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Epidemic Spread Modeling for COVID-19 Using
Cross-Fertilization of Mobility Data

Anna Schmedding *“, Riccardo Pinciroli “, Lishan Yang

Abstract—We present an individual-centric model for COVID-
19 spread in an urban setting. We first analyze patient and route
data of infected patients from January 20, 2020, to May 31, 2020,
collected by the Korean Center for Disease Control & Prevention
(KCDC) and discover how infection clusters develop as a function
of time. This analysis offers a statistical characterization of mobility
habits and patterns of individuals at the beginning of the pandemic.
While the KCDC data offer a wealth of information, they are also
by their nature limited. To compensate for their limitations, we
use detailed mobility data from Berlin, Germany after observing
that mobility of individuals is surprisingly similar in both Berlin
and Seoul. Using information from the Berlin mobility data, we
cross-fertilize the KCDC Seoul data set and use it to parameterize
an agent-based simulation that models the spread of the disease in
an urban environment. After validating the simulation predictions
with ground truth infection spread in Seoul, we study the impor-
tance of each input parameter on the prediction accuracy, compare
the performance of our model to state-of-the-art approaches, and
show how to use the proposed model to evaluate different what-if
counter-measure scenarios.

Index Terms—Data analysis, simulation models, individual-
centric models, COVID-19, disease spread modeling, cross-

fertilization.

N MARCH 11, 2020, the WHO! declared COVID-19
O the first pandemic caused by a coronavirus. Since then,
a tremendous amount of data has been collected to help pub-
lic policy decisions that limit the spread of COVID-19. For
example, Google? provides time-series data of infections at a
coarse granularity (i.e., as a function of the area’s population, no
information is provided at the granularity of single individuals).
Epidemiological simulation and mathematical models have been
used to predict the spread of the disease. Typically, model
effectiveness is tied to its input parameterization.

I. INTRODUCTION
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In this article, we use the data provided by the Korean Center
for Disease Control (KCDC) and local governments during the
first wave of the disease in South Korea. In contrast to the
Google data, the KCDC data focus on individual patients and
allow the development of an individual-centric model of the
COVID-19 epidemic. Infected individuals are monitored® and
their movements are logged using CCTYV, cellphones, and credit
card transactions. The KCDC records patient movements in
plain text (i.e., natural language) without any unified rule. These
logs are parsed through automated code and rule-based methods
to extract keywords that are then used with web mapping service
APIs (e.g., Google Maps) to extract geographical coordinates
(i.e., latitude and longitude) and other data. The parsed logs are
made publicly available [1] and being collected by KCDC are
deemed trustworthy.

To the best of our knowledge, the KCDC logs are the only
publicly available data that contain patient-centric information
in great detail: they report on the patient mobility, i.e., traveled
distance and the sequence of locations visited on a daily basis, the
date of the onset of symptoms, whether and when the patient got
in contact with other patients that are also diagnosed. This leads
to our first research question, RQ7: What statistical information
can be extracted by the KCDC mobility data to parameterize an
agent-based simulation that models the spread of the disease?
The KCDC logs are a valuable resource for studying the spread
of COVID-19, yet they have limitations:

e The last version of the KCDC data set contains data col-
lected up to May 31, 2020 (the KCDC data set has not been
updated since then). By that date, approximately 11,500
COVID-19 cases were confirmed in South Korea [2], but
only 35% of them have been logged into the data set.

® Some locations visited by patients (e.g., locations where
people live) are not recorded due to privacy concerns.
Consequently, patient infection information and route data
do not always coincide. For example, there are patients that
infect each other even if their routes do not cross. This may
happen when patients belong to the same household.

e Patient and route data may be incomplete (i.e., some
attributes are occasionally missing, such as the type of
locations visited by some patients) and require manual
completion before analyzing the data set.

® There is route data information for only a portion of the
patients. Patient movement has been logged only for the
15% of all confirmed cases by May 31.

3https://bit.ly/3VMQvVm
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e The KCDC logs do not contain a complete picture of all
different factors affecting the disease spread. For example,
these logs have no information on the number of people
living in a single residence, or on behaviors of healthy in-
dividuals. The length of time a patient spends at a particular
location in their route is also not recorded.

To compensate for the lack of information in the KCDC logs,
we also analyze data sets detailing human mobility in German
cities and districts [3]. These data sets contain detailed infor-
mation on the routes of individuals, such as distance travelled,
unique locations visited, and overlapping routes. The KCDC
and German data sets still have several key differences. The
KCDC logs contain information on COVID-19 cases, whereas
the German data only contains information on healthy individ-
uals. On the other hand, the German data sets contain detailed
information on important factors that affect the disease spread,
e.g., household size and time spent at a location by individuals.
These observations lead to our second research question, RQ2:
Can the Seoul data sets be cross-fertilized with German data by
leveraging parallels between the two logs?

We illustrate that such cross-fertilization across the Seoul and
Berlin logs is possible. Further, we show that cross-fertilized
data can be fed into GeoSpread [4], an extended version of
GeoMason [5] that leverages agent-based models (ABM) and
geographic information systems (GIS), and showcase the ben-
efit of using inferential statistics (i.e., using samples to make
predictions about a population) for studying disease outbreaks.
We validate the results of the simulations with the ground truth
derived from the KCDC logs. GeoSpread offers a flexible model
based on real-world COVID-19 spread information and can be
used to facilitate evaluation of different mitigation measures to
reduce the spread of the disease. GeoSpread needs only data
distributions to simulate the spread of SARS-CoV-2. Here, we
use distribution data in the form of histograms (and make them
available to the community [6]). GeoSpread is the focus of
our last research question, RQ3: Does an ABM, parameterized
using only data distributions, accurately predict the spread of
COVID-19 and the efficiency of possible counter-measures?

Contributions and outline of this paper are:

® Data Discovery: We analyze and connect data from various
KCDC logs to extract information on patient movements
(Sections II and III).

e Statistical Analysis: We provide statistical analysis of pop-
ulation movements and habits in the form of histograms for
Seoul, Berlin, Dusseldorf, Kelheim (district), and Leipzig.
This information is extracted using only descriptive statis-
tics (i.e., the quantitative description of attributes).

o Cross-fertilization: We investigate similarities between
the KCDC and German data sets seeking for common
humna movement patterns in these urban environments
(Section 1V). Leveraging this information, we cross-
fertilize to incorporate useful information from the Berlin
data set which are unavailable in the Seoul data (e.g., travel
speed, transportation means, household size).

® GeoSpread: We parameterize an agent-based model using
the cross-fertilized data as input, see Section V, and out-
line its flexibility to capture a variety of conditions. The
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simulation tool, GeoSpread, and processed data is open
sourced [6].

® Model Validation with Real Data: GeoSpread is validated,
is compared to state-of-the-art approaches, and is used to
analyze the effect of different mitigation measures (i.e.,
border lockdown, stay-at-home advisory, and vaccination)
in Section VI. Its usage and limitations are discussed in
Section VII.

II. THE KCDC DATA SET

The data sets [1] used in this paper contain data collected by
the KCDC and local governments from January 20, 2020, to May
31, 2020. PatientInfo and PatientRoute contain information and
routes of COVID-19 patients in Seoul, respectively. The number
of (healthy and sick) people moving across Seoul districts are
provided in the SeoulFloating data set and has been collected
using the Big Data Hub of SK Telecom, a Korean wireless
telecommunications operator.

PatientInfo Data Set. This data set provides epidemiological
data of COVID-19 patients. It contains 4,004 different entries,
each entry represents a different patient identified by a unique ID
(patient_id). Other attributes include their gender and age, their
provenance (country, province, and city), whether they have been
infected in a known case (infection_case, e.g., overseas inflow
or contact with patient) and the ID of the patient that infected
them (infected_by), the number of people that the patient came
in contact with (contact_number), and the date of their first
symptoms (symptom_onset_date).

