commute,

Vq
v V

q
v′ − V

q
v′V

q
v = 0. (E6)

Therefore we can write an operator on vertex v

Ôv ≡ UωVq
vU

†
ω =

1√
m

m−1∑

k,l=0

e
2πikl

m L
qkq

−1
l

+v W
qkq

−1
l

v δ(q(gv), ql), (E7)

such that Ôv on different vertices commute, and their product over all the vertices is exactly Ô,

Ô ≡
∏

v

Ôv. (E8)

After gauging the normal subgroup N , the operator Ô is mapped to

ÔSET =
∏

v

Ôv,SET, (E9)

where

Ôv,SET =
1√
m

m−1∑

k,l=0

e
2πikl

m W
qkq

−1
l

v |qk⟩v ⟨ql| . (E10)

The operators Ôv,SET on different vertices commute. Also note that since Ôv,SET is supported on v, adjacent vertices,
and edges, and thus it can be implemented locally in the state after gauging.

Note that although all Ôv,SET commute, the operators W
qkq

−1
l

v generally depends on qv′ and ne configuration on

adjacent vertices and edges. To implement the transformation, we specify an ordering of Ôv,SET in ÔSET which can
be implemented in finite depth as follows. We divide the spatial lattice into sublattices such that, the vertices in each

sublattice are not adjacent in the spatial lattice. Then the operators L
qkq

−1
l

+v and W
qkq

−1
l

v′ always commute when v and

v′ are different vertices in one sublattice. As a result, we can implement Ôv,SET within one sublattice simultaneously,
and implement one sublattice in each step. As long as there is only a finite number of such sublattices in the spatial
lattice, the circuit we described above is a finite-depth local unitary,

ÔSET =
∏

sublattices

∏

v∈sublattice

Ôv,SET. (E11)

Applying ÔSET on an SET ground state will take all the vertex DOFs to |qv⟩ = |1⟩, i.e. disentangle all the vertex
DOFs. Therefore, under the action of this operator, we get a TQD ground state with gauge group N . We emphasize
that here we aim to probe the underlying anyons, and the circuit does not respect the global Q-symmetry, which is
why we can take an SET state to a pure TQD state.



38

Appendix F: Fusion rule in SET via gauging Z4 group from D4 SPT

We write the element in D4 as g̃ = (G, g) ≡ xGag. We construct a representative of 3-cocycle in H3(D4, U(1)) as
follows,

ω(g̃, h̃, l̃) = exp

{
2πip1
16

g(−1)H+L(h(−1)L + l − [h(−1)L + l]4) + πip2GHL+ πip3gHL

}
, (F1)

where p1 = 0, 1, 2, 3, and p2, p3 = 0 or 1. Gauging the normal subgroup Z4 of a D4-SPT results in a state in an SET
that has the same anyon theory as Dν(Z4), where

ν(g, h, l) = exp

{
2πip1
16

g(h+ l − [h+ l]4)

}
(F2)

is the restriction of ω on Z4. Different values of p1 correspond to different Z4-TQD models. The symmetry action is
nontrivial, and it takes an anyon to its inverse. In the sector Cx, there are 4 objects of quantum dimension 2. If we
pick one of them and name it as 0x, by dimension counting, we can write a fusion rule of the form,

0x × 0x = a+ b+ c+ d, (F3)

where a, b, c, d ∈ C are abelian anyons. Let b1 = 1 and b2 = a. Then one can write a matrix-valued operator on an
open ribbon as

(Hx
l )ii′ =

∑

n∈{1,a2}
H

bixb
−1
i ,binb

−1

i′
l ϵbixb−1

i
(binb

−1
i′ ), (F4)

where the matrix indices i, i′ = 1, 2, and the operator Hx,g
l satisfies the same multiplication rule as in Eq. (125),

Hx,g
l Hy,g′

l = Hxy,g
l γg(x, y)δg,g′ . (F5)

We conjecture that the operator Hx
l creates an object in the sector Cx on the end point of l, and we name it 0x.

Then the object 0x× 0x should be created on the endpoint of l by operator (Hx
l )

⊗2. Let ξ ≡ exp
{

2πi
16

}
. We calculate

the tensor product of the two open ribbon operators, and by diagonalizing it, we find an expression as follows:

(Hx
l )

⊗2 =

(
Hx,1

l + ϵx(a
2)Hx,a2

l ϵx(a)H
x,a
l + ϵx(a

3)Hx,a3

l

ϵxa2(a)Hxa2,a
l + ϵxa2(a3)Hxa2,a3

l Hxa2,1
l + ϵxa2(a2)Hxa2,a2

l

)⊗2

=

(
Hx,1

l + ξ−4p1Hx,a2

l ξp1Hx,a
l + ξ−3p1Hx,a3

l

ξ−p1Hxa2,a
l + ξ−9p1Hxa2,a3

l Hxa2,1
l +Hxa2,a2

l

)⊗2

=

(
H1,1

l + ξ−8p1H1,a2

l ξ2p1(−1)p3H1,a + ξ−6p1(−1)p3H1,a3

ξ6p1(−1)p3H1,a + ξ−2p1(−1)p3H1,a3

H1,1
l + ξ−8p1H1,a2

l

)

