Symmetry-enriched topological order from partially gauging symmetry-protected
topologically ordered states assisted by measurements

Yabo Li (ZFE1#),1'2 Hiroki Sukeno ([J¥f##C),"2 Aswin Parayil
Mana,? Hendrik Poulsen Nautrup,® and Tzu-Chieh Wei (BT f)! 2
LC. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, New York 11794-3840, USA

2 Department of Physics and Astronomy, State University of New York at Stony Brook, New York 11794-3840, USA
3 Institute for Theoretical Physics, University of Innsbruck, Technikerstr, 21a, A-6020 Innsbruck, Austria

(Dated: September 23, 2023)

Symmetry protected topological (SPT) phases exhibit nontrivial short-ranged entanglement pro-
tected by symmetry and cannot be adiabatically connected to trivial product states while preserving
the symmetry. In contrast, intrinsic topological phases do not need ordinary symmetry to stabilize
them and their ground states exhibit long-range entanglement. It is known that for a given sym-
metry group G, the 2D SPT phase protected by G is dual to the 2D topological phase exemplified
by the twisted quantum double model D¥(G) via gauging the global symmetry G. Recently it was
realized that such a general gauging map can be implemented by some local unitaries and local
measurements when G is a finite, solvable group. Here, we review the general approach to gauging
a G-SPT starting from a fixed-point ground-state wave function and applying a N-step gauging
procedure. We provide an in-depth analysis of the intermediate states emerging during the N-step
gauging and provide tools to measure and identify the emerging symmetry-enriched topological order
(SET) of these states. We construct the generic lattice parent Hamiltonians for these intermediate
states, and show that they form an entangled superposition of a twisted quantum double (TQD)
with an SPT ordered state. Notably, we show that they can be connected to the TQD through a
finite-depth, local quantum circuit which does not respect the global symmetry of the SET order.
We introduce the so-called symmetry branch line operators and show that they can be used to
extract the symmetry fractionalization classes (SFC) and symmetry defectification classes (SDC) of
the SET phases with the input data G and [w] € H*(G, U(1)) of the pre-gauged SPT ordered state.
We illustrate the procedure of preparing and characterizing the emerging SET ordered states for
some Abelian and non-Abelian examples such as dihedral groups D,, and the quaternion group @s.

I. INTRODUCTION

Topological order first originated from the study of
the fractional quantum Hall effect [I, [2]. It cannot be
described by local order parameters and is beyond Lan-
dau’s classification of matter. It exhibits ground-state
degeneracy dependent on the topology of the underlying
manifold and the excitations, displaying anyonic statis-
tics [3][4]. More recently, it was recognized as possessing
some kind of long-range quantum entanglement [5] and
having nonzero topological entanglement [6H8]. In addi-
tion to fractional quantum Hall systems and certain spin
liquids [9], there are models that manifest topological
order, such as Kitaev’s toric code and quantum double
(QD) models [10], their twisted versions [11], Levin-Wen
string-nets [12] and more recently fractons [13}[14]. Topo-
logical features that characterize such a phase of matter
are robust to local perturbations, which is a property
highly desirable in quantum memories [15]. Some of the
topological models also offer the capability of topological
quantum computation (TQC) by exploiting the braiding
of anyons [10, [16H18], which has emerged as one of the
schemes for fault-tolerant quantum computation due to
its inherent robustness.

Interestingly, from the perspective of adiabatic con-
nection and quantum circuits, ground states of different
phases at zero temperature cannot be connected by ei-
ther adiabatic evolution or a finite-depth quantum cir-

cuits [19]. Intrinsic topologically ordered states therefore
cannot be created from a trivial ground state, such as
product states, with a quantum circuit of finite depth.
When all the local gates in the circuits are required to
respect a certain global symmetry, trivial gapped phases
can be further fine-grained into distinct classes: those
that can be created from product states with symmetric,
finite-depth circuits and those that cannot. The latter
classes are referred to as nontrivial symmetry-protected
topological (SPT) phases [2022], and most of them can
be classified by cohomology [5] [23].

Quantum technology has been constantly improving
and evolving. Several medium-scale quantum comput-
ers are available. Recently, certain topologically ordered
states, such as those of the toric model, were created by
quantum circuits [24], and furthermore, some braiding
statistics has also been observed in experiments [25H29].
Yet, preparation of high-fidelity ground states and precise
manipulation of excitations in topological systems still re-
main challenging in the current era of noisy intermediate-
scale quantum (NISQ) devices [30].

For the family of the QD models and their twisted ver-
sions, i.e., twisted quantum double (TQD) models [11],
there is a well-known correspondence to models of SPT
phases [5] [3TH33] via a procedure called gauging [34H37].
When two quantum states are topologically distinct with
respect to a symmetry G, then they cannot be trans-
formed to each other with a finite-depth, piecewise lo-



cal unitary transformation that preserves the symmetry.
The classification and characterization of SPT phases
with global symmetry G in two dimensions is facilitated
by a function of g; € G, namely a 3-cocycle ws(g1, g2, g3),
which is a representative element of the 3rd cohomol-
ogy group of G, denoted by H3(G,U(1)) [5]. At the
same time, the TQD model is also characterized by the
3-cocycle: inequivalent choices of the 3-cocycle give rise
to distinct intrinsic topological phases [11]. Indeed, the
wave function of the TQD model with the gauge group G
is obtained by gauging the global symmetry G in the cor-
responding SPT wave function. An interesting question
is whether such a gauging map is physically possible.

It has been known that the ground state of the toric
code can be efficiently prepared by measuring half of
qubits in a 2D cluster state [38]. The use of mea-
surements thus can provide a route to creating long-
range entangled states with finite-depth operations [39-
41]. Ref. [42] demonstrated that ground states of QD
models with S3 and D4 groups can be prepared through
finite-depth local unitary operations supplemented with
on-site measurements. It was also argued in Ref. [39)
that a similar procedure should work for QD models
with any solvable group G, which was later elaborated
in Ref. [43] through repeated rounds of finite-depth op-
erations, where each round incorporates unitaries, mea-
surements, feedforward, and corrections. This scheme
was further generalized to the general TQD models with
solvable groups in [44], where the number of measure-
ment rounds was classified for various topological orders,
leading to a conjecture of a new hierarchy of topolog-
ical orders when one includes measurements as an in-
gredient. It is worth mentioning that further improve-
ment is possible for the QD models with D4 and Qs
groups, which can be prepared with a single round of
measurements, feedforward, and corrections [45]. Ex-
perimentally, measurement-based gauging is a promis-
ing method for realizing nontrivial topological orders in
small-scale systems requiring only local unitary opera-
tions, mid-circuit measurements, and feedforward correc-
tions [29] 461 [47].

The present work re-examines the measurement-based
gauging from the perspective of group representation the-
ory and provides a characterization of the transformation
and emergence of SPT, SET, and intrinsic topological
order during gauging. In general, for a solvable group
G, the corresponding TQD model can be prepared from
a G-SPT through a multi-step gauging procedure. In
this work, we provide two approaches that realize such
an N-step gauging which reduces to a one-step gauging
when G is abelian or to a two-step gauging when G is
dihedral. For non-solvable groups, it is argued that the
measurement-assisted gauging procedure cannot be im-
plemented by a finite-depth circuit [44].

Interestingly, we find that the intermediate states, that
emerge during the multi-step gauging, can be naturally
described as symmetry-enriched topological (SET) or-
ders [48H51]. We also show that, without respecting

global symmetry, there is a finite-depth quantum circuit
that takes the SET ground state to a ground state of a
corresponding twisted quantum double model (TQD).

The essential data of an SET order, besides the in-
trinsic anyon theory C, include the symmetry action as
an automorphism on C, the symmetry fractionalization
class, and the defectification class [51]. A key result of our
work is to characterize the resulting SET order given the
3-cocycle that describes the initial SPT wave function.
If the emergent SET order has a global symmetry that
does not change the anyon type, we develop a general for-
malism based on symmetry branch line operators for the
braiding phases between any abelian anyon in the theory
and the anyons obtained from fusing point defects, ex-
actly characterizing the symmetry fractionalization pat-
terns. If the SET order we enter has a global symmetry
that does change anyon types, we conjecture the form
and algebra of non-abelian symmetry branch line opera-
tors that can create the corresponding symmetry defects.
Then, by calculating the tensor product of such opera-
tors, one can derive the fusion rules of these symmetry
defects, which we believe is sufficient to characterize the
symmetry fractionalization patterns. We consider the di-
hedral SPT states as an example to illustrate this case.

The remainder of this paper is organized as follows. In
Sec. |lI} we review the duality between SPT states with
global symmetry group G and ground states of a twisted
quantum double model with a gauge group G in two di-
mensions. This duality is given by a formal gauging map,
which turns the global symmetry G into a gauge symme-
try. In Sec. we describe the general procedure of
N-step gauging G-SPT ordered states when G is a solv-
able group in terms of an algorithm (see Algorithm be-
low). In Sec. and Sec. [V| we discuss 1-step and 2-step
gauging respectively, and consider Abelian and dihedral
groups as illustrative examples. For the latter, we find
that after the first gauging step, the system remains in a
SET state where the remaining quotient group describes
the global symmetry. Sec. contains the discussion on
symmetry properties of the emergent SET phases from
the perspective of symmetry defects. Using the frame-
work of symmetry branch lines, we relate the transfor-
mation of symmetry defects under gauging to properties
of the SET phase. We give several examples to illustrate
our formalism. In Sec. we make some concluding
remarks. The Appendix provides materials that support
the results in the main text. For example, we provide a
constant-depth unitary circuit to map an SET state to a
TQD state in Appendix [El In Appendix[J|, We also give
an alternative gauging prescription based on a different
presentation of solvable groups which is alternative but
equivalent to the standard one, as proven in Appendix [K]



II. FIXED-POINT SPTS, TWISTED QUANTUM
DOUBLES AND GAUGING

On an oriented triangulated lattice A, given a fi-
nite group G, we assign a Hilbert space #, =
{2 gec o l9),lcg € C} to each vertex v. Then we can
write a fixed-point G-SPT wave function. To do this,
we first assign a group cocycle to each simplex, where w
is a representative in H3(G, U(1)) respecting the cocycle
condition,

w(h, k,Dw(g, hk, Dw(g, h, k) 1 (1)
w(gh, k,Dw(g, h, k) o

for any g, h, k,l € G.

FIG. 1: On an oriented triangulated plane, two typical
simplexes with opposite orlentatlons are shown Their
corresponding cocycles are w(ggg2 , 9291 ,gl) and

w(gsr 95" 927" 1) 7!

The fixed-point SPT wave function is given by taking
a product over all such cocycles,

Wspr) =Y J]  wlosgs ' o200 91" @) lgw),
{gv} simplex A123 v
(2)
where s(A) = %1 indicates the orientation of a simplex

Ajz3 (with a given branching structure, and {1, 2,3} la-
bels the vertices on the simplex), the tensor product runs
over all vertices v on the lattice, and all the configurations
{g,} are summed over. Note that we use a convention
from Ref. [52], which is slightly different from Ref. [5], for
the sake of convenience in later discussions. This state
can be obtained by the action of a unitary operator U,
on the product state @), >_,9),,,

= I wlosgs ', 9291, 91)° 202 ®Igu (9ol -

{gv} A123
3)
We define the left/right action of z on #, as
Lﬁv |g>v = |‘rg>v7 Lﬂc ‘ng 1>v : (4)

Then the global symmetry action (1n our convention)

U* =[[, L%, on SPT state yields
U [Uspr) = Y [[« @) Q) |z,
{g9v} A v
=> [ g} ®Igv
{g,3 A

= 3" [ Amplia.}. e

{9.} A

'{9:31) @) 190),
(5)

where in the second line we used a change of variables
and we have defined a phase factor Amp in the fourth
line.

Suppose M is the two-dimensional spatial manifold on
which the Hilbert space is defined, and I = {23]0 < 25 <
1} is an interval in the (Euclidean) time direction. The
manifold M x I is now three-dimensional. We triangu-
late the M x I by 3-simplexes (tetrahedrons) with the
constraint that each time slice at z3 = 0 and 23 = 1
matches the original two-dimensional lattice; see Fig.
The amplitude Amp is computed once the triangulation
of M x I is specified. We now give more details.

5/
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FIG. 2: The phase factor Amp({g,},z) can be given by
the triangulation of such prisms, where g, = g,z.

We assign a 3-cocycle to each tetrahedron as in Fig.
The phase factor can be seen to be

Amp({g.},2) = ]

tetrahedron

w(tetra)s(tetra) (6)

When the spatial manifold is closed, using cocycle con-
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FIG. 3: A positively oriented tetrahedron. The
3-cocycle assigned to it is w(gsgs ', 9395 9297 ")

ditions, one can show that Amp = 1. Therefore, the SPT
state is invariant under the global symmetry transforma-
tion,

U* [¥spr) = [Yspr) - (7)

Due to this symmetry, this state can be written schemat-
ically as (where we have suppressed the indices in A for



simplicity),

=> ] wlgsgz" 920" 90" R lgw),

{gv} simplexA v

= 2({g09," ) Q) 190) - (8)

{90}

|Yspr)

where Q denotes the product of cocycles, and v and v’
are vertices connected by an edge, (v,v’) € F.

A. Gauging global symmetry G

92

91 93 931

FIG. 4: The gauging map I' maps from vertex DOF's to
edge DOFs

Under a gauging map as shown in Fig.|4] the vertex de-
grees of freedom (DOF's) are mapped to the edge DOFs,

r: ‘{gz |{glgj 1}> (9)

This in turn maps the SPT state to an intrinsic topolog-
ically ordered state [53]

|[¥rqp) =

Z Q {ge ®|ge ) (10)

{ge}

which is a ground state of the twisted quantum dou-
ble (i.e., described by the Dijkgraaf-Witten theory)
D¥(@G) |54]. The twisted quantum double can be formu-
lated on a triangulated lattice with a Kitaev’s Quantum
Double-like Hamiltonian [11],

H=-> A=) B, (11)

where v and p stand for the vertices and plaquettes, re-
spectively, on the lattice. The vertex operator

Au ‘G|Z HL )W, (12)

geG eDv

is hermitian and is a projector (see appendix , where
L%, and LY, are left and right action of the group ele-
ment g on the edge e. When e emanates from the vertex
v to another vertex, we apply L? _ in Eq. 1) When e
flows to the vertex v, we apply L7,

The phase Wg is a product of the cocycles correspond-
ing to the tetrahedrons with appropriate orientations in
the prism in Fig. [5] where the correspondence between a

N A

FIG. 5: The phase Wﬁ is defined as the multiplication
of the phases corresponding to the tetrahedrons. Here,

Gv'v = 9-

FIG. 6: A negatively oriented tetrahedron. The
3-cocycle assigned to it is w1 (g43, 932, go1)-

tetrahedron and a 3-cocycle is established in Fig.[6] Fur-
thermore, this phase factor is the commutator between
the right action of g on vertex v and the unitary operator
introduced in Eq. ,

Wy = (] L) vu(I ] L4Vl (13)

eDv edv

where we use L9, (L7,) when the edge e ends at (em-
anates from) vertex v.
The plaquette operator is

B, = 6([Jge1). (14

ecp

where d(x,y) is the Kronecker delta function. The resul-
tant state from the gauging map is the ground state of
this Hamiltonian,

HT(|¥spr)) = Eo I'(|¥spr)). (15)

The local excitations of TQD model are fractional
charges called anyons, which can be classified by a uni-
tary modular tensor category (UMTC); see, e.g., [55].
One thing to remark is that the convention here is slightly
different from the one used in [53] and [11] for the sake
of convenience in later discussions.

B. Gauging a subgroup of G

One can introduce a gauging map I'y that corresponds
to gauging only a normal subgroup N of G. We have the



quotient group @ = G/N with an embedding
s:Q — G. (16)

Any element g € G has a unique decomposition g =
gn, where ¢ € s(Q) and n € N. Under the map, the
normal part of vertex DOF's are mapped to edge DOF's,
as illustrated in Fig.

Iyt Hoih), = Hai}

This maps the SPT state to

Jo ® [{nin'}), . (A7)

92 q(92)

I'n

91 g3 q(91) N3q q(93)

FIG. 7: The gauging map I'y maps the normal part
from vertex DOFs to edge DOF's.

|WsET

=2 2

{quv} {ne} fluxless

Q({Qine qj‘_l

) ® ) ® |7e) -

(18)

One point to notice is that the above state has a

global symmetry @ under action Ui = U¥¢", where

U* =11, L%, is the right action of z € s(Q) on all ver-

tices (e.g., g = gz~ ') and ¢® = [], ¢ is the conjugation
by z on all edges defined as

e In)e

The second point is that the state |¥ggr) is a ground
state of a Kitaev’s Quantum Double-like Hamiltonian,

H=-3 A=) By-) Ko, (20)

where v and p stand for the vertices and plaquettes on
the lattice.
The vertex operator is

A, |Z ST Looywaa gy, Gl (21)

neN ges(Q) edv

= |zna~ 1> (19)

The phase WY is the product of the cocycles correspond-
ing to the tetrahedrons with appropriate orientations of
the prism in Fig. |8] where the correspondence between
tetrahedron and 3-cocycle is established in Fig.[9l The
plaquette operator is simply the following,

szé(Hne,l). (22)
ecp
The additional vertex operator K, is

1 -
Yo, 2,
2,9'€s(Q)

o, @l (23)

N A

FIG. 8: The phase W¢ is defined as the multiplication
of the phases corresponding to the tetrahedrons.
hoyry = T, Qv = qu-

4

43

3

FIG. 9: A negatively oriented tetrahedron. The
3-cocycle assigned to it is

w™(gahazgs *, g3ha205 'y gaho1gy ).

We can always apply a finite-depth local unitary to
bring all the vertex DOFs to the identity element (see
appendix such that the state becomes

> = Z Q({ne}) |{n€}>e ®” |1>’U : (24)
{ne}

|¥rqD

This is a TQD state with the 3-cocycle v(nq1,na, ng) being
the restriction of w(gi,g2,g3) on subgroup N. Thus we
obtain the anyons and their braiding, which is the same
as in DY(N). Therefore, the state |Uggr) is essentially an
SET phase with the global Q-symmetry, and it is in the
same phase of a TQD D¥(N) if ignoring the Q-symmetry.

C. Classification of SETs

Here we briefly review some terminology relevant to
SET phases for the convenience of later discussions. This
section will be based on Refs. [51],[56]. In general, an in-
trinsic topological phase in 2+1d is an anyon theory char-
acterized by an UMTC, which is denoted by C. Assuming
the symmetry G preserves locality, an SET phase, which
is described by a G-crossed braided fusion category Gé,
is enriched from an anyon theory C, by a G-symmetry
action as an automorphism on C, symmetry fractional-
ization class (SFC) and symmetry defectification class
(SDC) [51]. We first assume the symmetry actions are
unitary and always give the trivial automorphism on C,

e., the symmetry does not change anyon types. Con-
sider a state |, ) with anyons {a,b,c,...} present



sufficiently far away from each other on a sphere. There-
fore, the anyons {a,b,c,...} should be able to fuse into
the vacuum charge. The symmetry operators respect the
multiplication rules U(g)U(h) = U(gh). Under our as-
sumptions, the symmetry operator can be decomposed
as some local unitaries U, (g), Up(g), -.., near the anyons,

U(g) |\I/a,b,c,...> = Ua(g>Ub(g) T |\Pa,b,c,...> . (25)

Each local symmetry action can be projective,

Ua(g)Ua(h) - na(gah)Ua(gh)7 (26)

where the phase 7,(g, h) only depends on anyon type a
and satisfy

Na(g, W) (g, h) = ne(g, h), (27)

whenever the multiplicity is NS, # 0. We notice that the
braiding phases B between an abelian anyon e and any
other anyons a, b, ¢ satisfy the relation B(e,a)B(e,b) =
B(e, c¢) whenever the multiplicity is NS, # 0. The sim-
ilarity of this to Eq. suggests that the latter may
also arise from braiding anyons. It is indeed proved in
Ref. [51] that a phase 1,(g, h) with the above property is
related to the braiding phase between anyon a and some
other abelian anyon w(g, h) in the theory,

1a(g:h) = B(w(g, h), a). (28)

We note that the braiding phase B(w, a) between anyons
w and a is defined in Ref. [51], and is related to the
square of the R symbol. Therefore, applying two con-
secutive localized symmetry actions U(g) and U(h) in a
region R will result in a symmetry action U(gh) in R
and an extra phase obtained by braiding anyon w(g, h)
around R. This braiding phase indicates the symmetry
fractionalization pattern of the SET.