PatientRoute Data Set. This data set contains 8,092 entries,
each one reporting a visit (to one of 2,992 unique locations) of
1,472 (out of 4,004) unique South Korean COVID-19 patients
logged in the PatientInfo data set. A location is unequivocally
identified by its latitude and longitude. Province, city, and type
(e.g., airport, hospital, store) of each location are also provided.
The attribute type of almost 30% of entries is set to etc (i.e.,
locations that cannot be identified using the rule-based approach
of [1]). We manually look for their type using their geograph-
ical coordinates and OpenStreetMap* to compensate for this
lack of data. Each entry also contains the patient (identified
by patient_id, the same as in the PatientInfo data set, and by
global_num, another ID used only in this data set) that visited
the location on a specific date. The time spent in the location is
not available. Locations visited by a patient in a single day are
logged in chronological order.

SeoulFloating Data Set. This data set provides hourly data of
people moving across Seoul districts. Data are collected from
January 1 to May 31, 2020, by SK Telecom. Collected data
are grouped by gender, age, and district and allow visualizing
the movement of people in Seoul during this period. Age is
provided at the decade granularity for people in their 20 s through
70 s. No information is provided for children or for people who
are 80 or older. As a result, it is not possible to conclude on
infections at education facilities or directly model mitigation
measures that include school closings. This data set reports data

“https://www.openstreetmap.org/
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(a) South Korea. Blue
points: hotspots.

(b) Seoul: Gangnam (blue) and Seocho
(green) districts.
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(d) Travels
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Fig. 1. Most visited locations (and their type) in Seoul. Movements between
Gangnam and Seocho districts.

on the entire Seoul population, not just the COVID-19 patients,
and only considers those with cell phones.

III. DATA DI1SCOVERY: KCDC DATA

Although the information contained in the KCDC data sets is
not as accurate as one would like, it still allows for the analysis
of patient movements and interactions with high accuracy. In
this section, we discuss information and statistical data that we
extract from the data sets and how it is used to parameterize
GeoSpread. All input parameterization data for GeoSpread is
given in the form of distributions [7].

A. Visited Locations

Fig. 1(a) and (b) depict heat maps of the most visited loca-
tions in South Korea and Seoul, respectively, showing where
COVID-19 outbreaks are more likely to happen. Heat maps in
Fig. 1 also show the South Korean cities for which movement
data are recorded. Visibly, Seoul is the city with the most visited
locations. Within Seoul, the south-west and south-east areas
are those with more patient routes. The financial district and
company head-quarters are located in the south-west part of the
city. The south-east region corresponds to the Gangnam and
Seocho districts, outlined in blue and green in Fig. 1(b), respec-
tively. Many shopping and entertainment centers are located
in Gangnam. Fig. 1(c) shows the ten most visited facilities in
Seoul, with Hospital being the first one. This is mainly due to the
KCDC data set being obtained during the COVID-19 pandemic
by monitoring sick people. No information about schools is
available since this data set monitors only people in their 20 s
through 70 s. The scarcity of logged residential facilities is
due to privacy concerns. Fig. 1(d) illustrates the movement of
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population between two neighboring districts, Gangnam and
Seocho that we use later in our model.

B. Patient Connections

Fig. 2(a) presents a subgraph of patient connections dis-
covered by linking the PatientRoute and PatientInfo data sets.
To improve visibility, we only present a small portion of the
entire graph. Here, nodes depict patients, black edges connect
patients that visited the same place during the same day from
the PatientRoute data set, and red edges represent the virus
spreading information obtained from the PatientInfo data set
(i.e., infected_by attribute). Some red edges do not overlap with
black edges. This means that, even if one of the two nodes
connected by the red edge infected the other, no connections
(i.e., visits to the same location during the same day) have been
recorded in the data set. The node degree in Fig. 2(a) shows
the contact degree among patients and illustrates visually the
complexity of the problem.

Patient connections can also be visualized in a hypergraph
(i.e., a generalization of a graph where an edge can capture
common relationships between two graphs and offer insights
on the relationship between the graphs that have common hy-
peredges). Here, we use hypergraphs to connect information on
two graphs, i.e., patients and locations, to discover how many
times patients come into contact and at what locations. A small
example can be seen in Fig. 2(b) where a node represents a
patient and a hyperedge represents the connection between any
number of patients who met at a specific location on a specific
date. Visually, a hyperedge is shown as an edge that branches to
connect two or more patients. This allows us to look at gatherings
of groups of people, rather than just the binary relationship
of whether or not two individuals came into contact with one
another. Clusters of cases in Seoul can be seen in the hypergraph
in Fig. 2(c).

Fig. 2(d) shows a summary view of patient connections: the
contact degree cumulative distribution function (CDF) [7] of
all patients for the entire dataset. Three CDFs are shown: one
for the whole South Korea, one for Seoul, and another one for
the Gyeongsangbuk-do province. Interestingly, all CDFs have
a similar shape. High contact degrees indicate potential super
spreaders (i.e., patients that infect many other people). People
who come into contact with many others are not necessarily
super spreaders since it is unknown whether they were sick or
healthy when contact occurred. Further analysis is required to
determine whether or not a patient is a super spreader.

C. Super Spreaders

Fig. 3 illustrates a subset of patients where the infected_by
relationship (i.e., patient A is infected by patient B) is known
from the PatientInfo data set. The entire graph contains 1,052
patient nodes and 822 edges representing the known infection
spread. For the sake of visibility, we present just a subset of the
entire graph. Red nodes correspond to individuals with available
route information who are known to have infected others, green
nodes correspond to individuals who infected others but have no
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Fig. 4. Super spreader analysis in Seoul.

available route information, and blue nodes correspond to pa-
tients who are not known to have infected others. This particular
subset shows a mix of super spreaders (i.e., people who infected
more than six people) and low spreaders, who infected six or
fewer people.’ The large “fans” in this figure are indicative of
super spreaders. Using this classification of patients based on the
number of people they infect, we discover different behaviors of
super/low spreaders, shown in Fig. 4. Super spreaders account

SWe define a “super spreader” as someone who infects at least 6 people. This
allows us to divide the data set to obtain the most noticeable difference in patient
behavior (number of locations, number of days, number of records).

Infection spread subgraph: Red nodes are patients with route information who infected others. Green nodes are patients who infected others but do not
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for 3.59% and low spreaders account for the remaining 96.41%
of patients.

Fig. 4 presents frequencies (first row) and their respective
CDFs (second row) for different attributes of low- and super-
spreaders. Frequencies (a)—(d) show how likely low and super
spreaders infect a specific number of people, appear in the logs
for a given number of days, and visit a specific number of
unique or total locations, respectively. CDFs (e)—(h) indicate
that, in general, super spreaders tend to be active for more days,
visit more unique locations, and have longer routes than low
spreaders. Overall, these figures show that all super spreaders in
the data set are active for three or more days and visit three or
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more unique locations. Some of these super spreaders are active
for up to 19 days and visit up to 18 unique locations with route
lengths of up to 31 locations.

D. Daily Traveled Distance

Fig. 5(a) plots the density heat map of distance traveled by
patients in Seoul and the number of locations visited in a day, two
important features due to the vital nature of patient movement
to spread COVID-19. The darker the area, the more patients
have the same traveled distance and visited locations. With some
exceptions, people mostly travel short distances and visit only a
few locations each day. The CDF of the daily traveled distance
is shown in Fig. 5(b).

E. Patient Mobility

Patient mobility is another important attribute to consider.
Intuitively, the more places a patient visits, the higher their
mobility is. Analyzing the mobility of patients in the KCDC
data set, there are days where individuals exhibit high mobility
and days where they move significantly less. This leads us to
a more usable definition of mobility as a function of different
time periods (days). Considering how many unique locations
are visited by all patients each day, we observe that a typical
patient visits 1-3 locations in the 88.9% of days, and more than
3 locations in the remaining 11.1% of days.