⊕
(

Ha2,1
l + ξ−4p1Ha2,a2

l ξ−4p1(−1)p3Ha2,a
l + ξ8p1(−1)p3Ha2,a3

l

(−1)p3Ha2,a
l + ξ−4p1(−1)p3Ha2,a3

l Ha2,1
l + ξ−4p1Ha2,a2

l

)

=

(
H1,1

l + ξ−8p1H1,a2

l ξ2p1(−1)p3H1,a + ξ−6p1(−1)p3H1,a3

ξ6p1(−1)p3H1,a + ξ−2p1(−1)p3H1,a3

H1,1
l + ξ−8p1H1,a2

l

)

⊕
(

Ha2,1
l + ξ−8p1ϵa2(a2)Ha2,a2

l ξ−6p1(−1)p3ϵa2(a)Ha2,a
l + ξ2p1(−1)p3ϵa2(a3)Ha2,a3

l

ξ−2p1(−1)p3ϵa2(a)Ha2,a
l + ξ6p1(−1)p3ϵa2(a3)Ha2,a3

l Ha2,1
l + ξ−8p1ϵa2(a2)Ha2,a2

l

)

≃(H1,1
l + ξ4p1(−1)p3H1,a

l + ξ8p1H1,a2

l + ξ12p1(−1)p3H1,a3

l )

⊕ (H1,1
l − ξ4p1(−1)p3H1,a

l + ξ8p1H1,a2

l − ξ12p1(−1)p3H1,a3

l )

⊕ (Ha2,1
l + ξ4p1(−1)p3ϵa2(a)Ha2,a

l + ξ8p1ϵa2(a2)Ha2,a2

l + ξ12p1(−1)p3ϵa2(a3)Ha2,a3

l )

⊕ (Ha2,1
l − ξ4p1(−1)p3ϵa2(a)Ha2,a

l + ξ8p1ϵa2(a2)Ha2,a2

l − ξ12p1(−1)p3ϵa2(a3)Ha2,a3

l ).
(F6)
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In the third equality, we used the multiplication rule Eq. (F5), and the p3 dependence arose from γg(x, y).

Let us first consider the case with p3 = 0. When p1 = 0, 2, the four parts in the last line — each part is a sum of
four H•,•

l operators — are exactly the four ribbon operators in the TQD Dν(Z4) that create anyons, 1, e2,m2, and
e2m2, respectively. Therefore, we obtain the fusion rule,

0x × 0x = 1 + e2 +m2 + e2m2. (F7)

When p1 = 1, 3, the four parts in the last line after the decomposition are four ribbon operators in the TQD Dν(Z4)
that create anyons, e, e3, em2, and e3m2. Therefore, we obtain the fusion rule,

0x × 0x = e+ e3 + em2 + e3m2. (F8)

According to Eq. (F6), when p3 takes value 1 instead of 0, the ribbon operators creating anyon e/e3/em2/e3m2 after
the decomposition become ribbon operators creating respectively e3/e/e3m2/em2 instead. According to Eq. (39), we
conclude that different values of p3 indeed give rise to different SFCs such that the fusion rules are shifted by the
anyon [e2] ∈ H2

ρ(Z2,A). We note that after the shift by e2, the fusion rules in Eq. (F7) and Eq. (F8) are actually
invariant. However, it does not mean that we are in the same SET order: further analysis, such as the F -symbol,
the S-matrix of the category C×

Z2
[51], is necessary. Indeed in this case, it is ensured that SET orders corresponding

to different p3 values are distinct, since further gauging the Z2 symmetry it should result in different TQD orders
Dω(D4).

Appendix G: Fusion rule in SET via gauging Z2 × Z2 group from D4 SPT

Again, we start from the representative 3-cocycle in H3(D4, U(1)) as follows:

ω(g̃, h̃, l̃) = exp

{
2πip1
16

g(−1)H+L(h(−1)L + l − [h(−1)L + l]4) + πip2GHL+ πip3gHL

}
, (G1)

where p1 = 0, 1, 2, 3, and p2, p3 = 0 or 1. Gauging the subgroup Z2 × Z2 = {1, x, t, xt} in D4 results in a state within

Dν′
(Z2 × Z2). Let us write t ≡ a2 and g = xg(1)

tg
(2)

= xg(1)

a2g
(2)

. The 3-cocycle for this group is

ν′(g, h, l) = exp
{2πip1

4
g(2)(−1)h(1)+l(1)

(
h(2)(−1)l(1) + l(2)

− [h(2)(−1)l(1) + l(2)]2
)
+ πip2g

(1)h(1)l(1)
}
,

=(−1)p1(g
(2)h(2)l(2)+g(2)h(2)l(1))+p2g

(1)h(1)l(1) .