We comment that one can redefine the local unitary
U,(g) by an arbitrary phase factor v,(g),

Ui (9) = va(9)Ua(9), (29)
where v,(g) satisfies
va(9)ve(9) = ve(9), (30)

whenever the multiplicity is NS, # 0. Again, the phase
factor v,(g) can be written as a braiding phase be-
tween anyon a and an abelian anyon o(g), i.e., v,(g) =
B(v(g),a). The abelian anyon after the redefinition will
be

w'(g,h) = o(g) x o(h) x o(gh) x w(g,h),  (31)

where o(gh) is the dual anyon for the abelian anyon
o(gh). Further, according to the associativity condition

(Ua<g)Ua<h))Ua(k) = Ua(g)<Ua(h)Ua(k))7 we have

w(h, k) x w(gh, k) x w(g, hk) x w(g,h) = 1. (32)

To conclude, the distinctive patterns of symmetry frac-
tionalization are characterized by the class [w(g, h)] in co-
homology group H?(Q, A), where A is the group formed
by abelian anyons via fusion algebra [56], and we have
used @ instead of G as the global symmetry for the SET
phase.

Another way to see the symmetry fractionalization
classes is to construct a @)-crossed category 65 from the
anyon theory including the point defects

Co =D Cu (33)

q€Q

where Cj = C and 1 denotes the identity element in Q.
A distinctive Q-crossed category 65 is a candidate for an
SET order. According to Ref. [51], when the symmetry
does not change anyon types, one can always choose an
abelian defect from each sector C, and label it as 0,. In
particular, Oy is the vaccum anyon. (When the symme-
try action does not permute anyon types, one can find a
bijective map f from Cq to C, that preserves quantum
dimensions. This allows us to identify the inverse of the
vacuum anyon, f~1(0p), as 05.) The fusion of defects
respects the group multiplication structure,

0g x 0, = w(g,h)q x Ogn, (34)

for some abelian anyon w. We denote the objects in Cy
by small letters a, b, ¢, etc. Their fusion is given by

G;Xb:ZNgbC, (35)
cel

where N¢, is the multiplicity in the fusion. The objects
in G4 is obtained by fusing 0, with objects in Cq, i.e.,
aq = a X 04. Their fusion is given by

agth—Z

ceeC

bC X W g, )]1 X Ogh' (36)

This abelian anyon w(g, h) is exactly what we have de-
fined above for projective phase 7,(g,h). The class
[w(g,h)] is in the cohomology group H?(Q,.A), which
classifies the SFC.

In generic cases, when the symmetry does change
anyon types as an automorphism of C,

p:Q — Aut(C), (37)

it turns out that not every sector C, has an abelian ob-
ject. Therefore, we cannot write the fusion rule as in

Eq. .
The fusion rule of a Q-graded category 6’5 can be writ-
ten as

ag X bh = Z Nag}ghcgh. (38)
Cgh

Consequently, each element [t] € Hz(Q,ﬂ) specifies a
potential way of modifying 85 (the SET order) via

ag X by, =t(g,h ZNE”Z} Cgh- (39)

Cgh



Therefore, in generic cases, the potential symmetry
fractionalization classes are elements of an Hg (Q, A) tor-
sor. In this work, we will not analyze the SDC in detail,
and we simply note that one can enter a different SDC
by stacking a Q-SPT state onto the SET state. In our
framework, after gauging the normal subgroup, a global
z-transformation will locally serve as an automorphism
pe of C, mapping an anyon with flux n to an anyon with
flux xnz~!. Later in this work, we will analyze the phases
of some SETSs in which the automorphism p, on C is ei-
ther trivial or nontrivial.

III. N-STEP GAUGING OF 2D SPT VIA
MEASUREMENT

In this section, we present the procedure to gauge a
G-SPT state of a group G that can be factorized into N
abelian groups with N steps. (We note in this section,
N refers to the number of steps rather than a normal
subgroup. But it should be clear from the context.) A
similar method was proposed by [44] and [43]. In [44],
the authors considered the solvable group G and its de-
rived series which consists of normal subgroups which are
commutator subgroups of the previous group in the se-
ries. They proposed a gauging procedure for a particular
sequence of normal subgroups. In [43], on the other hand,
they proposed to implement the gauging procedure for a
solvable group inductively, i.e., implement the gauging
of a cyclic group, assuming the remaining quotient group
is already gauged. In our procedure, we do not restrict
ourselves to a particular derived series for the solvable
group. This in turn helps us to prepare different types
of SETs. We give the steps for gauging a G-SPT state
explicitly.

Before presenting the gauging procedure in Algo-
rithm |1 let us go through the most relevant definitions
first. A group G is a solvable group if there are subgroups
1=Gy < Gy <---<Gn = G such that Gj_; is normal
in Gg, and Gy /Gr_1 = Qy, is abelian for k = 1,--- | N.
Given the embedding map s from each Qy into G C G,
every element g € G can be written as

9 =qNgN-1"""G2q1, (40)

where g € sk (Qy). Similarly, for another group element
h, we have the decomposition h = ¢y ---G;. Under this
convention, we write down the multiplication between g
and h=! as

oh 7 =an e (d )@ a4

Now, let us define the relevant unitaries and measured
observables that will be used in the gauging procedure.
We typically consider a state defined on a lattice (V, E)
with vertices ,j € V and edges (i, j) € FE where the local
Hilbert space |g) depends on the group G and is labeled
by its group elements g € G. Given an embedding sj of
Q. into G, as described above, we can define for all Qy

the following unitary controlled on vertices and targeting
the shared edge:

US,;” = Z |91, 92) ;. e, (91, 92| @
91,92,93€G (42)

|Qk(91)g3%(92)_1><i7j> (g3,

where g € si(Qk), gx(g) is the k-th component of the
normal decomposition of g and ¢;(¢;) denotes the control
qudit on vertex ¢(j). This unitary will be used to entangle
vertex DOFs with edge DOF's.

Measurements of abelian subgroups will play an im-
portant role in the gauging procedure which is why we
will now introduce the generalized Pauli-observables for
an abelian group being product of cyclic groups Qr =
Hé’; 1 Z i where dj, are some integers indecating the
group order. (We note that it should be clear from
context whether the symbol Z represents a group or a
Pauli operator.) Any element g € @) can be written as

i1 i Uy

aryay’ ---a;* where a; are thQ generator of the subgroup

]
Z4 C Qr and therefore, ok = e Vi =1,..,1;. Given
k

: j
this representation, we write the local Hilbert space basis

as i1, .oy iy, ) = ‘a?a? a;:“> This allows us to define
the following generalized local Pauli operators by their

action on this basis:

t, . ) . .
Xfl Q- ®Xl]i’C i1, .o it,) = |01 D t1, .oy it, Dtr,) (43)

th ty, . . it Uty . .
Z1 ®.®Zlk |7117-~-;'le>—001 ...wlk |217...,/le>,

(44)

where 7; ® x indicates addition modulo di and w; is the

dfﬂ—th root of unity Vj = 1, ..., lx. Importantly, this allows
us to define a Fourier-transformed basis as follows,

i1, i) = Z1 @+ 2% |[4) (45)

where |+> = Zaila?ma:;f cOx |i1, ,Zlk>

Note that in Algorithm |1} the local Hilbert space di-
mension is given by the non-abelian group G, so we un-
derstand all the above unitaries and bases as defined on
an embedded subspace given by si. See the discussion
above Eq. .

We will now use the above equations to implement
an N-step gauging procedure. We will gauge the G-
symmetry of the state defined on the vertices of a lat-
tice sequentially in N steps. We present the procedure
in Algorithm (1| and consider the details below:

(1) Include ancillas. Add ancillas in the state |e),
where e € G is the identity element, on the edges
between the vertices.

(2) Entangle gauge and matter DOFs. Apply the fol-
lowing 2-controlled-shift operators with controls



Algorithm 1 N-step gauging via measurements

Require: (a) Solvable G with 1 = Go < G1 < -+ < Gy = G such that Qr = G /Gr—1 is abelian Yk = 1,..., N.
(b) G-SPT fixed point state |¥gpr) (defined in Eq. [8) on a lattice (V, E') with vertices i,7 € V and edges (i, ) € E.
(c) Ué;l’j) as defined in Eq.
(d) Generalized Pauli operators as defined in Egs. and |44| acting on the abelian subspace defined by an embedding sj of
Qk in Gk

k+1

(1) Add ancillas: [Wgauge) = [Uspr) @ [1(; jyemle)

¥

while £k < N do

|\I,gauge> <~ HUGV |:L’11}7 7‘7:;)k> <‘7:11)a ”i;}k }\I’gauge>

) where e € G is the identity element.

(2) Entangle vertex and edge DOFs: [Wgauge) <= [1(; jyem U(S]’j) | ¥ gauge)

(3) Measure vertex DOFs in the basis given by Eq. [45 with outcomes {7}, ..., Z}’k }vev (neglecting normalization):

(4) Correct for random measurement outcomes by applying Z-operators on a set of edges Ecor:

|gauge) < [lecpe,, Ze |Yeauge), where Ze = Hé’;l ZJ._p"e (specifically, Fcor and pj;e) can be deduced from the measurement
outcomes, given the symmetries (e.g., Eq. and so-called transmutation rules (e.g., Figs. or.

> |Wgauge) is an SET state as analyzed in Sec. [V Vk < N

k=k+1

end while

c1, ¢2 on neighboring vertices (oriented as co — ¢1)
and the target ¢ on the in-between ancilla:

>

91,92,93€G

UQl = ‘91’92>01,02 <91792| &

la1(91) 9301 (92)71><1,2> (g3l
(46)

Here we have used ¢1(g) to denote the part of the
decomposition g which lies in @; that is, for g =
qn -+ q1 with g € s,(Qk), q1(9) = @1

Measure {X1,Xa,..., X1, } on matter DOFs. Af-
ter measurement of the quotient part on each ver-
tex (i.e., in the bases defined in {X;}), with the

i . — o Pih .
outcome being {X; = w,; "}/, on a vertex (w;

being d;-th root of unity), there is a correspond-
ing (local) phase factor H§1:1 w; 7% from the wave
function overlap in step (3) of Algorithm (1| These

phase factors can be seen as some abelian chargeons
on vertices. See an example in Eq. (53).

Correct phase factors. To obtain the ground state,
the local phase factors arising from step (3) can be
corrected as they can be expressed as a product
of phase operators acting on the edge DOFs (see
e.g., Fig. . Therefore, we can apply counter Z-

operators on a set of edges Ecoy, i.€., HeeEc Ze,

where the exact form of Z., = H;"Zl Z;p” can be
deduced from the measurement outcomes. Phys-
ically, due to our N-step gauging procedure, the
local phase factors always correspond to abelian
chargeons, therefore we can use ribbon operators
to move them around. For example, we can move
the phase factors on a vertex by performing Z op-
erators on its neighboring edge and by doing this

(6)

(7)

(8)

repeatedly we can move all the phase factors to one
single vertex (via the transmutation rule, see, e.g.
Fig. , therefore annihilating them altogether,
due to the symmetry constraint (see Eq. and
the discussion below it). The set of such edges is
an example of FEcey, but it is not necessarily op-
timized. (See also the following two sections for
concrete examples.) After measurement and cor-
rection, the vertex DOF is mapped from |g) to
\Qilﬂ Zq’lesl(Ql) |9(1)Qi>a where g = gy - - q2¢1 and
g = gn---qo. The resultant state is a G1-SET
ground state.

Repeat the procedure of entangling gauge DOFs on
edges and matter DOFs on vertices. Apply the fol-
lowing unitary similar to before:

>

91,92,93€G

Ug, = 191, 92) ¢, e, (915 92| ®
|Q2(91)9392(92)71><L2><93|
(47)

Measure { X1, ..., X1, } on the matter DOFs and cor-
rect the corresponding phase factors from the mea-
surement. This results in a G3-SET ground state.

Repeat this process for all except the last quotient
group Qn .

At the last step, apply the gauging and measurement
procedure for Q. Specifically, first apply

Uy = Y,

91,92,93€G
|QN(91)93(]N(92)_1>(172) (g3l

1915 92) ¢, , (91, 92| ®
(48)



measure {Xi, ..., X;, }, and then correct the corre-
sponding phase factors. This gives us a G-TQD
state.

It is worth remarking that in the expressions above,
we always use the multiplication rules of the entire group
G. For instance, if we take g2,q5 € $2(Q2), their prod-
uct gogh is not necessarily in s9(Q2) (it is in s$2(Q2)
only when the extension G3/G1 = @3 is central). This
seemingly makes the remaining global symmetry algebra
non-closed, i.e., (¢’ would produce components in
the @, subgroup (recall that g = qu ---qo for some
qr. € sk (Qr)). Nonetheless, instead of ‘g(l)> in the above
step (4), we have ﬁ Zq{Esl(Ql) |g(1)qi>, which can ab-
sorb the potential (J; components, making the multipli-
cation closed. We can therefore define the global sym-
metry group of G; SET as such. Moreover, the state af-
ter applying Ug, is symmetric with X,,. It also follows
that the phase operators resulting from the measurement
of X4, can be corrected as the global symmetry gives a
constraint on measurement outcomes, which will be dis-
cussed later.

In the following, we will consider the 1-step gauging
for abelian groups in Sec. to illustrate correction pro-
cesses. Then we will consider the 2-step gauging for di-
hedral groups in Sec. The two-step and multi-step
gauging can be also applied to abelian groups as well,
and in the intermediate steps, SET states can emerge.
We will discuss the phase of such SET states in Sec.
Then in Sec. we introduce the framework of the sym-
metry defect branch line and discuss the SET phases for
several more examples.

We give an alternative procedure for the N-step gaug-
ing in Appendix This gauging procedure is imple-
mented for a group G which admits sequential normal
subgroups (see Appendixfor definition). This criterion
is in fact equivalent to the group G being solvable (see
Appendix K| for a proof). The two procedures differ in
the way in which the product of group elements are writ-
ten down (compare Eq. and Eq. ) Apart from
that, in the procedure given in this section, we gauge
the quotient groups in every step, while in the procedure
given in Appendix[J] we gauge normal subgroups in each
step. As mentioned earlier, in Ref. [44], the commutator
subgroups of the previous group in the series of a solvable
group G are gauged successively.

IV. 1-STEP GAUGING: ABELIAN GROUPS

In this section, we review the gauging procedure for
abelian groups [39] [44]. We start with the SPT state
given in Eq. . The gauging map can be implemented
by first transferring the corresponding group elements to
edges and then by measuring the vertices, where our state
is projected to a quantum double state with (unwanted)
charges whose configuration is given by the measurement
outcomes. The excitation due to the randomness of mea-

surement is then corrected by a certain finite-depth pro-
cedure. The steps are described in more detail as follows:

(0) Prepare the SPT state on wvertices. We use local
control-phase gates to prepare the SPT state from
a direct product state.

(1) Include ancillas. Add ancillas in the state |e),
where e € G is the identity element, on edges be-
tween adjacent vertices. The ancillas become the
gauge DOFs

(2) Entangle gauge and matter DOFs Apply the follow-
ing controlled-controlled-shift operators with con-
trols ¢1 & ¢y on the neighboring vertices of an edge
e (oriented as ¢ — ¢1) and the target ¢ being the
ancilla on the edge between the two controls:

Us= > 91,920, 0, (91,921 ® LY L%, (49)
91,92€G

At this point, the (pre-measurement) state is

|Wpre) = Z Q({gv}) ® 9o ® |gvg;/1>m;’~

{g'u} veV (vv’')eRE
(50)

(3) Choose a measurement basis in the G algebra, then
project the matter DOFs onto the basis via mea-
surement. A natural basis can be chosen if we order
elements in G as an ordered list (go, g1, " ,9n—1);
where go = 1, n = |G|. (Note that the subscript j in
g; here denotes the labeling of the group elements of
G, not the vertex.) Then we simply use the Fourier
basis [k) = Y170 exp{2mijk/n}|g;) /v/n = Z*|+)
to perform measurements on vertex DOFs, where
we have defined |+) = E;‘:ol lgj)/+v/n.  When
G = Z,, we project the matter DOFs onto this
basis via measuring the generalized (qudit) X op-
erator.

(4) Correct abelian chargeons in the G twisted quantum
double. The correction can be done with a finite-
depth circuit, which consists of strings of Pauli-Z
operators.

We give more explanation on the procedure for the case
with G = Z,, below. For the Z,, group, the wave function
can be written using the qudit system. The basis vector
la) (a € {0,...,n — 1 mod n}) and the generalized Pauli
operators satisfy

Zla) =w®a), Xla)=la+1), ZX=wXZ, (51)
with w = exp(27i/n), which is much simpler than the
general abelianized basis in Egs. and . Starting
from a Z,, SPT on a triangulated lattice, we first add an-
cillas to all the edges in a product state with |0). Then
we apply the controlled gate in Eq. , which is a set of
controlled-X gates. Then the gauge DOFs are as given by



the gauging map in Fig.|4] The next step is to disentan-
gle matter DOF's by measuring the X operator on all ver-
tices. After measurements, the matter DOF at a vertex
v is projected onto Z¥ |+) , where k, = 0,1,--- ,n — 1,
and |4+) = >, ]i) /y/n. Suppose the measurement out-
come on the vertex v is X, = w*. We write the basis
associated with measurement outcomes {k,},cv as

M) == Q) Z}" |+)0. (52)

Then the total wave function after measurements (with
the gauge part being projected to (M|¥)pye) is written
as

9o =( 2 QU H L= (90) @ L0931, )

{g'u} v
Q7" 14),, (53)

where 2%(gy) = (gu| Z%|gv) = (W*)9 and Q is the phase
factor inherited from the SPT state (i.e., a product of
3-cocycles). Note that vv’ is the edge e; many edges can
share a vertex v but the factor z*» only appears once.
Due to measurement, the vertex DOFs have been disen-
tangled from the edge DOFs, and the edge DOFs form a
state that is a ground state of the Z, twisted quantum
double in the flux-free sector up to a factor z** (g, ), which
can be interpreted as an e chargeon on the vertex v.

In what follows, we describe how to remove the excita-
tions in |¥) e First, the set of measurement outcomes
is restricted to [}, k”]n = 0, with [z],, being x mod n,
due to the global symmetry of the SPT state. The global
symmetry implies

H lelllpre> =

veV

[Wpre), (54)

so it should be satisfied that

(M[Wpre) = (M| ]| Xo|pre),
veV

_ (gw_k“)<M|\I/pre>, (55)

which gives the constraint [[, w™k = 1, meaning
(>, ko), = 0.

Next, the measurement with |M) gives us a phase

, w F»9v when contracted with the basis ®,|g,). Due
to the constraint [Zv ky]n = 0, one can always find a
set of paths such that we can rewrite the phase factor as
[T, w %9, or equivalently [, 2(g,) ", in terms of the
phase operator Z, supported on the paths. Concretely,
we use a type of relations, which we call the transmuta-
tion rules, illustrated in Fig.[10] For G = Z,,, the relation
is

2(gv) = 2(g0)2(gug,,")- (56)
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We apply the phase operator on the paths to remove the
chargeons. Given that these operators commute, they
can be applied all at once. Hence, our gauging proce-
dure assisted by measurement requires only finite time
steps or a finite-depth quantum circuit (with intermedi-
ate measurements).

