IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

2169

SyNSHINE: Improved Fixing of Syntax Errors

Toufique Ahmed ™, Noah Rose Ledesma, and Premkumar Devanbu

Abstract—Novice programmers struggle with the complex syntax of modem programming languages like Java, and make lot of syntax
errors. The diagnostic syntax error messages from compilers and IDEs are sometimes useful, but often the messages are cryptic and
puzzling. Novices could be helped, and instructors’ time saved, by automated repair suggestions when dealing with syntax errors.
Large samples of novice errors and fixes are now available, offering the possibility of data-driven machine-learning approaches to help
novices fix syntax errors. Current machine-learning approaches do a reasonable job fixing syntax errors in shorter programs, but don’t
work as well even for moderately longer programs. We introduce SynSHing, @ machine-learning based tool that substantially improves
on the state-of-the-art, by learning to use compiler diagnostics, employing a very large neural model that leverages unsupervised
pre-training, and relying on multi-label classification rather than autoregressive synthesis to generate the (repaired) output. We
describe SyNSHINE'S architecture in detail, and provide a detailed evaluation. We have built SynSHiNE into a free, open-source version of
Visual Studio Code (VSCode); we make all our source code and models freely available.

Index Terms—Deep learning, program repair, naturalness

1 INTRODUCTION

YNTAX errors are easy to make, and will cause compiles to

fail. The challenges posed by syntax errors to novices
have been known for a long time [1]. More recent studies
have documented the challenges faced by novices in various
languages [2], [3], [4]. Novices make a wide range of syntax
mistakes [4], some of which are quite subtle; time that might
otherwise be spent on useful pedagogy on problem-solving
and logic is spent helping novices deal with such errors.
Unfortunately the error messages provided by compilers
are often not helpful; novices struggle to interpret the mes-
sages, and sometimes even experts do! [5]. Consider for
example, the real program example in Fig. 1, where a novice
student just replaced a “*” with an “x” on line 8. None of the
big 4 IDEs (VSCode, Intelli], BlueJ, or Eclipse) provide a
direct diagnostic for this very understandable error. A lot of
time can be spent on such errors [6], and researchers have
called out for more attention to help novices [5] deal with
errors, specifically syntax errors. While semantic errors (bug-
patching) have received quite some attention, syntax errors
have attracted less interest.

The possibility of collecting novice error data, and the
emergence of high-capacity, highly configurable deep leamn-
ing models, has raised the possibility of designing models
thatcan automatically fix errors, and training them using nov-
ice data. This approach is very attractive for several reasons: a)
Automated repair of syntax errors is helpful to novices, and

o The authors are with the Department of Computer Science, University of
California, Davis, CA 95616 USA. E-mail: {tfahmed, roseledesma,
ptdevanbu}@ucdavis.edu.

Manuscript received 12 October 2021; revised 20 September 2022; accepted 29
September 2022. Date of publication 10 October 2022; date of current version
18 April 2023.

This work was supported by the U.S. National Science Foundation under
Grants 1414172 and 2107592.

(Corresponding author: Toufique Ahmed.)

Recommended for acceptance by A. Mesbah.

Digital Object Identifier no. 10.1109/TSE.2022.3212635

saves instructors’ time. b) Traditional approaches to automati-
cally finding & fixing syntax errors require hand-coding fairly
complex parser logic. ¢) Automatically learning models to fix
errors is an approach that promises to be language-agnostic,
as long as sufficient data is available. d) Learning fixing strate-
gies from samples representative of novice errors promises to
yield models that perform well on the most common mistakes
that novices make. Several recent approaches to this problem
have emerged, which are all arguably language-agnostic.
DeepFix [7] used sequence to sequence encoder/decoder
models (with roots in language translation) to fix all sorts of
errors in C, while Santos et al. [8] used language models to
repair just syntax errors in Java (and thus is closer to our
work). All of the existing approaches take an erroneous pro-
gram as input, and attempt to fix them. DeepFix (which uses
an RNN-based Seq2Seq approach) works less well on longer
programs, since RNNs struggle with long-range dependen-
cies. Santos et al. faced similar challenges. More recently,
Ahmed et al. [9] trained a “lenient” parser using synthetic
data. Ahmed etal. use a 2 stage approach: a first (“BLockFix”)
repair the nesting structure, and the second (“FracFix") to
repair individual statements; we refer to their tool in this
paper as BF + FF, to indicate their two stages. Their approach
improves over both DeepFix and Santos et al. especially for
longer programs. Syntax errors in longer programs (longer
than 200-300 tokens) are challenging for automated repair,
because locating the error is difficult. All the above approaches
ignore an important source of information that could be of
great value: the error from the compiler! Compiler warnings
include a lot of useful information: including often the line
number where the error occurred, the tokens involved in the
error, and the nature of the error. This information could be
used by neural model to better locate and repair the error.
Yasunaga et al. [10] utilize C compiler warnings with a graph-
based self-supervised approach and outperform DeepFix in
fixing compiler errors. However, compiler wanmings have
not been applied to any approach that is specifically designed
for Java programs. Our model also uses compiler warnings,

0098-5589 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See htips://www ieee.org/publications/rights/index. html for more information.

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4427-1350
https://orcid.org/0000-0002-4427-1350
https://orcid.org/0000-0002-4427-1350
https://orcid.org/0000-0002-4427-1350
https://orcid.org/0000-0002-4427-1350
mailto:tfahmed@ucdavis.edu
mailto:roseledesma@ucdavis.edu
mailto:ptdevanbu@ucdavis.edu

2170

1 import java.util.Scanner;

2 public class Multiplication

3

4 public static void main(String[] args){
Scanner sc = new Scanner (System.in);

& int a = sc.nextInt();

7 int b = sc.nextInt();

8 int res = a x b;

System.out.println("The result is:

}

" + res);
L}

Fig. 1. Incorrect novice code sample.

but our performance remains robust as the programs’ length
increases.

In addition, existing approaches have not adequately
exploited the tremendous capacity of current DL models to
learn (without direct supervision) the statistics of very large
amounts of unlabeled sequential data. Modern pre-training
approaches such as RoBERTa can ingest vast corpora of
sequential data (e.g., a billion tokens from GitHub-hosted
code) and learn the patterns of syntax, identifier usage pat-
terns, arithmetic expressions, method call patterns etc. These
patterns are automatically learned and represented as high-
dimensional vector embeddings of tokens, without requir-
ing any human effort to label the data. These embeddings,
however, have been shown to substantially improve perfor-
mance when used as pre-set embeddings in other networks
that can be “fine-tuned” with smaller amounts of human-
labeled data.

In this paper, by using the diagnostics from a compiler,
and exploiting the ability to pre-train embeddings with
high capacity RoBERTa model, we build a tool, SYNSHINE,
which improves substantially on the state-of-the-art in auto-
mated syntax repair in Java. We make the following
contributions:

1) We utilize compiler diagnostics from javac, as well
as unsupervised pre-training to achieve substantial
improvements, to implement a 3-stage syntax error
repair tool, which can fix as much as 75% of pro-
grams with single errors in the Blackbox dataset.
This substantially improves upon prior work in the
area of “Java” syntax error repair.

2) When generating fixes, we rely on multi-label classi-
fication, rather than autoregressive synthesis, to sim-
plify the task of generating the repair.

3) We evaluate the contributions of the different stages
of our tool, and also the value of pre-training, and
the use of javac.

4) We evaluate the diversity of repairs that SYNSHINE
can perform; we also dig into the cases where it
appears to fail.

5) We have built SYNSHINE based repair into the widely
used, freely available, open-source Visual Studio
Code (VSCode) tool, and made all our software and
data available to the extent allowable under legal
requirementsl.

Note: Most of the novice code correction approaches are

designed for C incduding DeepFix (7], [10], [12], [13]. Some
recent works [10], [13] outperform DeepFix in fixing C

1. Blackbox data is distributed under U.K. Laws. Please contact crea-
tors [11] for details.

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

compiler errors. They all take the complete program as
input and evaluate it on the DeepFix dataset with smaller
sequences (up to 450 tokens). Ahmed et al. have already
shown that models taking complete program sequences
tend to fail more often for longer programs [9]. Unlike
Blackbox, DeepFix dataset does not have erroneous and
fixed program pairs. That prevents us from comparing the
model’s performance with the human-produced fixed ver-
sions. We train DeepFix model on our Java dataset because
DeepFix uses the simplest inductive bias: sequence of pro-
gram tokens and does not depend on any language-specific
compiler. Several other approaches [10], [13] are both com-
piler- and language- dependent, so they are not comparable
with our approach. Furthermore, we are able to accept com-
plete programs, of longer length than earlier approaches,
and provide fixes leveraging both pre-training as well as
compiler errors.

2 BACKGROUND & MOTIVATION

Problem-solving, motivation & engagement, and difficulties
in learmning the syntax of programming language are
three fundamental challenges in introductory programming
courses [14]. The dropout and failure rates are still high in
introductory programming courses even after applying
advanced methods and tools [15], [16]. Helping novices
with programming syntax can prevent novices to get demo-
tivated [14] at the beginning of the leamning process. In this
paper, we aim to help novice programmers by automati-
cally suggesting repairs for syntax errors. Consider the pro-
gram in Fig. 1, which is an actual example our dataset of
novice programs with errors [11]. Note the use of “x”
instead of “*” on line 8. Many school maths texts use “x” for
multiply, so this an understandable error.

