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ABSTRACT

Types in TypeScript play an important role in the correct usage
of variables and APIs. Type errors such as variable or function
misuse can be avoided with explicit type annotations. In this work,
we introduce FLEXTyYPE, an IDE extension that can be used on
both JavaScript and TypeScript to infer types in an interactive
or automatic fashion. We perform experiments with FLEXTYPE in
JavaScript to determine how many types FLEXTYPE could resolve if
it were to be used to migrate top JavaScript projects to TypeScript.
FLEXTYPE is able to annotate 56.69% of all types with high precision
and confidence including native and imported types from modules.
In addition to the automatic inference, we believe the interactive
Visual Studio Code extension is inherently useful in both TypeScript
and JavaScript especially when resolving types is taxing for the
developer.

The source code is available at GitHub! and a video demonstra-
tion at https://youtu.be/4dPVO5BWASA.
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1 INTRODUCTION

Type inference for dynamically typed programming languages, like
Python and TypeScript, can help developers improve code quality.
By foregoing type annotations, developers coding in dynamically
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typed languages gain additional flexibility. This flexibility helps
developers and designers avoid committing to particular design
decisions regarding types. On the other hand, static typing helps
detect bugs before execution, and supports both compilation perfor-
mance and program understanding [7, 30]. Developers have viewed
the benefits of static typing as the most desired feature in languages
like Python [19]. Leading technology companies have developed
their own type systems for various languages; Microsoft’s Type-
Script, Facebook’s Flow, and Google’s Closure with TypeScript and
Flow being syntactic supersets of JavaScript and Python respec-
tively. TypeScript has exploded in popularity over the last few years
jumping to the fourth most used language according to GitHub’s
Octoverse [12] in 2020 and 2021. While JavaScript remains the top
language, it is a reasonable expectation for TypeScript to further
increase in popularity since it can be applied to any JavaScript
project with few modifications. TypeScript inherits JavaScript’s
long standing popularity and widespread adoption so tools built
for TypeScript often benefit the JavaScript community as well.

Unlike JavaScript, TypeScript calls for a set of types (either ex-
plicitly annotated or inferred) that type the program consistently.
Defining a set of types and annotating with said types is not a
trivial task for developers; this is called the type annotation tax.
Type declaration files (.d.ts) and repositories like DefinitelyTyped?
help alleviate the typing cost by defining general, high quality
types which are included automatically by the compiler. The con-
venience of importing existing types does not supplant the action
of annotating the code elements. Moreover, the compiler cannot
synthesize types where static constraints or dependencies are not
satisfied in the type dependency graph. Frequently, existing tools
like TypeScript’s type checker are unable to infer types more spe-
cific than the generic “any” because it fails to find type hints from
static type constraints or package dependencies. Type ambiguity
often exists in dynamic typing, because the compiler has too few
type constraints to resolve [8]. Type ambiguity is more prevalent
in languages like JavaScript, than in explicitly typed languages
like TypeScript, where developers have no explicit annotations
and must rely on interpretation, documentation, and surrounding
expressions to determine the likely types. Thus, developers could
benefit from tools that recommend likely types and insert types
with little to no effort.

For these reasons, the type inference task has been well studied,
in the software engineering research community [3, 14, 18, 26, 27,
29, 31, 33, 37]. Most of these works in type inference are a result of
the abundance of code and the success of deep learning for software
engineering. The abundance of patterns in code warrants proba-
bilistic models to exploit the regularity of code; in type inference

Zhttps://github.com/DefinitelyTyped/DefinitelyTyped
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Figure 1: An overview workflow of the FLEXTYPE framework. To determine the type, the framework parses JavaScript or
TypeScript ASTs and passes AST or token information to type checker and open source type inference neural model. The type
is converted to a type node and added to the type attribute in the AST. Finally, FLEXTYPE converts the AST to a token sequence

for the IDE.

it is the regularity of how types are used. The newest advances
in machine learning [10, 22-24, 32] often come with downstream
improvements to software engineering models [1, 4, 11, 13, 21, 36],
but in practice, these improvements have not been tangible to devel-
opers as most published models stop short of publishing IDE tools.
We argue that the gap between model development and model de-
ployment in integrated development environments is worthwhile,
but challenging.