FIG. 10: The transmutation rule of z factor according
to relation 2(g,/)z(gug,") = 2(gu).

Let us give two remarks here. The reason that we
can correct the state by moving all factors to one vertex
is because of the fact that all chargeons in D“(Z,,) are
abelian anyons. This procedure can be straightforwardly
generalized to Z,, X Z,, X --- group, where we measure
Xx1x--,1xXx---, .., etc. on all vertices after we
entangle gauge and matter DOFs. This occurred previ-
ously in the general N-step gauging in Sec. However,
to explain the detailed correction there would incur cum-
bersome notations. The example of Z, in this section
should now make the procedure clearer. Different mea-
surement outcomes will give rise to different chargeons in
the flux-free sector, which are all abelian anyons. (Note
that we do not have fluxons, as we began with a flat-flux
configuration followed by the controlled-controlled oper-
ation that does not create fluxons.) Therefore, the state
after measurement is still correctable within finite steps.

V. 2-STEP GAUGING: DIHEDRAL GROUP
AND INTERMEDIATE SET STATES

When we attempt to gauge nonabelian SPT states us-
ing measurement, although one can always choose a suit-
able basis such that the factors are correctable, one cru-
cial problem is that the phase factors that arise from
measurement do not necessarily correspond to abelian
anyons as in the D“(Z,) case above; this makes cor-
rection with a finite depth circuit a nontrivial problem.
In Ref. [42] [43], there were two different ways proposed
to prepare the ground state of the S3 quantum double
model. In Ref. [43], a Z3 toric code ground state is pre-
pared first, and it is coupled to the Z, product state
using controlled gates. Then the Z, part is gauged via
the measurement-assisted one-step gauging in Ref. [39].

We will show in this section that, for the symmetry
group G being the extension of two abelian groups, by
choosing some abelianized basis, we can still perform a
2-step gauging procedure on G-SPT states via measure-
ment. In the case with G = S3, our procedure would be
equivalent to first preparing the Z3-TQD ground state,
and then coupling to the Z5-SPT state using entangling



gates and controlled gates. The correction process for the
2-step gauging is still fairly simple, i.e., via finite-depth
quantum circuits. The complete procedure to gauge the
abelian N-symmetry (i.e., the normal subgroup) of a G-
SPT state and then to gauge the quotient Q-symmetry
of an SET is as follows:

(1) Include ancillas. Add ancillas in the state |e),
where e € G is the identity element, on edges be-
tween adjacent vertices. The ancillas will become
the gauge DOF's

(2) Entangle gauge and matter DOFs. Apply the
following controlled-controlled-shift operators with
controls ¢; & ¢ on neighboring vertices (oriented
as ca — ¢1) and the target ¢ on the ancilla on the
in-between edge e:

Uv="Y_ 191,92)¢, .0, (91,92 ® Ly e (57)
91,92€G

The purpose of this step is to mimic the gauging
map in Eq. .

(3&4) Measure X,y on matter DOFs and correct the z,
factors. After measurement, with the outcome be-
ing X(n) w™", there is a corresponding phase
factor zX. Using the transmutation rule for z,, one
can correct all those factors by moving them to one
single vertex, resulting in an SET ground state.

(5) Further entangling the quotient part of the gauge
and matter DOFs. We apply a controlled-conjugate
operator with the target e being the ancilla (ori-
ented as ca — ¢1), and the control being ¢s:

Ug= > la(1),4(92))e, .0, (algr), alg2)|@LL LIS
g1,92€G

(58)
where ¢(g) denotes the quotient part of g via an em-
bedding in Eq. (16). Notice that the normal part
of the matter DOF has been wiped out by measur-
ing X(,), while the quotient part Q@ = G/N still
remains, which makes the above controlled-gates
possible to implement. The edge DOFs are now

{q(g1)n(g1)n(g2) " a(g2) "'} = {9195 ' }.

(6&7) Measure X4 on matter DOFs, and correct z, fac-
tors. Their correction is straightforward; we apply
Zq) operators on edges to move all z,’s to one ver-
tex.

In the following, we will apply the above procedure to
several cases.

A. Gauging S; SPT

The S3 group is G = (a,z|a® = e, 2% = e,rar = a by,

Any element g € G can be written as g = x*a?, where
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1 =20,1, 7 = 0,1,2. We define the decomposition of a
group element respectively as
n(z'a?) = d?, (59)
q(zla’) = ', (60)
with the former being the normal part (N = Z3), and

the latter being the quotient part (s(Q) = s(Z2)) of Ss.
We then define the shift operator in each part as

Xy = Z |z'a?*h) (2'a’ |,
Xg) = Z |z a?)

(61)
) (@]

The phase operators, which are known as the clock
operators, in each respective part, are

Zimy=>_zn(9)l9) (g

[ zn(xiaj) = w,

- . (62)
Zwy =Y z(9)l9) (gl z(a'a’) = (-1)',
9
where w = ¢%. The gauging step (2) transforms

the ancilla DOF on edge e = (v,v’) from identity to
n(gu)n(go) "

Then in step (3) we measure X,y on all the vertex
DOFs. Suppose the measurement outcome is X(,) =

e~ 55 on vertex v (where k, = 0,1,2). The state after
the measurement is projected into

5) Z(Hz

{90}

®( o) (2 lalgo)r), )

reN

9,)) 25095 [{n(go)n(g.) 1),

(63)
The phase factor [], 2, (g,) depends on the measure-
ment outcomes {k, }. In order to correct them, we employ
the transmutation rules for z factors

zn(R)zn(n(g)n(R) 1) = 2u(9)- (64)

As in the case with Z,, in the previous section, we have
[>", kv]s = 0 due to the N-symmetry. By inserting cor-
responding numbers of Z,, operators on the edges, we can
move the factors z, on vertices around and cancel them
altogether. Equivalently, one can simultaneously apply
Z,, operators supported on strings whose endpoints cor-
respond to nontrivial measurement outcomes. This gives
us the state

|\II4 Z Q {gvgv

{9v}

® (Zk“ > la(go)r )

reN

D [{n(go)n(ge) ™ }),



Zn Zy Zn
h g h 9

FIG. 11: The transmutation rule for z, factors on step

(4).

After the gauging step (5), the edge DOFs are conju-
gated and shifted by Ug, giving rise to

Ws5) = Q{gug,' ) o095 1),
{90}
(66)
® ( ) Z |q gv )

reN

Step (6) is similar to step (3). By measurements, the
state is projected to

) Z(Hz (9)) 29095 D [ {095 1),

{90} (67)
R (252 (X 1)
v geG
where we have assumed that X, = e~ 3 from the
measurement on vertex v (where m, = 0,1). In order

to correct the phase factor [], 2, (g,), we employ the
transmutation rules for z, factors:

2q(h)zg(gh™") = z4(9), (68)

which is illustrated in Fig. This rule, just as the rule
for z, in step (4), allows us to move all the z, factors to
a single vertex and annihilate them. This is guaranteed
by the Q-global symmetry in |¥5) (see Appendix |C),

(HX<q>)|‘I’5> = |¥s), (69)

which implies that the measurement outcomes satisfy
>, Mv]2 = 0 in this case, as the global symmetry is
Z5. After we apply the corresponding correcting phase
factors to edges, we thus obtain a G-TQD ground state.

Zq Zq - Zq
- . —_— -— .
h g h g

FIG. 12: The transmutation rule for z, factors on step

(7).

B. 73 SET with Z; Symmetry

Let us begin by recalling that the gauging map 'y in
Eq. gauges the normal subgroup N of G. In our
procedure, after we correct the z, factors in step (3), the
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state is essentially a ground state of the Z3 SET phase.
In what follows, we first look into the entanglement struc-
ture of the wave function after gauging the normal sub-
group Z3. Then we identify the class of this SET phase,
namely, the unitary modular tensor category (UMTC) C
that contains all anyonic excitations, the Zs symmetry
action as an automorphism of C, the symmetry fraction-
alization class and defectification class [51].

We write the element in S5 as § = (G, g) = %9 with
some slight abuse of the notation, where G = 0,1 and
g = 0,1,2. It should be clear from the context when G
is a number or a group. A representative of the cocycle
in H3(S3,U(1)) is

= exp{%i‘mg(l)HJrL(h(l)L +1—[h(-DE + Z]g)}

x exp{miposGHL},

(70)
where p; = 0,1,2, and p, = 0,1. As pointed out in
Sec. the anyon theory (UMTC) C is determined by
the restriction of w on subgroup Zs3 (i.e., setting G =
H=L=0),

(g, h,1) = exp{ 2mplg(h +1—[h+ Z]g)}. (71)

Different values of p; are in one-to-one correspondence
with different Z3 twisted quantum double phases D" (Z3).

An anyon in these phases is characterized by its flux a €
Zs3, and a projective representation of Z3, satisfying

2mipra
polaa(h) = expd 2 g 41 g+ 1) pa(an),
‘ (72)
which means p,(g) = em#v(g), where v(g) is an or-

dinary representation of Z3.

Using Lyndon-Hochschild-Serre spectral sequence [22]
57, [58], we can decompose the cohomology class of the
Ss group as

H?(83,U(1))

This suggests that this SET state is composed of a TQD
D¥(Z3) and a Z5-SPT state. A natural question is
whether the wave function of the whole system is de-
composed into a product of the two corresponding parts.

It turns out that we can write the 3-cocycle in Eq.

= H*(Z5,U(1)) ® H*(Z»,U(1)). (73)

as

w(g, b, 1) = wn - W - w'(g, hs 1), (74)

where the phase w,, is defined from the 3-cocycle of Z3,
wn(gsgy "> 9291 "5 91)
= v(n(gs)n(g2) ", n(g2)n(g1) ", n(g1))
1 _ -1 _
= v(¢"9) (n(gsg; 1), 0" (n(g207 ")),



q(g2)

q(91) Ny q(93)

FIG. 13: One plaquette on a triangulated lattice.

and v is a representative in H3(N,U(1)). Every pla-
quette on the spatial manifold is associated with such a
phase. The product of them over all plaquettes gives

Qu({n(gv)n(gv’)_l}) = HV({n(gv)})s(A) (76)
A

The sum of the above phase over all possible {g,} con-
figurations gives the wave function of a ground state of
D" (Zs).

The phase w, is defined from the 3-cocycle of Z3, a €
H*(Z2,U(1)),

wq (9, h,1) = exp{mip,GHL} =: o(G, H, L). (77)

The product of this type of phases gives

Q({a(go)algo) ) = [T alfalg)})*@. (75
A

The sum of the above phases over all possible {g, } config-
urations results in the wave function of a Z5-SPT state.

The ' part in Eq. is

~ 27Tip1

(5,1, T) = exp{ (—1)7g(1 - 5,%0)&,1}, (79)

which is nontrivial when p; # 0. Similarly, we define the
product of this type of phases over the spatial manifold
as ,

2 ({a(g0)}, {n(90)}) = [ [ (alg0)} {n(a)})*).
A

(80)
Thus the resulting state after gauging Z3 from an Ss-
SPT state is

Wser) =Y ' ({g(g,)}, {nlgo)nlgw)~'})
{g+}

(2 [{n(g)na) D), ) & (24 Halg)}), )

(81)

which is an entangled state between a Z3-TQD ground
state and a Z5-SPT state. When p; = 0, we have w’ =

13

Q,, = 1, hence the wave function of the system becomes

W) =Y [{nlgo)n(gw) 1), Q) Halgn)}),
{g+}

=3 (Hntgne) ™), ) @ (2 Hate)}), )
{gv}

=|Z3 TC) ® |Z2 SPT),

(82)
which is a product state of a Z3 Toric code ground state
and a Z5-SPT state.

Having obtained the SET wave functions, we now dis-
cuss the effect of the global symmetry action. The Zs
symmetry action U* = [] L%, in the S3-SPT state is
mapped to U5 = U*¢", under which an anyon with
flux @’ will be mapped to one with flux ¢®(a) = al~I3.
And a chargeon will be mapped to its antiparticle un-
der the symmetry. According to Sec. the possible
SFC will be given by elements in a Hg(Zg,ﬂ) torsor.
With different values of p;, the abelian group A could
be either Z3 x Z3 or Zgy. In either cases, the cohomology
group H2(Z,, A) turns out to be trivial, and so is its tor-
sor. Therefore, the TQD D¥(Z3) has only one possible
Z5 symmetry fractionalization pattern. Moreover, differ-
ent values of ps in the 3-cocycle of S3 result in different
Zy symmetry defectification classes (SDC) in the SETs,
which are obtained by gauging the normal Z3 group. This
is expected because as seen from Eq. , different po
values represent different Z,-SPT states entangled with
some Z3-TQD state.

Let us remark that this construction for S3 has a natu-
ral generalization on Dy, 1 groups, where one first gauge
Zon+1, resulting in an Zs, 11 SET on which the Z; sym-
metry acts to conjugate the gauge DOFs. Different par-
ent SPT phases will result in different anyon theories and
different SDCs, but always some unique symmetry frac-
tionalization pattern. One can further gauge the quotient
Zo symmetry to obtain Da,+1 TQD.

C. Gauging Dy, SPT

Now we discuss the process of 2-step gauging a generic
Dy, SPT state via measurement under a similar type of
abelianized basis. As in Ss3, an element in group Dy, can
be written as

g=x'a’, i=0,1, j=0,1,---,2n—1,  (83)

where 22 = 1 and a®" = 1. We will thus use a generalized
definition of operators as for Sz in Eqs. , , ,
and .

After applying the control gate to set the DOFs on
edges, e.g., (ij), to n(g;)n(g;) "', measuring X, on ver-
tices, and correcting all chargeon excitations, the resul-
tant state is a ground state in a Z,,-SET phase with a
global Z5 symmetry at this intermediate stage. Accord-
ing to the multiplication rule of Ds,, just as in S3, the



symmetry transformation U® conjugates all the gauge
DOFs.

As an illustration, we will consider the D4 group. Us-
ing the Lyndon-Hochschild-Serre sequence, the cohomol-
ogy group can be decomposed as

H*(D4,U(1)) =H*(Z4,U(1)) ® H*(Z,U(1))

0 1 (84)
Again, the cocycle factorizes as
W= Wy Wy W W, (85)

where w,, and w, are defined similarly as for the S3 group
in the last section, while w’ and wy,, depend on both
quotient and normal parts of the vertex DOFs. From this
decomposition, it is clear that after gauging the normal
Zayn, we have an entangled state between the Zs,-TQD
state and the Z5-SPT state. Because of the additional
entanglement via wy,q, we expect to have a nontrivial SFC
from gauging the Z, symmetry of a D4-SPT state.

Indeed, in the next section, we will show that the cur-
rent 2-step gauging setup could result in different SFCs.
To do so, we first introduce symmetry branch line opera-
tors and other necessary tools to determine the SFC. We
will also discuss several examples, including the above
Z4-SET phase.

VI. SYMMETRY DEFECT IN SPT AND SET

In this section, we will apply the notion of symmetry
branch lines introduced in Ref. [51] and formulate corre-
sponding symmetry branch line operators in SPT phases,
as well as their relation to ribbon operators in TQD. We
then show the gauging procedure transforms such oper-
ators in SPT phases into symmetry branch lines in SET
phases and discuss how their fusions relate to the sym-
metry fractionalization classes (SFC) in a few examples.

A. Symmetry Branch Lines

To introduce symmetry branch lines, we start with the
symmetry action in an SPT wave function. We recall in
Eq. the SPT wave function on a triangulated spatial
manifold,

Z Hw 9395 ' 9291 o S(A)®\gv )

{gv} A

|Yspr) =

When the manifold is closed, the global symmetry action
U* =1], L%, leaves the entire SPT state invariant. We
can also consider the symmetry action on a sub-manifold
R [23], such as the one shown in Fig.

Ugk I;IWS(A) H{g}) = E[Ampm({gv}w)wsw {gu}) .
(87)
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Triangulating the frustum created by lifting vertices in
R, we have multiple tetrahedrons. We associate each
tetrahedron in the frustum as in Fig. E [15a] to a 3-cocycle,
such as the one in Flgl, 13l to which we assign a phase factor

(g4g3 ,9392 9291 ) The product of all such cocycles

composes the factor Amp®, namely,
Amp* = H w(tetra)®. (88)
tetracR

Using the cocycle conditions, it turns out that Ampm
only depends the DOFs around OR and does not depend
on those DOFs deep inside R, see Fig. and its ex-
pression is

~ -1
Ampm _ @‘gz&mgu H

tetracOR

w(tetra)?, (89)

where the extra factor to the product on the r.h.s. is
~ —1
@g}fgn = ngmg;1 (gng;ilhgn—lgl_l) T eg_grg;l

(90)
when OR contains vertices equipped with the branching
structure, 1 -2 -3 = .-+ = n <+ 1, see Appendix@
In fact, one can introduce an operator B, that is sup-
ported only on OR such that [23]

“BI 7 (Ugpr) = UL [Uspr) . (91)

'
gj. ” .

i

FIG. 14: |hyj), is located on edge e = (i, ), |g:), and
l9;), are located on the two endpoints 4 and j.

To do this carefully, we need to first introduce a pre-
gauge structure [59]. Namely, we introduce a G-DOF h;;
on every edge (i,j) (which we will be set to the identity
group element [1)_ to begin with). One can think of the
edge DOFs as the discrete gauge field. After introducing
such a gauge field, one may write the local symmetry
action on both vertex v and the surrounding edges e D v.
This is also called the “gauge transformation” operator
on a vertex v as

o =LY H LY, (92)

edv

where e D v denotes those edges with one end being v and
where L7<, is the left (right) actions of z. on |h),_, when
the edge e flows to (emanates from) v. Furthermore, the
“interactions” should also be written in a gauge invariant
way. Namely, instead of the original SPT Hamiltonian,
one can write the gauge invariant version as follows,

Z Z |G|Liu v (93)

v geG

HSPT—pre =

(9395 ", 9297 1),



where the W phase was previously introduced in Sec.

Taking any ground state of this Hamiltonian, we can
impose the gauging map in the presence of the pre-gauge
structure,

T g}, hij), — [{gihijg; '),

under which, the state would be mapped to a ground
state of the TQD model. One special ground state of
this Hamiltonian would be

) = [¥spr) @) 11),

where we have taken the original SPT state, which has
|h), = |1), on all edges. One can easily verify that
GZ |Uspr-pre) is still a ground state, for any vertex v on
lattice and z € G. We define the gauge transformation
over a region R as G = [[,cx G- If the spatial lattice
I is closed, we write G* =[], .p G and one can check
that

(94)

|leSPT—pre (95)

Qm I‘IISPT—pre> = “IISPT—pre> . (96>
Therefore, the operator ¢* mimics the behavior of global
symmetry operator U” after introducing the pre-gauge

structure.
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Now we introduce the definition of symmetry branch
line operators B, on states with trivial edges |h), =

1)er

B |Psprpre) = G [Vsppre) » (97)
but unlike G%, the operator @gm only takes effect on OR.

We find that the following expression of ®§m7
@gfk = ZI&QW&;{W“ é?)&mg“ v)y (Gol (98)

v

where v is a reference vertex on OR as shown in Fig.