In an introductory programming course, a novice may
make this error by force of habit, and then find it quite chal-
lenging to fix the problem. Most popular IDEs (Eclipse, Intel-
1i], Visual Studio Code) have trouble fixing this; however,
our approach, which feeds a javac-based error diagnostic,
into a multi-stage repair engine that combines unsupervised
pre-training, with fine-tuning, can resolve this.

Researchers have been interested in compiler diagnostics
or syntax error messages for over half a century [17]. Barik
et al. reported [18] that the difficulties programmers face
while reading or understanding error messages are compa-
rable to the difficulty of reading source code. Understand-
ing Java error messages is quite challenging for two
reasons; i) the same error produces different diagnostics
depending on the context, and ii) the compiler may produce
the same diagnostic for different errors [18]. Though prior
works [19], [20] addressed fixing errors in novice programs,
DeepFix [7] was the first to apply deep learning to fix errors.
DeepFix considers code repair as Neural Machine Transla-
tion (NMT) and uses an encoder-decoder based deep learn-
ing model to fix errors in C programs. Though initially
aimed at semantic bugs, the approach also works for syntax
errors. This approach was limited by the use of RNN (recur-
sive neural network) seq2seq models—the RNN architec-
ture is challenged by longer inputs, and outputs; also since
the back-propagation through time (for the recursive ele-

ments) is not easi11y garallelized, it's challenging to exploit
2 UTC from IEEE Xplore. Restrictions apply.

AHMED ETAL.: SynSuine: IMPROVED FIXING OF SYNTAX ERRORS

2171

3. BlockFix 6. UnkFix

e, . J

. G ‘W“ N3
> e ¢

%\ed‘ €>D Q 6&\6 0%
- A F
4. Javac .
1. IDE Code | 2.Block Error |Code W/O Based Error __Coder .| g yinaFix _Fixed 7. IDE_
w/Syntax Checker Block Error . Diagnostic Error Code Suggestion
Error Locato

Fig. 2. Overall architecture of the SynSHINE tool.

larger datasets and additional processors. These became nag-
ging problems in NLP; initial efforts with basic attention mech-
anisms [21] were supplanted by powerful multilayer models
with multiple attention heads to avoid recursive elements alto-
gether [22], yielding high-capacity, eminently parallelizable
transformer models. Certain errors, such as the ones relating to
block nesting, statement delimitation (with “;”) efc. involve
long-range syntax dependencies, and require attending to very
long contexts, which transformers can do better; still, even
these models fail when the dependencies become much longer.

Ahmed et al. [9], developed BF -+ FF, using a multi-layer,
multi-head transformer approach, to address the limitations
of traditional seq2seq models. In addition, BF+FF used a
two-stage pipeline, with the first stage addressing long-
range block nesting errors, even ones beyond the range of
transformers (BLockFix) and the second stage addressing
shorter-range errors (FrRaGFix). Using the Blackbox [11] data-
set, they demonstrated that their approach substantially
improved over prior work on the same dataset [8] (which
used language models). BF +FF had important limitations,
noted in their paper; it didn’t take ad vantage of error locali-
zation and diagnosis provided by compilers; it also didn’t
effectively address errors in identifiers. Indeed, none of the
existing approaches dealt effectively with identifiers, since
they had to limit vocabulary. Deep learning models are
challenged by large vocabularies, which require very large
embedding and softmax layers. (See [23] details). We use
BPE [23] to address this issue.

By addressing these limitations, we were able to achieve
very substantial improvements on the state of the art for fix-
ing Java programs. Ahmed et al.” and Gupta et al.® provided
extensive source-available replication packages which
enabled us to provide a detailed comparison (See §4).

3 METHODOLOGY

Previous work had various limitations: longer programs
were difficult to repair; error messages from compilers were
not used; vocabulary limitations in DeepFix and design
choices in BF+FF limited the ability to address errors in
identifier usage. SYNSHINE directly addresses these issues,
and achieves substantial improvements. We use a multi-
stage pipeline which incorporates the Java programming
language compiler (javac), along with three learned DL
neural networks (DNN). The first DNN model is directly
based on the BrockFix stage provided by BF+FF; this
resolves (the potentially long-range dependent) nesting

2. hitps: / /zenodo.org/record /4420845
: / /bitbucket.org /iiscseal /deepfix/src/master/

errors in the program. In the second stage, SYNSHINE departs
from BF + FF. BF+FF uses the fixed nesting structure from
BrockFix to split the program into lines, and then just tries
to fix every line; this leads to a lot of incorrect fixes. Deepfix
and Santos et al. also try to fix the entire program. The sec-
ond stage (LINEFIx) in SYNSHINE uses the line-location of the
error, as detected by the standard javac compiler, together
with the actual error message, and generates relevant fixes
for delimiters, operators, and keywords; it also flags poten-
tial locations for errors in identifier usage; these locations
are sent to the third & final stage, UnkFix. The UnkFix DNN
model uses a Roberta-MLM to correct any identifiers that
flagged as potentially wrong by LiNeFix.

3.1 Overall Architecture

Fig. 2 shows the architecture of our approach. When the IDE
flags an error (step 1) we first pass the program through a
block-nesting error checker (2), which is a simple pushdown
automaton, that checks the program’s nesting structure. If
block-related issue is found, it's sent from (2) to BrockFix (3) a
transformer model (as provided in the open-source BF + FF
implementation [9]) for repair. In either case, the code, hope-
fully now free of block-nesting errors, is sent to step 4, where
we try to locate the erroneous line using javac. We identify
the line that javac associates with the syntax error, and pass it
on to LINEFix (step 5) with the error message. In some cases,
LiNeFix can fix it directly; in others, it passes a token position to
UNkFix (6), primarily to fix errors in identifier usage. Finally,
the fixed code is returned as a suggestion to the IDE (7).

We separate the line-level repairs into LINeEFix and UNkFix
to eke out more functions out of deep-learning model capac-
ity. LINeFix outputs one of 154 possible editing commands, to
insert/delete/substitute delimiters, keywords, operators, or
identifiers. We limit its output vocabulary to 154. This limita-
tion improves performance, but results in more “unknown”
fixes, as described further below (§3.4). These unknowns are
resolved by the final DNN model, UnkFix. UNkFix uses a
high-capacity masked-language model to suggest a fix (usu-
ally an identifier being renamed or inserted) given a location.
In combination, these elements allow us to substantially sur-
pass the state-of-the-art.

3.2 Javac Errors: Promises and Perils

While novices often find compiler error messages unhelpful
[5], our own experience suggests that they do help experi-
enced developers! This suggests that with sufficient training
data, machine-learning models could learn something about
how to fix syntax errors, from compiler syntax-error diag-
nostics. Older machine-learning-based approaches had not

thorized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from IEEE Xplore. Restnctlons apply.

https://zenodo.org/record/4420845
https://bitbucket.org/iiscseal/deepfix/src/master/

2172

public class PrintVsPrintln
{

public static wvoid (String args [])

{ a_50.java:

System.out.print (°H) ;
System.out.println(4+3);

a_50.java:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

: error: <ldentifier> expected
public static wveoid (String args [])

~
: error: illegal start of expression

System.out.print (3+4) ;
~

} errors

(b) javac error message before fixing

(a) Program with syntax error

a_50.java:
should be declared in a file named PrintVsPrintln.java
publ

: error: class PrintVsPrintln is public,

ic class PrintVsPrintln

~

error

(c) javac error message after fixing

Fig. 3. Locating erroneous line using javac.

leveraged these diagnostics [7], [8], [9]. Recently, DrRepair
[10] uses these diagnostics for fixing C programs; SYNSHINE
also uses them.

javac flags syntactically incorrect programs with diagnos-
tic errors; though the messages are not precise, they are some-
times useful. Fig. 3a presents an actual novice program with
two syntactic errors (missing “main” and unwanted operator
“+”). The javac compiler reports those two errors for the
given program 3(b). Although these error messages are unhelp-
ful, javac does in this case finger the actual lines with errors.
Line-level syntax error localization can be helpful, if the pro-
gram is long. DeepFix, for example, can not fix longer pro-
grams; it relies on seq2seq translation methods, and so has
trouble with inputs longer than a few 100's of tokens. BF + FF
resolves this problem by trying to fix every line in the program
using its FRaGFix second stage; this approach does induce a fair
number of false positives. javac promises more accurate loca-
tion, which could reduce this risk.