To address this gap, in this paper, we present our tool FLEXTYPE,
a plug-and-play framework for any new state-of-the-art type infer-
ence model in a VSCode environment for TypeScript and JavaScript.
JetBrains found that 60% of JavaScript and TypeScript developers
use Visual Studio or Visual Studio Code as their preferred IDE [20].
The core idea behind FLEXTYPE is the integration of such mod-
els in an interactive and automatic way that complements exist-
ing static type checking capabilities, even in dynamically typed
languages like JavaScript. To evaluate our idea, we have imple-
mented an extension for Visual Studio Code, a popular IDE from
Microsoft, using one of the of several type inference models from
ManyTypes4TypeScript [17]. Our contributions are as follows,

o An interactive, model-agnostic framework for type inference
in Visual Studio Code.

e A tool that uses the AST to correctly insert type elements
from sequence-based or graph-based models.

o A use-case experiment evaluating the effectiveness of FLEX-
TypE in migrating JavaScript projects to TypeScript.

2 RELATED WORK

The landscape of type completion tools ranges significantly in
capability from static checking [6], neural type inference [3, 14, 17,
18, 26, 31, 37], and code completion-like type generation [1, 5, 9, 35,
36, 38].

Static type checking from the TypeScript compiler occurs when
the TypeScript compiler transpiles TypeScript to JavaScript. The
TypeScript type checker can be accessed through a shipped version
of TypeScript installed with the IDE. The IntelliSense feature in
Visual Studio and Visual Studio Code can provide underlying types
by relying on the internal type checker for TypeScript. The type
checker is capable of performing type inference from the variable’s

value as long as the type constraints exist. For example, the vari-
able i in var i = 0 can be inferred as a number from the value
in the assignment expression. Any high-level interpretation of i,
such as the use of i as an iterator, cannot be inferred by the type
checker without a higher order type indicating such functionality.
In JavaScript, the IntelliSense method signature information shows
the uninformative “any” type for the method parameters because
JavaScript is dynamic and does not enforce types [25]; this is not
particularly helpful for a developer wishing to pass the correct type
to the function.

Neural type inference and code completion aim to model at-
tributes of source code probabilistically by exploiting the regularity
of software [2, 16] and an abundance of existing typed code on open
source repositories. In contrast to static type inference, neural type
models rely on large code corpora and can suggest richer, more
contextualized type annotations overcoming the lack of existing
type constraints realized when the compiler predicts “any”; in our
experiments this occurs 63.46% of all typeable identifiers. Our goal
here is to build a flexible way to integrate neural type inference
models into an IDE, to make these models more accessible.

Some published neural type inference models Typilus [3], Hi-
Typer [29], and LambdaNet [37] expose inference methods where
the model can be called on a set of source code files and the appro-
priate annotations are logged in an output file; this is impractical
for the typical developer and such models often require computing
not found on a laptop. One model cites the need of a “high-end
Nvidia GPU with at least 8GB of RAM” and “a CPU with 16 threads
or higher” [26]. The requirements for running massive code gen-
eration models like Codex [9] (Copilot), Google’s 137B parameter
model [5], and PolyCoder [38] is further beyond any consumer PC,
thus access to such models must be by remote API. Remote API
access is viable for many developers, but communicating large to-
ken windows of proprietary software introduces valid security and
privacy concerns [9, 28, 34]; a local type inference model is ideal. In
contrast, FLEXTYPE uses local models that can run efficiently on a
laptop CPU. The user can simply hover over the variable, parameter,
function or method to get a drop down list of types including the
compiler inferred type, if any, and see the type properly inserted.
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Figure 2: A snapshot of the FLExXTYPE VSCode extension.

In the following sections, we present our approach, implementa-
tion, and evaluation of FLEXTYPE.

3 APPROACH

Figure 1 shows how FLEXTYPE interactively works with the devel-
oper to recommend types. When the developer toggles the VSCode
extension, FLEXTYPE activates the mouse hover action which pops
up a list of types. By default, VSCode provides existing prototype
information with type annotations that are written in the code
such as const sequelize: any in Figure 2. FLEXTYPE presents
an informative list to the developer integrating compiler inferred
types (often useful for native types and user-defined types) with
the neural type suggestions. The neural type suggestions can be
quite useful to the developer, because the type recommendations
derive from large corpora training, and elucidate types that local
constraints often cannot resolve.