~ -1 _ —
and Gg“;;g” is defined in eq. . The phase ngfg’“
is the product of cocycles associated to the tetrahedrons
in Fig. 15b] with g, g, ! = g,2g; ",

~ -1
GuvTgy,
Won = | I
tetracOR

w(tetra)®. (99)

The operator L is a product of shift operators on the
edges crossed by OR. In general, L with x € G on a
ribbon [ is defined as follows,

g1 1 92 g3 1 94
L e qo--mmmmmmmm oo 1 1o >
95 g6 gr
(100)
9 ! 9 93 ! 91
frd x x xT
95 g6 gr

We note that the branch line operator @5@ cannot be
written as a product of local terms on OR. This oper-
ation B5, can be regarded as the non-onsite symmetry
action on the boundary OR, and its definition can be ex-
tended to the case whenever there is no flux in the state
(i.e., for every plaquette [I. ke = 1.). From direct cal-
culation using Eq.(97) and the fact that GG = Gy,

one can easily show that the multiplication rule of @gm,
BERBYx = BEY, (101)

is exactly the multiplication rule of the group G, as ex-

(

pected for the symmetry branch lines. One can also show
the multiplication rule of (B # directly using the form in
Eq. (98), see Appendix D] Indeed if we use the operator

TG 26

zeG

(102)

to project any ground state onto the gauge invariant sec-
tor, we would also have a TQD ground state. The oper-
ator above in Eq. can be seen as a superposition of
different meshes of symmetry branch lines.

There are two important remarks here. The first is that



FIG. 15: (a) Symmetry action inside of region R “lifts”
R such that all the simplex in the region correspond to
@. (b) This symmetry action can be equivalently
regarded as the insertion of symmetry branch line on
OR.

inserting a symmetry branch line on an SPT state is to
create a point symmetry defect 0., move it along OR and
annihilate it with 0,-1. The multiplication rule above
indicates that the fusion between point defects is 0,
0y = 0zy. Second, we can consider the global symmetry
action ¢Y on the state with a branch line on OR, i.e.,
@gm |Uspr_pre). It turns out that

gy@g@ ‘\IISPT—pre> :gyg[:}v& |\IJSPT—pre>
=ngjzgy”
gymy

_pYTY
*@am

|\I]SPT— re>
’ (103)
|\IJSPT-pre>

1
‘ \I]SPT—pre> )

where G = [[,cq G¥. In other words, the global sym-

metry transformation p¥ on 0, is p¥(0;) = 0yzy—1

B. More on Symmetry Branch Lines

To discuss further the symmetry branch lines, we first
remind the readers of some definitions in group cohomol-
ogy. Given a 3-cocycle w(g, h,l) as a representative of
element in H3(G,U(1)), the slant product is defined as
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h h, (gh)~txzgh
0, (g.h) = L0 LI 90 _0gh) g
w(g,9~ g, h)
which is naturally a conjugated 2-cocycle, i.e., a repre-

sentative in H2(G,U(1)[G]). Namely, it satisfies the fol-
lowing condition,

Og-129(h,1)0:(g, hl)

a9 ) = =g o 10, (9. 1)

=1. (105)

When 6 is a representative of the trivial element in
H?(G,U(1)[G]), there exists a conjugated 1-cochain e,
such that

€gflacg(h)€$ (g)
ea(gh)

There is another product that will also become useful
later:

0.(g,h) = de,(g, h) = (106)

w(a,y, 9)wlg, g ' xg, 9 yg)
w(z, 9,97 1yg)

; (107)

Yo(,y)

which, however, is not a 2-cocycle nor a conjugated one.

For a general state with a nontrivial pre-gauge struc-
ture, we give a conjecture for the expression of symmetry
branch lines. We can follow the similar idea as in the pre-
vious section to introduce the branch line operator B35,
from the symmetry action in the region R, when all the
plaquettes on OR are fluxless (i.e. [[.cp, he = 1), and
the flux on each plaquette p € R ([[ g, he) is in the
centralizer group Z,, see Appendix D] for details. If we
start from vertex v and go along AR, the holonomy, i.e.,
the product of group elements on all the edges along the
path, is g, [, hegy 1 and the resulting symmetry branch
line is

@BfR - Z@BIR g TGy ) (108)

with the operator on the r.h.s. being

29 = ZIE)JQWQUIQU @gvmgp 6Q>gv(ne he)gs ! 190), (90l

(109)
where €,(g) is a 1-cochain defined in Eq. (106), and v is
a reference vertex. The phase Wg” 9 is the product of
cocycles associated to the tetrahedrons in Fig. [15b] with

hyy =z and g, = g,, namely,

ngxgv — H

tetracOR

w(tetra)®. (110)

The operator ©%, 790 s defined in Eq. (D15), and L3,
is defined as follows
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hl h2 h3
g1 g2 gs 94
LF oo et kg mmmmm e kg >
95 g6 gr
(111)
h1 h2 hS
5N 92 gs 94
= zky hy'zh ke (hih2)ta(hiho) ks
95 g6 gr

In order to make L5, well-defined, we require that x
and [], he commute. For an SPT state, we have that
[1. ke = 1, and this is trivially satisfied. With the above
discussions, we can derive the multiplication of branch
line operators (see Appendix@ for the proof),

Bt Bhd = Biw? vg(gurgy ' goygy ) 0g.. (112)

We also note that given a 3-cocycle w, the phase factor
€ is not unique. One can always replace €, by €,v,, where
v,, satisfies dv, (g, h) = 1. This corresponds to a different
choice of 0, in C,, and we will illustrate this with concrete
examples below.

We recall the gauging map in the presence of the pre-
gauge structure,

U [{gih), [hig), = [{gihijg; '}), - (113)

Under this, the operator 85, is mapped to

Z kxkl kwk 1@ka:k ran—1 (kgk™).
keG

(85
afR |G‘
(114)
Notice that after gauging, the g, dependence of the op-
erator is summed over as in the sum of k € G above.
Therefore, the resultant operator under the gauging map
does not depend on any reference vertex.

In the case when w = 1, we can choose ¢ = 1, then the
operator I'(Bj,) is reduced to the trace of the ribbon
operator that creates an z-fluxed anyon in the quantum
double (see, e.g., Ref. [61]),

C,,l ci,bi ab
Fox "1z ‘aé Fon ; (115)

where on the left-hand side, C,, is the conjugacy class of
x, 1 is the trivial representation of the centralizer group
Z.. In order to construct the operators Facg“g ’1, one enu-
merates the elements of the conjugacy class as C, = {¢; },

together with a suitable subset {b; }lC | ¢ G such that

c = bixbjl. The operator F. acgf’l on the left-hand side
is a ribbon operator labeled by topological charges, and
i,binb; . . . . .
Fg@ "% on the right-hand side is a ribbon operator in

a basis labeled by group elements.

For a generic 3-cocycle w, when z is in the center of G,
the z-fluxed anyon is abelian. Then we have the following
relation via the map T,

T(B57) = Far, (116)

where Fj;/ is a ribbon operator defined in TQD for
abelian groups in Ref. [49].

The algebra of ribbon operators can be inferred from
the quasi-Hopf algebra [60] [62]. To be more concrete,
suppose we insert an a-flux on ribbon I. Operator F;"?
thus satisfies the multiplication rule

FRORP = FP8, gy (e,y), (117)

which is consistent with our result of the branch line mul-
tiplication in Eq. , since we expect the gauging map
to preserve the operator algebra, which is quasi-Hopf in
this case.

One thing to notice is that, in order to write down
B3Iz, we have assumed the existence of e. This is not
always possible. When such € does not exist, even when
x is in the center of G, the z-fluxed anyon can still be
nonabelian [60]. For example, if w is a type-3 cocycle of
Zo X Lo X Zsy, the anyons in the TQD are generally non-
abelian. Therefore, one could not expect to write down
ribbon operators as we have defined above. However,
when we gauge one of the Zs groups from the SPT, we
would enter an SET order with global symmetry Z3 x Z,.
It turns out that we can try to write the branch line op-
erators in the SET order, and from the algebra of which,
one can infer the symmetry fractionalization patterns.
We will leave this for further discussion later in this pa-
per.

Throughout this paper, we have mostly used branch
lines on closed curves. As we have seen earlier, for closed



branch line operators, we need to specify a reference ver-
tex v. Imagine if we could define branch line operators
on an open ribbon that starts from vertex v; and ends
at vertex v,, we have two natural reference vertices. In
the case when G is abelian, the gauging map will take
such operators to ribbon operators defined in [63]. If we
assume that the multiplication rule stays the same, then
we have

@ Z 5gna:g7, gngl ) |gl7«gn>v1,vn <glagn| )
g1,9n
(118)
where the factor

Be(9) = €x(g)en—1(9)vg(z, 27 )

is the only object that is ‘pumped’ out when we apply
the anomalous non-onsite transformation and its inverse

(119)

accordingly. One can check from the cocycle condition
(see also Ref. [62]) that
5 _ng( )ﬁz( ) =1, (120)
Bz (gh)

showing that (,(g) satisfies the ‘twisted’ cocycle condi-
tion. One can thus use this to write

Bgn:cgil(g"gl_l) - ﬁgnxgﬁl(g")ﬁgwgfl(gl)_l' (121)

If v is one of the endpoints of the defect operators, then
we essentially pump a factor ﬂgvxg;1(gv) to the state.
The phase factor §,(g) is a conjugated 1-cocycle, i.e.,
B:(9) € HY(G,U(1)[G]) ~ @;H*(Z;,U(1)), where i la-
bels conjugacy classes of GG, and Z; is the corresponding
centralizer group. We will call this factor the SPT pump-
ing factor, since, by fusing defect operators, we pump
a lower dimensional SPT state (in this case a 0d SPT
state) on the boundary of the line ! after the applica-
tion of BB . This is a generalization of a previous
abelian case analyzed in Ref. [64]. If G is abelian, for
every element x € G, the factor 8,(g) is a 1d represen-
tation of group G, i.e., one pumps a 0d G-SPT state on
the endpoints of an open ribbon.

FIG. 16: An open defect on a triangulated lattice.

C. Symmetry Branch Lines in SET Phase

As discussed in previous sections, we can gauge a nor-
mal subgroup N of G. Then we enter an N SET phase
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with global symmetry Q = G/N. Any group element g
in G can be decomposed as g = ¢(g)n(g). The SET wave

function is
ser) = Y. Q{amed; ' H) @) lan) R) ne) -
{gu}{ne} v €
(122)
When the group element € G commutes with all the
elements n € N in the normal subgroup, a branch line
operator B5, we introduced for the G-SPT state will
be mapped to another operator Hjg, under the gauging
map I'n. Further, the operators defined as such respect
the same multiplication rules as B3, do. Denoting ¢, =
q(gv), the operator H3, is written as

x,q
Hjg = ZHBGQ Cqqy )697‘11)(1_[6 ne)gy (123)
with HEY = Ly, Wkt @Lrt |g.) (g, (124)

When x € N, the operator is a ribbon operator creat-
ing a gauge flux in the SET. When n(z) = 1, i.e., z = s(q)
for some element g € @, the operator creates a flux that
corresponds to an element in the global symmetry group
and thus is a branch line operator. The multiplication
rule of such operators is

Hi HYY = H3%? 5 (q0r; ' quyay ') 0g,9, (125)

which, in turn, leads to

x Yy xY,9
Hog Hopg = Z Hog 5‘1111(];17‘11)9(11)_1 (g)ég,qv(ﬂc ne)qy

g
(126)
where the phase factor 5 on the r.h.s. is

Bay(9) = €x(9)ey

When we take two branch line operators H,”? and
H/Y, ie., both n(z) = n(y) = 1, and multiply them
together, then the resulting H,"”Y is not necessarily a
branch line operator, because n(xy) is not always triv-
ial. As we will see in more details later, this indicates a
nontrivial symmetry fractionalization class (SFC) of the
SET order.

We can always apply a finite-depth local unitary to
take all the vertex DOFs to the identity element (see
appendix, such that the state becomes

Z Q {ne {n€}>e B |1>v
{n.}

This is a TQD with the 3-cocycle v(n1,ng,n3) being the
restriction of w(g1, g2, g3) on subgroup N. An abelian
anyon in this model is determined by its flux (i.e., con-
jugacy class C,) and charge (i.e., a conjugated 1-cochain
Lo such that S, = 04| N, ie., pg = €a|n). The symmetry
action on the anyons are given by

(9)vg(x, ). (127)

(128)

(129)
(130)

p*a-flux — 27 laz-flux,

px : IU/CL % l’[’lzflax'



From our previous analysis, we know that the automor-
phism g% maps a-fluxed anyon to z~'az-fluxed anyon,
thus we have Eq. (129). Furthermore, the automorphism
will map a chargeon (i.e., a representation y € Rep(N))
to ', where p'(z tax) = p(a). Therefore, we can infer
the general map of the anyon charge as

Oo(z, 7 nx)

Bu(n,z)

! palm). (131)

I('L.]'E*IEJE(I_ WT) =

However, the symmetry branch line operators we intro-
duced above for the SET states assumed that  commutes
with all the elements in normal subgroup N. Therefore,
the results obtained from analyzing such operators are
limited to the case when the symmetry does not change
the anyon type. To determine the SFC in this case, with-
out loss of generality, we will suppose that the global
symmetry is Z2 in most of the cases from now on. (Ex-
amples beyond Zs will be discussed later.) We first pick
one abelian anyon in C,, i.e., we pick one €, cochain such
that the corresponding branch line operator creates 0,.
Then the SFC should be determined by the fusion rule

FIG. 17: The operator (JFI(E}‘m)2 applying on curve R is
equivalent to the braiding phase between the g-flux of
an anyon b (g is the holonomy along dR), and the
charge of the anyon w.

As shown in Fig. the operator (H%,)?, when ap-
plied on the DOFs on curve dfR, is to create two point
defects 0., move them along AR, and finally make them
cancel with each other. This process will introduce a
phase factor that corresponds exactly to the braiding
phase between the g-flux of an anyon b (g is the holonomy
along 9R), and the charge of the anyon w. According to
Eq. , this phase factor is 5, .(g). Notice that, when
the symmetry group is Q = G/N = Z,, the g, depen-
dence in Eq. disappears. In general, such as in
more than 2-step gauging, this factor still depends on
qy. Since the flux of w is 2 (which is not necessarily the
identity element, as x is an embedding of the generator of
) = Zs into (), suppose the charge of anyon b is given by
a l-conjugated-cochain g, (such that Sp!,g = 6y|n), then
the braiding phase between the x?-flux and ty charge
is py(2?). To determine w, we write down the braiding
phase between anyon w and b, which is the product of
the above two factors,

B(wa b) = Bra (g)lu'g (3:2)9
and we illustrate this relation in Fig.

(132)
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flux  charge I’l‘g ($2 )

b g Hg »

2
hd N

B(w,b)

FIG. 18: The braiding phase between a g-fluxed
pg-charged anyon b and the anyon w(= 0, x 0,) is
written as a product of two braiding phases, as
presented in Eq. ll The second factor in blue is a
consequence of Eq. +| From the phase B(w,b), we
infer the unknown charge of the anyon w (written as
“?7), which determines the SFC.

From this result, one can determine the SFC of the
SET state after gauging some normal subgroup. Since we
can always attach a l-conjugated-cocycle v, to ¢, such
that €, = €,v,, the phase B(w,b) we derived above also
has this ambiguity. But it just corresponds to the free-
dom to choose any abelian anyon in C, that is labeled
as 0. Furthermore, we can always attach a coboundary
to the 3-cocycle w such that w' = wéa, where « is a 2-
cochain. Oune can check that the phase B(w,b) is always
the same as long as we choose w in the same cohomology
class.

In the next few subsections, we will use the above result
to determine the SFC in different SET phases, resulting
from gauging a normal subgroup N of an SPT phase.
In the later subsections, we will deal with the case when
symmetry does change the anyon type and conjecture the
form of branch line operators so as to use them to discuss
the SFC of the SET orders that we obtain from gauging
Dihedral SPT states.

D. SETs from partially gauging Z> x Z, SPT

The third cohomology of Z3 x Z5 has three generators,
two of which are of type-1, and the other one is of type-
2 [60]. Assume the two generators of the Zy x Zy group
are t and z, then we can denote any group clements as
g=(gWM, ¢ = 9" 29 where g, g € {0,1}. The
representative of the 3-cocycle is then

ﬂ?)(klg(”h(“!(])+kfgg(2)h(2)1(2)+k;;g(”h(2)i(2)) (155)
?

Wy.ht = €

where ki, ko, k3 = 0, 1.

In the SET phase obtained from gauging the first Zs
group, the anyon theory is the same as that of a TQD
D¥(Z;), where

v(g, h, 1) = emikig R (134)

is a representative in H*(Zy, U(1)) obtained by the re-
striction of w in the first Za group (namely, one restricts



the cocycles to those with ¢? = h(?) =) = 0) and is
used as the ‘twisting’ of Kitaev’s Zo QD model.

Therefore, when k; = 0 it is a toric code model, and
when k1 = 1 it is a double-semion model. Since Zy X Zy
is the trivial central extension of Zs by Zs, the symmetry
action on anyons is trivial.

The second Zs group {1, x} represents the global sym-
metry and therefore we can consider the multiplication
of two branch line operators Hjg,, which according to

Eq. (126), gives

HigHig = Beal(9)0g.11, 1. (135)
g

From Eq. (127) and Eq.(132), we find the braiding phase

between w and a t-fluxed anyon b,

B(w,b) = ()7, (@,) = (9. 9) g, 2) = (~1)"7".
(136)

For the conjugated 1-cochain we have used p,(2?) =
pg(L) = 1. Notice that since g = 1 for g € G, we
have 0,(g,9) = €2(9)?/€.(g9?) by definition but €,(g?) =
€-(1) = 1 so the second equality above follows. There-
fore, different choices of ¢-fluxed b anyon and different
choices of €, cochain (i.e., different choices of 0,) give
rise to the same braiding phase.

Now we discuss the consequence of the resultant braid-
ing B(w,b) in different cases. As mentioned above, when
k1 = 0, we have a toric code model. From our previous
general analysis in Sec. we can infer that the anyon
w braiding with b (m or em) gives rise to a phase (—1)%3.
Therefore,

0, x0,=0o0re, k3=0o0r 1. (137)

As mentioned earlier, when k; = 1, we have a double-
semion model. The fluxless anyon w braiding with b (s
or 5) results in a phase (—1)*s. Therefore,

0, x 0, =0o0r s5, k3 =0 or 1. (138)

The discussion of k; and k3 above completely specifies
the SFC of the SET in this case. We have not discussed
the consequence of ko, but if we further gauge the second
Zs, different values of k; will give rise to different topo-
logical orders, due to the 1-to-1 correspondence between
the SPT and TQD phases [34] [53]. Therefore, we know
that the intermediate SETs with different values of ko
must belong to different phases. Since all the topological
order parameters of SET, except the SDC, are already
fixed by k1 and k3, we can safely conclude that ko = 0,1
corresponds to two defectification classes, respectively.
Different defectifications intuitively can be regarded as
stacking or gluing different SPT phases [51] to the SET.
This particular case of SET phase was previously dis-
cussed in Ref. [49].

If we further gauge the global symmetry Zs in the SET,
then it becomes a twisted quantum double D“(Zs X Z3).
As we discussed earlier in Sec. for abelian groups,
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the symmetry branch line operators will be mapped
to ribbon operators creating certain abelian anyons af-
ter gauging. Indeed, from the Slant product, the 1-
conjugated cochain could be chosen as €, (g) = jkag®
The operator Hj, is mapped to a ribbon operator cre-

ating a to-flux anyon 7,

Fl’ﬂ — Flt2,1 + ,L'k2Flt27t2 + Flt2’t1 + ik2Flt2,t1t2. (139)

Since the gauge group is Zs x Zs, the fusing of two such
ribbon operators becomes a ribbon operator exciting a
flux-less anyon (chargeon) a, (F}")? = F/, similar to

Eq. ,

Fe = Fl1,1 I Fl1,t2 I (71)]@3F'l1,t1 I (71)}c3Fll,t1t2.
(140)
For example, when k; = ko = ks = 0, the anyon 5
is just a boson m in toric-code model, and the anyon a
is the vacuum anyon. For any values of the parameters,
we will see that the multiplication rules of branch line
operators become the fusion rules of anyons under the
gauging map.