There is a potential issue with using javac, arising
mainly from the constraints of our novice error Blackbox
dataset. javac generates some error categories which can-
not be fixed by editing the program directly. These errors
arise for example, from file-naming conventions and incom-
plete typing environments. For example, class name & file-
name mismatch errors, and missing class definition errors
are shown in Fig. 3c. The Blackbox dataset (also used by
Santos et al. [8] and Ahmed et al. [9]) only includes pro-
grams with errors and their associated fix; it does not
include the complete programming environment. SYNSHINE
only deals with errors that can be fixed by directly editing the
Javasource; we ignore the others. This is a decision also
made by all the other papers that deal with syntax error cor-
rection [7], [8], [9]; we do, however, make use of compiler
diagnostics for Java, and do manage to fix a much larger
portion of the errors in the Blackbox dataset than prior
work, as seen in Table 2. Therefore, to remove the errors we
don’t consider from our training set, we simply wrote a
wrapper around javac, to retain just those errors that can
be fixed by editing the source 4 However, it is important to
note here that these “unfixable” errors in our dataset are
counted in the denominator when we report our final suc-
cess rate; in other words, these errors excluded from

4. Most common ignored errors relate to “file and class name mis-
match” and “undeclared identifiers”.

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from IE

training are counted against SYNSHINE and other tools as fail-
ures, and are not ignored in our reported performance.

3.3 Recovering Block Structure: BLockFix

Errors involving imbalanced curly braces are prevalent in
novice programs, and are hard to resolve because of the
long distance between the pair of braces. Ahmed et al. [9]
report that block nesting errors consist of around 20-25% of
all syntactic errors in novice programs [9]. They incorporate
a component, BLockFix, for fixing block-nesting errors.
BrockFix uses a transformer-based machine-translation
model to locate & fix block-nesting errors; the translation
model is trained on synthetic data with artificially generated
nesting errors, and the corresponding fix. It works with an
abstracted version of the code without statements, identi-
fiers, and types to fix errors in nesting structure. In SyN-
SHINE, we simply adopt the BLockFix component from the
implementation made available by Ahmed et al.’s replica-
tion package.

Ahmed et al. abstracted out all the identifiers, constants,
expressions, and delimiters, retraining just the curly braces
and keywords (see Fig. 4). They then introduce structure-
related syntax corruptions, by adding or dropping the curly
braces at randomly chosen positions; and then teaching the
model to recover the original abstracted version from the
corrupted model. BLockFix model learns to fix such errors
by training on many such abstracted, corrupted pairs. After
fixing the nesting error, the abstracted tokens are replaced
with the original ones, and the program is passed to the fol-
lowing stages for further processing.

We found that javac works quite well in localizing the
error (at least the buggy line and finding the line is sufficient
for our approach) if the program is free of nesting errors. This is
why we apply BLockFix, before running javac to localize
and diagnose the error.

3.4 Fixing Line Error: LINeFix

LineFix uses a RoBERTa based pre-training + fine-tuning
approach. RoBERTa derives from BERT, which uses unla-
beled text data to pre-train deep bidirectional representa-
tions of text by jointly conditioning on both left and right
context in all layers of a deep transformer model [24] to per-
form simple, self-supervised tasks like filling in masked

tokens. This model and training method effectively captures
Xplore. Restrictions apply.

AHMED ETAL.: SynSuine: IMPROVED FIXING OF SYNTAX ERRORS

the statistics of token co-occurrences in very large corpora
within the layers of the transformer model. This pre-trained
model learns excellent vector representations of code pat-
terns in the higher layers of the transformer; these learned
vector representations can be “fine-tuned” with just one
additional output layer for specific tasks, and achieves
state-of-the-art performance. For pre-training, BERT uses
two tasks: fill in masked out tokens using the context (also
known as Masked language modeling, or “MLM") and pre-
dict the next sentence given the previous one (the “NSP”
task). Liu et al.’s RoBERTa (Robustly Optimized BERT Pre-
training Approach) dominates BERT’s performance [25].
Liu et al. drop the NSP objective but dynamically change
the masking pattern used in the MLM of BERT models.

Pre-training + fine-tuning also works very well indeed
for code. One can gather millions of unlabeled code tokens
from open-source projects, conduct pre-training, and then
fine-tune the model with a limited amount of labeled data
to achieve state-of-the-art performance in different software
engineering applications [26], [27], [28], [29] (albeit not yet
for code syntax repair). Since we are working on novice
code correction and our objective does not involve any rela-
tion between two programs, such as Question Answering
(QA) and Natural Language Inference (NLI), training on
NSP is not beneficial. Furthermore, using a dynamic mask-
ing pattern to the training data helps the model achieve bet-
ter performance in downstream tasks. Therefore, We use
RoBERTa for pre-training and fine-tuning of the model.

Why Pre-Training? As explained in the papers on BERT
[24] and RoBERTA [25], for natural language, and the very
recent, but rapidly growing body of literature using pre-
training for code [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], pre-training is a way to exploit enor-
mous volumes of data in a self-supervised fashion to leamn
the statistics of token sequences, and capture patterns in a
position-dependent vector notation. For our purposes, these
pre-trained models are automatically ingesting patterns of
syntax and identifier usage from vast quantities of source
code (around a billion tokens) and bringing all this knowl-
edge implicitly to bear to the task of fixing errors in syntax
and identifier usage.

Pre-Training To generate the dataset for pre-training, we
collected 5000 most starred Java projects from GitHub (since
our end-goal is to correct Java syntax errors). We tokenized
the files, yielding 1.2 billion tokens for the pre-training. For
the MLM pre-training over code, we randomly select 15%
of tokens, and replace with a unique token mask. The loss
here is the cross-entropy of the original masked token. Of
the 15% selected tokens, 80% are replaced with a specific
marker mask, 10% are left unchanged, and a randomly
selected token replaces the remaining 10%. This training
method follows the standard RoBERTa protocol.

The architecture is as shown in Fig. 5. The main RoBERTa
model is in the central grey box, labeled “RoBERTa” in
Figs. 5a and 5b. The left side is the architecture when RoB-
ERTA is being pre-trained; the last layer on top is the MLM,
implemented as a softmax layer taking the RoBERTa
embeddings as input, and produces an output token, The
entire model is trained using cross-entropy loss. Our RoB-
ERTa architecture consists of 12 attention layers, 768 hidden
dimensions, and 12 self-attention heads in each layer. We

2173
public class Main {
public static void main(String[] args) {
int x =
int y = 8;
int aum = %X + ¥¢
System.out.println(sum) ;
} {a) Original function
public class simple name { public static wvoid

simple name paren expression { expression
expression expression expression }

(b} Abstracted version

Fig. 4. Abstracting source code for recovering block structure.

applied Byte Level BPE (Byte Pair Encoding) tokenizer [23]
limiting the sub-token vocabulary size to 25K.

We trained the MLM model using cross-entropy loss on
two NVIDIA Titan RTX GPUs for five epochs with a batch
size of 44 sequences and learning rate 5e — 5. When pre-
training completed, our MLM model achieved a final loss
corresponding to a perplexity of 1.46, (cross-entropy 0.546
bits) which is rather low; RoBERTa for natural language
yields final losses around 3.68-4.0 perplexity (1.88 to 2 bits).

Fine-Tuning The fine-tuning step here is to train LiveFix, a
model that accepts an incorrect input line from a novice pro-
gram, (the line flagged by javac as containing a syntax
error) together with the text of the error itself, and then gen-
erates a set of locations and edit commands, using multi-
label classification layers, as explained below.

For fine-tuning and then for evaluation, we used realistic
novice programs with syntax errors and human-produced
fixed versions. We used the exact dataset used by Santos
et al. [8] and Ahmed et al. [9] from the Blackbox [11] reposi-
tory. This dataset contains 1.7M pairs, of erroneous and fixed
programs. Both Santos et al. and Ahmed et al. primarily
report their performance on programs with a single token
error because a single edit can fix a large fraction of the pro-
grams (around 57%). Therefore, for a fair comparison, we
also initially focused our evaluation on single token errors
and broke down our performance by token-length, as done
by Ahmed et al. We selected a test set of 100K samples, with
samples stratified by length, from the full dataset for the
evaluation. We divided the test dataset into ten token-length
ranges (lengths of 1-100, 101-200, ... , and 900-1000 tokens),
with each range having around 10K examples. We prepare
our fine-tuning dataset from the remaining examples.

Since BLockFix handles long-range block-nesting errors,
the LiNeFix stage is focused on those errors unrelated to nest-
ing. We discarded the programs with imbalanced curly
braces from the training set, and after tokenization, we found
around 540K examples to train the model. We used javac
(discussed in Section 3.2) to localize the error. The input to
the model then is the buggy line indicated by javac,
appended with a special separator token (denoted <SEP>)
followed by the error message from javac. Altogether, the
maximum input is 150 sub-tokens, which captures virtually
all the input lines flagged as erroneous in our dataset. From
this, the pre-trained RoBERTa model calculates positional
embeddings for each subtoken; however, as with many RoB-
ERTa-based classification tasks, we use just the embedding
of the first token.

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from |IEEE Xplore. Restrictions apply.

2174
r Total Loss
Cross Entropy Loss Position Loss + F.im
*m \ ...-__:hen Position @ N
Embiddings |-Embeddings

RoBERTa
(12 Layer former)

EE -

“\._ Unlabeled correct programs from GitHub "

RoBERTa
12 Layer Transformer,
Pretrained

=

(=] (o] — (o] [aw] |

\\ Incorrect Programs + Compller Error '/

(a) Pre-Training (b} Fine-Tuning

Fig. 5. Pre-training and fine-tuning using RoBERTa.