Figure 2 illustrates a key situation where the type assistant shines.
With the current type constraints, the compiler cannot resolve what
type sequelize is. The term “sequelize” in itself is a natural lan-
guage hint, one that hints at it connecting to a SQL database often
pronounced “see-kwl”. While these natural language hints are not
always readily available, the syntax and usage of function calls are,
which deep learning models capture. The resulting list of contextu-
ally derived types, as seen in Figure 2, is helpful in understanding
the likely functionality of such APIs. The developer has the liberty
to choose which type annotations are useful with the model’s per-
ceived probabilities. This feature is available for TypeScript and
JavaScript files as TypeScript data transpiles into JavaScript code
and thus captures otherwise implicit type information in JavaScript.
JavaScript syntax does not permit types, so types are not “insertable”
when interacting with JavaScript. We believe FLEXTYPE can help
both TypeScript and JavaScript developers, as type information
improves code readability, comprehension, and proper usage of
code elements. In the following text, we discuss the details of the
approach within the framework’s pipeline.

FLEXTYPE starts with an incremental compilation® of the pro-
gram, targeting just the current editor file for AST parsing. Then
the framework digests the developers current word token index*
and finds the character offset of the token which aligns best with
the pos (position) field in the parsed AST. FLEXTYPE uses an AST

3 An incremental compilation saves compute resources when previous changes are
minimal across a set of files and project dependencies.

4The term position is usually synonymous for token indexes in sequences across NLP
literature, but is confusing in the context of the AST, thus we only use it when referring
to the AST.
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linter to traverse the AST in preorder, filtering only valid typeable
locations. For each leaf node (indicating a code token) the corre-
sponding code token is appended to a list of tokens which will serve
as the tokenized input to the machine learning model; tokenizing
from the AST has the benefit of filtering out non-code related to-
kens such as comment blocks. In the traversal, the framework keeps
a cache of the parent type because the parent node is where the
type annotation is located, specifically, in a variable, parameter,
function, or method declaration syntax node. Finally, when the
identifier syntax node corresponding to the identifier of interest is
visited, which is a child to the typed parent, this token is aligned to
the cached AST type and to the current token index. The cached
type node is fed to the type checker which returns the result of
any the static type constraints, if any, for that identifier. Finally, the
token sequence, inferred type, and token index is returned. If the
developer’s cursor location is not at a typeable variable, parame-
ter, function, or method declaration, the AST linter is immediately
returned with null values.

The token sequence and token index is passed through a local-
host port to a WSGI Flask® server started as a background task
when the extension is enabled. This server encapsulates the neu-
ral inference model. The token sequence is subtokenized using
the neural model’s tokenizer and the new subtoken index is cal-
culated. The framework then determines an optimal context win-
dow around the identifier of interest; this is necessary for long
files as a model’s sequence-based input is limited. The type infer-
ence model in our demo, is a Huggingface type inference model
based on the popular GraphCodeBert [13]. Here, we emphasize
the “plug-and-play” dynamic where neural type inference models,
such as our from_pretrained(‘microsoft/graphcodebert-base’), is
amenable with alternative choices. With respect to future proofing
our design, our GraphCodeBert [13] type inference model improves
upon CodeBert, namely, where data flow awareness is principle
to performance. For type inference, GraphCodeBert increases per-
formance, likely due to the role data flow plays in types. Finally,
these neural suggestions are serialized and returned to the VSCode
portion of the framework where the types are displayed to the
developer.

For a TypeScript (.ts) file, the framework presents the recom-
mended types with keystrokes to embed the types as formal type
annotations. For a JavaScript (.js) file, the framework shows the
developer the type recommendations only. If the developer chooses
a type, the framework performs a postorder AST traversal to return
to the identifier’s parent node, generate a type node from the type,
and assign the type node to the parent’s type field. The traversal
is immediately returned, returning the root node of the sourcefile
which is then used to synthesize the file with the type annotation in
the correct location; this insertion technique is guaranteed by the
compiler’s printer to work for any valid type node. Since the type
node’s synthesis is independent of the actual type value, FLEXTYPE
can always guarantee correct type placement. Finally, the VSCode
editor is updated with the new type embedded sequence. In the
next section, we discuss the high level implementation design.

Shttps://flask.palletsprojects.com/en/2.1.x/
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Table 1: Recall Percentage of Types Across Top 5 Projects

Repo Stars | TC (%) TC + NN (%)
goldbergyoni/nodebestpractices 77728 | 33.73 60.0
Dogfalo/materialize 38682 | 29.02 52.6
yangshun/front-end-interview-handbook | 33963 | 19.83 45.69
quilljs/quill 32667 | 26.28 55.01
marktext/marktext 31921 33.1 56.63
FLEXTYPE recall uses only the static type checker (TC) and FLEXTYPE using both the type checker and neural type inference model (TC+NN).
100
80
_ 60
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< 40
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Figure 3: Static, neural, and combined recall of FlexType
components per project.