E. SETs from partially gauging Z, SPT

We will use both multiplicative and additive represen-
tations of abelian groups interchangeably, e.g., g = 2
means g = z2 in multiplicative representation (for z be-
ing the generator of Z4). We take representative cocycles

in H3(Zy,U(1)) = Z4 as
.
cont=eso{ Tt f an

where p = 0,1,2,3. The slant product 0,:(g,h) =

exp{ Qfépk(g +h—[g+h]s)} corresponds to a projec-
tive representation given by e,r(g) = £k9. where ¢ =
exp{ 45

An SET phase can be obtained by gauging the normal
Zy = {1,t} group, where t = x?. By restricting w in
H3(Zy,U(1)), we have v(g,h,l) = ™9l where now
g,h,l = 0,1 are Zy-valued. Therefore, when p = 0 or 2,
it is a toric code, and when p = 1 or 3, it is a double-
semion model. Since Z, is a central extension of Z by
Z5, the symmetry action on anyons is trivial.

Let us recall that the branch line operators in the SET
ground state are

Hjg =) e(9)Hgd =Y 7 Hz.
g g

(142)

The product of two such branch line operators H3,
gives rise to a factor (see Eq. (127))

Buw(9) = €x(9)* g (w,2) = €5, (143)

for g = 0,2. The charge of g-fluxed anyon b is given by

2mipgh + 2mirgh

g () = T+ (144)



for g,h € {0,2} = s(Q). Furthermore, r, = 0,1 corre-
sponds to different choices of charges of anyon b. Thus,
the braiding phase between anyon w and b should be
given as

B(w,b) = Bra(9)g(t) = € (=1)".
When p = 0, we have a toric code model. When g = 0,
B(w,b) = (=1)™ where charge of anyon b is given by
to(t) = (—1)™. There are two chargeons 0 and e, cor-
responding to g = 0 or 1, respectively. Therefore, the
braiding phase between w and 0 (e) is 1 (—1), accord-
ing to Eq. (145). Moreover, when g = 2, the braid-
ing B(w,b) = (—1)" where the charge of b is given by
p2(h = t) = (—1)" according to Eq. (144). Therefore
we could say that the braiding phase between w and m
(em) is 1 (—1), which corresponds to ro = 0,1 respec-
tively. Therefore, we have a toric code with the following

SFC:

(145)

0y X 0y = m. (146)

When p = 1, this is a double-semion model. The braid-
ing phase is B(w, b) = (—1)9/2*"s where the charge of the
g-fluxed anyon b is given by j,(h = t) = e 479 ac-
cording to Eq. . When g = 0, two chargeons 0 and
s5 correspond to rg = 0 and 1 respectively. Anyon w
braiding with ss gives —1. When g = 2, the braiding
phase between w and s (3) is —1 (1), which corresponds
to 7o = 0,1 respectively. Therefore we have a double-
semion model with SFC:

0z X 0y = 5. (147)

When p = 2, this is a toric code model. The braid-
ing phase is B(w,b) = (—1)"s where the charge of the
g-fluxed anyon b is given by p,(h = t) = e™(3+79) ac-
cording to Eq. . When g = 0, two chargeons 0
and e correspond to rg = 0 and 1 respectively. Anyon
w braiding with 0 (e) gives 1 (—=1). When g = 2, the
braiding phase between w and em (m) is 1 (—1), which
corresponds to 1o = 0, 1 respectively. Therefore, we have
a toric code with SFC:

0y x 0, = em. (148)

When p = 3, this is a double-semion model. The braid-
ing phase is B(w,b) = (—1)9/2%7s where the charge of
the g-fluxed anyon b is given by py(h =t) = e’5 g tmirg
according to Eq. . When g = 0, two chargeons 0
and s5 correspond to rg = 0 and 1, respectively. Anyon
w braiding with ss gives —1. When g = 2, the braiding
phase between w and § (s) is —1 (1), which corresponds
to ro = 0,1 respectively. Therefore, we have a double-
semion code with SFC:

0p X 0p = 5. (149)

One could check that, if we choose other €, instead of
what we used above, we would derive exactly the same
fusion rule as above.
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F. SETs from partially gauging Z5 SPT

The third cohomology group of Zél) X Z2(2) X Zég) has
seven generators, three of which are of type-1, three of
which are of type-2, and one of type-3 [60]. Assume the
three generators of the Z3 group are t, x1 and xo, then we
can denote any group elements as g = (¢(M, g(®), ¢(3)) =

t9(1>x51’(2)xg(3), where g™, g ¢4 € {0,1}. For simplic-

ity, in this section, we will demonstrate the analysis for
representatives of some of the 3-cocycles, and then de-
rive the general result without further explanation. The
representatives that we take are

ﬂi(klg(l)h(l)l(l)+k2g(1)h(2)l(3)) (150)
)

Wy,hl = €
where k1,ks =0, 1.

In the SET phase obtained from gauging the group
Zél), the anyon theory is the same as that of a TQD
D¥(Z5), where

v(g,h,1) = emikrg R (151)
is a representative in H3(Z,,U(1)) obtained by the re-

striction of w in the first Zs group. Therefore, when

k1 = 0 it is a toric code model, and when k; = 1 it is a

double-semion model. Since 22(1) X ZQ(Q) X 22(3) is the triv-

ial central extension of 22(2) X Zé?’) by ZQ(I), the symmetry
actions on anyons are trivial.

Since the slant product of the cocycle given above be-
longs to a class [0] that is not the trivial element in

H?(Z3,U(1)[Z3]), it is impossible to find € (g), such that

On(k9) = B g) = 0.

for any g,h,k € Z3. However, in defining the symme-
try branch line operators, we only need phase factors

(152)

€n(g) where the group element h € Z2(2) X Zé?’) and
geEN = Z;l). Indeed in this case, there exists such a
phase factor that satisfies Eq.(152) when restricting the
group elements h, g in their corresponding subgroups.

The slant product of the cocycle is trivial,

Ok, g) = (1) VKT HORDGS _y  (153)
when h € Z§2) X ZéS) and k,g € Zél). Therefore, we can
choose ¢,(g) = 1.

In general, when the symmetry group is Q = Z5 X
Zs, we take two elements hi,hy € $(Q) C G that are
the embedding of elements hi,he € Q). The consistency
condition of embedding is

q(hiha) = s(hihs). (154)
The fusion rule of 65 is of the form,
05, % Of,, = w(hy, ha) x 05, .. (155)



From our previous analysis,

tween 0; x 0;  and anyon b = (g,u,) is B =

Bhyna (9) g (n(hihs)). According to Eq. (154), the braid-

ing phase between 07,7, and anyon b is By = €q(h1hs)(9)-

As a result, the braldlng phase between abelian anyon
w(hy, ha) and b should be the ratio

the braiding phase be-

M%(hh ha)pg(n(h1hs)).

B(w(hi, hs),b) = €q(h1h2)(9)
(156)

Later on for simplicity, we will use w(hy, ha) to denote

w(hy,hs). Since we choose €p,(g) =
n(hihs) = 1, we have

1 in this case and

B(sw(hy, ha),b) = 7, (hy, hy) = emik2emi”®s” (157

for g € Zél). Since the group extension of Z2(2) X 22(3)
by Zél) corresponds to the trivial element in H 2(Z2(2) X
Zég), Zél)), we know that the abelian anyon w(hq, he) is
always a chargeon for any hi,hs € Zéz) X Zég). When
k1 = 0, we have a Z5 toric code model. From the above
braiding phase we can conclude that when ky = 0,

w(hy, he) =1 (158)

J

H(Z3,U(1)) Zs

type-1 of ZéUT

anyon theory

X Z2
type-2 of Z{" ><Z§3)T
SFC;

In this example, we have illustrated 2 out of the 7 gen-
erators in H3(Z3,U(1)) as in Eq. and showed that
k1 gives the anyon theory and ks (which is associated
with the type-3 cocycle) gives a symmetry fractionaliza-
tion pattern named SFCs in the above diagram. To un-
derstand the rest of SET properties, we note that the two
SFCy’s are the symmetry fractionalization pattern asso-
ciated with type-2 cocycles of Zél) X 22(2) and 22(1) X Zég),
respectively, which were already discussed in Sec.
The SDC part is the symmetry defectification class as-

type-1 and 2 of Zéz) XZéS)T
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when ky =1,
(2) _ (3 _
e, hy”’ =hy
hi,ho) =4 " L, 159
w(h1, h) {1, others. (159)

On the other hand, when k; = 1, we have a Z5 double-
semion model. From the above braiding phase we can
conclude that when ks = 0,

w(hi,he) =1 (160)
when ko =1,
- (2) _ 53 _
55, hy” =hg
hi,hs) = ’ 1, 161
wlh, he) {1, others. (161)

One can check that all the abelian anyons w(hq, h2)’s
above satisfy the cocycle condition,
W(hg7 hg)w(hl, h,zhg)

W(hlhg, h3)w(h1, hg)

=1. (162)

If one chooses different €;,(g) other than what we
used above, the derived anyon w(hy, hy) will be dif-
fered by a coboundary. Therefore we conclude, differ-
ent values of ko will give different symmetry fractional-
ization patterns that correspond to different elements in
HZ(ZSQ) X Z§3),ﬂ), where A = Zy x Zy is the group of
abelian anyons.

One can generalize the above result to an arbitrary 3-
cocycle. The cohomology group of Z3 can be decomposed
as such:

3
X Zs X Zy
type-2 of Zél) XZéQ)T

SDC SFC;y

(163)
X ZQ

type-3 of Z{" x 25 x ngﬁ

SFCs .

(

sociated with cocycles of Zéz) X Z§3), both of type-1 and
type-2. In the cases when the Z3-SPT phase corresponds
to the cohomology class which is trivial in the first Zs
subgroup in Eq. ( -, one can choose a representative

that is of some specific form. Then after gauging Z, (1)
subgroup, according to Ref. [63], one can determine the
symmetry fractionalization patterns of the SET order,
which agrees with our general results above.



G. SETSs from partially gauging D, SPT

Now we consider the non-central extension of Zy by Z4.
We write the element in Dy as § = (G, g) = 2%a9. We
construct a representative of 3-cocycle in H3(Dy, U(1))
as follows:

_ exp{ 2EDL L (1) 41— (1) + zm}

x exp{mipoGHL + mipsgHL},

(164)
where p; = 0,1,2,3, and ps,p3 = 0 or 1. There are four
nontrivial abelian normal subgroups in Dy, which leads
to four options in the first step when gauging this group.
We will consider three of them here.

Gauging Z;. The first option is to gauge the normal
subgroup Z; = {1,a?}, resulting in a state in an SET
that has the same anyon theory as D¥(Z3), where

o
V(g,h,l)=e><p{ q%plghl}

(165)

is the restriction of w on Zs, i.e. g,h,l € {1,a?}. When
[p1]2 = 0 it is a toric code model, and when [p1]2 =1 it
is a double-semion model. Since the group extension of
Zo X Zy by Zs is central, the symmetry actions on the
anyons are trivial. Therefore, according to Eq. , the
braiding phase B(w(hi, h2),b) is given by

B(w(hi, ha),b) = M%(m, ha)ig(n(hiha)).

6q(hlhg)(g)
(166)
We write the embedding of quotient group elements
g=(gW,gP) e Zy x Zy = {1,t1} x {1,t5}  (167)
in Dy as
s(g) =22 a?". (168)

From the group multiplication rule, one can infer that
the abelian anyons w(ta,t1), w(ta2,t2), w(tite,t1) and
w(t1ta,t2) have nontrivial flux, while w(hy, hg) for other
h1, ho are chargeons. We list the detailed symmetry frac-
tionalization patterns below.

When [p1]a = 0, we have a Z, toric code model. From
the above braiding phase we can conclude that the SFC
is characterized by [w(hi, he)] € H3(Zy x Zo, Zy X Zs),
where

m, (hi,h2) = (t2,t1), (t2,t2),
(tit2, t1), (tita, t2)
1, others.

W(hl,hg) = (169)

When [p1]2 = 1, we have a Zs double-semion model.
From the above braiding phase we can conclude that, the
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SFC is characterized by [w(h1,h2)] € H?*(Zy X Zo, Zay X
Zs), where

s, (h1,he) = (ta,t1), (tita, t2), (t2, t2),
5, (h1,ha) = (t1te, t1),

W(hl’hZ) S8, (hl,hg) = (tl,t1>, (tl,tltg), (t1t27t1t2),
1, others.

(170)

Other parameters of the cohomology group

H3(Dy,U(1)), including %,pg and ps, will give rise
to different SDCs that form an H?(Zs x Z,U(1)) = Z3
torsor.

Gauging Z;. The second option is to gauge the normal
subgroup Z4, resulting in a state in an SET that has the
same anyon theory as D (Z,), where

v(g,h,1) = exp{ 27?61’1 glh+1—[h+ 1]4)} (171)
is the restriction of w on Z4. Different values of p; exactly
correspond to different Z, TQD models. The symmetry
action takes e to €3, and takes m to m3e?P* according to
Eq. , which is not a trivial automorphism on C. One
can still manage to write a phase factor B(w,b) = 8, ,(9)
for g € N = Z4. (We remind readers that x is one of the
generators of the group Dy such that 2% = 1.) However,
two obvious problems will emerge from this factor. The
first one is that unlike in the case when symmetry does
not change the anyon type, when we change the repre-
sentative 3-cocycle for the D4-SPT state by a cobound-
ary, w' = w - da, the “braiding phase” is not invariant
anymore, B(w,b) = B(W,b)%ﬁ)lajg). The second
problem seems to be even worse. In a generic case, it
might be impossible to find an abelian object in sector
C, such as the 0, from before. Therefore, there may not
exist an abelian anyon w as the fusion between 0, and
itself. Indeed, in sector C,, there are 4 objects of quan-
tum dimension 2. If we nonetheless pick one of them and
still name it 0,, by counting the dimension, we can write
a fusion rule of the form,

0y x0p =a+b+c+d, (172)

where a, b, c,d € C are abelian anyons.

Motivated by the ribbon operator in the quantum dou-
ble model as in Eq. , we choose by = 1 and by = a
and we write a matrix-valued operator on an open ribbon
as

" bizb; ! bind ! 1
(H )ivr = Z H, ebizbfl(binbi’ ); (173)
ne{l,a?}

where the matrix indices 4,7 = 1,2, and the operator
H}"Y satisfies the same multiplication rule as in Eq. (125)),

Hl%ng%g = Hlxy’g'Yg(xvy)(sg,g“ (174)

We conjecture that the operator as in Eq. (173)) creates
an object in sector C, on the endpoint of [. We call this



object 0, even though it is of dimension 2. Then the
object 0, x 0, should be created on the endpoint of [
by operator (H{)®2. It can be shown that, when we
change the representative 3-cocycle for the Dy-SPT state
by a coboundary, w’ = w - da, the matrix (HF)®? differs
by a similar transformation. Therefore, the fusion rule
remains invariant under different representative choices.
According to the detailed analysis in Appendix[F] we see
that different values of p3 give different SFCs where the
fusion rules are shifted by anyon [¢*] € H2(Z, A).

Gauging Z5 x Z3. One could also gauge the Zs x Zy =
{1,z,t,xt} in Dy, resulting a state in the phase of

DY (Zy x Zy). We write t = a® and g = 29 9? =

297629 The 3-cocycle w restricted in this group is
obtained from Eq. (164) and is given as

I//(g, h, l) =exp {%9(2)(_1)}“1)4_“1) (h(Q)(_l)l(l) n /@)

— R~ +1D]3) + mipag MR |,
:(_1)p1(g<2>h<2>l<2>+g<2>h<2>l<1>)+p29<1>h<1>z<1) .

(175)
Notice that there is no contribution from the third part
in Eq. as e™ps (29D — 1 Ty Appendixwe
analyze the fluxes and charges of all the anyons in the
theory from 3-cocycle [/]. Let by = 1 and by = z, one
can write the matrix-valued operator on an open ribbon
l as

/ biab; ',binb ;" 1
(H')ivr = Z H, Ebiabfl(binbi’ ); (176)
ne{l,t}

where the matrix indices have the range 7,7’ = 1,2. As
we conjectured, the object 0, x 0, should be created on
the endpoint of [ by operator (H")®2. According to the
detailed analysis in Appendix we see that different
values of p3 give different SFCs where the fusion rules
are shifted by anyon [e(V)] € H2(Zy, A).

H. SETs from partially gauging S;3 SPT

Now with the conjecture made in Sec. we can
revisit our first example in Sec. Recall that we write
the element in S as § = (G, g) = x%a?. We construct a
representative of 3-cocycle in H*(S3,U(1)) as in Eq. (70).
Gauging the normal subgroup Zs of a S3-SPT state, re-
sults in a state in an SET phase that has the same anyon
theory as DY (Zs3), where

TiP1

u<g7h,z>=exp{2 g<h+z—[h+z]3>} )

is the restriction of w on Z3. Different values of p; exactly
correspond to different Z3 TQD models. The symmetry
action takes e to €2, and takes m to m2e?P* according to
Eq. , which is also not a trivial automorphism on
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C, as we have seen something similar in the previous Dy
case.

In sector C,, there is only one object of quantum di-
mension 3. We name it 0,. By the dimension counting,
we can write a fusion rule of the form,

9
Ow X Ox = E a;,
=1

where a; € C are abelian anyons. Let by = 1, by = a and
bs = a?, one can write a matrix-valued operator on an
open ribbon as

(178)

bixb 1 bib,t

()i = Hy 0 70 6 o (Biby ), (179)

where the matrix indices are in the range i, = 1,2,3.
As we conjectured in the last example, the object 0, X
0, should be created on the endpoint of [ by operator
(H)®2. According to the detailed analysis in Appendix
we can obtain the fusion rule of the Z3 SET from the
conjectured branch line operator,

OZxOm:1+6+62+m+em+62m+m2+em2+62m2.

(180)
From the analysis in Sec. we know that there is only
one symmetry fractionalization pattern for every value of
p1. This unique SFC result is consistent with the fact
that the fusion in the above equation is the same for all
values of py (with a fixed py, i.e., fixing a distinct anyon
theory), and thus po gives different SDCs, unrelated to
the SFC.

I. SETs from D, SPT

Here we comment on the SET phase obtained from
gauging the N = Z, subgroup in the D, SPT state.
When n = 2m + 1 is odd, from the similar argument we
used for the S3-SPT state, there is only one symmetry
fractionalization pattern of such SET. The cohomology
group can be decomposed as

H?(Domi1,U(1)) = H*(Zam11,U(1)) © H?(Z2,U(1))
= Zom+1 ® Zo.

(181)
Therefore just as in S3 = Ds case, a representative 3-
cocycle [w] € H3(Dapmy1,U(1)) will have two parameters
p1 =0,...,2m and p; = 0,1. Different values of p; give
different anyon theory of the SET order, while different
values of ps give different SDCs. Furthermore, there is
only one object 0, in sector C, of dimension 2m + 1, and
from a similar calculation, one expects the fusion rule to

be

OxXOx:Za.

acl

(182)



When n = 2m is even, the cohomology group can be
decomposed as
H*(Dypp, U(1)) =H*(Zam, U (1)) ® H*(Zs,U(1))
& H*(Zy, H (Zam, U(1)))
=Zom © Z ® Zo.

(183)

Therefore just as in Dy case, a representative 3-cocycle
[w] € H3(Day,U(1)) will have three parameters p; =
0,..,2m — 1, po = 0,1 and p3 = 0,1. Different values
of p; give different anyon theory of the SET order and
different values of py give different SDCs. Furthermore,
different values of ps will differ in the fusion of 0, x 0, by
anyon e, and, therefore, correspond to different sym-
metry fractionalization patterns.