Defining a high mobility day as a day during which a patient
visits at least L locations, the mobility of a patient is given
as the ratio of the patient high mobility days to all logged
days for this specific individual, depicted in the following
equation.

# High Mobility Days

Mobility =
ooty Total Active Days

ey

Note that this is not the only way to define mobility. For
simulation purposes (see Section V), this definition provides
a practical way to capture mobility with a probability. Based
on the analysis of the KCDC data set, days with L < 3 are
considered of low mobility. The CDF of patient mobility using
the above definition is depicted in Fig. 6(a). The figure shows
that the mobility of 57.6% of patients is 0, i.e., those patients
never visit more than L = 3 unique locations in a day since
# High Mobility Days = 0, see (1).

Different classes of patients have different mobility. Fig. 6(b)
shows the difference in mobility between low and super spread-
ers, while Fig. 6(c) illustrates mobility by age groups. Super
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Fig. 7. Irresponsible behavior of sick patients in Seoul.

spreaders and young people have higher mobility compared to
low spreaders and seniors, respectively. For higher percentiles,
the low spreaders have higher mobility than super spreaders due
to the small number of super spreader agents in the KCDC data
set.

FE. Irresponsible Behaviors

Patients may behave irresponsibly when they keep moving af-
ter the onset of their first COVID-19 symptoms, which facilitates
the diffusion of the disease. We present how long all sick people
continue to show mobility after exhibiting symptoms, see Fig. 7.
The figure shows that only 20% of patients stop moving and
isolate immediately after initial symptoms are observed. Many
patients, see Fig. 7(a)—(c), may go to a pharmacy or hospital
after showing symptoms, indicating that a few movements after
onset is not necessarily irresponsible. Some patients, however,
keep moving for more than a week after the onset of symptoms,
see Fig. 7(d). They also visit many locations; Fig. 7(e) and (f)
show the number of unique and total locations that sick patients
visit after initial symptoms are observed.

Summarizing, the answer to RQ1 is as follows.
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TABLE I
AREA AND POPULATION OF SEOUL AND FOUR GERMAN CITIES CONSIDERED
FOR COMPARISON AND CROSS-FERTILIZATION

City Country | Area (sqmi) Population (12/2021)

Seoul SK 233.67 9,443,722

Berlin DE 344.10 3,677,472

Dusseldorf DE 83.94 619,477

Kelheim (district) DE 412.00 123,899

Leipzig DE 114.81 601,866
Fig. 8. Heat map of the most visited Berlin locations.

RQ1: Information from the KCDC Logs

We analyze movement habits of Seoul patients applying
statistical analysis and descriptive statistics to the KCDC data
sets. Patient connections, super spreaders, and irresponsible
behaviors are examples of information that is not directly
provided in the data sets, but can be obtained by manipulating
the available data. These distributions are used as input to
GeoSpread.

IV. THE BERLIN DATA SET

In spite of the detailed data provided in the KCDC data sets,
there is still a lot of unavailable information which is necessary
for understanding how COVID-19 spreads in an urban envi-
ronment. In this section, we compare distributions of different
characteristics of human mobility from Seoul, with distribu-
tions from German cities and districts (i.e., Berlin, Dusseldorf,
Kelheim, and Leipzig) with different areas and population, see
Table I. We focus on commonalities in movements of individual
in Seoul and in German cities that can be used as a basis. After
determining the German city (i.e., Berlin) whose population
behavior better matches the one of people in Seoul, we extract
new information to cross-fertilize the statistical data of the
KCDC data set. Cross-fertilization across data sets is common
in the broader systems area, where similarities across data sets
are explored to fill-in missing data. In the following, we describe
in detail the Berlin data set [3] that we use to cross-fertlize the
KCDC log. Note that data sets of other German cities are similar
to the Berlin one. The Berlin data set contains movement logs
obtained by monitoring people that visited Berlin before the
COVID-19 pandemic, during business days and weekends. It
provides demographic data of all monitored people, the public
transportation used by people for their movement, and the type
and capacity of all visited facilities. Here, we consider move-
ment logs collected during business days by observing people
whose actions are located only in Berlin. Fig. 8 shows the most
active district of Berlin, i.e., areas of the city that appear more
frequently in the Berlin data set.
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EventWeekdays Data Set. People’s movements over 30 hours
are logged in this data set, where almost 6 million activities are
recorded from start to finish. For each entry, the timestamp (in
seconds) is provided as well as the type of entry (i.e., start for
activities that begin or end for activities that are completed) and
the person to which the activity is associated. For this analysis,
we use only logs from people that never leave Berlin during the
observation period, i.e., 67% (i.e., 3,919,990 entries) of this data
set. All activities in this data set represent a visit to a facility or
the usage of public transport. In the former case, facility_id and
link_id allow associating the entry to a venue, while the actType
attribute specifies the type of activity performed in that location
(e.g., home, school, work). When an entry refers to a transport
activity, it provides the vehicle attribute with the ID of the vehicle
that is used for moving.

Demographic Data Set. This data set contains information
about each person (i.e., more than 1.2 million people) whose
activities have been logged in the EventWeekdays data set.
Specifically, age and gender for all people is provided as well
as their home_district, home_id, and home coordinates. The
home_district attribute contains one of the 401 administrative
districts of Germany. Here, since we focus just on Berlin, a
metro area similar to Seoul, we consider people who do not
leave Berlin during the observation period. Therefore only 55%
(671,256) of the original data set is analyzed. The home_id at-
tribute associates each person in the data set to their home-place,
while the coordinates attribute allows placing each building on
a map with an accuracy of 500 meters.

Facility Type Data Set. This data set contains all 631,290 facil-
ities visited in the EventWeekdays data set. The 75% (476,572)
of these venues are located in Berlin. Univocal id and link_id
attributes are associated to all entries of this data set for the iden-
tification of each facility. Coordinates (using the EPSG:25832
coordinate reference system) are also associated to each venue.
This allows placing each venue on a map. Functions (e.g.,
home, school, work) are associated to each facility depending
on the activities that are carried out within that venue. Note that
multiple functions can be associated to the same building. For
each function of a facility, a capacity attribute (i.e., the maximum
number of people that can occupy the facility doing the same
activity) is also provided.

Public Transport Data Set. This data set records vehicles used
for public transportation. An id and a fype (e.g., bus, metro,
tram) are associated to each vehicle. Many people use public
transportation: 1,791,061 movements are logged in this data set.

A. Similarities of KCDC and German Data Sets

KCDC and German (i.e., Berlin, Dusseldorf, Kelheim, and
Leipzig) data sets allow retrieving information and attributes
(e.g., Age Group, Travel Distance, Unique Locations, and Con-
tact Degree) that can be used for comparing movement habits
of Seoul patients to those of German inhabitants. Besides vi-
sual and statistical (i.e., mean value and standard deviation)
analyses, three widely used [8], [9], [10] statistical hypothesis
tests (Mann—Whitney or MW, Pearson’s chi-squared or CS,
and Kolmogorov-Smirnov or KS) are considered to evaluate
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Fig. 9. Daily presence of different age groups in Seoul and Berlin. The y-axis
of both figures is normalized over the total number of people monitored in each
city.