(G2)

We conjecture that the operator Ha
l creates an object in sector Ca on the end point of l and we name it 0a. Then

the object 0a × 0a should be created on the endpoint of l by operator (Ha
l )

⊗2. Let ξ ≡ exp
{

2πi
16

}
, then a calculation
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similar to that in Sec. F gives us

(Ha
l )

⊗2 =

(
Ha,1

l + ϵa(a
2)Ha,a2

l ϵa(x)H
a,x
l + ϵa(xa

2)Ha,xa2

l

ϵa3(x)Ha3,x
l + ϵa3(xa2)Ha3,xa2

l Ha3,1
l + ϵa3(a2)Ha3,a2

l

)⊗2

=

(
Ha,1

l + ξ2p1Ha,a2

l ξ4p3Ha,x
l + ξ6p1+4p3Ha,xa2

l

ξ4p3Ha3,x
l + ξ2p1+4p3Ha3,xa2

l Ha3,1
l + ξ6p1Ha3,a2

l

)⊗2

=

(
Ha2,1

l + ξ4p1Ha2,a2

l ξ4p1+8p3Ha2,x + ξ8p1+8p3Ha2,xa2

ξ−4p1+8p3Ha2,x + ξ8p3Ha2,xa2

Ha2,1
l + ξ4p1Ha2,a2

l

)

⊕
(

H1,1
l +H1,a2

l ξ4p1+8p3H1,x
l + ξ4p1+8p3H1,xa2

l

ξ−4p1+8p3H1,x
l + ξ−4p1+8p3H1,xa2

l H1,1
l +H1,a2

l

)

=

(
Ha2,1

l + ϵa2(a2)Ha2,a2

l ξ4p1+8p3ϵa2(x)Ha2,x + ξ4p1+8p3ϵa2(xa2)Ha2,xa2

ξ−4p1+8p3ϵa2(x)Ha2,x + ξ−4p1+8p3ϵa2(xa2)Ha2,xa2

Ha2,1
l + ϵa2(a2)Ha2,a2

l

)

⊕
(

H1,1
l +H1,a2

l ξ4p1+8p3H1,x
l + ξ4p1+8p3H1,xa2

l

ξ−4p1+8p3H1,x
l + ξ−4p1+8p3H1,xa2

l H1,1
l +H1,a2

l

)

≃(Ha2,1
l + (−1)p3ϵa2(x)Ha2,x

l + ϵa2(a2)Ha2,a2

l + (−1)p3ϵa2(xa2)Ha2,xa2

l )

⊕ (Ha2,1
l − (−1)p3ϵa2(x)Ha2,x

l + ϵa2(a2)Ha2,a2

l − (−1)p3ϵa2(xa2)Ha2,xa2

l )

⊕ (H1,1
l + (−1)p3H1,x

l +H1,a2

l + (−1)p3H1,xa2

l )⊕ (H1,1
l − (−1)p3H1,x

l +H1,a2

l − (−1)p3H1,xa2

l ).
(G3)

For different values of p1 and p2, the anyon theory would be different after gauging. In Appendix H, we give a
complete classification of the anyons in all cases. When p3 = 0 here, one can then find the fusion rule from the above
calculation as

0a × 0a = 1 + e(1) +m(2) + e(1)m(2). (G4)

When p3 takes value 1 instead of 0, the ribbon operators that create anyon 1/e(1)/m(2)/e(1)m(2) after the de-
composition become ribbon operators that create e(1)/1/e(1)m(2)/m(2), respectively. According to Eq. (39), we can
conclude that different values of p3 indeed give rise to different SFCs such that the fusion rules are shifted by the
anyon [e(1)] ∈ H2

ρ(Z2,A).

Appendix H: Computation of braiding phases of anyons in TQD

In this appendix, we compute the braiding phases of anyons in Z2×Z2 TQD obtained from gauging Z2×Z2 ⊂ D4.
First we define the slant product

Hn(G,U(1))
ing−→ Hn−1(G,U(1)) (H1)

as follows:

ingω(g1, ..., gn−1) = ω(g, g1, ..., gn−1)
(−1)n−1

n−1∏

i=1

ω(g1, ..., gi, g, gi+1, ..., gn−1)
(−1)n−1+i

. (H2)

Now let us consider the cocycle given in Eq. (175):

ν′(g, h, l) = (−1)p1(g
(2)h(2)l(2)+g(2)h(2)l(1))+p2g

(1)h(1)l(1) . (H3)

One can calculate the slant product with g = x, t and xt:

ixν
′(h, l) = (−1)p1h

(2)l(2)+p2h
(1)l(1) , (H4)

itν
′(h, l) = (−1)p1h

(2)l(2) , (H5)

ixtν
′(h, l) = (−1)p2h

(1)l(1) . (H6)



41

These slant products give the projective phases in the projective representations µx, µt, and µxt, respectively, as
follows:

µx(h)µx(l) = ixν
′(h, l)µx(hl), (H7a)

µt(h)µt(l) = itν
′(h, l)µt(hl), (H7b)

µxt(h)µxt(l) = ixtν
′(h, l)µxt(hl). (H7c)

From Eq. (H6), we see that the projective representations are given respectively by

µx(h) = ip1h
(2)+p2h

(1)

, µt(h) = ip1h
(2)

, µxt(h) = ip2h
(1)

. (H8a)

In addition to these projective representations of Z2 × Z2, we have the respective ordinary representations

µ1(h) = (−1)h(1)

, µ2(h) = (−1)h(2)

, µ12(h) = (−1)h(1)+h(2)

. (H9)

If we label the anyons in Z2 × Z2 TQD by e(1), e(2), m(1), and m(2), where e(i) denote the elementary charges
(chargeons) and m(i) denote the elementary fluxes, charges are given by the ordinary representation of Z2 × Z2 and
the fluxes are given by the projective representations of Z2 × Z2.