The desired output is the matching edits required to cre-
ate the fixed version, as explained next.

To make a complete fix, the model should produce one or
more locations, and one or more “fix”, viz edit commands.
The fix has two parts: i) the type of fix (insertion, deletion, or
substitute?) ii) the content of the fix (is it a specific keyword,
delimiter, or any other token?). When the type is a deletion,
there is no content required: if the model identifies the
buggy token at position z and recommends deletion, we
just drop that token. For substitute operation, if the location
is z and the edit command is substitute — y, we will replace
the token at position x with the token y. For insertion, if the
command for position z is insert — y, we will add the sug-
gested y token at the z + 1 position. For insertion at the start
of the line, we use a special token. For example, consider
the following buggy line from Fig. 3a.

public staticveid (Stringargs[])

To fix this missing “main”, LiINeFix should output the
location “3” and the fix “insert — unk” (“main” is an identi-
fier). This “unk” will be coverted to “main” with another
model. We will discuss it in Section 3.5.

Our model’s final layer consists of two distinct multi-
label classification output layers, one which outputs one or
more locations, another which outputs one or more fixes.
The input to both these output layers, as explained above, is
the RoBERTa embedding of the first token of the input.
From this input, the two separate multi-label classification
output layers calculate the position(s), and fix(es). Since
most (99%) of the erroneous lines are 100 tokens are less, we
output one or more positions (1-100) from the first output
layer, and, from the second output layer we generate one or
more of 154 distinct possible fixes. We remind the reader
that a multi-label classification task involves generating an
output vector of class probabilities, where the classes are
non-exclusive. A single input might generate one or more
class labels. In our case, we take all class labels in the output
vector scoring above (.5 as an assigned label. If none of the
classes are assigned a probability above 0.5, we just take
the highest probability class label. In almost all cases, we
have only one fix per line, so one position and one edit com-
mand are expected; however, in rare cases, more than one
position and more than one edit command could be gener-
ated. In the former case, we just apply the edit command at
that position; in the latter case, which occurs very rarely, we
try all combinations and return the first edit combination
that compiles. A somewhat more common case (for example

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

with multiple missing delimiters, like ”)”), we get one edit
command like insert —) and multiple locations, in which
case, we just apply the same edit at all locations.

There are reasons for our choice of multi-label classification,
rather than simply synthesizing the fixed output. Prior
approaches [7], [8], [9] used autoregressive’ code generation to
synthesize repairs. Given the sizeable vocabularies in code,
many complex dependencies must be accounted for when gen-
erating code tokens conditional on previous tokens, the original
input tokens, and the compiler error. We simplify the problem
into a multi-label classification task here; all that is required is
to identify the token positions(s) of the error, and the applicable
edit commands. In the vast majority of cases, there is usually
only a single change required per line). This allows the model
to learn, and rapidly reduce training loss and perform well
under test. In addition, the multi-labeling approach (rather
than auto-regressive generation also allows us to handle
repairs that require multiple fixes on the same line (example
below, Fig. 6). It's important to note that a single line can con-
tain several token locations with errors, and distinct edit com-
mands at each position. Limiting the size of the set of possible
fixes to 154 will limit the ability to fix identifier names; this is
handled by including fix commands that insert and substitute
to unk in the output vocabulary of LineFix; these fixes are han-
dled by a component is called UNkFix, which is described in
§3.5. Note that dealing with multiple fixes on different lines is
easily manageable. If there are multiple positions, all with the
same fix (like Fig. 6), one can just perform that fix at all the posi-
tions. However, for multiple positions and multiple fixes one
needs to try all combinations until the javac accepts with no
errors. We did not incorporate that to our code, because:

1) Trying all possible combinations will slow down the
entire process.

2) Two different errors in a line (even in a file) is very
rare. In the Blackbox data repository, for example,
the majority of files contain just a single syntactical
erTor.

The standard way to train multi-label classification layers
is with binary cross-entropy loss (with logits), which is what
we use for our fine-tuning. Since both the output layers are
closely related to each other, we fine-tuned them simulta-
neously for 5 epochs. We collected the loss from each layer
and added them to define the batch’s final loss, and updated
the model accordingly. Note that the same pre-trained
model parameters (from Fig. 5a) are used to initialize these;
during fine-tuning, all parameters in all layers are modified
(Fig. 5). We use the Huggingface open-source implementa-
tion of RoBERTa [38] for both pre-training and fine-tuning.

Utilizing Compiler Diagnostics during Fine-tuning Apart
from localizing the erroneous line, the compiler warning
can boost the performance of the fine-tuning model. As an
input sequence to the model, we tried two versions, ie.,
with the warning, without waming. We observed a small
but significant improvement in line-level code fixing
(detailed in Section 4.2). Consider the following code snip-
pet from the Blackbox dataset. The variable “bmr” is

5. Autoregressive generation conditions the generation of each
token on previously generated tokens, and is used in machine-transla-
tion ap

roaches.
Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 2%,2023 at 14:10:12 UTC from IEEE Xplore. Restrictions apply.

AHMED ETAL.: SynSuine: IMPROVED FIXING OF SYNTAX ERRORS

=System.out.println(=);
+System.out.println("+");

Fig. 6. Example requiring two edits to fix.

declared twice, and the second declaration is invalid.
Though the javac localizes the error correctly, it is really
hard for the model to resolve this without any hint. Our
model fails to fix this one when trained without the com-
piler message. However, with the compiler error message,
our RoBERTa-based fine-tuned model can solve errors like
this one by deleting the token “double”. This particular
example is fixable with a modern IDE; however, it serves as
a good illustration of how our model can use error mes-
sages. We remind the reader that in general we can handle
numerous examples that IDEs cannot. Several typical exam-
ples are included in the supplemental file https:/ /bit.ly/
3CMMOTP.

double bmr;

/* some additional irrelevant lines */

booleanisMale =male=="'M’;

if(isMale)

doublebmr= ((9.5 *wgt) + (5.0 * hgt)

+ (6.7 *age) + 66.47) ;

Without Warning:

doublebmr = ((9.5 *wgt) + (5.0 *hgt) + (6.7
*age) +66.47);

With Waming;:

doublebmr = ((9.5 *wgt) + (5.0 *hgt) + (6.7
* age) + 66.47); <SEP> variable declaration
not allowed here

LineFix works best with small sequences. Java is inher-
ently verbose, and so sequence lengths are often beyond the
model’s capacity. Compiler diagnostics help us in two
ways. Primarily, it helps us localize the error, and second,
the message (even if imprecise) helps deep learning models
fix the error. This claim is supported by a study (Yasunaga
etal. [10]).

3.5 Recovering Unknown Tokens: UnkFix

Recall that LineFix output is restricted to 154 distinct fixes
in the fine-tuning model. To deal with edits (inserts or sub-
stitutes of identifiers, constants efc.) outside of the limited
vocabulary of edits, have an “escape” mechanism. Out of
these 154, we included two unique outputs insert — unk
and substitute — unk to cover other changes. To precisely
identify these “unk” tokens, we use UNkFix, which reuses
the masked-language model (MLM) we obtained during
pre-training. This masked language model can recover the
unk tokens if sufficient context is given. After getting the
position information, we can collect sufficient tokens from
the previous and following lines to fill the input buffer,
and ask the pre-trained model to unmask the unk. Apply-
ing this approach, we could fix several unk-related pro-
gram errors like the following ones where the LineFix
predicts insert — unk and substitute — unk for “Item” and
“Integer”, and then the MLM is able to locate them
correctly.

2175

-public void takeItem (item) {

+public void takeItem (Itemitem) {
-float number = float.parseInt (text) ;
+float number = Integer.parselInt (text);

Note that though we designed UnkFix primarily for iden-
tifiers, it can potentially handle other tokens, including
values.

3.6 Integrating SYNSHINE into VSCode

To make SYNSHINE more broadly accessible, we have made it
available within a popular IDE. We have initially chosen
VSCode since it's widely available, free for students®, and
well-documented; in the future, we will incorporate Syn-
SHINE into other IDEs. The source code for the integration is
available in our replication package. A demo video is view-
able: https:/ /youtu.be/ AR1Ind2PJczU.

In this VSCode integration, we desired fast response
times, and wanted to avoid the requirement for a GPU,
since many novices may not have a GPU. So for the SyN-
SHINE deep learning model, we just used CPU floating point
operations; to avoid having to reload the (very large) model
for each repair request, we wrapped the SYNSHINE model
within a “correction” server, which services HTTP requests
from the IDE.

The IDE triggers a request to SYNSHINE when the user
requests a fix suggestion. When SyNSHINE is triggered,
VSCode looks for the active text editor and extracts the
(erroneous) code content from there. After getting the con-
tent, VSCode sends an HTTP request to the code correction
server. Models are pre-loaded in the correction server, so
that it can immediately service requests. In this server, the
code goes through our proposed pipeline presented in
Fig. 2, and the code retumns to the editor after finishing all
the steps. Now we have two versions of the code, i.e., the
buggy code and the corrected version. We highlight the dif-
ference and present both versions to the user and allow
them to accept or reject the solution.