J. SETs from partially gauging Qs SPT

Another group extension of Z; by Z, is the Qg group.
We write the element in Qg as § = (G,g) = 2% just
as for Dy. The only difference is that z2 = a? in-
stead of identity now. A representative of 3-cocycle in

H?(Qs,U(1)) is [60]

- Qi
W(G, 1) = exp{ 7;”7 ( —9GHL+

g(= D) (h(=1)" + 1 = [h(~1)" + 1+ 2HL]1) ) },

(184)
where p = 0,1,2,3. We note that despite the fact that
H3(Qs,U(1)) = Zg, we only present half of the cocycles
here, as we are not aware of the other half. After gaug-
ing the normal subgroup Z» = {1, a?}, we obtain an SET
states in which the anyon theory is the same as in D" (Z3)
where v(g, h,l) = exp{Q’g”ghl}7 with g, h,l = 0,2 rep-
resenting elements from the set {1,a?}. Therefore, p =
0,1,2,3 all correspond to the Z; toric code model after
gauging. The symmetry action on anyons are trivial since
the group extension is central. According to Eq. ,
the braiding phase B(w(hq, ha),b) is given by

B(W(hth),b) = eill((};g)'l%)z(‘(gg))’}/g(hl, hg)ug(n(hlhg))
g{hihn2 (185)

Let us write the quotient group elements as Zy x Zy =
{1,t1} x {1,t2}, where the embedding of t;(t2) is z(a).
After carrying out the detailed calculations from the
cocycles above, the SFC corresponds to [w(hi,ha)] €
HQ(ZQ X ZQ7Z2 X ZQ), where

m, (h1,h2) = (t1,t1), (t2, t1), (2, t2),
(t1,t1t2), (tita, ta),
1, others.

w(hl, hg) ==

(186)
Therefore, the parameter p characterizes different
SDCs of the SET order. One expects that for the other 4
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classes of cocycles in H?(Qs, U(1)), the anyon theory af-
ter gauging the normal Z5 subgroup would be Z5 double-
semion model, and from similar calculations, one can de-
termine the SFC accordingly.

VII. CONCLUSION

Recently, it has been realized that a wide class of topo-
logically ordered states described by the (twisted) quan-
tum double models with solvable gauge groups can be
prepared with finite depth local operations as long as
local measurements are included [42H47]. We have re-
examined such a measurement-based gauging approach
which transforms a non-trivial SPT state into a cor-
responding TQD state. We provided two alternative
gauging procedures: one using a particular decomposi-
tion in terms of successive quotient groups and another
one exploiting a new and equivalent definition of solv-
able groups. This flexibility in our method may allow us
different options in preparing mid-gauging SET states.

In the case of non-abelian groups, the gauging pro-
cedure involves multiple steps where intermediate steps
only partially gauge the system so that some symme-
try remains. Starting from an initial G-SPT state, we
have presented an in-depth analysis of the intermediate
states and have found them to be topologically ordered
states enriched by the remaining ungauged symmetry.
We have constructed the generic lattice (parent) Hamil-
tonian for these states, and showed that they are con-
nected to twisted quantum double (TQD) ground states
via a finite-depth local unitary circuit (without measure-
ments) which does not respect the global symmetry.

Furthermore, we have shown that the algebra of the
symmetry branch line operators can be used to extract
the symmetry fractionalization classes and infer symme-
try defectification classes of the SET phases given the
input data G and [w] € H3*(G,U(1)). When the SET
order in the intermediate step of the N-step gauging has
a global symmetry that does not change the anyon type,
using the algebra of symmetry branch line operators, we
have developed a general formula for the braiding phases
between any abelian anyon in the theory and the anyons
obtained from fusing point defects, which exactly charac-
terize the symmetry fractionalization patterns. We have
given various examples for this case. When the SET or-
der we enter has a global symmetry that does change
anyon types, we conjectured the form and algebra of non-
abelian symmetry branch line operators that can create
the corresponding symmetry defects. Then by calculat-
ing the tensor product of such operators, we showed that
fusion rules of these symmetry defects can be derived,
which is sufficient to characterize the symmetry fraction-
alization patterns. We have used the dihedral SPT states
and the associated SET states as examples to illustrate
this latter case.

In this work, we mainly focused on the SFC, and
a framework to characterize the SDC is left for fu-



ture study. We note that, according to Ref. [51], the
SDC forms a H3(Q,U(1)) torsor, and two defectifica-
tion classes are differed by an element in H3(Q,U(1)).
One can always enter another SDC by applying a uni-
tary U, to vertex DOFs (where [w'] € H3(Q,U(1))).
This is equivalent to stacking a Q-SPT state onto the
current SET state.

Our method to probe SET phases using fusion was
inspired by Ref. [44] and it turns out to be specifically
useful when the gauge group (or the normal subgroup
in the case of multi-step gauging) is abelian. We expect
our formalism holds for non-abelian TQD models with
some global symmetry. We leave as open questions how
to consistently define ribbon operators for probing more
complex SET phases with non-abelian gauge groups. For
this purpose, it may be useful to re-examine some litera-
ture regarding the quasi-Hopf algebra [60] [62] [65].

As a technical issue, in writing down the branch line
operators, we have assumed the existence of €,(g) (see
Eq. (106)) for the 3-cocycle [w] € H3(G,U(1)). However,
this factor may not exist in general. We did encounter

this situation in the example of gauging the Zél) symme-

try in the 22(1) X Z§2) X Z§3)—SPT phase when the cocycle
is of type-3. Nonetheless, when restricting « and g to
some specific subgroups, we can still define €,(g), and we
used them for the branch line operators to characterize
the symmetry fractionalization patterns. It is not clear
how to overcome the non-existence of €,(g) in general,
and this is also left for future exploration.

As conjectured by the hierarchy of topological or-
ders conceptualized in Ref. [44], topologically ordered
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states with non-solvable groups or even more general
anyon models without any group structure cannot be pre-
pared using finite-depth measurement-assisted circuits.
Nonetheless, it was recently shown in Ref. [66] that the
Fibonacci anyon state can be prepared using log L-depth
circuits with mid-circuit measurements (where L is the
linear size of the system). It would be worth exploring
mid-gauging topological phases beyond solvable groups
and group-based anyon theories.
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Appendix A: Some properties of twisted quantum double (TQD) Hamiltonian

In this section, we check some properties of twisted quantum double (TQD) Hamiltonian. Although some proofs
of the claims here are given in the original paper [11], we demonstrate those in our notation. The TQD Hamiltonian

is given by

H=-Y A,-> B, (A1)

where A, is the vertex operator and B, is the plaquette operator explicitly given by

1
A, = — LS
‘G‘ <H +e
geG

edv

Bp:(S(ng,l).

eecp

- 1
W9 = @ > Ay, (A2a)

geG

(A2b)

The operator (I],-, L%.) denote the operator which implement left action (L9%,) or right action(L?,) on the edges

adjacent to the vertex v when the edge flows to vertex v or emanates from vertex v respectively. Wg is the phase
operator defined as follows

f
W{? = (H Lgte) Uw (H Lie) UuTJ (A3)

edv edv

where U, is the phase operator which assigns a phase to a given configuration of edges in the TQD ground state(see
Eq. ) The purpose of WY is to change the phase factor in TQD wave-function after the operation [] -, L%, is
applied on the vertex v.
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Claim A.1. The action of W{? on verter v can be interpreted geometrically as a product of cocylces of tetrahedrons
in Fig. [5] with appropriate signs in the exponent.

Proof. To prove this equivalence, we mention the following fact: given a tetrahedron with a branching structure,
equating one with the product of (a) cocycles (with appropriate signs in the exponent) on the faces and (b) the
cocylce on the tetrahedron (also with appropriate sign in the exponent) gives the cocycle condition. The signs in the
exponent can be found using the following rule:

e First we define the orientation of a face of a tetrahedron. Consider the branching structure of a face. Curl your
fingers on the right hand along the direction of two arrows which point one after the other. The direction your
thumb points at gives you the orientation of the face.

e For the tetrahedron, consider the vertex where all the arrows end and the face opposite to it. If the orientation
of the face points inward to the tetrahedron, the sign is +1, otherwise it is -1.

e For a face, simply consider its orientation. If the orientation points inward to the tetrahedron, assign the sign
to be +1, otherwise assign -1.

As an example, consider the following tetrahedron given in Fig.

2 4

1

FIG. 19: Tetrahedron with orientation

The product of cocycles with appropriate signs in the exponent gives the cocycle condition,

w(g195 ", 9297 ", 91)w (9195 ", 9395 ", 92)
w(gags ", 9397 " 9297 w9392 ' 9297 g1 )w(gags ' 9391 91)

-1 (A4)

Now, multiplying all the cocycle conditions coming from all the tetrahedron adjacent to vertex v as in Fig. |5 one
can clearly see that the cocycles coming from the faces shared by two tetrahedron cancel in pairs since the signs in
the exponent coming from the two adjacent tetrahedrons of a face are opposite. Finally, the remaining product of
cocycles can be rewritten as

/ s(A)
w(tetra)s(tetra) — . ,1 — W(A ) , (A5)
II 11 (A EG(A) B 1;[ (w(A) >

tetra A

where A and A’ denote the triangles in the original and the lifted plane (after action by A,), s(A) and s(A’) denote
the signs in the exponent for the cocycle coming from A and A’. The last equality in Eq. (A5) follows from the fact
that s(A") = —s(A). The expression which follows the last equality is exactly what Eq. (A3)) achieves. O

Claim A.2. A, is hermitian, i.e, Al = A,.

f T
AL~ ((Hﬂie) VV3> _ (ay (H%) | (A6)

edv edv

Proof. By definition, we have

where (W¢)* denote the complex conjugate of W¢. We note that (I Lfte)T = (HDU Lft;l). From the definition

Eq. , we have
t
ey -o (T ) o (T2 ). ()

edv edv



Now we compute Al’g:

T T
(W’L?)* (H Lfﬁ:e) = UUJ (H Lfﬁ:e) Uj)

eDv

Hence it holds that

1 1
Al == Al == A, =4,
Gl 7= Gl =2
Claim A.3. A, is a projector. A2 = A,.
Proof. Note the following observation.
Ay gAyn = U, (H Lfte> Ulu, (H L’ie> Ul
edv edv
=U, <H Lﬁ) Ul = Ay gn.
edv

Hence, we can square A, and arrive at

1 1 1
A?) = @ Z Av,gAv,h = @ Z Av,gh = @ Z AU7!] = A,.

g,heG g,heG geG

Claim A.4. B, is hermitian as well as a projector.
Proof. This follows trivially from the definition Eq. .
Claim A.5. [A,, A,] =0 for any vertices v and v'.
Proof. First we prove [A, 4, Ay 5] = 0 when v # v’

U, ( I1 Lie) Ul Uw< 11 L’ie> Ul

edv eDv’

- UW{HLgie, I1 Lge]Ug —0.

edv eDv’

[Av,gv Av’,h] =
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(A8a)

(ASD)

(A8c)

(A8d)

(A9)

(Al0a)

(A10b)

(A11)

(A12)

The last line is trivial when v and v’ are not adjacent. When they are adjacent, the two vertices have opposite
(right/left) action on the edge DOF. So their commutator is again zero. Hence [A, 4, Ay 5] = 0 when v # ¢'. This

v,g9

imply [A,, A,] =0 when v # v'. When v = v/, the commutator is trivially zero. So [4,, A,] =0, V v and v'.

Claim A.6. [A,,By] =0V v and p.

O

Proof. When the vertex v is not on the boundary of the plaquette p, the two terms commute trivially. When the
vertex is on the boundary of p, we consider the two edges which are adjacent to the vertex v as well as lie on the

boundary of p. Now consider three cases.
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e Case 1: Both edges point toward the vertex v. Action of A, 4 on this configuration is given by left multiplying
g on the corresponding edges. This preserves the fluxless condition imposed by the B, operator.

e Case 2: Both edges point away from the vertex v. Action of A,  on this configuration is given by right
multiplying ¢! on the corresponding edges. This preserves the fluxless condition imposed by the B, operator.

e Case 3: One edge point toward the vertex v and the other edges point away from it. Action of A, , on this
configuration is given by left multiplying by g and right multiplying by ¢! respectively. This also preserves the
fluxless condition.

From this observation it follows that [A,, B,] = 0V v and p. O
Claim A.7. [B,, By] =0V plaquettes p and p'.

Proof. The proof follows straightforwardly from the fact B, = 1 on the configurations for which there is no flux around
plaquette p, and zero otherwise. O

Now we consider the quantum double like Hamiltonian in the presence of a global symmetry given in Eq.
H:—ZAU—ZB,)—ZKU, (A13)
v p v

where A,, B, and K, are defined in Eq. , Eq. and Eq. respectively. Again A, is hermitian as well as
a projector. Similarly B, is also hermitian as well as a projector. A, and B, commute among themselves and with
each other. The proofs follow by repeating the steps in the twisted quantum-double case. Now we consider the last
term K.

Claim A.8. K, is hermitian as well as a projector.
Proof. Let us write

Q-1
v |Q| Z Kv kly (A14)

k,1=0
1 -1
where K, j; = Wik lgk), (@|. We can write the phase operator W g
awa; " ¥
Wo ™t ar), (@il = U lak), (@] U, (A15)
Using the Hermitian conjugation of the above equation, we have
Kl =Usla) (ael UL = Ko (A16a)

Hence, we have K = K,. Next, we prove K2 = K, using the following steps,

Q-1
v |Q|2 Z Uw |qk QZ‘ UI)Uw |Qm>v <Qn| UI) (Al?a)
k,l,m,n=0
1 Q-1
= W Z Us |ar) , (an| UI;‘Sl,m (A17b)
k,l,m,n=0
1 Q-1
= a0 Z Ky jn = K. (A17c)
k,1=0

Claim A.9. K, commute with Ay, B, and K, ¥ v and v'.
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Proof. First we prove [K,, K,/] = 0. For this, we show [K, ki, Ky mn] = 0 when v # v', as shown below,
Koty K] = [Us i), (] UL, Ui lam), (gl U] (A18)

==U¢{Mk>v<mlﬁqm>w<qnﬂL@ = 0. (A18b)

Hence [K,, K,v] =0V v and v'. Note that K, operator only changes the vertex DOF on the lattice, so K, does not
change the fluxless condition around any of the plaquettes. Hence, [K,, B,] = 0.
Now let us prove [K,, A,/] = 0 by the following steps,

Q-1
1 1
(Ko Av) = 1 D2 Uslaw), lal UL 32 U TT P (A198)
k,l=0 geG eDv’
1 Q-1 1
- o 3 RjIjiz{U@|qk>v<qﬂl]i,U; I1 Lievj] (A19b)
k,l=0 geG edv’
1 Q-1 1
=g 2 1ar 2 Uslaeh, Gl IT 22 ]ul =0, (A19¢)
k,l=0 geG eDv’
From the above equations, we thus conclude that K, commutes with A,/, B, and K, . O]

Appendix B: Group Extension

Suppose we are given two groups ) and N, then one can construct an extension of Q by N which we denote by G
if one has the following short exact sequence

15NLHGe5L Q-1 (B1)

where 7 denote the inclusion map and 7 denote the projection map. Given this short exact sequence, one can define
a choice of embedding of Q) in G

Q-3 G, (B2)

such that 7 o s = idg. Although the inclusion ¢ and projection m are homomorphisms, the section s is not a
homomorphism (however, we have s(1g) = 1¢). The failure to become a homomorphism is captured by a cocycle in
the group cohomology H?(Q, N). The failure of the section to be a homomorphism is given by

s(q1g2) " s(q1)s(g2) = i(w(a1,42)), (B3)
where w € H?(Q, N). We consider conjugation operation ¢ : Q — Aut(NN) which satisfies
(9% (1)) = s(g2) ™ ti(n1)s(q2)- (B4)

Note that the conjugation operation is dependent on the choice of s. We denote an element g € G as g = (¢, n), where
q € Q and n € N. With the given choice of section s, one can equivalently write

g =s(q)i(n). (B5)
Suppose g1 = (¢1,n1) and g2 = (ga, n2) then
91-92 = (q1,n1).(q2,n2) = (91Q2,W(Q1,Q2)¢q;1(n1)n2)~ (B6)

The associativity condition on the group multiplication gives the cocycle condition for w,

w(q1, g2q3) (g2, 43) = w(q1d2,43)6%  [w(q1,42)], (B7)

when N is abelian. Note that this cocycle condition is different from the one where the conjugation acts on w(gs, ¢3)
considered in [44].
As an example, consider the central extension of Zy by Zs. Since H 2(Zg, Zs) = Zs, there are two possible extensions.

e Case 1: w is trivial. In this case, we have G = Zy x Zs since Aut(Zsy) consists only of the identity map.

e Case 2: w is the nontrivial class. Then the group G is Z4. Suppose we denote N = Zy = {1,¢;} and
Q =7Zs = {1,t2}, then G = Zy is generated by (t2,1).
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Appendix C: @-global symmetry in two-step gauging
Here we show the Q-global symmetry of |¥5) in :
Uig|¥s) = [¥5), (C1)
with

‘\115 Z Q {gvgv/ |{gvgv/ e ® ( ) Z |q gv v)

{gv reN (02)
Ug = [ Xw-

We have that 3, oy X(g,)|4(90)7) := 2o, [5(@)a90)r) = 32, e n la(s(ar)go))n(s(a1)a(go))r) = 32, ey la(gos(ar))r’),

where the first equality is by definition (see ), the second equality is by the definitions of ¢(...) and n(...) in
Eq. , and in the last equality we have relabeled the group element r € N by ' = n(s(q1)q(g,))r and used
q(s(q1)gv) = q(gus(q1)). (Note that in the second equality, for G = S5 the element n(s(q1)q(g,)) is trivial, but for
G = Qs, for example, it is nontrivial, and thus we kept it present in the equation.) We find that the change of variable

Gv = Gus(q1) ™! gives us

U, 1)‘\115 Z Q {gvgvll gvgv_/l e®( (n) Z |q gu 7)7 (03)

{gv} r'eN

and thus the state is invariant.

Appendix D: Branch line operator B3,

With a pre-gauge structure we have introduced the gauge transformation as
=12, ][ 4. (D1)
edv

To write down the branch line operator on R, we impose some gauge transformation in region R, the effect of which
can be contained only on its boundary. In Sec.|[VIA] we claim that when the edge configuration is trivial (i.e., he =1
for all edges), the operator G = [],cx Go has this property. Now we make some more detailed analysis. Recall that

[Wspropre) = [Uspr) (X [1)., - (D2)

Now we insert a G% on the state, we have the following,

Qﬁ |\IISPT—pre> = H LT H Lie |\IJSPT ® |1

vER edDv
= [Tede)™ & lgor™) @ louw) @ ( [I Lie) 1

{go} A v; ER Vo &R e e/NOR (D3)
= > [[w{gwx} {90, 3)°® ® 90 Q ( II Zie) v

{90} A e eNIR
= Z Amp {gv HW {g } s(8) ® |gv ® ( H L:Ite/) |1>

{9+} e eNOR

As shown above in Fig. given the configuration {g,}, the product of cocycles [[ w({gv; 7}, {guv, })**) corre-

sponds to the upper surface, while [T w({gu, }, {gv, })*® corresponds to the lower surface. According to the cocycle
conditions, their ratio corresponds to the tetrahedrons that they enclose,

Amp* = H w(tetra)’. (D4)

tetracR
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FIG. 20: (a) Symmetry action inside of region R “lifts” R such that all the simplex in the region correspond to @.
(b) This symmetry action can be equivalently regarded as the insertion of symmetry branch line on OR.