Then the general formula for calculating the braiding phase between anyons a and b is

B(a, b) = µa(flux(b))µb(flux(a)). (H10)

We list the braiding phases between the various elementary charges and fluxes as follows,

B(e(1),m(1)) = µ1(x)µx(1) = −1, B(e(1),m(2)) = µ1(t)µt(1) = 1,

B(e(2),m(1)) = µ2(x)µx(1) = 1, B(e(2),m(2)) = µ2(t)µt(1) = −1,
B(m(1),m(1)) = µx(x)

2 = i2p2 = (−1)p2 , B(m(1),m(2)) = µx(t)µt(x) = ip1 ,

B(m(2),m(2)) = µt(t)
2 = i2p1 = (−1)p1 .

(H11)

Appendix I: Fusion rule in SET from gauging S3 SPT

We write the element in S3 as g̃ = (G, g) ≡ xGag. We construct a representative of 3-cocycle in H3(S3, U(1)) as
follows:

ω(g̃, h̃, l̃) = exp

{
2πip1
9

g(−1)H+L(h(−1)L + l − [h(−1)L + l]3) + πip2GHL

}
, (I1)

where p1 = 0, 1, 2, and p2,= 0, 1. Gauging the normal subgroup Z3 of a S3-SPT state results in a state in an SET
state that has the same anyon theory as Dν(Z3), where

ν(g, h, l) = exp

{
2πip1
9

g(h+ l − [h+ l]3)

}
(I2)

is the restriction of ω on Z3. Different values of p1 correspond to different Z3-TQD models. The symmetry action
takes an anyon to its inverse, which is nontrivial. In sector Cx, there is only one object of quantum dimension 3. We
name it 0x. By dimension counting, we can write a fusion rule of the form,

0x × 0x =

9∑

i=1

ai, (I3)

where ai ∈ C are abelian anyons. Let b1 = 1, b2 = a, and b3 = a2. One can write a matrix-valued operator on an
open ribbon as

(Hx
l )ii′ = H

bixb
−1
i ,bib

−1

i′
l ϵbixb−1

i
(bib

−1
i′ ), (I4)
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where the matrix indices are i, i′ = 1, 2, 3. As we conjectured, the object 0x × 0x should be created by the operator
(Hx

l )
⊗2 on the endpoint of l. Let χ ≡ exp

{
2πi
9

}
, then a calculation similar to that in Sec. F gives us

(Hx
l )

⊗2 =




Hx,1
l ϵx(a

2)Hx,a2

l ϵx(a)H
x,a
l

ϵxa(a)H
xa,a
l Hxa,1

l ϵxa(a
2)Hxa,a2

l

ϵxa2(a2)Hxa2,a2

l ϵxa2(a)Hxa2,a
l Hxa2,1

l




⊗2

=




Hx,1
l χ−2p1Hx,a2

l χp1Hx,a
l

χ−p1Hxa,a
l Hxa,1

l Hxa,a2

l

χ−4p1Hxa2,a2

l Hxa2,a
l Hxa2,1

l




⊗2

=




H1,1
l χ−4p1H1,a2

l χ2p1H1,a
l

χ−5p1H1,a
l H1,1

l χ−3p1H1,a2

l

χ−2p1H1,a2

l χ−6p1H1,a
l H1,1

l


⊕




Ha,1
l χ−2p1Ha,a2

l χ−3p1Ha,a
l

χ−4p1Ha,a
l Ha,1

l χ2p1Ha,a2

l

χ−3p1Ha,a2

l χp1Ha,a
l Ha,1

l




⊕




Ha2,1
l χ−3p1Ha2,a2

l χ−2p1Ha2,a
l

Ha2,a
l Ha2,1

l χ−2p1Ha2,a2

l

χ−p1Ha2,a2

l χ−p1Ha2,a
l Ha2,1

l




=




H1,1
l χ−4p1H1,a2

l χ2p1H1,a
l

χ−5p1H1,a
l H1,1

l χ−3p1H1,a2

l

χ−2p1H1,a2

l χ−6p1H1,a
l H1,1

l


⊕




Ha,1
l χ−4p1ϵa(a

2)Ha,a2

l χ−4p1ϵa(a)H
a,a
l

χ−5p1ϵa(a)H
a,a
l Ha,1

l ϵa(a
2)Ha,a2

l

χ−5p1ϵa(a
2)Ha,a2

l ϵa(a)H
a,a
l Ha,1

l




⊕




Ha2,1
l χ−7p1ϵa2(a2)Ha2,a2

l χ−4p1ϵa2(a)Ha2,a
l

χ−2p1ϵa2(a)Ha2,a
l Ha2,1

l χ−6p1ϵa2(a2)Ha2,a2

l

χ−5p1ϵa2(a2)Ha2,a2

l χ−3p1ϵa2(a)Ha2,a
l Ha2,1

l




≃(H1,1
l +H1,a

l +H1,a2

l )⊕ (H1,1
l + χ3H1,a

l + χ6H1,a2

l )⊕ (H1,1
l + χ−3H1,a

l + χ−6H1,a2

l )

⊕ (Ha,1
l + ϵa(a)H

a,a
l + ϵa(a

2)Ha,a2

l )⊕ (Ha,1
l + χ3ϵa(a)H

a,a
l + χ6ϵa(a

2)Ha,a2

l )

⊕ (Ha,1
l + χ−3ϵa(a)H

a,a
l + χ−6ϵa(a

2)Ha,a2

l )⊕ (Ha2,1
l + ϵa2(a)Ha2,a

l + ϵa2(a2)Ha2,a2

l )

⊕ (Ha2,1
l + χ3ϵa2(a)Ha2,a

l + χ6ϵa2(a2)Ha2,a2

l )⊕ (Ha2,1
l + χ−3ϵa2(a)Ha2,a

l + χ−6ϵa2(a2)Ha2,a2

l ).