Note that the demo presented on the link mentioned
above was captured on a machine without any GPU. We
observe that SYNSHINE can operate on a CPU and is quite
fast at generating the solution even though the models were
trained on GPUs. Just to get a sense of the delay, we ran-
domly chose 200 erroneous programs of various lengths
from our dataset, and measured the response time (time
from the “SyNSHINE” button press to the time the fixed code
is received back). The average response time is 0.88 seconds
(standard deviation 0.49s, maximum 2.2s). While this by no
means instantaneous, we can still provide a fix for a syntax
error virtually always within a second or two, potentially
saving the novice and instructor’'s time. Our approach to
integrating SYNSHINE into VSCode thus arguably attenuates
the need for expensive GPUs, and facilitates the use of the
deep learning model in CPU-only machines. The CPU we
used for the experiment is “AMD Ryzen 7 2700X”. The code
correction server occupies 1.765 GB of the memory.

SynShine’s response time is significantly lower than the
time needed by a programmer to fix the program. Brown

6. https:/ /visualstudio.microsoft.com/students/

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/3CMM0TP
https://bit.ly/3CMM0TP
https://youtu.be/AR1nd2PJczU
https://visualstudio.microsoft.com/students/

2176

TABLE 1
Summary Results: Santos et al. Performance is as Reported by
Them; we Measured the Others

Santos et al DeepFix DeepFix SequenceR BF+FF SynSHINE
[8] (short) (long)
46.00% 63.25% 62.14% 56.89% 56.91% 74.89%

and Altadmri divided the mistakes that occurred in the
Blackbox repository into 18 different classes, where 11 of
them are syntactical errors [39]. The programmers take 13-
1000 seconds (median) to fix the mistakes [39]. Our model,
on the other hand, takes less than a second on average to
process the files and suggest a fix.

4 EVALUATION & RESULTS

In our evaluation, we compare our work with several base-
lines: Santos et al. DeepFix , BF + FF, and SequenceR. The
original DeepFix [7] used a GRU based RNN encoder-
decoder translation model, which takes an entire program
(with syntax error) as input, and produces a fix. For baselin-
ing their BF + FF tool, Ahmed et al. used two versions of
DeepFix, one (“short”) trained on error-fix pairs upto 400
tokens long and another (“long”) trained on error-fix pairs
upto 800 tokens long. Another approach, SequenceR [40]
has reported success in fixing semantic errors, when pro-
vided with fault localization; it is also adaptable for syntax
errors. SequenceR differs from DeepFix in a few ways: it
uses a separate fault localizer, and also incorporates a copy
mechanism. We describe the intricacies in full detail later.
Ahmed et al’s BF + FF program used a 2-stage transformer-
based lenient parser, as described above. Our approach
combines several techniques: pre-training, compiler-based
reporting, and fine-tuning with novice data.

Below (Table 1), we present summary top-1 accuracy
results, evaluated over a random sample of 100,000 exam-
ples of length upto 1000 tokens, with single-token errors,
taken from the Blackbox dataset. The detailed result is pre-
sented in Table 2. We follow the lead of the first paper in the
area [8] in this table, reporting performance for single-token

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

errors, which constitute 57% of the data in Blackbox. We
report the numbers for more complex errors below.

As can be seen, SYNSHINE achieves a substantial perfor-
mance boost, over all the prior approaches, elevating the
performance further and providing us with the motivation
to build it into a popular IDE to make it more widely avail-
able. Here below, we evaluate the performance in more
detail, comparing SYNSHINE with the closer competitors (we
exclude Santos et al. from this comparison) and also exam-
ine the contributions of our various stages to the significant
overall improvement. We begin with an evaluation of the
effect of program length on performance, then we consider
the effect of the various components of SyNSHINE. Finally,
we breakdown the performance of SYNSHINE in repairing
various categories of syntax errors.

4.1 Fixing Shorter & Longer Programs

Table 2 baselines the relative performance of SYNSHINE
against prior work, broken down by length, in categories.
The rows are different length ranges of programs. The sec-
ond column is the fraction of the Blackbox programs falling
in this length range. The next several columns are baselines
from prior work: first two are DeepFix (short) trained on
shorter error-fix pairs (upto 400 tokens long), DeepFix
(long) trained on pairs up to 800 tokens long. The next two
are SequenceR, trained on all pairs in the training set, and
BF + FF, trained exactly provided in Ahmed et al.’s scripts.
Finally, on the last column we have our results from Syn-
SHINE; the 3 columns to the right of the SYNSHINE column rep-
resent the contributions of our 3 components. As can be
seen our overall performance exceeds the performance of
all the others in every length category, and on the entire
sample significantly improves on all of them. Before we
examine the numbers in detail, we first present some rele-
vant details on how we measured them.

All evaluations were done on a very large, randomly cho-
sen, representative sample of 100,000 error-fix pairs from Black-
box that were not seen during training by any of the models.
The percentages shown in the second column, and the overall
performance numbers (all numbers are top-1 accuracy) are thus
robust estimates of actual performance on programs up to 1000

TABLE 2
Baselining SynSHINE Against Prior Work on Syntax Error Correction
Token Percentof = DeepFix DeepFix SequenceR BF+FF SYNSHINE
Range Overall (short) (long) By By By Total
Data BrockFix LineFx UnkFix

1-100 31.01% 76.71% 73.72% 59.21% 65.16% 21.01% 58.86% 2.41% 82.28%
101-200 29.43% 69.98% 67.15% 57.21% 60.24% 17.53% 58.98% 1.96% 78.47 %
201-300 15.25% 63.27% 60.29% 55.40% 54.47% 14.35% 56.00% 1.93% 72.28%
301-400 8.56% 53.71% 54.02% 54.64% 50.01% 10.18% 54.45% 1.89% 66.52%
401-500 5.51% 42.17% 45.47% 54.54% 46.19% 7.71% 54.00% 1.88% 63.59%
501-600 3.63% 32.84% 39.78% 54.47% 42.81% 5.95% 53.83% 2.19% 61.97%
601-700 2.17% 23.76% 33.02% 54.35% 38.07% 3.80% 53.62% 2.10% 59.52%
701-800 1.90% 17.10% 26.57% 53.78% 35.35% 3.04% 51.98% 2.65% 57.67%
801-900 1.34% 11.43% 22.88% 55.56% 32.24% 2.20% 52.84% 2.19% 57.23%
901-1000 1.19% 8.80% 17.94% 53.87% 29.62% 1.27% 51.63% 2.10% 55.00%
Overall 63.25% 62.14% 56.89% 56.91% 15.56% 57.22% 211% 74.89%

SequenceR was provided with javac localization.

Authonzed licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from IEEE Xplore. Restrictions apply.

AHMED ETAL.: SynSuine: IMPROVED FIXING OF SYNTAX ERRORS

tokens long, which constitute around 95% of the Blackbox data.
An additional evaluation on a random sample of the entire
dataset is reported below. DeepFix (short), DeepFix (long), and
BF + FF were all trained and evaluated using the scripts made
available in the replication package of Ahmed et al. [9] and
Gupta et al. [7].

SequenceR [40] had to be retrained for syntax error cor-
rection: Chen et al. oﬁginally developed SequenceR for fix-
ing semantic bugs, viz., test failures. It uses the OpenNMT
translation framework [41] and thus had to be trained using
bug-fix pairs. SequenceR assumes that the precise location
of the bug was known via fault-localization; the training
pairs consisted of a) the buggy region of code, bracketed
within <start_bug> <end_bug> markers, aug-
mented with sufficient context (preceding and succeeding
tokens) to make up 1000 tokens of input b) and the corre-
sponding fix, which is the region including the changed
code, upto a maximum of 100 tokens; longer fix regions will
fail (this almost never happens in our setting). They used an
RNN sequence-to-sequence encoder-decoder model that
uses LSTM for the recurrent nodes, and incorporates a copy
mechanism to enable the model to generate specific local
variables, efc. in fixes. We used the code provided by Chen
et al., and trained the model using Blackbox data; we used
the javac compiler to find the error location, and created
training/test pairs using the javac indicated location (with
context), together with the corresponding novice fix. In our
case, since most novices’ programs are shorter than 1000
tokens, we provided the entire novice program as context.
Once SequenceR is trained, it can generate fixes, given the
novice program with error, with location indicated as
above. However, SequenceR cannot insert or delete entire
lines, so it cannot fix many nesting errors (for example, by
inserting or deleting a line with a single ”{” or ”}” delimiter).

Our overall accuracy ranges between 55% to 82%, and
always outperforms DeepFix long (18%-74%), and short (9%-
77%), SequenceR (54%-59%) and BF +FF (29%-65%). Both
SequenceR and SYNSHINE benefit from the error location pro-
vided by javac. By improving on prior work at every range,
on the entire representative 100,000 sample, SYNSHINE achieves
significant gains in overall performance (bottom line) over the
state of the art. Two factors contribute to this improvement: i)
javac-based error localization and ii) robustness of LineFix and
UnkFix. javac-based error localization enables a more selective
LineFix+UnkFix to the most likely errorful code, thus reducing
false positives; Ahmed et al.’s BF+ FF attempts corrections
throughout the program, resulting in more mistaken correc-
tions. The robustness of LiINeFix and UNkFix is really boosted by
the pre-training + Fine-tuning strategy; we explore the relative
benefits of this step further below.