4 IMPLEMENTATION

We implemented our approach as an extension to Microsoft’s Vi-
sual Studio Code, Figure 2, which is the most adopted TypeScript/-
JavaScript IDE according to a JetBrains survey [20]. We implement
the client in TypeScript where VSCode can pass actions such as
hover, click and drag, and keyboard strokes to the client. Upon a
hover over a type permissive location (variable, parameter, function,
method), FLEXTYPE performs static and neural type inference and
recommends types. The modularity of the static type checker and
the neural type model permits the interchange of a variety of mod-
els with minimal changes. While sequence-based methods (RNN,
Transformer, Pretrained Language Models) are very popular, there
is an increasing demand for models that capture code structure
(GNN [4], Hybrid [15]). In addition to the “plug-and-play” neural
type architecture, FLEXTYPE re-synthesizes the snippet of code with
the TypeScript Compiler API®. By altering the AST, rather than the
code sequence itself, the framework is compatible with graph-based
methods. Finally, for best results, we apply graph optimization and
quantization to the neural type inference model, which results in
blazing quick inference times under .4 seconds on a Intel 8th gener-
ation Coffee Lake and even faster on Apple M1. In the next section,
we perform an experiment to simulate the impact of our tool for de-
velopers migrating from JavaScript to TypeScript and equivalently
coding only in JavaScript.

5 EVALUATION

FLEXTYPE uses both type checker and neural type inference models.
To evaluate FLEXTYPE’s effectiveness migrating JavaScript to Type-
Script, we checkout over 150 most-starred Javascript repositories
and let FLEXTYPE annotate them as best as it can. For brevity, we
have only included 5 of these projects in Table 1 with the full results
available at our GitHub.

Shttps://github.com/microsoft/ TypeScript/wiki/Using-the-Compiler-API
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The 150 JS projects have no human annotated types, so perfor-
mance must be evaluated with an oracle. The neural type model
per se can serve as an oracle if it’s confidence threshold is set
such that precision remains very high; only if a type prediction
is above this threshold can it be labeled as correct. To calibrate,
we measure the precision-recall curve of GraphCodeBERT on the
ManyTypes4TypeScript [17] test set. This is a dataset of manually-
annotated Typescript projects allowing direct performance evalu-
ation. GraphCodeBERT achieves a precision of 89.10% and recall
of 53.83% across 224,415 types with a 90% confidence threshold.
Thus, we can use GraphCodeBERT’s confidence threshold with a
precision of 89.10% as a proxy to the number of types that can be re-
solved. In other words, 89.10% of JavaScript types with a confidence
of 90% or greater is a reasonable metric for evaluation. While this
method is effective, it is important for us to calculate how much
we are potentially underestimating our model’s performance.

The recall of 53.83% means that 46.17% of types fall below the
confidence threshold. We can calculate the precision across the
46.17% set of types to determine how many types were missed. This
precision is 31.51% and so the model’s recall is underestimated at
most by 15% (31.51% of 46.17%).

We emphasize that this performance is for the top-1 (the model’s
best guess), and ignores selecting the 224 or 34 best choice in the
interactive dialog seen in Figure 2. In the interactive setting with
5 choices, the recall is naturally higher than in the top-1 setting.
We use top-1 in our automatic evaluation of FLEXTYPE to estimate
a lower bound of performance in a common use case, migrating
JavaScript to TypeScript.

RQ1: What is the recall of types for FLEXTYPE across the top
150 starred JavaScript projects?

Across the set of 150 projects, 56.69% of types are resolved by
FLEXTYPE. The recall of the compiler is 36.54% and the neural type
inference model provides the additional 20.15% recall. On a per
project evaluation, the mean project recall is 51.44% with the com-
piler providing 29.49% of the types and the neural type inference
model providing an additional 21.95% recall. The per project recall
distribution of each component can be seen in Figure 3.

This evaluation suggests that FlexType helps annotate a good
fraction of type locations (56.69%) in JavaScript; this reduces the
annotation burden in JavaScript to TypeScript migration. Moreover,
we argue that developers will use the tool in an interactive fashion
using the drop down menu in Figure 2. This should further increase
the recall which represents the number of type constraints the
developer could reasonably add with minimal effort.

6 CONCLUSION

As a development tool, FLEXTYPE can help increase the volume of
type annotations. We also see an opportunity to use FLEXTYPE in an
automated setting to improve type annotation coverage in existing
and new projects. We hope the adoption of this framework can
reduce the burden of adding type annotations in TypeScript and
the reduce the misuse of variables and APIs in both TypeScript and
JavaScript, thus improving software development and maintenance.
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