(I5)

The nine parts in the last line after the decomposition are the nine ribbon operators in Dν(Z3) that create the anyons
1, e, e2,m, em, e2m,m2, em2, and e2m2. Therefore, one can conclude the fusion rule from the above calculation:

0x × 0x = 1 + e+ e2 +m+ em+ e2m+m2 + em2 + e2m2. (I6)

Appendix J: An alternative N-step gauging via measurement

In this section, we give an alternative N-step gauging procedure. Following the 2-step gauging, we generalize the
procedure to N -step gauging (a similar method was proposed by [44] and [43] for solvable groups) for a group G that
satisfies a criterion. The N -steps correspond to the N factors of abelian groups of G.
Let us consider a group G with the following property: there exist a sequence of groups N0,N1, ...Nn abelian and

another sequence M0,M1, ... Mn such that

N0 ≡ {e}, M0 = G,

N1 ◁ G , M1 =
G

N1
,

N2 ◁ M1, M2 =
M1

N2
,

...

Nn ◁ Mn−1, Mn =
Mn−1

Nn
= e.

(J1)
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If the group G satisfies this property we say it admits a sequential normal subgroups. We will prove in appendix K
that admitting sequential normal subgroups is equivalent to the group being solvable. Given G admits a sequential
normal subgroup, we get a sequence of short exact sequences

1 −→ N1
i1−→G

π1−→M1 −→ 1, (J2a)

1 −→ N2
i2−→M1

π2−→M2 −→ 1, (J2b)

... (J2c)

1 −→ Nn−1
in−1−−−→Mn−2

πn−−→Mn−1 −→ 1, (J2d)

1 −→ Nn
in−→Mn−1 −→ 1. (J2e)

where ik is an inclusion map and πk is a projection map. Now we choose a sequence of lifts

M1
s1−→ G, (J3a)

M2
s2−→M1, (J3b)

... (J3c)

Mn−1
sn−2−−−→Mn, (J3d)

which will be fixed throughout this section. With these lifts we can embed each of the normal groups Nk as a set in G.
If n ∈ Nk, s1(s2(...sk−1(ik(n)))) ∈ G is an embedding of n ∈ Nk in G. To simplify notation, we denote s1 ◦ s2 ◦ ... ◦ sk
by s̃k. Then s̃k : Mk −→ G. Using this notation, a general g ∈ G can be written as

g = s̃n−1(in(a
in
n ))...s̃1(i2(a

i2
2 ))i1(a

i1
1 ), (J4)

where aj ∈ Nj is a generator for each abelian normal subgroup. The notation a
ij
j is a shorthand for the product

of generators for each cyclic subgroup of the abelian group, i.e, a
ij
j =

∏l
k=1(a

k
j )

ikj where akj for k = 1, ..., l are the
generators for the l cyclic factors.

Claim J.1. The representation of g ∈ G given in Eq. J4 is unique. If g = s̃n−1(in(a
in
n ))...i1(a

i1
1 ) =

s̃n−1(in(a
i′n
n ))...i1(a

i′1
1 ), then in = i′n,..., i1 = i′1.

Proof. The proof follows by applying the projections π̃k := π1 ◦ π2 ◦ ... ◦ πk for k = 1, ..., n − 1. First apply π̃n−1 to
g. This gives in = i′n. Then apply π̃n−2 which gives in−1 = i′n−1. Proceeding similarly, at kth step apply π̃n−k to get

in−k+1 = i′n−k+1. At (n− 1)th step we get i2 = i′2. This automatically fixes i1 = i′1 proving the unique representation
of g.

To simplify the notation in the remaining part of this section, we omit writing the lifts explicitly and write aikk ≡
s̃k−1(ik(a

ik
k )). Hence

g = ainn ...ai11 . (J5)

Let h ∈ G. Similarly, we can write h = aīnn ...aī11 . Using this notation, we can write down the group multiplication as

gh−1 = ainn ...ai11 a−ī1
1 ...a−īn

n . (J6)

We will use Eq. (J6) to implement the N -step gauging procedure. We will gauge the G DOFs on the vertices of
the lattice sequentially in N -steps. The complete procedure for N -step gauging is as follows

(1) Include ancillas. Add ancillas in the state |e⟩, where e ∈ G is the identity element, on the edges between the
vertices.