Table 2, in columns under the SyNSHINE header, also
shows relative contributions of the components of SYNSHINE.
First stage is BLockFix borrowed from BF + FF. About 20%-
25% programs, regardless of length have nesting errors.
BrLockFix's accuracy decreases with program length, and we
observe that the contribution of BLockFix is low after 700
tokens. However, for the other 75% to 80% programs with-
out nesting errors, LINEFix & UNkFix perform pretty consis-
tently. Finally, we note that 1-1000 tokens cover about 95%
of the overall data. To observe the performance of SYNSHINE

on the overall distribution, mcludm$ Cgm[%l‘;ams over 1000
Authonized licensed use limited to: Univ lif

is. Downloaded on September 23 2023 at 14:10:12

2177

tokens long, we test it on 5000 random samples. We found
that our model can repair 75.36% of the programs, and as
before, comfortably exceeds performance of prior tools.
Note that if the BLockFx model has already fixed the curly
braces and there is no other error, javac will not produce
any error message, and LiNeFix will not process that. Note
that we always compare the end-to-end tokens of the refer-
ence and the model’s proposed sequence; if needless “over”
fixes are applied, that will be counted as wrong. Moreover,
none of the fixes are credited twice. If the model is fixed by
UNkFx, it alone receives credit; we did not count it in the
LineFix column. Likewise, we credited a sample in the LiNg-
Fix column, if it is completely fixed by LINEFix and does not
receive any help from UnkFix.

We also applied our model on files that required 2 and 3
edits to fix the program and observed 29.4% and 14.4%
accuracy, which is much higher than the reported accuracy
by Ahmed et al. (19% and 9%). Finally, we note that Ahmed
et al. report on a blended strategy where shorter uncompil-
able programs could be sent to DeepFix and longer ones to
BF + FF, thus obtaining better performance than either at all
lengths. A similar strategy could be employed here, blend-
ing SYNSHINE with other models, trying all the proposed sol-
utions, and picking the ones that compile. However we
didn’t implement this approach: we just integrated SYNSHINE
into VSCode since it performs quite well at all lengths on its
own, and avoids the need to load and run many models,
and try repeated compiles.

4.2 LineFix: The Role of Compiler Errors

SyNSHINE differs from both versions of DeepFix, and
SequenceR, because it’s multistage; it differs from BF + FF
mainly because of the two new components, LiNeFix and
UnkFix. We simply reused the BLockFix component made
available by Ahmed etal. 7 and find performance very simi-
lar to that reported by them for this component. The
improvements reported in Table 2 clearly arise from our
two new components. We now focus in on LINEFix and eval-
uate how it contributes to overall performance. LINeFix's
task is to take an input line flagged as a relevant syntax error
(by javac), together with the actual error, and then output
a position, and an editing hint (insert, substitute, delete).
LineFix improves upon the FrRacFix stage of BF + FF in two
ways: first, it uses pretraining+finetuning, and second, it
also takes the syntax error message from javac as an addi-
tional input. The value of pre-training has been extensively
documented for code-related tasks [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], so we focus here on the
effect of providing compiler errors. Note again that LineFix
has two tasks: Localize the token to be replaced, and and out-
put an editing command with the correct Fix. We evaluate
the impact of compiler warnings using 10,000 randomly
chosen erroneous lines, of various lengths, each taken with
and without the compiler syntax error messages. Since
we're evaluating fixing capability on single erroneous lines,
rather than entire programs, the numbers reported below
are higher than in Table 2.

7. https:/ /zenodo. or%/ record /4420845

TC from IEEE Xplore. Restrictions apply.

2178

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

TABLE 3
Impact of Using Compiler Error

With compiler error? Localization Fix Complete Correction (Location+Fix)
F-Score F-Score Accuracy

No 90.75% 92.41% 86.71%

Yes 93.58% 93.18% 89.39%

Table 3 presents the impact of using the syntax error
message in our tool.

We gain around 2.7% improvement in overall accuracy
using the compiler error message. We also see improvements
on both Localization and Fix f-scores by providing the compiler
message along with the the erroneous line (row 1 & 2). The
improvement is more for the Localization than for the Fix. We
tested the statistical significance of all differences, using Bino-
mial difference of proportions test on a trial sample of 10,000;
we then corrected the p-values using Benjamini-Hochberg. The
improvements observed when using compiler error message
for overall accuracy and fix location f-score are highly signifi-
cant (p < le — 9); however, the f-score for the fix per se are
only significantly improved (0.01 < p < 0.05). This suggests
that the compiler error message is of highly significant help in
providing our model with information required to locate the
precise token that needs to be edited, and somewhat less so to
identify the precise edit that is required. It is very important to
note however, that the javac compiler is of crucial help in
locating the line where the error is located. This above study
also shows that the actual error message per se helps our model
locate the foken within that line that needs to be edited.

We present an illustrative example of how compiler error
messages help. Sometimes the compiler warnings are very
precise, e.g., when semicolons or other punctuations are to
be inserted. In such cases, it may appear that the task is
quite simple, and the model is simply “translating” the
error into a fix. We sampled 50 programs and observed how
many of them can be fixed just by reading the comments.
We observed that in roughly 60% cases, the javac warming
is not that helpful, and the model learns to respond in fairly
nuanced ways to address the error. Consider the following
repair that LiNeFix correctly achieves.

-returng == reversge (Strings) ;

+returns ==reverse (g) ;

javac per se not helpful: it produces an error message
suggesting to insert “)” after “String”. LINeFix learns to
ignore such messages, and instead correctly omits the token
“String”. Therefore, the model is not just “translating” the
message from javac into a fix; The high capacity of the
model, enriched by pre-training and fine-tuning, is
deployed to leverage the often incorrect, imprecise message
from javac into a good fix. Depending on the error, it can
resolve a very imprecise message from javac. Indeed,
quite often the same error message from javac can lead the
model to provide very different (correct) fixes.

4.3 When SynSHINE Fails, and When it Works

We now examine in further detail the cases where SYNSHINE
works correctly, and where it does not. To be conservative, we
have defined as a “failure” any fix not exactly the same as the one
recorded in the Blackbox dataset; note that a) the fix recorded
in Blackbox is created by an actual human user, and also b) the
recorded fixes always compile without error. We start with an
examination of the cases where SYNSHINE fails to produce a cor-
rect fix, as per our conservative definition, and then examine in
detail the diversity of fixes that it does provide.

Fix_Failures Despite our over-conservative definition of
“failure”, sometimes SYNSHINE can generate a solution that dif-
fers from the user-intended solution but is still compilable with
our javac-based compiler. In some cases, the solution is even
semantically correct. As an illustration, in Table 6, examples 1,
2 & 3 are fixes generated by SYNSHNE that not only compile
without error, but are also semantically correct. By contrast, the
last example in Table 6 is not semantically correct but compil-
able. Ideally, we’d like to characterize how often SYNSHINE finds
fixes that are not only compilable, but also semantically correct.
The compilability of a fix that differs from the user’s fix recorded
in Blackbox can be determined automatically, and at scale (by

TABLE 4
Compilability of SyNSHINE
Length Overall Fixes Exactly Compilability for
Compilability of fixes Matching Blackbox non-matching cases
1-100 90.18% 82.28% 44 58%
101-200 86.13% 78.47% 35.58%
201-300 79.33% 72.28% 25.43%
301-400 73.35% 66.52% 20.40%
401-500 70.14% 63.59% 17.99%
501-600 67.83% 61.97% 15.41%
601-700 65.92% 59.52% 15.81%
701-800 64.00% 57.67% 14.96%
801-900 63.32% 57.23% 14.24%
901-1000 60.76% 55.00% 13.00%

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from |IEEE Xplore. Restrictions apply.

AHMED ETAL.: SynSuine: IMPROVED FIXING OF SYNTAX ERRORS

TABLE 5
Performance of SynSHiNe Over Diverse Error Categories

Category Prevalence of Error Category Fix Accuracy (in %)
Keyword 5.04% 70.64%
Operator 5.87% 77.73%
Delimiter 80.37% 81.60%
Other 8.72% 60.94%

just compiling!) and we report it below; however, the semantic
correctness of a fix that differs from a user’s fix requires manual
examination, and is not practical to do at a large scale. We try to
characterize these to some extent by examining a small sample.

Table 4 presents the overall compilability of the solu-
tions. The second column is the overall compilability of the
generated fix. This is calculated as the fraction of the num-
ber of attempted fixes, that actually results in a successful
compilation. The third column is the proportion of fixes that
we deem correct, based on exact match with the fix recorded
in Blackbox (the numbers will match shown in the right-
most column of Table 2). As can be seen, we record many
compilable cases as incorrect. The last column in Table 4
shows the proportion of apparent failures that are actually
compilable: as an illustration, for programs up to 100 tokens
long, about 45% of the cases that we record as an incorrect
fix, in fact compile correctly. Depending on length, between
13% and 45% of the fixes we classify as failures are actually
compilable. Table 6, examples 1,2,3,4 are exactly such fixes.