TABLE II
AVERAGE DAILY PRESENCE OF DIFFERENT AGE GROUPS IN SEOUL AND
BERLIN
Age Groups
Dataset | o 100 205 30s  4b% . 0o 60s  70s  80s  90s
Seoul — - 086 096 095 090 060 046 - -
Berlin | 064 048 085 097 081 090 059 042 023 021

the goodness-of-fit of KCDC and German movement attributes
defined by their CDFs. We use these tests to determine which
German city is the most similar to Seoul in terms of movement
habits, i.e., travel distance, unique locations, and contact degree
attributes. For all these tests, the null/alternative hypothesis is
that the two models are defined by identical/different distribu-
tions. The Mann—Whitney test is not affected by outliers since
it evaluates the center of the distributions. The Pearson’s chi-
squared test evaluates similarities along the whole distributions
by considering sample frequencies. The Kolmogorov-Smirnov
test considers the CDFs of both groups and their maximum
distance. We further evaluate the similarity of KCDC and Ger-
man data sets using the Kullback-Leibler divergence test (KL
or relative entropy), i.e., a statistical distance measure used in
the literature [11]. The analysis of the Age Group parameters is
only visual since no distribution is provided for this attribute.
Moreover, the Berlin data set is the only one providing enough
data to carry out such analysis. In the following, similarities and
differences of KCDC and German attributes are analyzed and
described in detail.

Age Group. Fig. 9 depicts Seoul and Berlin population floating
during a business day. Data is grouped based on people’s age
with decade granularity. For the sake of comparison, since the
number of observations in the two data sets is different, all values
are normalized over the maximum number of people monitored
in each city. Table Il reports the average daily presence observed
for each age group to highlight similarties and differences be-
tween the KCDC and Berlin data sets. No comparison between
Seoul and Dusseldorf, Kelheim, or Leipzig population is given
since population age is not reported in the data sets of these
German cities and districts.

The SeoulFloating data set monitors people that are in their
20 s through 70 s for both healthy and sick individuals. As a
result, this data set is valuable for comparison to the Berlin data
set. We investigate the population habits from January 1, 2020,
to May 31, 2020 by age group, see Fig. 9(a). Fig. 9(b) provides

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 5, OCTOBER 2023

1.00] -~ o= 1.00
0.75 . 0.75
—— Seoul
o5 R I
8 0.50 - Berlin 8 0.50
Dusseldorf
0.25 -+ - Kelheim 0.25
3 —— Leipzig —01 02 03
0.00 0.00
0 20 40 0.5 1.0

Distance (Miles) Norm. Num. Unique Locations

(a) Daily distance (b) Unique locations

Fig. 10. Movement habits of Seoul patients and Berlin inhabitants. The
number of unique locations (b) is normalized over the total number of visited
locations in each data set.

information on movements of people living in Berlin. Differently
from the KCDC data set, in this case also people younger than
20 or older than 79 are monitored, see dashed lines. Overall,
Seoul and Berlin experience similar people floating dynamics,
probably due to both cities being the capital and the main
economic center of their country. Specifically, the normalized
number of people that are between 60 and 79 is similar in both
cities and it tends to be flat during the day since the number
of working population in this age range is limited. Adults and
young-adults of both cities show also similar dynamics, with the
only exception of people in their 40 s and 50 s. The normalized
number of people that are between 40 and 49 is larger in Seoul
than in Berlin, but they float similarly in both cities, i.e., they
increase around 6 AM and decrease after 3 PM. The normalized
average number of people in their 50 s that live in Seoul and
Berlin is the same (i.e., 0.9), although the two data sets present
slightly different trends. Looking at the Berlin data, it is also
possible to observe that there are not many people older than
80 and that their number does not change during the day. The
only age group whose population decreases in the morning and
increases in the evening is the one representing kids younger
than 10.

Daily Traveled Distance. Fig. 10(a) plots the CDF of daily
traveled distance (in miles) for people living in Seoul and the
considered German cities and districts (i.e., Berlin, Dusseldorf,
Kelheim, and Leipzig). CDFs of Seoul and Berlin populations
match closely meaning that Korean patients and Berlin inhabi-
tants travel the same distance on a daily basis. Specifically, 75%
of people move less than 5 miles and only a small percentage of
the population travels more than 15 miles.

People living in Dusseldorf and Kelheim travel more than
Seoul and Berlin inhabitants, possibly due to facilities and
businesses more spread on the territory. Instead, the Leipzig
population moves less than 10 miles every day. Table III reports
mean value and standard deviation for all data sets and shows
that the Berlin data set is the one whose average travel distance is
closer to the one observed in the KCDC data set. All considered
statistical tests accept the null hypothesis (i.e., samples are
drawn from the same distribution) with 95% confidence (i.e.,
p-value > 0.05) only when comparing the distance traveled
by Berlin and Seoul inhabitants. The divergence test further
confirms the similarity between these attributes.

Unique Locations. Fig. 10(b) depicts the daily number of
unique locations visited by all monitored people in Seoul and
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TABLE III
STATISTICAL ANALYSIS, HYPOTHESIS TESTS, AND DIVERGENCE TEST FOR PARAMETERS SHARED BY THE KCDC AND GERMAN DATA SETS. COLUMN 1 REPORTS
SHARED PARAMETERS; COLUMNS 2 AND 4 SHOW THE MEAN VALUE AND STANDARD DEVIATION FOR THE KCDC AND GERMAN DATA SETS, RESPECTIVELY;
COLUMN 3 REPORTS THE CONSIDERED GERMAN DATA SETS; COLUMNS 5-10 SHOW RESULTS (I.E., STATISTIC AND P-VALUE) FROM THREE WELL KNOWN
HYPOTHESIS TESTS, MANN-WHITNEY (MW), CHI-SQUARED (CS), AND KOLMOGOROV-SMIRNOV (KS); COLUMN 11 SHOWS RESULTS FROM THE
KULLBACK-LEIBLER (KL) DIVERGENCE TEST. FOR EACH PARAMETER, THE GERMAN DATA SET THAT IS MORE SIMILAR TO THE KCDC ONE IS HIGHLIGHTED
USING ITALIC. THE BEST RESULTS FOR EACH TEST IS ALSO HIGHLIGHTED USING ITALIC

Mean + StD. German

MW CS KS

Parameter KCDC Data Set Mean & StD. statistic = p-value | statistic =~ p-value | statistic p-value KL
Berlin 290 +£2.75 4833 0.68 1.55 0.82 0.17 0.81 0.01
Travel 279 4 291 Dusseldorf 4.86 = 3.28 3491 2.28e-4 23.38 1.06e-4 0.40 0.02 0.08
Distance : ’ Kelheim 9.63 + 6.46 1802 5.51e-15 26.84 2.14e-5 0.63 5.80e-6 | 0.13
Leipzig 1.84 +1.11 6321 1.25e-3 40.51 3.30e-8 0.40 0.02 0.13
Berlin 0.28 £ 0.12 4527 0.25 7.31 0.12 0.18 0.40 0.04
Unique 025 + 0.14 Dusseldorf 0.33 £0.15 3508 2.67e-4 11.8 0.02 0.30 0.02 0.12
Locations ’ ’ Kelheim 0.26 £ 0.14 5037 0.93 7.31 0.12 0.18 0.40 0.04
Leipzig 0.22 £0.12 5584 0.15 40.75 3.03e-8 0.30 0.02 0.08
Berlin 0.02 £ 0.03 7016 8.29e-7 15.39 3.95e-3 0.60 237e-5 | 0.14
Contact Degree 012 + 013 Dusseldorf 0.13 £ 0.10 4731 0.51 2.96 0.57 0.17 0.81 0.04
(w/ outliers) ’ ’ Kelheim 0.03 £ 0.06 6974 1.18e-6 43.07 1.00e-8 0.53 293e-4 | 0.23
Leipzig 0.10 £+ 0.10 4900 0.81 1.54 0.82 0.13 0.96 0.02
Berlin 0.10 £ 0.18 4861 0.73 4.00 0.41 0.17 0.81 0.02
Contact Degree 012 + 013 Dusseldorf 0.19 £0.22 3233 1.52e-5 11.56 0.02 0.50 9.00e-4 | 0.13
(w/o outliers) : ’ Kelheim 0.08 +0.17 5409 0.31 4.67 0.32 0.17 0.81 0.02
Leipzig 0.18 £+ 0.23 3502 2.46e-4 10.87 0.03 0.43 6.55¢-3 | 0.13