(2) Entangle gauge and matter DOFs. Apply the following 2 controlled-shift operators with controls c1, c2 on
neighboring vertices (oriented as c2 → c1) and target t on the in-between ancilla,

UN1 =
∑

g1,g2∈G

∑

g3∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗
∣∣N1(g1)g3N1(g2)

−1
〉
e
⟨g3| . (J7)

HereN1(g) is the part of the decomposition g which lies inN1; when g = ainn ...ai11 with aj ∈ Nj , thenN1(g) = ai11 .
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(3) Measure XN1
on matter DOFs and correct the zN1

factors. Define: XN1
= {X1, ..., Xnm1

} for N1 =
∏m1

k=1 Znk

where Xj denote j × j Pauli X matrix. Following the same define: zN1
=
∏m1

k=1 znk
where znk

is the phase
factor coming from measuring Xnk

on the vertex. The value of znk
is same as acting Pauli Znk

operator on the

vertex before measurement. After measurement, with the outcome being XN1 = {ω−p1

1 , ..., ω
−pm1
1 } (ωk being

nkth root of unity), there is a corresponding phase factor
∏m1

k=1 z
−pk
nk

. Using the transmutation rule for each of
the phase terms in the product zN1 ,

Znk
(N1(g2))Znk

(N1(g1)N1(g2)
−1) = Znk

(N1(g1)). (J8)

one can correct all those factors by moving them to a single vertex, resulting in an M1 SET ground state.

(4) Repeat the procedure of entangling gauge and matter DOFs for M1 DOFs on the vertices. Apply the following
unitary as before,

UN2
=

∑

g1,g2∈M1

∑

g3∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗
∣∣N2(g1)g3N2(g2)

−1
〉
e
⟨g3| . (J9)

(5) Measure XN2 on matter DOFs and correct the zN2 factors. Define: XN2 = {X1, ..., Xnm2
} for N2 =

∏m2

k=1 Znk

where Xj denote j × j Pauli X matrix. Following the same define: zN2
=
∏m2

k=1 znk
where znk

is the phase
factor coming from measuring Xnk

on the vertex. The value of znk
is same as acting Pauli Znk

operator on the

vertex before measurement. After measurement, with the outcome being XN2
= {ω−p1

1 , ..., ω
−pm2
1 } (ωk being

nkth root of unity), there is a corresponding phase factor
∏m2

k=1 z
−pk
nk

. Using the transmutation rule for each of
the phase terms in the product zN2

,

Znk
(N2(g2))Znk

(N2(g1)N2(g2)
−1ϕN2(g2)(ge)) = Znk

(N2(g1)). (J10)

one can correct all those factors by moving them to a single vertex, resulting in an M2 SET ground state. (Note
that Znk

(ϕN2(g2)(g3)) = 1. This is because ϕN2(g2)(g3) ∈ N1 for g3 ∈ N1 and hence has no component in N2.)

(6) At lth step of gauging process, again repeat the procedure of entangling gauge and matter DOFs for Ml−1 DOFs
on the vertices.Apply the following unitary

UNl
=

∑

g1,g2∈Ml−1

∑

g3∈G

|g1, g2⟩c1,c2 ⟨g1, g2| ⊗
∣∣Nl(g1)g3Nl(g2)

−1
〉
e
⟨g3| . (J11)

(7) Measure XNl
on matter DOFs and correct the zNl

factors. Define: XNl
= {X1, ..., Xnml

} for Nl =
∏ml

k=1 Znk

where Xj denote j×j Pauli X matrix. Following the same define: zNl
=
∏ml

k=1 znk
where znk

is the phase factor
coming from measuring Xnk

on the vertex. The value of znk
is same as acting Pauli Znk

operator on the vertex

before measurement. After measurement, with the outcome being XNl
= {ω−p1

1 , ..., ω
−pml
1 } (ωk being nkth root

of unity), there is a corresponding phase factor
∏ml

k=1 z
−pk
nk

. Using the transmutation rule for each of the phase
terms in the product zNl

,

Znk
(Nl(g2))Znk

(Nl(g1)Nl(g2)
−1ϕNl(g2)(ge)) = Znk

(Nl(g1)), (J12)

one can correct all those factors by moving them to a single vertex, resulting in an Ml SET ground state. (Note
that Znk

(ϕNl(g2)(g3)) = 1. This is because ϕNl(g2)(g3) ∈ (...(N1⊗N2)⊗ ....⊗Nl−1) for g3 ∈ (...(N1⊗N2)⊗ ...⊗
Nl−1) and hence has no component in Nl. The notation G⊗H is a short hand for group extension of G by H.)

(8) Repeat this process for all till the last normal subgroup Nn.

The groups formed from extensions are

Gl ≡ ((N1 ⊗N2)⊗N3)...⊗Nl ≡ {s̃l−1(a
il
l )...s̃1(a

i2
2 )i(ai11 )|aill ∈ Nl, ..., a

i1
1 ∈ N1}. (J13)

Claim J.2. Gl is a subgroup of G.