1’ 3’

2
FIG. 21: There are 3 tetrahedrons when 1 plaquette is lifted.

In Sec. we claim that according to cocycle conditions, this phase factor only depends on the configurations
on OR. Now we take the simplest case when R only encloses one plaquette to illustrate. As shown in Fig. when
the plaquette (123) is lifted, there are three tetrahedrons, where the vertices on the upper surface are associated with
gir = g;x. According to the rule introduced in Sec.[II] the three tetrahedrons correspond to the expression,

-1 -1 -1 -1 -1 -1
w(gsrgs 9392 9291 )w(g3gs 9291 917Gy ) 1
- - - =0, ..-1(9395 9291 ), (D5)
W(9392 1792$92 1a 9291 1) 95795 ? !

where 0,(g, h) is the slant product introduced in Eq. (104). Therefore, in this simplest case, we have

Amp* = 9g3xg;1(g392_1,g291_1) H w(tetra)®. (D6)
tetrac R

For simplicity and without loss of generality, we assume OR with branching structure 1 -2 -3 — -+ = n + 1,
then by using cocycle conditions, we can show that the tetrahedrons inside a union of prisms (see Fig. [20b), which is
formed by lifted plaquettes, will give rise to

~ —1
@g’&fgn = ggnz‘qgl (gng;ila gn—lgl_l) e aggxg::l (g3g2_1? 9291_1) (D7)
Therefore,
~ —1
Amp™ = 37" H w(tetra)®. (D8)
tetrac R

The shift operator []. o L. in Eq. (D3)) is exactly the operator L%, defined in Eq. (100). Therefore we arrive
at

@gfk |\IJSPT—pre> = ng ‘\IISPT—pre> 5 (Dg)
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when

~ ~ T -1 ~ o ;1
Bia = Y LiaWoz ™ O™ 19v), (g0l - (D10)

9v

For a state with nontrivial configuration {h.}, there could be fluxes on some plaquette, i.e., for some plaquette
P, [lec op he # 1. For the purpose of illustration, we now focus on states that have fluxes only on 1 plaquette, and
only violates terms that are on this plaquette in Hspr.pre in Eq. . To write down the branch line operators for
these states, we repeat a similar procedure: we impose some gauge transformation on region R, the effect of which
would be only on its boundary. It turns out that when all the plaquettes on OR are fluxless (i.e., [[ ¢, he = 1),
and the flux on each plaquette p € R (He€6p he) is in the centralizer group Z, (since the flux on a plaquette is
ambiguous up to a conjugation when choosing a different starting point, we assume that the whole conjugacy class of
flux [[[.cp, he] C Z), we can indeed find such a gauge transformation as we now explain. We first choose a reference
vertex v in R, then for any vertex v’, we can find a path [ that flows from v to v" and define hyr, = [].¢; he. Given
that all the fluxes are assumed to be in Z,, i.e., they commute with x, therefore, different choices of path [ will give
rise to the same gauge transformation (taking h,, = 1),

By yoh,
Giw= 1] G , (D11)
v’ ER
which will leave all edge DOF's invariant except for the ones on R, and the shift on those edges is exactly the operator
Zx defined in Eq. (111). Now since there are plaquettes in R that have nontrivial fluxes, we cannot write the phase
part of the gauge transformation as

Amp* = H w(tetra)’. (D12)

tetrac®R

However, since we assume the plaquettes on R are all fluxless, we still have a well defined factor Htetrae o w(tetra)®,
the holonomy along OR is h = [[.cox he # 1. We conjecture the branch line operator to be

@i}ﬂ - Z@{?(R g TG, ) (D13)

with

BES =37 L5, W e Og.g0(IT. he)gs® |9v)s (ol (D14)

9v

Again we suppose that O/R has the branching structure 1 -2 — 3 — -+ — n < 1. Then, we have

05" =0, 1(gnhnm—197 1 Gnthy s yhgi ) - Ogog;t (93ha295 "5 02h2 197 O i (gnhgy s gnhnagr ),
(D15)

where h = by p—1 -+ ho, 1h71 is the holonomy along OR. We can calculate the multiplication rule for B5;. First off,

wgn @gnygn

notice that operator L5, Wg i and commute for any x,y € G. Using the cocycle condition, one can show

that

IB(R qan” °[ anyq” _IBKR qnqu" ’an hnn—19, (gnxgn 7gnygn )'phasea (Dlﬁ)

where the ‘phase’ in the above equation corresponds to Fig. Using the correspondence between tetrahedrons and
cocycles, one can write

Ly Wmon Ll WEbon' — Lo Wiy B 1o (G000 9nygn ) - D17
1 _
vmhz,lg;l(gzxgz 92995 )’anhn’lgl—l(gnxgn L gnygn )
By using the definition, we can compute the following product of the two phases,
O3 O =0, 1 (Guhin19n 1 gnr sy hgr D0, o (G190 s ik hgy )
0gywgs (93h3292 Y g2h2197 )gggygg—l(93h3,2951792h2,19f1) (D18)

-t 71(gnhgn s Onhn197 )0 14;1(gnhgglagnhn,191_1)~

InTgn 9nY9
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1

1 3 47
7 i i
'/41 ’,/ 1 ,11/4!
"I / ol i
Zr II 7 II II
1 _/;,/——" 2| ,',é/’ 2 i
/ ,—7’7" / > oy ,7"7”
/’ ———— // ———— // """"
2 3 4
FIG. 22: Geometric diagram illustrating the phase combination in Equation Here g9, =y and g9, =
for v € V' (which are enumerated by 1,2,3,4
(D19)
(D20)

Og(2,9)0n (2, y) V2 (g, B)yy (™ gz, 27 har) = Ogn (2, y)Vay (g, )

Using the identity,

one can derive that
—1 —1
OR
When the pre-gauge structure is trivial (i.e. he = 1), the phases Wg”lg " and @g“wg v are reduced to Wg"wg” and
K
(D21)

-1
L3 W @Fntan’ y Wgnygn @gaygn = LW nTYgy ngmygn Vguhg=t (InTdr " InY9n )
, resepctively, and also the holonomy is trivial, h = 1. Therefore, we arrive at the multiplication rule

BE L BY . = BEY
(D22)

@gvxgv
For a more general pre-gauge structure, where the fluxes are in Z,, one has
(979, 90y9, 1) 0

!’
.9 pY.9 __ zY,g9
Bak Box = Bog” Vg

Appendix E: Finite-depth local unitary to map an SET state to a TQD state
(E1)

= U ([Tve)ul,
(E2)

For an SPT state, we define an operator

Us =Y [[wlgs9:" 9201, 91) A)®Igv (ol
= )

(E3)

where U, is the operator that brings a direct product state to a G-SPT state
{gv} A
m, we label the embedding of @) in G as

and )7 is the Fourier transform of the quotient part. Namely, suppose |Q)|

(Q) ={q0, - ,@m-1}, where gy = 1. Then we write

1 m—1

21r17cl

W= gm e SLE 5a(g0). @)
k,1=0
whose hermitian conjugate is calculated to be
1 m—1
27r1.kl
= o 2 e WL dla(a), @) (E4)
k,1=0
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We note that this Fourier transform is indeed unitary: (¥9)70¢ = 1. Applying O on the G-SPT state brings a G-SPT
state to an N-SPT state:

OlWe spr) = Us( [T V) UL [wspr)

~o (1) ® (S )

v geG
= Uw |n>v
@ng ) (E5)
= Z Hw(ngngl, nony ', ny )5 ® )
{nv} A v
= Z H v(ngny ', ngnyt ny )4 ® )
{ny} A v

= |Un.spT),

where v is the restriction of w on N and naturally a cocycle in H3(N,U(1)). The operator ¥4 on different vertices
commute,

VIV, — U1 = 0. (E6)
Therefore we can write an operator on vertex v
A 1 mz—l 2mikl —1 —1
0, =U VU = — " e LI W 5(q(90), 1), (E7)
vm k,1=0

such that O, on different vertices commute, and their product over all the vertices is exactly O,
0= H 0,. (E8)
v

After gauging the normal subgroup N, the operator O is mapped to

OSET = H OU,SET? (EQ)
where
A 1 ml 2mikl —1
Ovser = —= > _ e » W g, (al. (E10)
Vm k,1=0

The operators OAU,SET on different vertices commute. Also note that since OAvysET is supported on v, adjacent vertices,
and edges, and thus it can be implemented locally in the state after gauging.

Note that although all OAMSET commute, the operators 3""” generally depends on ¢,, and n. configuration on

adjacent vertices and edges. To implement the transformation, we specify an ordering of OAUVSET in Oggr which can
be implemented in finite depth as follows. We divide the spatial lattice into sublattices such that, the vertices in each

-1 -1
sublattice are not adjacent in the spatial lattice. Then the operators Li’“vql and Wf,kq’ always commute when v and
v’ are different vertices in one sublattice. As a result, we can implement OAvysET within one sublattice simultaneously,

and implement one sublattice in each step. As long as there is only a finite number of such sublattices in the spatial
lattice, the circuit we described above is a finite-depth local unitary,

OSET = H H OU,SET- (Ell)

sublattices v€sublattice

Applying Oggr on an SET ground state will take all the vertex DOFs to |gv) =|1), i.e. disentangle all the vertex
DOFs. Therefore, under the action of this operator, we get a TQD ground state with gauge group N. We emphasize
that here we aim to probe the underlying anyons, and the circuit does not respect the global Q-symmetry, which is
why we can take an SET state to a pure TQD state.
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Appendix F: Fusion rule in SET via gauging 74 group from D, SPT

We write the element in Dy as § = (G, g) = 2%a9. We construct a representative of 3-cocycle in H?(Dy4,U(1)) as
follows,
- i
w(g, h,1) = eXp{ 7;26?1 g(=D)"TE(R(=1)" + 1 — [n(—=1)" + 1]4) + wipoGHL + ﬂ'ipggHL}, (F1)

where p; = 0,1,2,3, and p2, p3 = 0 or 1. Gauging the normal subgroup Z4 of a D4-SPT results in a state in an SET
that has the same anyon theory as D¥(Z4), where

2mip1

v(g,h,l) = exp{ glh+1—-1h+ 1}4)} (F2)

is the restriction of w on Z4. Different values of p; correspond to different Z,-TQD models. The symmetry action is
nontrivial, and it takes an anyon to its inverse. In the sector C,, there are 4 objects of quantum dimension 2. If we
pick one of them and name it as 0,, by dimension counting, we can write a fusion rule of the form,

0, X0, =a+b+c+d, (F3)

where a,b,c,d € C are abelian anyons. Let by = 1 and by = a. Then one can write a matrix-valued operator on an
open ribbon as

. bizb; ' ,bind,! -1
(Hl )ii/ = Z Hl ebixbfl(binbi’ )7 (F4)
ne{l,a?}

where the matrix indices i, = 1,2, and the operator H,”? satisfies the same multiplication rule as in Eq. (125)),

HPHYY = HY 95, (2,90, 4 (F5)

We conjecture that the operator Hf" creates an object in the sector C, on the end point of I, and we name it 0.
Then the object 0, x 0, should be created on the endpoint of [ by operator (Hl’”)®2. Let € = exp{%}. We calculate
the tensor product of the two open ribbon operators, and by diagonalizing it, we find an expression as follows:

z,1 w,a2 T,a I,a3 ®2
(H7)®? = H, 2—1— € (a?)H; . e$(a2)Hl + Ew(a3)Hl2 .
€oa2 (@) H " + €402 (a®VH " HI ' 4 €pq2(a®)H*

®2

f[r’l —4p F[at,az D E[z,a —3p [[az,a?’

- L 2+£ ' L 2 3 5 ' ! 2 +§ 12 lz
— ra“,a -9 xa”,a a1 ra“,a
ETPHTY Y 4 O, H '+ H;

_ Hl171 + §—8p1 }Illva2 §2P1 (_1)P3H17¢l + §—6P1 (_I)PsHLaS
- 2
561)1 (_1)p3H1,a + §—2p1 (_1)p3H1,a3 HlLl + 5—8])1 HlLa
2 2 2 2 2 3
o HY Ul e (S H O+ € (e
(1P H & (— )P HY H g
B Hll’l + 8 Hll:‘f g1 (—1)Ps gL 4 ¢=6m (_1)p3H17a3
B gﬁpl(_l)ngl,a =+ 5_2p1(—1)p3H1’a3 Hll,l + 5—8;01 I_Ill,a2
H 4 e8mea(a?)HO £0PL (—1)Poeqa(a) HE @ + €291 (—1)Pae o (a3) HE O
2 2 3 2 2 2
7 (—1)P2e 2 (a)Hy' " + €571 (—1)P2e,2 (a®)H) H} TP (a®)H] "

S(HY 4 €7 (-1 HE 4 @nE 4 o (1)
@ (HP' — e (=P HD + §8p1H11’a2 — g (_1),,3Hl1,a3)
© (H! 4+ €1 (< 1) e () HE + €7 ea (a2) HE ' 4 €121 (<1)Pe e (a®) HE ")
© (H! — €1 (—1)P e (a) HE + €37 ea (a?) HE¥ — €271 (<1)Pege (a®) HE "),
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In the third equality, we used the multiplication rule Eq. (F5)), and the p3 dependence arose from ~4(z, y).

Let us first consider the case with ps = 0. When p; = 0,2, the four parts in the last line — each part is a sum of
four Hl"° operators — are exactly the four ribbon operators in the TQD D¥(Z,) that create anyons, 1,e? m?, and

e?m?, respectively. Therefore, we obtain the fusion rule,

0 X 0, = 14+ e? +m? + e*m?. (F7)

When p; = 1, 3, the four parts in the last line after the decomposition are four ribbon operators in the TQD D¥(Z,)
that create anyons, e, e, em?, and e3m?. Therefore, we obtain the fusion rule,

0 x 0p = e+ €3 + em? + e3m?. (F8)

According to Eq. 7 when p3 takes value 1 instead of 0, the ribbon operators creating anyon e/e?/em? /e3m? after
the decomposition become ribbon operators creating respectively e3/e/e3m?/em? instead. According to Eq. , we
conclude that different values of ps indeed give rise to different SFCs such that the fusion rules are shifted by the
anyon [e?] € H3(227ﬂ). We note that after the shift by e2, the fusion rules in Eq. and Eq. are actually
invariant. However, it does not mean that we are in the same SET order: further analysis, such as the F-symbol,
the S-matrix of the category G;z [51], is necessary. Indeed in this case, it is ensured that SET orders corresponding
to different ps values are distinct, since further gauging the Zs symmetry it should result in different TQD orders
D¥(Dy).

Appendix G: Fusion rule in SET via gauging Z> X Z> group from Ds SPT

Again, we start from the representative 3-cocycle in H3(Dy,U(1)) as follows:

g(=D) I (h(=1)E 41— [W(=1)F +1)4) + wipoGHL + mp?,gHL}, (G1)

where p; = 0,1,2,3, and p2,p3 = 0 or 1. Gauging the subgroup Z; x Zy = {1, x,t,xt} in D, results in a state within

D”'(Zg X Zy). Let us write t = a® and g = 2949 = 297429 The 3-cocycle for this group is

omi . 1
V’(g’ h,l) =exp {%9(2)(_1)}1( )¢ )(h(Z)(_l)l( ) n l(2)

— (=) +12),) + mp29<1>h<1>z<1>}, (G2)

RONCHENMONCTICN () (1)

+p29

= (-1

We conjecture that the operator H}* creates an object in sector C, on the end point of I and we name it 0,. Then

the object 0, x 0, should be created on the endpoint of [ by operator (Hla)®2. Let £ = exp{%}, then a calculation
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similar to that in Sec. [F| gives us
2 2\ ®2
a8 H"' + ey (a®)HM €a(x)H"" + €4 (za®)H"™
( l ) ad.x 2 a®,xa? a®.1 2 a®,a?
€3 () H)' " + €43 (xa”)H)' H' " +eg(a”)H)'
®2
7 Hlfhl + §2p1 Hl(lﬂz 54193.]{[(17ﬂc + §6p1+4p3Hl‘1737ﬂ2
o £4p3Hla372 +§2p1+4P3Hl‘13»$a2 Hla371 +€GP1H;137G2
_ Hl’IQ’l e Hlaz,az £4p1+8ps H2a2,w + €8p1+82p32Ha27wa2
£—4p1+8p3Ha27z + £8p3Ha2,wa2 Hla )1 + £4p1 Hla ,a
2 2
Hll’l + Hll’a ] gim +8p3Hlle + ¢ +28p3 Hll’m
5—4P1+8p3Hl1)“3 + §—4P1+8P3Hl11$a Hll’l + Hllxa
2 2 2
B H} 1€ (a®)H " g4rit8pse (m)H“z’I + ¢Ar1it8pse o (9m2)Haz’”m2
= 2 2 2
5*4P1+8p3 €42 (x)HGQ,ﬂi + 5*4P1+8p3 €a2 (xa2)Ha2,wa2 Hla )1 + €42 (a2)Hla ,a
1,1 l,a2 4p1+8 1,z 4p1+8 l,za2
5*4P1+SP3HI g 5*4P1+8P3Hl »Ea Hl g Hl ,a
2 2 2 2 2 2
~(H}' 1 (—1)Pse,e () H " + €a2(®)H Y + (—1)Peq2 (wa®)HY ™)
2 2 2 2 2 2
@& (H} 1 (—1)Pse,e (x)H]! " + eq2(a®)H " — (=1)P2e,2(za®) H ™)

@ (HM + ()P HM + HY 4 ()P HS Y @ (HD — (—1)P HD® + BN — (1P ),
(G3)
For different values of p; and ps, the anyon theory would be different after gauging. In Appendix we give a
complete classification of the anyons in all cases. When p3 = 0 here, one can then find the fusion rule from the above
calculation as

00 X 0g =1+ e 4+ m@ 4 W@, (G4)

When ps takes value 1 instead of 0, the ribbon operators that create anyon 1/6(1)/m(2)/e(1)m(2) after the de-
composition become ribbon operators that create e(l)/l/e(l)m@)/m@), respectively. According to Eq. , we can
conclude that different values of ps indeed give rise to different SFCs such that the fusion rules are shifted by the
anyon [e(V] € H2(Zy, A).

Appendix H: Computation of braiding phases of anyons in TQD

In this appendix, we compute the braiding phases of anyons in Zs x Zy TQD obtained from gauging Zs X Zs C Dy.
First we define the slant product

H™(G,U(1)) % H"1(G,U(1)) (H1)
as follows:
n—1
-n 1)1 _q\n—1+i
i9w(g1 s Gn1) = @(9, 91, 00 1) T T (91,0006 Gints s ga) DT (H2)
1=1

Now let us consider the cocycle given in Eq. (175)):
V/(97 h,, l) _ (71)171(9(2)h(2)l(2)+g(2)h(2)l(1))+p29(1)h(1)l(1) ' (H3)

One can calculate the slant product with g = z,t and xt:

gt/ (h,1) = (—1)h eI (H4)
i/ (h,1) = (—1)P1h(2)z(2>7 "
iltyl(}% )= (—1)P2h(1)z(1>. "
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These slant products give the projective phases in the projective representations ., p:, and p.¢, respectively, as
follows:

iz (h) e (1) = gt (B, D) e (), (H7a)
pue(h) e (1) = igv/' (B, 1) e (RI), (H7b)
frt (R) pre (1) = et (hy 1) pize (A). (HT7c)

From Eq. (H6), we see that the projective representations are given respectively by
pra(h) = ih el () = T () = v (HiSa)

In addition to these projective representations of Zs x Z3, we have the respective ordinary representations

pah) = (D", pa(h) = (D)"Y, (k) = (~)MH (H9)

If we label the anyons in Zs x Zo TQD by e, e® m® and m®, where e(? denote the elementary charges
(chargeons) and m(® denote the elementary fluxes, charges are given by the ordinary representation of Zy x Zo and
the fluxes are given by the projective representations of Zs x Zs.

Then the general formula for calculating the braiding phase between anyons a and b is

B(a,b) = po(flux(b))py(lux(a)). (H10)
We list the braiding phases between the various elementary charges and fluxes as follows,
B(e(l)vm(l)) = l(m),um(l) = _17 B(e(l)vm@)) = ,ul(t),ut(l) = 17
Be®, mW) = o (a)pua(1) =1, B(e®,m®) = pp(t)pe(1) = -1,
(

Bm®,mW) = p,(@)* =% = (<17, B(mW,m®) = p,(t)ue(x) = 7,
(m(2)’m(2)) — ﬂt(t)z _ ,L'2p1 _ (_1)1)1.