Now what proportion of these “compilable failures” are
actually semantically correct? To get a (very) rough estimate
of this, we did a small manual study. We randomly collect
50 cases where the model generates a compilable fix, that
fails to match the user fix recorded in Blackbox. We found
that about 18% of programs are semantically correct.

To summarize: even in our very conservative evaluation,
SYNSHINE produces the same fixes as recorded by a human
in a sizable fraction (roughly 75%) of errors in our novice
dataset; an examination of SYNSHINE's failures suggests that
it could possibly be helpful in some additional cases.

Fix Diversity What kinds of errors does SYNSHINE fix? In
our dataset, about 80% of the errors are related to delimiters,
and even solving only those would make a significant dent.
However, the novices make syntax errors in using key-
words, operators, identifiers, and numbers; sometimes they
introduce illegal spaces, declarations, characters, etc. We
examined how SYNSHINE performs with respect to different
types of errors. For convenience, we divided the error into
four major categories- keywords (all Java keywords), delim-
iters (e.g., semicolon, comma, parentheses, braces, brackets),
operators (all Java operators), and others (identifiers, liter-
als, and anything that falls outside the first three categories).

2179

To do categorization, we followed two rules. Errors that
required substitutes or inserts belonged to the category of
the substituted or inserted token; errors that required dele-
tion belonged to the category of the deleted token. Thus if
an error required a semicolon to be inserted, it was in the
“delimiter” category; if an error required an extra “if” key-
word to be deleted, it was in the “keyword” category.

We randomly sampled a 5K test dataset, and determined
the error category prevalence in this dataset; see Table 5,
first column, for the prevalence of errors in various catego-
ries. Delimiter errors dominate, and thus our model learns
to fix those best (81.6% accuracy); however, it performs well
in other categories (60%-78% accuracy). The take-away
from this analysis is that SYNSHINE performs reasonably well
at a wide range of syntax errors.

5 RELATED WORK

The most closely related works are DeepFix [7], BF +FF [9],
and Santos et al. [8] which we have discussed above. We
also discussed SequenceR [40]. We have compared SYNSHINE
to all of these.

Gupta et al. [12] applied reinforcement learning to a very
similar dataset like DeepFix [7]. It utilizes total count of
compiler errors as a part of the reward mechanism. How-
ever, RLAssist [12] shows only a very minor improvement
over DeepFix [7], and also it takes the whole program as
input. Therefore, we did not re-implement RLAssist [12].
Though RLAssist [12] looks into compiler errors but it does
not directly uses the error messages as we do. DeepDelta
[42] is another approach that fixes compiler errors but
mostly identifier name-related errors, not syntax errors.
DeepDelta [42] was developed and tested on code from pro-
fessional developers at Google. The authors also assume
that precise knowledge of the location will be given to the
program. Yasunaga et al. [10], [13] introduce two compiler-
dependent approaches to fix C program: DrRepair that uti-
lizes C compiler warnings with a graph-based self-super-
vised approach, and BIFI that applies two models “critic”
and “fixer” to fix the programs. A tool for the C program-
ming language, Tracer, abstracts the code and uses a seq2-
seq model on the source code abstractions that are later
concretized [43].

All the DNN based Automatic Program Repair (APR)
tasks have a fault localization step [40], [44], [45], [46], [47],
and these tools’ performance depends a lot on the fault-local-
izer. Semantic code correction is an inherently difficult prob-
lem, and syntax correction can be considered as a subset of
semantic code correction problems. None of the previous
syntax correction tools has compared their work with these
tools because previous syntax correction tools did not
depend on any fault localizer. Some of the APR tools [45],

TABLE 6
Examples Showing the Compilability of the Model
Seq No Buggy Line Model Original Fixed
1 inti=((int)(Math.random ()*3); inti=((int)(Math.random ()*3)); inti=(int) (Math . random ()*3);
2 int userInt_1 , int userInt_2 ; int userint_1 ; int userInt 2 ; int userInt_1 , userInt_2 ;
3 System . out . print ((7 Hello, world. 7) ; System . out . print (7 Hello, world.) ; System . out . print { (7 Hello, world. 7)) ;
4 System . out . println (" sum =" + (sum +)); | System . out. println (" sum ="+ (sum)); | System .out. println ("sum="+(sum+5));

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from |IEEE Xplore. Restrictions apply.

2180

[48], [49], [50] expects syntactically correct programs and
those approaches are not applicable for syntactical code cor-
rection. For our purposes the most directly compatible recent
APR tool was “SequenceR” [40] which reported good perfor-
mance, and also fixes errors at the line level; it was readily
adapted to using the javac to locate the line to be fixed, so
we chose it for comparison. Pradel et al. also detect specific
types of bugs (e.g., accidentally swapped function argu-
ments, incorrect binary operators, and incorrect operands in
binary operations) but in syntactically correct code [51].

Brown et al. used Blue] IDE to collect the data in Black-
box repository [11] In this paper, we did a case study on the
performance of the popular IDEs (e.g., Eclipse, Intelli],
VSCode, Blue]) in fixing novice programs. We compare
repair hints from Eclipse JDT Core Compiler for Java (EC])
(used in both Eclipse and VSCode) and javac (used by Intel-
li] and Blue]). That is, both Eclipse and VSCode present the
same error messages, and IntelliJ and Blue] present the
same error messages. Four IDEs, but ultimately, only two
compilers. SYNSHINE improves upon repair hints from both
compilers. Therefore, we primarily focus on Eclipse and
Intelli] for the case study. We chose VSCode because it is
popular, well-documented, available free for students, and
is easy to extend. We were able to integrate SYNSHINE into
VSCode without any major difficulties.

6 CONCLUSION

We have described SYNSHINE, a machine-learning based tool to
fix syntax errors in programs. SYNSHINE leverages RoBERTa
pre-training, uses compiler errors (both location and mes-
sage), and generates fixes using multi-label classification,
rather than autoregressive generation, to achieve substantial
improvements in fixing syntax errors. Qur evaluation shows
substantial improvements in fixing rates over the previous
best results reported by BF +FF, and other tools, at all pro-
gram lengths. Our evaluations suggest that the the use of com-
pilers to locate the precise line provides a big advantage; our
evaluations also suggest that the compiler error message per se
may be helpful in locating the precise token within the line
that needs to be repaired. We have built SYNSHINE into the
VSCode IDE, and have found that even without a GPU, the
SynSae-enhanced VSCode can fix syntax errors fairly
quickly, often in less than a second. We have made all the
source-code and data available, to the extent allowable under
UK Law applicable to the Blackbox dataset. SYNSHINE can fix
errors that IDEs (Eclipse, Intelli], Blue], and VSCode) cannot.
In the supplementary materials (https://bit.ly/3CMMOTP)
we show several real-world examples of novice-made errors
that cannot be fixed by any of these IDEs, but can be fixed by
SYNSHINE. Finally, the entire source for our SYNSHINE, including
the VSCode extension, is made available anonymously at
https:/ /doi.org/10.5281/zenod0.4563241.

ACKNOWLEDGMENTS

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Sci-
ence Foundation. Ahmed was also supported by UC Davis

CDllege of Engineering Dean'’s Distinguished Fellowship.
Authorized licensed use limited to: Univ

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

REFERENCES

[1]].C Spohrer and E. Soloway, “Novice mistakes: Are the folk wis-
doms correct?,” Commun. ACM, vol. 29, no. 7, pp. 624-632, 1986.

[2] M. McCracken et al.,, “A multi-national, multi-institutional study
of assessment of programming skills of first-year cs students,” in
Proc. Work. Group Rep. ITiCSE Innov. Technol. Comput. Sci. Educ.,
2001, pp. 125-180.

[3] E. Lahtinen, K. Ala-Mutka, and H.-M. Jarvinen, “A study of the
difficulties of novice programmers,” ACM SIGCSE Bull., vol. 37,
no. 3, pp. 14-18, 2005.

[4] J.Jackson, M. Cobb, and C. Carver, “Identifying top java errors for
novice programmers,” in Proc. IEEE Front. Educ. 35th Annu. Conf.,
2005, pp. TAC-T4C.

[5]1 S. K Kummerfeld and J. Kay, “The neglected battle fields of syntax
errors,” in Proc. 5th Australas. Conf. Comput. Educ., 2003, pp. 105-111.

[6] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors
are not equal,” in Proc. 17th ACM Annu. Conf. Innov. Technol. Com-
put. Sci. Educ., 2012, pp. 75-80.

[7]1 R. Gupta, S. Pal, A. Kanade, and S. Shevade, “DeepFix: Fixing
common ¢ language errors by deep leamning,” in 31st AAAI Conf.
Artif. Intell., 2017, pp. 1345-1351.

[8] E.A.Santos, H. V. Campbell, D. Patel, A. Hindle, and J. N. Ama-
ral, “Syntax and sensibility: Using language models to detect and
correct syntax errors,” in Proc. IEEE 25th Int. Conf. Softw. Anal.
Evol. Reengineering, 2018, pp. 311-322.