Proof. We prove this by induction. First we prove G2 is subgroup of G. G2 = N1 ⊗ N2. Suppose g1 =
s(q1)i(n1) ∈ G2 and g2 = s(q2)i(n2) ∈ G2, then g1g2 = s(q1)i(n1)s(q2)i(n2) = s(q1)s(q2)s(q2)

−1(i(n1))s(q2)i(n2) =
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s(q1q2)ω(q1, q2)ϕ
q−1
2 (i(n1))i(n2). Hence g1g2 ∈ G2. Assume Gl−1 is a subgroup of G. We prove Gl is a subgroup of

G. Suppose g1 = s̃l−1(a
īl
l )...s̃1(a

ī2
2 )i(aī11 ) ∈ Gl, g2 = s̃l−1(a

il
l )...s̃1(a

i2
2 )i(ai11 ) ∈ Gl. Let us define

b1 = s̃l−1(a
il
l )...s̃1(a

i2
2 )

b2 = s̃l−1(a
il
l )...s̃2(a

i3
3 )

...

bl = s̃l−1(a
il
l )

(J14)

Then

g1g2 = s̃l−1(a
īl
l )s̃l−1(a

il
l )ϕ

b−1
l (s̃l−2(a

īl−1

l−1 ))s̃l−2(a
il
l−1)...ϕ

b−1
1 (i(aī11 ))i(ai11 ). (J15)

Only the first two terms in the above equation lies in Nl. The remaining terms lie in Gl−1. Hence they can be
expressed as

ϕb−1
l (s̃l−2(a

īl−1

l−1 ))s̃l−2(a
il
l−1)...ϕ

b−1
1 (i(aī11 ))i(ai11 ) = s̃l−2(a

i′l−1

l−1 )....i(a
i′1
1 ). (J16)

Now we prove that s̃l−1(a
īl
l )s̃l−1(a

il
l ) = s̃l−1(a

īl+il
l )h where h ∈ Gl−1. Then by induction hypothesis,

g1g2 = s̃l−1(a
īl+il
l )s̃l−2(a

i′′l−1

l−1 )...s̃1(a
i′′2
2 )i(a

i′′1
1 ). (J17)

which shows that g1g2 ∈ Gl. First note that applying the relation s(a)s(b) = s(ab)ω(a, b), we get

s̃l−1(a
īl
l )s̃l−1(a

il
l ) = s

(
s̃l−2(a

īl
l )s̃l−2(a

il
l )
)
ω(s̃l−2(a

īl
l ), s̃l−2(a

il
l )),

= s
(
s
(
s̃l−3(a

īl
l )s̃l−3(a

il
l )
)
ω(s̃l−3(a

īl
l ), s̃l−3(a

il
l ))
)
ω(s̃l−2(a

īl
l ), s̃l−2(a

il
l )),

...

(J18)

One can write this equation in short hand as

s̃l−1(a
īl
l )s̃l−1(a

il
l ) = s(M1)N1,

= s(s(M2)N2)N1,

= s(s(s(M3)N3)N2)N1,

...

= s(...(s(Ml−1)Nl−1)...)N1,

(J19)

where Nl denote the terms coming from ω factors in Eq. J18 and Mr denote s̃l−1−r(a
īl
l )s̃l−1−r(a

il
l ), Ml−1 denote

aīl+il
l . Now applying the relation s(a)s(b)ω(a, b)−1 = s(ab), we get

s̃l−1(a
īl+il
l )× (terms in Gl−1). (J20)

By induction hypothesis, terms in Gl−1 can be written as s̃l−2(a
ĩl−1

l−1 )s̃l−3(a
ĩl−2

l−2 )...s̃1(a
ĩ1
1 )i(aĩ11 ). Combining the terms

in Eq. J16, we get the desired decomposition of g1g2 as in Eq. J17 which prove g1g2 ∈ Gl. One can show if g ∈ Gl,
g−1 ∈ Gl by applying π̃l−1, π̃l−2,... upto π on g−1. This will give the explicit decomposition of g−1 using each of the
normal subgroups Ni for i = 1, ..., l.

Claim J.3. Gl is normal in G.

Proof. Let g ∈ G. g = s̃n−1(a
in
n )...s̃1(a

i2
2 )i(ai11 ). If k ∈ Gl, let k = s̃l−1(a

īl
l )...s̃1(a

ī2
2 )i(aī11 ). Then gkg−1 =

s̃n−1(a
in
n )...s̃1(a

i2
2 )i(ai11 )s̃l−1(a

īl
l )...s̃1(a

ī2
2 )i(aī11 )i(ai11 )−1s̃1(a

i2
2 )−1...s̃n−1(a

in
n )−1. Applying π̃i for i = n − 1, ..., l, we

see that π̃i(gkg
−1) = 1. This shows that gkg−1 ∈ Gl. Hence Gl is normal in G.
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Appendix K: Proof of solvable equivalent to admitting sequential normal abelian subgroups

In this section, we prove that the assumption about the group G we used in section J is equivalent to the assumption
that G is a solvable group.

Definition 1. A derived series of a finite group G is a sequence of normal subgroups normal inside the previous one

G ▷ G(1) ▷ G(2) ▷ G(3).... ▷ G(n) ▷ e, (K1)

for some n such that the quotient groups G/G(1), G(1)/G(2),...,G(n)/e are all abelian.

Definition 2. A finite group G is solvable if it admits a derived series.

Proposition K.1. If G is solvable then it admits the following sequence

G ▷ G1 ▷ G2 ▷ ... ▷ Gm ▷ e, (K2)

for some m which is called the derived length of the group G. Here Gi+1 = [Gi, Gi] is the commutator subgroup of
Gi.