Germany. To compare observations from different data sets, the 1.00

attribute is normalized over the maximum number of unique
visits for each city. Differences between Seoul and Dusseldorf
population are noticeable when looking at Fig. 10(b), with
inhabitants of the German city visiting in a day more unique
locations than Seoul patients. Such differences are less visible
when considering other German cities (i.e., Berlin and Leipzig)
or districts (i.e., Kelheim), with Berlin and Kelheim having
very similar CDFs except for 0.25 < CDF < 0.6, see the box
inside Fig. 10(b). Therefore, we leverage statistical analysis and
hypothesis tests (i.e., Table III) to determine which German
city better matches Seoul habits when considering this attribute.
Specifically, Seoul and Kelheim populations visit the same
number of unique locations on average, with Berlin and Leipzig
showing similar average values. The three considered tests do not
reject the null hypothesis with 95% confidence when comparing
Seoul observations to Kelheim and Berlin ones, whereas the
null hypothesis is accepted only by the Mann-Whitney test (i.e.,
the test which evaluates only the center of distributions) when
the Seoul and Leipzig CDFs are compared. The divergence test
shows smaller relative entropy when comparing Seoul unique
locations to those of Berlin and Kelheim. These similarities
might be due to the area of Seoul, Berlin, and Kelheim (i.e.,
all larger than 200 square miles), see Table 1.

Contact Degree. The analysis of how many people are met by
each person logged in KCDC and German data sets (i.e., contact
degree) allows discovering relationships that can facilitate the
spread of the virus. Intuitively, the more people a COVID-19
patient meets, the faster the virus can spread. In the KCDC
data set, no data is provided about the time a patient visits a
facility, only the date is known. For this reason, their contact
degree is computed as the number of other people that visit
the same facilities on the same day. People’s movements in
German data sets are provided with their exact time. This enables
a more precise evaluation of the contact degree since we can
determine who is in the same facility during the same period.
The contact degree of inhabitants of Seoul and German cities

—— Seoul

I
8 0.50 ---- Berlin
Dusseldorf
0.25 - Kelheim
——- Leipzi
0.00 g
0.0 0.5 1.0 0.0 0.5 1.0

Normalized Contact Degree Normalized Contact Degree

(a) Comparison with outliers (b) Comparison without outliers

Fig. 11.  Contact degree of Seoul patients and Berlin inhabitants normalized
(over the maximum value) for comparison. Outliers are considered in (a) and
discarded in (b).

is normalized over the maximum number of contacts for each
city and compared in Fig. 11(a). Dusseldorf and Leipzig are
the German cities whose contact degree follows a distribution
similar to the Seoul CDF, whereas Berlin and Kelheim show
large differences with respect to Seoul. This is due to a few
individuals living in Berlin and Kelheim meeting many other
people, i.e., the tail of the CDFs is long. As expected, when all
monitored individuals are considered, the statistical tests reject
the null hypothesis when the KCDC data set is compared to the
Berlin or Kelheim ones. Instead, Dusseldorf and Leipzig show
promising results, with the contact degree of Leipzig population
being more similar to the one of Seoul patients.

To further investigate how outliers (i.e., few people that meet
many others) impact the goodness-of-fit of Seoul and German
data sets, we also consider the contact degree of German cities
up to the 99th percentile to exclude possible outliers from the
analysis. Results are shown in Fig. 11(b), where the contact
degree observed in Berlin and Kelheim is now closer to the
one of Seoul patients. Such results are confirmed by analyzing
distributions of these data sets with statistical tests. The null
hypothesis is not rejected for Berlin or Kelheim by any of the
considered tests with 95% confidence (i.e., p-value > 0.05).
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TABLE IV
MAIN ATTRIBUTES, PARAMETERS, AND INFORMATION THAT CAN(NOT) BE EXTRACTED FROM THE KCDC AND BERLIN DATA SETS
Parameters Definition KCDC data set  Berlin data set  Simulation
Age Group (20-79) Daily presence of people in their 20s through 70s v v
Travel Distance Travel distance between two places v v v
Unique Locations Number of unique locations visited by an agent v v
Contact Degree Number of encountered people v v
Facility Type Type of facility visited by an agent v v
Super/Low Spreader Type of spreaders v v
Mobility Probability of leaving a building v v
Irresponsible Patients People that move around even if infected v v
Regional Habits Probability of visiting different districts v v
Age Group (19—, 80+) | Daily presence of people younger than 20 or older than 80 v
Activity Type Type of activity carried out by an agent v
Minors Minors” habits v
Activity Length Total time spent on staying in a building v v
Public Transport Types of vehicles used by agents v
Travel Habits Travel time and speed v v
Household Size Number of family members v v
Population Number of simulated agents v
Infection Rate Probability of a healthy agent to be infected v
Caution Level Agent willpower to leave their house v
0.5 0.4
0.107 J e Mean (9.78) | | Mean 9.30) | |p Mean (3.22) G125
0.08 Median (6.37) 0.4 Median (9.56) 0.3 Median (2.02) 9 Mean = 1.68
95% C.I. 95% C.I. 95% C.I. S StD. =0.87
£ 0.06 i 0.3 S
a a B
=N = 0.2 o)
0.04 . é
0.02 0.1
3 : (3.35%)'&2"9/0)(01&4%)
0'000 10 20 30 40 50 60 0-0 5 10 15 20 25 30 0-0 3 6 9 12 15
Travel Time (Min) Travel Speed (Mph) Activity Length (Hr) Household Size
(a) Travel Time (PDF) (b) Travel Speed (PDF) (c) Activity Length (PDF) (d) Household Size (PDF)
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Fig. 12.  PDFs and CDFs of unique features from the Berlin data set. (a)—(c) depict the mean value, the median, and the 95% confidence interval of the continuous

distributions. (d) reports the mean value and the standard deviation of the discrete distribution. (e)—(h) depict CDFs of the four Berlin features.

Comparing movement habits of Seoul patients to habits
of inhabitants of German cities (i.e., Berlin, Dusseldorf, and
Leipzig) and districts (i.e., Kelheim) with different areas and
populations, we identify the Berlin data set as a good candidate
to cross-fertilize the KCDC data set. Besides close similarities
among movement habits of Berlin and Seoul (that are confirmed
by visual and statistical analysis, as well as hypothesis and diver-
gence tests), the Berlin data set provides more information than
other German data sets, i.e., Dusseldorf, Kelheim, and Leipzig
data sets come without any information about population age
and floating.

B. Unique Characteristics of the Berlin Data Set

The prior analysis of KCDC and German data sets show
that Seoul and Berlin share many attributes, summarized in the

first section of Table IV. In addition to this, both data sets also
contain a wealth of unique characteristics. Unique distributions
pertaining to the KCDC data set are summarized in the sec-
ond section of Table IV, and unique distributions pertaining
to the Berlin data set are summarized in the third section of
Table IV.

While both data sets contain information about distance trav-
eled, the Berlin data set contains additional information about
travel time and speed. The probability density function (PDF) [7]
of these attributes are depicted in Fig. 12(a)—(b). The time spent
for each travel is skewed towards small values, each movement
takes less than 10 minutes on average, and the 95% of travels is
completed in less than 40 minutes. The PDF of speed shows a tri-
modal distribution: the first and second peaks may represent peo-
ple walking at two different speeds (i.e., between 1.8 and 5 mph).
The last peak might be people using a vehicle to move. In this
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Fig. 13.  Simulation life cycle and visualization.

case, people might move atareduced speed (i.e., around 15 mph)
due to the typical traffic of metropolitan cities. One notable draw-
back of the KCDC data set is the lack of fine-grained time stamps
on patient routes. The KCDC logs only contain the date and the
order in which locations were visited by that patient on that date.
The Berlin data set has detailed time stamps and records of the
amount of time spent performing a specific activity (e.g., shop-
ping or working). Fig. 12(c) shows the PDF of activity lengths,
from which it is visible that 50% of activities last only 2 hours
and, on average, activities are completed within 3.22 hours.