(H11)

Sy

Appendix I: Fusion rule in SET from gauging S; SPT

G

We write the element in S3 as § = (G, g) = 2%a¥. We construct a representative of 3-cocycle in H3(S3,U(1)) as

follows:

~ 2mipy

w(§, h,1) = exp{

G~ DT E((=1)E 41— [(~1)F +1J3) + m-pQGHL} (1)

where p; = 0,1,2, and py,= 0,1. Gauging the normal subgroup Z3 of a S3-SPT state results in a state in an SET
state that has the same anyon theory as D¥(Z3), where

v(g,h,l) = exp{ 2”;1’19(11 +1—[h+ 1}3)} (12)

is the restriction of w on Z3. Different values of p; correspond to different Z3-TQD models. The symmetry action
takes an anyon to its inverse, which is nontrivial. In sector C;, there is only one object of quantum dimension 3. We
name it 0,. By dimension counting, we can write a fusion rule of the form,

9
0r X 0, =Y a;, (13)
=1

where a; € C are abelian anyons. Let b; = 1, by = a, and b3 = a®. One can write a matrix-valued operator on an
open ribbon as

—1 bib71

P (b, (14)

(H{ )i = H,
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where the matrix indices are 7,7" = 1,2,3. As we conjectured, the object 0, x 0, should be created by the operator
(HF)®? on the endpoint of I. Let x = exp{%}, then a calculation similar to that in Sec. [F|gives us

2
H! (@) H™  ey(aH™ \°©
l T l T l R
(HI)®2 — Hree Ha:a,l 2 e
1 €rala €rala
93‘1(2) laca2 a? ! za?,a Ia( x)a2l1
emz(a )Hl ’ emz(a)Hl ’ Hl ’
®2
z,l -2 r,a2 T,a
Hl X P1 Hl Xpl Hl
— X_pl Ha:a,a Hxa,l Haca,az
l l l
2 2 2 2
—4p; rrza,a xa”,a xa”®,l
X H, H, H,
1,1 —4 1,a2 2 l,a a,l -2 a,a2 -3 a,a
H, X H, XPHH, H, XTPHHT XTI
— —5p1 rrl.a 1,1 —3p1 rrlia —4p; 70,0 a,l 2p1 Fya.a
X o, . o, X H; D x H,; , o, x“PrH,
X_2p1 Hll,a X_6p1 Hll,a Hll,l X_3p1 Hla,a Xpl Hla,a Hla71
2 2 2 2
a”,l —3p1 70", —2py rya’,a
le X Ijl X Hl2 2
o) Hla ,a Hla ,1 X—2p1Hl11 ,a@
2 2 2 2
o et )
Hl’l _41,1]_]17112 2p1 Hl,a Ha,l —4p; 2 }Ia,a2 —4py H®
l X I X L, 1 X €a(a?) 1 X €q(a) }
— -5 1,a 1,1 -3 1,a -5 a,a a,l 2 a,a
=| x °PH, ) H, X" °PrH,; D | xPreq(a)H, . H, eq(a?)H,
mHE ot I HE e () !
2 2 2 2
a“,1 -7 2 a“,a —4 a”,a
H, .X pleaz(c; VH, X pleaz(a)Hl2 .
-2 a”,a a®,1 —6 2 a”,a
S| x Pree(a)H, U H, . X pleaz(% )H,
—5 2 a”,a -3 a”,a a”,1
X Preq2(a”)H, X Pleg2(a)H, H,

2 2 2
:(Hll,l + Hll,a + Hll,a ) e (Hll,l + X3Hl1,a + XGHll,a ) @ (Hll,l + X—?,Hll,a + X—GHll,a )
2 2
@ (HP' + ea(@) H + €(a®) HP ) © (H' + xPea(a) H® + XOea(a®) H)
® (H 4+ x P eal@ B + X ala®)HP) @ (H 4 e (@) H] + e (@) B )
a?,1 3 a?,a 6 2 a?,a? a?,1 -3 a?,a —6 2 a?,a’?
& (H "+ xeq2(a)H “+ X eq2(a®)H] * )@ (H " + X “eq2(a)H ** + x "eq2(a”)H ).

The nine parts in the last line after the decomposition are the nine ribbon operators in D¥(Z3) that create the anyons

1,e,e2, m,em, e?>m, m?, em?, and e>m?. Therefore, one can conclude the fusion rule from the above calculation:

0, X0, =1+ e+e2+m+em+e2m+m? + em? + *m?. (I6)

Appendix J: An alternative N-step gauging via measurement

In this section, we give an alternative N-step gauging procedure. Following the 2-step gauging, we generalize the
procedure to N-step gauging (a similar method was proposed by [44] and [43] for solvable groups) for a group G that
satisfies a criterion. The N-steps correspond to the N factors of abelian groups of G.

Let us consider a group G with the following property: there exist a sequence of groups Ny,Ny, ...IN,, abelian and
another sequence My,My, ... M, such that

No = {e}, My =G,

G
N M, = —
1QG ) 1 va
M,
Ny <My, My = N, (J1)
Mnfl

NnQMn—la Mn =
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If the group G satisfies this property we say it admits a sequential normal subgroups. We will prove in appendix
that admitting sequential normal subgroups is equivalent to the group being solvable. Given G admits a sequential
normal subgroup, we get a sequence of short exact sequences

1— N 56 I My — 1, (J2a)
1— No 20y ™2 My — 1, (J2b)
(J2¢)

1 Npoy 25 My ™25 My — 1, (J2d)
1— N, 2 M,y —> 1. (J2¢)

where ¢, is an inclusion map and 7 is a projection map. Now we choose a sequence of lifts

M, 25 G, (J3a)
My 225 My, (J3b)

: (J3¢)
M, _y 222 M, (J3d)

which will be fixed throughout this section. With these lifts we can embed each of the normal groups Ny, as a set in G.
If n € Ni, s1(sa(...sx—1(ix(n)))) € G is an embedding of n € Nj, in G. To simplify notation, we denote s 0 s90...0 s,
by §i. Then s : M — G. Using this notation, a general g € G can be written as

9= 3n—1(in(ay))--31(i2(ax’))ix ("), (J4)

where a; € Nj; is a generator for each abelian normal subgroup. The notation a;j is a shorthand for the product
of generators for each cyclic subgroup of the abelian group, i.e, a;-j = Hézl(aﬁ)i? where af for k = 1,...,1 are the
generators for the [ cyclic factors.

Claim J.1. The representation of g € G given in Eq. is unique. If g = én_l(in(a;"))...il(a?) =
Fn1(in(am))...ir(all), then i, =il,,..., iy = .
Proof. The proof follows by applying the projections 7y := m omp 0 ... o, for k = 1,...,n — 1. First apply 7,1 to
g. This gives i, = i/,. Then apply 7,_» which gives i,,_; = i/, ;. Proceeding similarly, at k** step apply 7,1 to get
in—ky1 =t _ppq- At (n— 1)*" step we get i = i%. This automatically fixes i; = i} proving the unique representation
of g. O
To simplify the notation in the remaining part of this section, we omit writing the lifts explicitly and write ai’“ =
5k—1(ix(a;’)). Hence

g= a;"...azf. (J5)

Let h € G. Similarly, we can write h = ai{"...a?. Using this notation, we can write down the group multiplication as

gh™' =air..alta7™ . .a; ™. (J6)

We will use Eq. to implement the N-step gauging procedure. We will gauge the G DOFs on the vertices of
the lattice sequentially in N-steps. The complete procedure for N-step gauging is as follows

(1) Include ancillas. Add ancillas in the state |e), where e € G is the identity element, on the edges between the
vertices.

(2) Entangle gauge and matter DOFs. Apply the following 2 controlled-shift operators with controls ¢1,ce on
neighboring vertices (oriented as ca — ¢1) and target ¢ on the in-between ancilla,

Un, = Z Z 1915 92)¢, o, (91, 92| © |N1(g1)gsN1(g2) ™), (gs] - (J7)

91,92€G g3€G

Here N;(g) is the part of the decomposition g which lies in Ny; when g = air ...alf with a; € Nj, then Ni(g) = ail.
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(3) Measure Xy, on matter DOFs and correct the zy, factors. Define: Xy, = {X1,..., Xy, } for Ny = [[}2, Zy,

where X; denote j x j Pauli X matrix. Following the same define: zn, = [[}2; 2, where z,, is the phase
factor coming from measuring X,,, on the vertex. The value of z,, is same as acting Pauli Z,,, operator on the

vertex before measurement. After measurement, with the outcome being Xn, = {w; "', ...,w; P "™} (wg being
nith root of unity), there is a corresponding phase factor [, z, Pk, Using the transmutation rule for each of
the phase terms in the product zn,,

Zny, (N1(92)) Zny, (N1(91)N1(92) ™) = Zny, (N1(91))- (J8)
one can correct all those factors by moving them to a single vertex, resulting in an M; SET ground state.

(4) Repeat the procedure of entangling gauge and matter DOFs for My DOF's on the vertices. Apply the following
unitary as before,

Uv, = Y, > 191,92)c, o, (91,921 @ | Na(g1)g3Na(g2) ), (g3l - (J9)
g1,92€M; g3€G

(5) Measure Xn, on matter DOFs and correct the zn, factors. Define: Xy, = {X1,..., Xp,, } for No = 12, Zy,
where X; denote j x j Pauli X matrix. Following the same define: zy, = [[}%; 25, where z,, is the phase
factor coming from measuring X,,, on the vertex. The value of z,, is same as acting Pauli Z,,, operator on the

vertex before measurement. After measurement, with the outcome being Xy, = {w; ™", ...,w; 7"} (wy, being

nith root of unity), there is a corresponding phase factor ]}, 2, Pk Using the transmutation rule for each of

the phase terms in the product zn,,

Zps.(Na(92)) Zni (N2(91) N2 (g2) " 6™2192) (g.)) = Z,,, (Na(g1)). (J10)

one can correct all those factors by moving them to a single vertex, resulting in an Ms SET ground state. (Note
that Z,, (p™2(92)(g3)) = 1. This is because ¢™V2(92)(g3) € N; for g3 € N, and hence has no component in No.)

(6) At I*" step of gauging process, again repeat the procedure of entangling gauge and matter DOFs for M;_1 DOFs
on the vertices.Apply the following unitary

Uvi= Y. > 191,92)c, o, (91,92l ® | Nilg1)gsNig2) ), (gl - (J11)
91,92€EM1 -1 g3€G

(7) Measure Xy, on matter DOFs and correct the zn, factors. Define: Xy, = {X1,..., Xp,, } for Ny = [[}2, Zn,
where X; denote j x j Pauli X matrix. Following the same define: zn, = [/, z», where z,, is the phase factor

coming from measuring X,,, on the vertex. The value of z,, is same as acting Pauli Z,,, operator on the vertex

before measurement. After measurement, with the outcome being Xy, = {w;?*,...,w; ™} (wy, being ngth root
of unity), there is a corresponding phase factor [[,~, 2, [Pk, Using the transmutation rule for each of the phase
terms in the product zp;,,

Z3,(N1(92)) Zn (Ni(91) Nig2) =1 ™) (ge)) = Zy, (Ni(91)), (J12)

one can correct all those factors by moving them to a single vertex, resulting in an M; SET ground state. (Note
that Z,, (¢#™1(92)(g3)) = 1. This is because ¢™(92)(g3) € (...(N1 @ N2) ®.... @ N;_1) for g3 € (..( N1 @ No) ® ... ®
N;_1) and hence has no component in N;. The notation G ® H is a short hand for group extension of G by H.)

(8) Repeat this process for all till the last normal subgroup N,,.
The groups formed from extensions are
G = (N1 ® N2) @ N3)... @ N; = {5,_1(a}")...51 (a)i(al)|ai € Ny, ..., a%" € Ny} (J13)
Claim J.2. G; is a subgroup of G.

Proof. We prove this by induction. First we prove Gy is subgroup of G. Gz = N; ® Na. Suppose g3 =
s(q1)i(n1) € Go and go = s(q2)i(n2) € Ga, then g1go = s(q1)i(n1)s(q2)i(n2) = s(q1)s(q2)s(q2) "1 (i(n1))s(q2)i(ng) =
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s(q1g2)w(q, qg)éqgl(i(n;))i(nz)._ Hence g1g2 € G2. Assume G;_; is a subgroup of G. We prove G is a subgroup of
G. Suppose g1 = §—1(a]')...51(a%)i(a}) € Gy, go = 51-1(a]')...51(a%?)i(a}) € Gy. Let us define

(J14)

Then

192 = 51-1(al)31-1 ()" (Bi-a(aj ) ))Fi—a(ai ). 8™ (i(al))i(alh). (J15)

Only the first two terms in the above equation lies in N;. The remaining terms lie in G;_;. Hence they can be
expressed as

—1 -/

~ -1\ ~ i Y] ) ~ i,—1 .01
" (B1-2(a)  Ndi—2(aj )™ (i(a))i(al) = Si—2(a;' ). i(al). (J16)
Now we prove that El_l(a?)i_l(a;’) = §l_1(a§l+”)h where h € Gj_1. Then by induction hypothesis,

-1/ 1

9192 = 8110y )81 2(a) ) ). 51 (a )i(ayt ). (J17)

which shows that gig2 € G;. First note that applying the relation s(a)s(b) = s(ab)w(a,b), we get

S (0511 (0]1) = 5 (Si2(0])51-2(a]) ) w(Eia(a}!). Si-ala}))

= s (s (Sma(a)ama(a})) w(Eis(a'). Sioa(a])) ) w(Eia(a)). Sia(af')).  (J18)

One can write this equation in short hand as

s(My)Ny,
s(s(M3)N3) Ny,
s(s(s(M3z)N3)N2) Ny, (J19)

Si—1(ait)si—1(a}!)

= 5(-.-(S(Ml_1)Nl_1)-.-)N1,

where N; denote the terms coming from w factors in Eq. and M, denote §l_1_r(a§l)§l_1_r(afl), M;_; denote
ai"t". Now applying the relation s(a)s(b)w(a,b)" = s(ab), we get

él_l(a?“l) X (terms in Gj_1). (J20)

By induction hypothesis, terms in G;_1 can be written as §_2(a;,'')5;-3(a;'7)...51(a}" )i(a}'). Combining the terms
in Eq. we get the desired decomposition of g;g2 as in Eq. which prove g1g2 € G;. One can show if g € G|,
g~! € G, by applying 7;_1, Tj_a,... upto ™ on g~ '. This will give the explicit decomposition of g~! using each of the
normal subgroups N; fori=1,...,1. O

Claim J.3. G; is normal in G.

Proof. Let g € G. g = §nt1(a%")..._§1(a§2_)i(a’f). If k € G, let k = §l_1(a?)..ﬁl(aéz)i(ail). Then gkg™! =
Sno1(ain)..51(aR)i(al)5-1(a)")...51 (a2 )i(al)i(al) 151 (a) " 81 (aip) ™ . Applying 7; for i = n — 1,...,1, we
see that 7;(gkg~!) = 1. This shows that gkg~' € G;. Hence G| is normal in G. O
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Appendix K: Proof of solvable equivalent to admitting sequential normal abelian subgroups

In this section, we prove that the assumption about the group G we used in section[J]is equivalent to the assumption
that G is a solvable group.

Definition 1. A derived series of a finite group G is a sequence of normal subgroups normal inside the previous one
GGV >GP a0 L >GaM >e, (K1)

for some n such that the quotient groups G/GM, GMN /G ... G™ /e are all abelian.
Definition 2. A finite group G is solvable if it admits a derived series.

Proposition K.1. If G is solvable then it admits the following sequence
GoG'>G?> ... >G> e, (K2)

for some m which is called the derived length of the group G. Here G**! =[G, G'] is the commutator subgroup of
G'.

Proof. Note that the commutator subgroup of a group G is the smallest normal subgroup in G such that G/[G, G]
is abelian. Hence we have G' ¢ G). Now we have G?> = [G',G'] c [GM),GMV] ¢ GP). Inductively we can
assume that GF ¢ G®). Then G**! = [G*, G*] c [G®), G ¢ G+, Hence GF ¢ G VE € {1,2,...,m}. This
clearly says that the sequence of commutator groups doesn’t terminate. If it would have terminated at G**!, then
GF+2 = [GFH!, GFH1] = GFFL. One can repeat this to argue GF*t ¢ GF+D | gE+l ¢ g+2) . GF+1 ¢ G, But
G**1 is nonabelian group and G is abelian. Hence we can’t have G¥T1 ¢ G, contradiction. So the sequence of
commutator subgroups doesn’t terminate and we have the sequence. O

Definition 3. We say a finite group G admits a sequential normal subgroups if it satisfies the following property:

Ny < G, Ny abelian My = G/Ny,
Ny < My, Ny abelian My = Ml/NQ,

(K3)
N, < M,_1,N, abelian. M, = M,,_1/N,, = e.
Claim K.1. Suppose the finite group G is solvable then it admits sequential normal subgroups.
Proof. From proposition we see that G admits the sequence
GoG'>G>..>G">e. (K4)

where G**! = [G?, G] is the commutator subgroup. First we prove that G¥ < G Vk € {1,2,...,m}. This we prove
by induction on k. Clearly, G! <t G. Assuming G*¥~! < G, we need to prove GF < G. GF = [GF~1 GF1].
Hence, G* is generated by elements of the form ghg~'h~! where g,h € G¥~'. Now one can write kghg~'h~1k~! =
kgk=Ykhk~'kg='k~'kh~ k1. Since GF! < G, kgk~' € G* Vg € G¥ and k € G. So kgk~'khk~ kg~ k~lkh 'kl €
[GE=1, GF~1] = G*. So we see that GF < G.

Now we choose

Ny = GMm« G,Nl abelian M; = G/Nl,
Ny = G™1/G™ <1 G/G™, Ny abelian My = M, /Ny,
(K5)

N1 = G/Glme-i-l abelian M, 11 = Mm/Nm-i-l = €.

Claim K.2. If the finite group G admits a sequential normal subgroups then G is solvable.
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Proof. Suppose G is not solvable, assuming it admits sequential normal subgroups. Then the derived series of com-
mutator subgroup terminate

GoG'>G?> .. >GF (K6)
for some k, where G**1 = [G?, G!]. Now one could consider the series
M oM s M3 s
M? M0 s V23
: (K7)
M e>M'® > M@
ML s DW) o (=@

where M7+ = [Mj(l),Mj(l)] is the commutator subgroup and M7 = MJ. Now let us look at the following
proposition.

Proposition K.2. If the derived series of commutator subgroups of G terminates then so does for M*, M?,..., M1,

Proof. Consider [M*, M'] = [G/Ny,G/N1]. Tt is generated by gN1g’N1g~'N1g'~' N1 = gg’g~'¢g'"*N1. We know that
99’9 1g'~! € G'. However, gN; = N if and only if ¢ € N; N G'. Hence, we find [G/N;,G/Ni] = G'/(N; N G1).
Repeating this we find [G'/(Ny N G'),GY/(NyNGY)] = G?/(N; N G?) and so on. Hence, the derived series for
commutator subgroups for M! is given by

G/N, > GY/(NiNGYH > G?/(NNG?) > ... > GF /(N N GF). (K8)

This terminates since [G*, G¥] = G* and hence [G* /(N N G*), G¥/(N; N G*)] = G* /(N1 NG*). A similar argument
shows that all other derived series terminates. O

Now we have the following terminating derived series

G>G'> .. > GF
G/N, > G/ (NiNGY) >... > GF/(N; N GF),
MY/Ny > MOV /(N n MDY > o> M) /(N 0 MR,

M'YNipy > MO /(N n MDY s MU /(N 0 MER)Y,

M"2/N,_y > MDD (N, n MDD s =20 /(N 0 M2,

Since the last series is M"~! = N™ > e, it terminates in length 1. This is a contradiction. Hence G is solvable.
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