Proof. Note that the commutator subgroup of a group G is the smallest normal subgroup in G such that G/[G,G]
is abelian. Hence we have G1 ⊂ G(1). Now we have G2 = [G1, G1] ⊂ [G(1), G(1)] ⊂ G(2). Inductively we can
assume that Gk ⊂ G(k). Then Gk+1 = [Gk, Gk] ⊂ [G(k), G(k)] ⊂ G(k+1). Hence Gk ⊂ G(k) ∀k ∈ {1, 2, ...,m}. This
clearly says that the sequence of commutator groups doesn’t terminate. If it would have terminated at Gk+1, then
Gk+2 = [Gk+1, Gk+1] = Gk+1. One can repeat this to argue Gk+1 ⊂ G(k+1), Gk+1 ⊂ G(k+2), ... Gk+1 ⊂ G(n). But
Gk+1 is nonabelian group and G(n) is abelian. Hence we can’t have Gk+1 ⊂ G(n), contradiction. So the sequence of
commutator subgroups doesn’t terminate and we have the sequence.

Definition 3. We say a finite group G admits a sequential normal subgroups if it satisfies the following property:

N1 ◁ G,N1 abelian M1 = G/N1,

N2 ◁ M1, N2 abelian M2 = M1/N2,

...

Nn ◁ Mn−1, Nn abelian Mn = Mn−1/Nn = e.

(K3)

Claim K.1. Suppose the finite group G is solvable then it admits sequential normal subgroups.

Proof. From proposition K.1 we see that G admits the sequence

G ▷ G1 ▷ G2 ▷ ... ▷ Gm ▷ e. (K4)

where Gi+1 = [Gi, Gi] is the commutator subgroup. First we prove that Gk ◁ G ∀k ∈ {1, 2, ...,m}. This we prove
by induction on k. Clearly, G1 ◁ G. Assuming Gk−1 ◁ G, we need to prove Gk ◁ G. Gk = [Gk−1, Gk−1].
Hence, Gk is generated by elements of the form ghg−1h−1 where g, h ∈ Gk−1. Now one can write kghg−1h−1k−1 =
kgk−1khk−1kg−1k−1kh−1k−1. Since Gk−1 ◁ G, kgk−1 ∈ Gk ∀g ∈ Gk and k ∈ G. So kgk−1khk−1kg−1k−1kh−1k−1 ∈
[Gk−1, Gk−1] = Gk. So we see that Gk ◁ G.

Now we choose

N1 = Gm ◁ G,N1 abelian M1 = G/N1,

N2 = Gm−1/Gm ◁ G/Gm, N2 abelian M2 = M1/N2,

...

Nm+1 = G/G1, Nm+1 abelian Mm+1 = Mm/Nm+1 = e.

(K5)

Claim K.2. If the finite group G admits a sequential normal subgroups then G is solvable.
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Proof. Suppose G is not solvable, assuming it admits sequential normal subgroups. Then the derived series of com-
mutator subgroup terminate

G ▷ G1 ▷ G2 ▷ ... ▷ Gk (K6)

for some k, where Gi+1 = [Gi, Gi]. Now one could consider the series

M1 ▷M1(1) ▷ M1(2) ▷ ...

M2 ▷M2(1) ▷ M2(2) ▷ ...

...

M l ▷M l(1) ▷ M l(2) ▷ ...

Mn−1 ▷M (n−1)(1) ▷ M (n−1)(2) ▷ ...

(K7)

where M j(l+1) = [M j(l),M j(l)] is the commutator subgroup and M j(0) ≡ M j . Now let us look at the following
proposition.

Proposition K.2. If the derived series of commutator subgroups of G terminates then so does for M1, M2,..., Mn−1.

Proof. Consider [M1,M1] = [G/N1, G/N1]. It is generated by gN1g
′N1g

−1N1g
′−1N1 = gg′g−1g′−1N1. We know that

gg′g−1g′−1 ∈ G1. However, gN1 = N1 if and only if g ∈ N1 ∩ G1. Hence, we find [G/N1, G/N1] ∼= G1/(N1 ∩ G1).
Repeating this we find

[
G1/(N1 ∩G1), G1/(N1 ∩G1)

]
= G2/(N1 ∩ G2) and so on. Hence, the derived series for

commutator subgroups for M1 is given by

G/N1 ▷ G1/(N1 ∩G1) ▷ G2/(N1 ∩G2) ▷ ... ▷ Gk/(N1 ∩Gk). (K8)

This terminates since [Gk, Gk] = Gk and hence
[
Gk/(N1 ∩Gk), Gk/(N1 ∩Gk)

]
= Gk/(N1 ∩Gk). A similar argument

shows that all other derived series terminates.

Now we have the following terminating derived series

G ▷ G1 ▷ ... ▷ Gk,

G/N1 ▷ G1/(N1 ∩G1) ▷... ▷ Gk/(N1 ∩Gk),

M1/N2 ▷ M1(1)/(N2 ∩M1(1)) ▷... ▷ M1(k)/(N2 ∩M1(k)),

...

M l/Nl+1 ▷ M l(1)/(Nl+1 ∩M l(1)) ▷... ▷ M l(k)/(Nl+1 ∩M l(k)),

...

Mn−2/Nn−1 ▷ M (n−2)(1)/(Nn−1 ∩M (n−2)(1)) ▷... ▷ M (n−2)(k)/(Nn−1 ∩M (n−2)(k)).

(K9)

Since the last series is Mn−1 = Nn ▷ e, it terminates in length 1. This is a contradiction. Hence G is solvable.
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