Since the KCDC data sets only contain information about in-
dividuals with COVID-19 and route information is often incom-
plete due to privacy concerns, no information can be extracted
about the number of people living together. On the other hand,
household size is available in the Berlin data sets. This informa-
tion is shown in Fig. 12(d). More than 50% of households are
made of only one person, while the average household size is less
than 2. This might help to limit the spread of COVID-19 through
a household. These unique characteristics have the potential to
cross-fertilize the information extracted from the KCDC data
sets, and aid us in modeling and understanding different factors
of human mobility that affect virus spread. CDFs of travel time,
travel speed, activity length, and household size are depicted in
Fig. 12(e)—(h) and fed to GeoSpread in Section VI to study the
spread of COVID-19 in Seoul.

The answer to RQ2 can be summarized as follows.

RQ2: Cross-fertilization of Data Sets

Attributes of Seoul and Berlin data sets (i.e., one of the avail-
able German data sets) generally follow similar distributions.
Moreover, the Berlin data set provides information that are
not contained in other German data sets (e.g., daily presence
of different age groups). Therefore, the KCDC data set is
enriched with Berlin data to provide more information in the
input of GeoSpread.

Ia1 ol

(b) GeoSpread view: Gangnam and Seocho

V. AGENT-BASED MODEL

In this section, we show how to parameterize a simulation
based on GeoSpread [6]. The attributes, life cycle, and states of
an agent are shown in Fig. 13(a). The following attributes are
set during the initialization phase:

1) Infection status. One or more random agents are selected

as the initial case(s).

2) Position. Agents are randomly placed on a road in the
simulated area.

3) Speed. Speed determines how fast an agent moves from
one location to another and is selected according to a
distribution. Specifically, we sample from the speed dis-
tribution from the Berlin data set characterization to select
an agent’s speed, see Fig. 12(f).

4) Type of spreaders. We define two classes of spreaders:
3.59% of patients are super spreaders and 96.41% are low
spreaders (see Section III-C).

5) Mobility. We use the mobility of super spreaders and low
spreaders depicted in Fig. 6(b) to model different types of
patient mobility.

6) Home district and home building. We assign agents ahome
building within their home district based on Fig. 1(d).
Agents select destination buildings in the simulation de-
pending on how agents move between these districts, see
Fig. 1(d).

7) Family size and family members. Agents are assigned
family members who all live together in a home building.
While at home, agents are able to infect family members
they are in contact with. The number of individuals in a
family is determined by sampling from the household size
distribution in Berlin described in Fig. 12(h).

In addition to the mobility distribution of super spreaders and
low spreaders, the CDF of daily traveled distance in Fig. 5(a)
is also used to determine the distance to a destination. The
location type an agent will travel to is determined by Fig. 1(c).
The amount of time agents spend at a location is determined
according to Fig. 12(g). Simulation time is defined by cycles.
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In each simulation cycle, agents outside a building move along
the road toward their destination; agents inside a building can
choose to stay or leave, based on their mobility. Agents with
high mobility have a high probability to leave the building and
visit many others. Note that agents stay in a building for at least
15 minutes in order to meet the definition of close contact.® If
multiple agents are inside the same building, they may infect
each other with a certain probability.

When infection happens, the agent state changes from healthy
toinfected, as the state transition shown in Fig. 13(a). We assume
the outdoor infection probability to be negligible. Given the
probability of infection inside a building, «, and the number
of infected agents in the building, n, the probability of a healthy
agent to be infected by a contact within the building is

Pr(infection) =1 — (1 — «a)". )

Note that the probability of infection defined by (2) is nominal.
Any model can be used here to capture the viral load: the total
number of people in the location, the duration of interaction
among individuals, the square footage of the room, its air circu-
lation, wearing a mask or not, see [3] for examples on how to
adjust (2).

It takes 1-14 days for patients to show symptoms after in-
fection according to the WHO.” GeoSpread supports any distri-
bution (e.g., uniform, log-normal) to define the transition of an
individual from infected to symptomatic. This allows capturing
different scenarios and model future variants of SARS-CoV-2
or different pathogens.

Since there exist patients who continue to move even after
showing symptoms, as seen in Fig. 7, we use the CDF in
Fig. 7(d) to determine the number of active days after their first
symptoms. After each infected person exhausts their active days
after infection, they are isolated.

Consistent with infectious disease simulation studies [12], we
set the simulation cycle to 5 minutes. The simulation stops either
when all agents are infected or after a number of cycles defined
by the user.?

A summary of all distributions used for simulations is
recorded in the last column of Table IV. Note that we do not
directly incorporate patient age due to lack of detailed infection-
spread data, and we do not directly use the contact degree and
unique number of locations visited due to the individual-centric
nature of the simulations. Contact degree and the number of
unique locations visited are used for validation since these are
notexplicitly used as parameters. Tunable simulation parameters
are listed in the last section of Table IV.

We simulate the COVID-19 outbreak in the Seocho and Gang-
nam districts, i.e., the region of Seoul with the most hotspots,
see Fig. 1(b). This area’ has 11,438 road intersections and
7,043 buildings. GeoSpread loads the GIS data (e.g., roads, road

Ohttps://bit.ly/3FkLHRn

7https://bit.ly/3EX12Th

8In this simulation, we do not explicitly model agent recovery: a recovered
agent that resumes its mobility is considered immune and non-contagious,
therefore does not contribute to the disease spread. The simulation can be trivially
extended to model recovered agents re-entering the simulation cycle.

9https://bit.ly/3gWMDS5g
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intersections, buildings) stored in a shapefile format, i.e., a file
that stores geometric locations and their attribute information.
Although the longest distance we observe in the PatientRoute
data set in Seoul is 30 miles, the longest distance between
two buildings in the simulated Gangnam district is 7.06 miles.
Therefore, we normalize the maximum distance to 3.53, which is
half of the longest distance in the simulated area, to ensure a valid
building selection as the agent’s destination. In the Gangnam
district there are 604,586 people and a total of 7,043 buildings.
We do not have any information on building stories, entries,
or number of rooms. This information is crucial, especially for
apartment buildings, where multiple people can be inside the
same building at the same time without contact. To address this
lack of information, we limit the population in our simulations.
We validate parameter choices against ground truth data in
Section VI.

A screenshot of the GeoSpread simulation execution can be
seen in Fig. 13(b). Black lines are roads that agents travel on
and green areas are buildings where agents stop. Agents only
have two states in terms of infection, i.e., healthy (blue dots) or
infected (red dots). The box in the top-right corner zooms on a
detail of the GeoSpread view.

VI. MODEL VALIDATION AND CASE STUDY

After presenting the generic GeoSpread tool in Section V,
we showcase the flexibility of this simulation model. We first
validate the simulation using the ground truth and show that
GeoSpread can efficiently predict the temporal evolution of
COVID-19 cases in a given place. We investigate the effect
of each data distribution on the prediction accuracy. Then, we
compare GeoSpread to two state-of-the-art approaches, i.e.,
mathematical [13] and an agent-based model [3]. Hence, we
use GeoSpread to simulate different mitigation measures (i.e.,
stay-at-home advisory, border lockdown, and vaccination) and
assess their effectiveness.

A. Validation

We focus on agents moving between Seocho and Gagnam.
Fig. 1(d) shows the percentage of residents in these two districts
that have been infected, the figure also illustrates the frequency
of residents visiting buildings in their home district, as well as
visiting the other district. We use this information to parameter-
ize the simulation. During the initialization phase, we separate
the agents into Gangnam residents (70.4% of the population) and
Seocho residents (29.6% of the population). Next, we retrieve
the distributions of agent mobility and spreader types from the
data set for residents of each district to set their attributes.
After initialization, when selecting destination buildings, the
probability of a resident staying or leaving their home district
follows Fig. 1(d).