[91 T. Ahmed, P. Devanbu, and V. Hellendoorn, “Learning lenient
parsing & typing via indirect supervision,” Empirical Softw. Eng.
J., vol. 26, 2021, pp. 1-31.

[10] M. Yasunaga and P. Liang, “Graph-based, self-supervised pro-
gram repair from diagnostic feedback,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 10 799-10 808.

[11] N.C.C.Brown, M. Kélling, D. McCall, and 1. Utting, “Blackbox: A

large scale repository of novice programmers’ activity,” in Proc.

45th ACM Tech. Symp. Comput. 5ci. Educ., 2014, pp. 223-228.

R. Gupta, A. Kanade, and S. Shevade, “Deep reinforcement learn-

ing for programming language correction,” 2018, arXiv: 1801.10467.

[13] M. Yasunaga and P. Liang, “Break-it-Fix-it: Unsupervised learmn-

ing for program repair,” 2021, arXiv:2106.06600.

R. P. Medeiros, G. L. Ramalho, and T. P. Falcao, “A systematic lit-

erature review on teaching and learning introductory program-

ming in higher education,” IEEE Trans. Educ., vol. 62, no. 2,

pp- 77-90, May 2018.

[15] C. Watson and F. W. Li, “Failure rates in introductory program-
ming revisited,” in Proc. Conf. Innov. Technol. Comput. Sci. Educ.,
2014, pp- 39-44.

[16] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” AcM SIGcSE Bull., vol. 39, no. 2, pp. 32-36, 2007.

[17] B. A. Becker et al.,, “Compiler error messages considered unhelp-
ful: The landscape of text-based programming error message
research,” in Proc. Work. Group Rep. Innov. Technol. Comput. Sci.
Educ., 2019, pp. 177-210.

[18] T.Barik et al.,, “Do developers read compiler error messages?,” in

Proc. IEEE[ACM 39th Int. Conf. Softw. Eng., 2017, pp. 575-585.

E. Kantorowitz and H. Laor, “Automatic generation of useful syn-

tax error messages,” Softw. Pract. Experience, vol. 16, no. 7,

pp- 627-640, 1986.

[20] T. Schorsch, “Cap: An automated self-assessment tool to check
pascal programs for syntax, logic and style errors,” ACM SIGCSE
Bull., vol. 27, no. 1, pp. 168-172, 1995.

[21] M.-T.Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015, arXiv:1508.04025.

[22] A. Vaswani et al, “Attention is all you need,” in Proc. Adv. Neural

Inf. Process. Syst., 2017, pp. 5998-6008.

R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes,

“Big code != big vocabulary: Open-vocabulary models for source

code,” in Proc. IEEE Int. Conf. Softw. Eng., 2020, pp. 1073-1085.

[24]]. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” 2018, arXiv:1810.04805.

[25] Y. Liu et al., “RoBERTa: A robustly optimized bert pretraining
approach,” 2019, arXiv:1907.11692.

[26] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” 2020, arXiv:2002.08155.

[27] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Leamning
and evaluating contextual embedding of source code,” in Proc.
Int. Conf. Mach. Learn., 2020, pp. 5110-5121.

[12]

[14]

[19]

[23]

Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/3CMM0TP
https://doi.org/10.5281/zenodo.4563241

AHMED ETAL.: SynSuine: IMPROVED FIXING OF SYNTAX ERRORS

[28]

[29]

[301

[311

[32]
[331

[34]

[35]

[36]

[371

[38]

[39]

[401

[41]

[42]

[43]

[44]

[45]

[46]

E. Biswas, M. E. Karabulut, L. Pollock, and K. Vijay-Shanker,
“Achieving reliable sentiment analysis in the software engineer-
ing domain using bert,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol.,, 2020, pp. 162-173.

T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-
trained transformer models go?,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., 2020, pp. 70-80.

S. Luetal,, “CodeXGLUE: A machine learning benchmark dataset
for code understanding and generation,” 2021, arXiv:2102.04664.
B. Roziere, M--A. Lachaux, M. Szafraniec, and G. Lample, “DOBF: A
deobfuscation pre-training objective for programming languages,”
2021, arXiv2102.07492.

A. Mastropaolo et al, “Studying the usage of text-to-text transfer
transformer to support code-related tasks,” 2021, arXiv:2102.02017.
K. Jesse, P. T. Devanbu, and T. Ahmed, “Learning type annota-
tion: Is big data enough?,” in Proc. 29th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2021, pp. 1483-1486.

T. Ahmed, P. Devanbu, and A. A. Sawant, “Learning to find usage
of library functions in optimized binaries,” IEEE Trans. Softw.
Eng., to be published, doi: 10.1109/TSE.2021.3106572.

D. Guo et al., “GraphCodeBERT: Pre-training code representa-
tions with data flow,” in Proc. Int. Conf. Learn. Representations,
2020, pp. 1-18.

W. Qi et al., “ProphetNet-X: Large-scale pre-training models for
english, chinese, multi-lingual, dialog, and code generation,”
2021, arXiv:2104.08006.

W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2021, pp. 2655-2668.

Huggingface, “Huggingface transformers,” 2018. [Online]. Avail-
able: https:/ / github.com /huggingface/transformers

N. C. Brown and A. Altadmri, “Novice java programming mis-
takes: Large-scale data versus. educator beliefs,” ACM Trans. Com-
put. Educ., vol. 17, no. 2, 2017, Art. no. 7.

Z. Chen, S.]. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyva-
nyk, and M. Monperrus, “SequenceR: Sequence-to-sequence
leamning for end-to-end program repair,” IEEE Trans. Softw. Eng.,
vol. 47, no. 9, pp. 1943-1959, Sep. 2021.

G. Klein, Y. Kim, Y. Deng,]. Senellart, and A. M. Rush,
“OpenNMT: Open-source toolkit for neural machine translation,”
2017, arXiv:1701.02810.

A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: Learning to repair compilation errors,” in Proc. 27th
ACM Joint Meeting Eur. Softw. Eng. Conf. Sympos. Foundations
Softw. Eng., 2019.

U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani,
“Compilation error repair: For the student programs, from the
student programs,” in Proc. 40th Int. Conf. Softw. Eng. Softw. Eng.
Educ. Training, 2018, pp. 78-87.

M. Tufano,]. Pantiuchina, C. Watson, G. Bavota, and D. Poshyva-
nyk, “On leamning meaningful code changes via neural machine
translation,” in Proc. IEEE 41st Int. Conf. Softw. Eng., 2019, pp. 25-36.
Y. Li, 5. Wang, and T. N. Nguyen, “DLFix: Context-based code
transformation learning for automated program repair,” in Proc.
42th Int. Conf. Softw. Eng., 2020, pp. 602-614.

Y. Ding, B. Ray, P. Devanbu, and V.]. Hellendoom, “Patching as
translation: The data and the metaphor,” in Proc. IEEEJACM 35th
Int. Conf. Automated Softw. Eng., 2020, pp. 275-286.

2181

[47] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,

[48]

[49]
[501

[51]

“Coconut: Combining context-aware neural translation models
using ensemble for program repair,” in Proc. 29th ACM SIGSOFT
Int. Symp. Softw. Testing Anal., 2020, pp. 101-114.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw.
Eng., vol 38, no. 1, pp. 54-72, Jan. /Feb. 2011.

S. Chakraborty, M. Allamanis, and B. Ray, “Tree2Tree neural transla-
tion model for leaming source code changes,” 2018, arXiv:1810.00314.
F. Long and M. Rinard, “Automatic patch generation by leaming
correct code,” in Proc. 43rd Annu. ACM SIGPLAN-SIGACT Symp.
Princ. Program. Lang., 2016, pp. 298-312.

M. Pradel and K. Sen, “DeepBugs: A learning approach to name-
based bug detection,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA,
pp- 1-25, 2018.

Toufique Ahmed received the BSc and MSc
degrees in computer science and engineering from
the Bangladesh University of Engineering and Tech-
nology (BUET), in 2014 and 2016, respectively. He
is currently working toward the PhD degree with
University of Califomia, Davis (UC Davis). His
research interests include Software Engineering,
the Naturalness of Software, Machine Learning,
and Sentiment Analysis. He is the recipient of the
five-year prestigious Dean’s Distinguished Gradu-
ate Fellowship (DDGF) offered by The Office of

graduate studies, The College of Engineering, and the Graduate Group in
Computer Science, UC Davis.

Noah Rose Ledesma is currently working toward
the undergraduate degree in computer science
student with the UC Davis, and a research assis-
tant with the DECAL lab. He is interested in
machine learning, computer graphics, autono-
mous vehicles, and other subjects. Recently,
Noah participated in an internship in which he
developed infrastructure for Google Cloud's artifi-
cial intelligence platform. He will begin his career
as a full-time software engineer after he gradu-
ates, in June 2022.

Premkumar Devanbu received the BTech
degree from IIT Madras and the PhD degree
from Rutgers University. He is currently distin-
guished professor of computer science with UC
Davis. His research interests include Empirical
Software Engineering and the applications of the
Naturalness of Software. He is an ACM Fellow.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on September 23,2023 at 14:10:12 UTC from |IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSE.2021.3106572
https://github.com/huggingface/transformers