Since two districts are considered in this simulation, starting
with only one infected agent in one of the two areas could bias the
results. Here, we start the simulation with 55 infected agents, i.e.,
the number of infections observed from the data set on March
9, 2020, proportionally assigned to agents in the two districts
(29.6% in Seocho, 70.4% in Gangnam). We selected March 9,
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Fig. 14. Validation. Results are presented with 95% confidence intervals
(shaded areas).

2020 because mitigation efforts in Seoul have yet to produce a
noticeable effect on disease spread, while also allowing us to
clearly see trends. Simulations starting at any time earlier or
around March 9, result in similar infection trends.

Fig. 14(a) depicts the number of COVID-19 cases in the
Gangnam and Seocho districts observed from the data set (black
line) and simulation (red and blue lines). The ground truth line
illustrates the COVID-19 outbreak in the two districts. At the
beginning of April, the curve flattens. This is likely due to effec-
tive counter-measures executed in Seoul, especially the Strong
Social Distancing Campaign (i.e., stay-at-home advisory) which
began on March 22. Consistent with the COVID-19 incubation
timeline, the effectiveness of the Strong Social Distancing Cam-
paign does not show immediately, but after the beginning of
April. Our simulation in Fig. 14(a) does not model the effect of
social distancing campaign so it is expected not to capture the
knee of the ground truth curve.

We align the beginning of simulation data to the time of 55
infection cases in the ground truth, since this is the starting point
of the simulation. The two simulation lines in Fig. 14(a) (whose
95% confidence interval is represented by the shaded areas)
closely follow the ground truth: the simulation of population
10,000 with infection rate 0.004 and the simulation of population
20,000 with infection rate 0.002 are in excellent agreement with
the ground truth from March 26, 2020 to April 5, 2020, when
the effects of any counter-measures are not discernible yet. The
overlap of two simulation cases with the ground truth validates
the simulation. Different population and infection rate values can
be adopted, e.g., using the approach proposed in [14] to estimate
dynamic parameters from real epidemic trends. The integra-
tion of dynamic parameters with GeoSpread is left for future
work.
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(a) Ground truth

(b) Simulation: 10K (c) Simulation: 20K

Fig. 15. Hotspots in the data set (ground truth) and model.

We note in Fig. 14(a) an interesting relationship between
population and infection rate: when the population is doubled,
dividing the infection rate in half gives similar simulation out-
comes. This observation also meets the results in the generic
simulation that higher population leads to faster spreading of the
COVID-19 virus, while lowering the infection rate slows down
the virus spreading. We conclude that we can use a “limited”
population with an adjusted infection rate to efficiently (yet
accurately) model the expected behavior of larger populations.

As further validation, we simulate the effects of applying a
stay-at-home advisory mid-simulation in order to capture the
effects of the mitigation measures taken in Seoul on March 22
— the Strong Social Distancing Campaign. Fig. 14(b) depicts
the results of these simulations (with 95% confidence interval)
against the ground truth. In this simulation case, we begin with
no mitigation measures and apply a stay-at-home advisory once
we reach a certain threshold number of infections. Here, we
select this threshold based on the number of infections in the
ground truth data when the Strong Social Distancing campaign
was enacted, however, this threshold is a parameter and we can
choose to transition between no measures and a stay-at-home
advisory at any given number of infections. After applying the
stay-at-home advisory mid-simulation, the simulation results
also exhibit a flattening trend, which is consistent with the
ground truth. This further highlights the ability of the model
to capture what-if scenarios of different patterns of population
movement.

Next, we focus on hotspot locations. In Fig. 15(a), we present
the heat map of most visited locations in the Gangnam and
Seocho districts from the data set (ground truth). The most
visited areas are in the northern part of Gangnam and across the
border between the two districts. These hotspots correspond to
the density of commercial buildings in these areas, which results
in higher traffic areas. Fig. 15(b) and (c) show the heat map of
visits in the first week for simulated populations of 10,000 and
20,000, accordingly. From both simulations, we observe similar
hotspots, consistent with the ground truth heat map.

Additionally, we examine properties of clusters (i.e., out-
breaks) in the ground truth KCDC logs and the simulations.
Fig. 16(a) depicts the number of patients seen in infection
clusters in a 7-day sliding window. Fig. 16(b) shows the number
of unique locations visited by patients in infection clusters in
a 7-day sliding window. Finally, we can see the contact degree
between patients over seven days in Fig. 16(c). The similarity
of these curves further validates the accuracy of the simulation.

Here, we consider the effects of the different distributions
on the simulation accuracy. To this end, we either remove an
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Fig. 18.  Results from a state-of-the-art ABM [3] and a mathematical model
(SIR) [13]: comparisons with ground truth and GeoSpread.

input parameter from the simulation or utilize a more generic
distribution (i.e., Uniform) for sampling. When using the Uni-
form distribution, we assume to know the approximate minimum
and maximum values, but no further information. Results are
presented in Fig. 17. The simulation matches the ground truth
closely only when all data distributions and mitigation measures
are considered. Larger errors are detected when (i) low and super
spreaders are not considered, (ii) when irresponsible behaviors,
i.e., mobility after symptoms onset, are neglected, and (iii) when
the location type is selected from a Uniform distribution.

In Fig. 18, we compare GeoSpread to two other mod-
els: the Kermack-McKendrick Susceptible-Infected-Recovered
(SIR) model [13] as well as a state of the art agent-based
model [3]. While both models achieve reasonable accuracy, it
is important to highlight that both have shortcomings for our
particular case. The SIR model cannot take into account spatial
information and this cannot be used to simulate situations such
as border lockdowns (see Section VI-B for using GeoSpread to
evaluate this scenario). Additionally, itis not suited for analyzing
different classes of patients, such as super spreaders. On the other
hand, the state-of-the-art ABM is able to perform this kind of
analysis, however, this model requires synthetic traces to achieve
its results. The results shown here are based on a synthetic
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mobility trace constructed using GeoSpread, and achieves high
accuracy since GeoSpread accurately captures patient mobility.

B. Applying Mitigation Measures

We now turn to the evaluation of the effectiveness of counter-
measures. We first consider stay-at-home advisory that allows
for only essential activity outside of the agent’s domicile. On
average, agents stay at home for longer periods time under the
advisory, but are are permitted to leave periodically. The proba-
bility of leaving home is set to 20% of the agent’s mobility. This
can be tuned to simulate a stricter (or more relaxed) stay-at-home
advisory. Once the agent arrives at the destination building, the
probability of leaving the building is defined by the mobility
without any additional scaling (i.e., the time spent outside the
domicile is not affected).

In addition to this counter-measure, we also consider strict dis-
trict border control between the Gangnam and Seocho districts,
i.e., forbid movements between these two areas entirely. With a
strict border control between these two districts, agents can only
stay in their home district: the probability of leaving their home
district is set to 0. We simulate these two mitigation measures
under population 10,000, see Fig. 19(a) where all results are
shown with 95% confidence intervals. First, the application of
a stay-at-home advisory decreases the rate of virus spread in
comparison to the baseline scenario where no counter-measures
are applied. The strict border control offers a mild mitigation
measure comparing to the baseline scenario.

Other mitigation measures (e.g., [15], [16], [17]) can be
evaluated by tuning available parameters to simulate different
behaviors of the population. For example, the effect of counter-
measures that limit the transmission of the virus (e.g., face
masks) can be studied by changing the parameter Infection Rate,
see Table I'V.
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Finally, we consider the effects of vaccination. We consider
the situations where 75% and 100% of the population are vacci-
nated, with the vaccine being 50% and 75% effective. The four
variations are compared against simulations with no mitigation
measures in Fig. 19(b). We see that a more effective vaccine is
very important to slowing the spread of the virus when much
of the population receives the vaccine. All cases see notable
improvement over the baseline case. The answer to RQ3 is given
in this section and is summarized below.

RQ3: Efficiency and Accuracy of GeoSpread

Despite its simple input parameters, GeoSpread predicts
accurately the spread of COVID-19 in two Seoul neigh-
borhoods. Other mathematical and agent-based models may
achieve similar accuracy but they have shortcomings: they
cannot assess mitigation measures and need an actual syn-
thetic trace as input. GeoSpread uses as input empirical dis-
tributions extracted from available data sets and can evaluate
an array of counter-measures (e.g., stay-at-home advisory,
border lockdown, and vaccinations).

VII. DISCUSSION AND LIMITATIONS

The proposed model captures the spread of COVID-19 in an
urban setting. Although the model is validated using ground
truth, incomplete and/or missing data may limit its general-
ization and make it far from being the definitive COVID-19
spreading model. Main limitations of our approach include:

First Wave Data. This data is from the first wave in the
disease in South Korea. With South Korea having one of the best
responses to the disease globally, the mobility patterns reflect
inevitably cultural and demographic characteristics as well as
policy decisions.

Privacy Concerns. The KCDC data set is anonymized and
no sensitive data of monitored patients can be retrieved. No data
about the underage population is provided as well as movements
of patients from/to their private homes. In order to help address
this problem, we examine distributions from the Berlin data set
regarding household size, but this problem still limits the sce-
narios that can be analyzed, e.g., the impact of school closures.

Transportation Assumptions. The KCDC data set does not
show the transportation mode of patients. We overcome this
limitation by extracting such information from the Berlin data
set. The Seoul and Berlin data sets present comparable attributes
and can be used for cross-fertilization.

Data Set Volume. Despite more than 9.5 million people lived
in Seoul in 2020,'” movements of only 4004 unique patients are
logged in the KCDC data set. This might give rise to doubts
on the representativeness of the data set. Although data sets
with more information about movements of Korean people are
not available, we verify that the information extracted from the
KCDC data set (i.e., distributions presented in Section III) is
emblematic of the population of a metropolitan city by compar-
ing it with the information from the German data sets [3] which

10https://bit.ly/3AZhe99
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collects the movements of millions of individuals in Germany
before the COVID-19 pandemic. We compare movements and
habits of Seoul patients with those of the Berlin, Dusseldorf,
Kelheim (district), and Leipzig. These data sets are suited for
this analysis since they monitor movements of millions of people
through their cellphones (i.e., provide person-centric data) but
cannot be used to validate GeoSpread since they do not include
information about the virus spread.

VIII. RELATED WORK

The COVID-19 pandemic has been studied extensively in
recent months due to its disruptive effects. Different approaches
have been adopted to increase our knowledge on the pandemic.
Bao et al. [18] propose COVID-GAN, a framework that allows
generating human mobility traces when different real-world
conditions apply (e.g., local policies and disease severity). Pung
etal. [19] interview COVID-19 patients in Singapore to collect
epidemiological/clinical data to study the spread of the virus in
three different Singapore clusters, this approach by its nature
can be applied to populations of a small scale only. Blockchain
is used to deploy a contact tracing system [15] and to predict
the pandemic evolution from real-time data [16], Internet-of-
Medical-Things is adopted to limit the contagion while gradually
lifting restrictions [17]. A co-location model is used in [20] to
study the spread of SARS-CoV-2 with limited data. Contreras
et al. [21] use a numerical simulation to evaluate the efficiency
of a test-trace-and-isolate strategy in containing the COVID-19
pandemic in Germany. An ML-based framework is proposed
in [14] to estimate dynamically changing values (i.e., contact,
recovery, and mortality rates) of a SIRD epidemiological model
(acronym of Susceptible, Infected, Recovered and Deceased
individual) starting from available mobility data and epidemic
trends. Epidemiological models study how an infection spreads
on a larger scale and are either mathematical or agent-based.

Mathematical models are defined by a set of equations that
allow describing the evolution of the disease [22]. Kermack
etal. [13] develop a SIR model based on differential equations
to study the spread of diseases. SIR models are widely adopted
in the literature. Since they do not consider spatial attributes, the
analysis of space-related scenarios is not supported. Bietal. [23]
use conditional logistic regression to study the transmission of
COVID-19 in Shenzhen, China. Using data from contact-based
surveillance and accurate infector-infectee relationships, they
confirm that, on average, COVID-19 has an incubation period
of less than a week and a long clinical course. Rader et al. [24]
evaluate the socio-economic and environmental aspects of a
region affect the spreading of COVID-19 but do not focus on
the actual virus spread.

Pej6 and Biczdk [25] use game theory to evaluate the ef-
ficiency of face masks and social distancing in limiting the
spread of COVID-19 when some selfish patients do not use
any counter-measures. Bhattacharyya and Bauch [26] use game
theory to study the efficiency of protective vaccines, i.e., the
safest way to achieve herd immunity [27].

Agent-based models (ABMs) are a simulation-based al-
ternative of mathematical models that incorporate human
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interactions [28]. ABMs are widely used in the literature to
successfully model the spread of diseases [29].

Ferguson et al. [30] model the spread of influenza in British
and American households, schools, and workplaces. Their simu-
lations are parameterized using census and land use data as well
as air travel patterns. Note that the above work considers only
large scale (international) population movements. ABMs param-
eterized by census data have been used to capture the spread of
COVID-19 in Australia [31]. Using census and age-distribution
data from Germany and Poland, Bock et al. [32] investigate the
efficiency of mitigation strategies by accounting for interactions
within households where it is hard to social distance. Almagor
et al. [33] use an ABM to evaluate the effectiveness of contact
tracing app to limit the spread of COVID-19. Kim et al. [12] use
synthetic, location-based social network data to study outbreaks
and evaluate the effectiveness of different mitigation strategies,
especially how social behaviors affect the virus spread. ABMs
are used also to model the spread of SARS-CoV-2 in small
areas, e.g., supermarkets [34]. Differently from our approach, no
fine-grained movement data is used in any of the above works.
The above models are parameterized using census or synthetic
data while population movement habits are captured at a coarse
granularity.

Miiller et al. [3] use an ABM parameterized with mobility
traces from mobile phone data for public transportation appli-
cations to study the COVID-19 outbreak in Berlin. This work
is the closest to the one presented here but does not have any
detailed statistics on agent mobility during the pandemic.

Here, we extract human movement habits and dynamics from
the KCDC data set of real COVID-19 patients. Statistics on
patient mobility, traveled distance, and visited locationare used
to tune GeoSpread and model the COVID-19 outbreak in two
districts of Seoul. Agent movements and behaviors are simulated
using the statistics of actual human movements, other structures
(e.g., networks or graphs) are not required. GeoSpread allows
the investigation and identification of mitigation strategies.

IX. CONCLUSION

Information and routes of South Korean COVID-19 patients
are analyzed to study the disease outbreak in the Gangnam and
Seocho districts of Seoul. We enrich this analysis by analyzing
detailed mobility data of four German cities and districts, i.e.,
Berlin, Dusseldorf, Kelheim (district), and Leipzig. Movement
habits in South Korea are extracted from available data sets
(i.e., the KCDC dataset cross-fertilized with the Berlin one) to
parameterize simulations in GeoSpread, our tool based on ABM
and GIS, and to study interactions among people. Simulation
results are in excellent agreement with ground truth and show
that this model can be used to flexibly examine and evaluate
a wide variety of different scenarios based on different human
mobility patterns from real-world data. While we do not claim
that it is a definitive COVID-19 spread model, GeoSpread can be
used to investigate useful what-if scenarios. We plan to (i) expand
the simulation model to capture more details on a wide variety
of mitigation measures, (ii) extract additional information from
the data in [3] to investigate the impact of public transport and
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minors’ movement habits on the COVID-19 pandemic, and (iii)
include dynamic parameter computation in GeoSpread.
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