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Abstract—We present an individual-centric model for COVID-
19 spread in an urban setting. We first analyze patient and route
data of infected patients from January 20, 2020, to May 31, 2020,
collected by the Korean Center for Disease Control & Prevention
(KCDC) and discover how infection clusters develop as a function
of time. This analysis offers a statistical characterization of mobility
habits and patterns of individuals at the beginning of the pandemic.
While the KCDC data offer a wealth of information, they are also
by their nature limited. To compensate for their limitations, we
use detailed mobility data from Berlin, Germany after observing
that mobility of individuals is surprisingly similar in both Berlin
and Seoul. Using information from the Berlin mobility data, we
cross-fertilize the KCDC Seoul data set and use it to parameterize
an agent-based simulation that models the spread of the disease in
an urban environment. After validating the simulation predictions
with ground truth infection spread in Seoul, we study the impor-
tance of each input parameter on the prediction accuracy, compare
the performance of our model to state-of-the-art approaches, and
show how to use the proposed model to evaluate different what-if
counter-measure scenarios.

Index Terms—Data analysis, simulation models, individual-
centric models, COVID-19, disease spread modeling, cross-
fertilization.

I. INTRODUCTION

O
N MARCH 11, 2020, the WHO1 declared COVID-19

the first pandemic caused by a coronavirus. Since then,

a tremendous amount of data has been collected to help pub-

lic policy decisions that limit the spread of COVID-19. For

example, Google2 provides time-series data of infections at a

coarse granularity (i.e., as a function of the area’s population, no

information is provided at the granularity of single individuals).

Epidemiological simulation and mathematical models have been

used to predict the spread of the disease. Typically, model

effectiveness is tied to its input parameterization.
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In this article, we use the data provided by the Korean Center

for Disease Control (KCDC) and local governments during the

first wave of the disease in South Korea. In contrast to the

Google data, the KCDC data focus on individual patients and

allow the development of an individual-centric model of the

COVID-19 epidemic. Infected individuals are monitored3 and

their movements are logged using CCTV, cellphones, and credit

card transactions. The KCDC records patient movements in

plain text (i.e., natural language) without any unified rule. These

logs are parsed through automated code and rule-based methods

to extract keywords that are then used with web mapping service

APIs (e.g., Google Maps) to extract geographical coordinates

(i.e., latitude and longitude) and other data. The parsed logs are

made publicly available [1] and being collected by KCDC are

deemed trustworthy.

To the best of our knowledge, the KCDC logs are the only

publicly available data that contain patient-centric information

in great detail: they report on the patient mobility, i.e., traveled

distance and the sequence of locations visited on a daily basis, the

date of the onset of symptoms, whether and when the patient got

in contact with other patients that are also diagnosed. This leads

to our first research question, RQ1: What statistical information

can be extracted by the KCDC mobility data to parameterize an

agent-based simulation that models the spread of the disease?

The KCDC logs are a valuable resource for studying the spread

of COVID-19, yet they have limitations:
� The last version of the KCDC data set contains data col-

lected up to May 31, 2020 (the KCDC data set has not been

updated since then). By that date, approximately 11,500

COVID-19 cases were confirmed in South Korea [2], but

only 35% of them have been logged into the data set.
� Some locations visited by patients (e.g., locations where

people live) are not recorded due to privacy concerns.

Consequently, patient infection information and route data

do not always coincide. For example, there are patients that

infect each other even if their routes do not cross. This may

happen when patients belong to the same household.
� Patient and route data may be incomplete (i.e., some

attributes are occasionally missing, such as the type of

locations visited by some patients) and require manual

completion before analyzing the data set.
� There is route data information for only a portion of the

patients. Patient movement has been logged only for the

15% of all confirmed cases by May 31.

3https://bit.ly/3VMQvVm
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� The KCDC logs do not contain a complete picture of all

different factors affecting the disease spread. For example,

these logs have no information on the number of people

living in a single residence, or on behaviors of healthy in-

dividuals. The length of time a patient spends at a particular

location in their route is also not recorded.

To compensate for the lack of information in the KCDC logs,

we also analyze data sets detailing human mobility in German

cities and districts [3]. These data sets contain detailed infor-

mation on the routes of individuals, such as distance travelled,

unique locations visited, and overlapping routes. The KCDC

and German data sets still have several key differences. The

KCDC logs contain information on COVID-19 cases, whereas

the German data only contains information on healthy individ-

uals. On the other hand, the German data sets contain detailed

information on important factors that affect the disease spread,

e.g., household size and time spent at a location by individuals.

These observations lead to our second research question, RQ2:

Can the Seoul data sets be cross-fertilized with German data by

leveraging parallels between the two logs?

We illustrate that such cross-fertilization across the Seoul and

Berlin logs is possible. Further, we show that cross-fertilized

data can be fed into GeoSpread [4], an extended version of

GeoMason [5] that leverages agent-based models (ABM) and

geographic information systems (GIS), and showcase the ben-

efit of using inferential statistics (i.e., using samples to make

predictions about a population) for studying disease outbreaks.

We validate the results of the simulations with the ground truth

derived from the KCDC logs. GeoSpread offers a flexible model

based on real-world COVID-19 spread information and can be

used to facilitate evaluation of different mitigation measures to

reduce the spread of the disease. GeoSpread needs only data

distributions to simulate the spread of SARS-CoV-2. Here, we

use distribution data in the form of histograms (and make them

available to the community [6]). GeoSpread is the focus of

our last research question, RQ3: Does an ABM, parameterized

using only data distributions, accurately predict the spread of

COVID-19 and the efficiency of possible counter-measures?

Contributions and outline of this paper are:
� Data Discovery: We analyze and connect data from various

KCDC logs to extract information on patient movements

(Sections II and III).
� Statistical Analysis: We provide statistical analysis of pop-

ulation movements and habits in the form of histograms for

Seoul, Berlin, Dusseldorf, Kelheim (district), and Leipzig.

This information is extracted using only descriptive statis-

tics (i.e., the quantitative description of attributes).
� Cross-fertilization: We investigate similarities between

the KCDC and German data sets seeking for common

humna movement patterns in these urban environments

(Section IV). Leveraging this information, we cross-

fertilize to incorporate useful information from the Berlin

data set which are unavailable in the Seoul data (e.g., travel

speed, transportation means, household size).
� GeoSpread: We parameterize an agent-based model using

the cross-fertilized data as input, see Section V, and out-

line its flexibility to capture a variety of conditions. The

simulation tool, GeoSpread, and processed data is open

sourced [6].
� Model Validation with Real Data: GeoSpread is validated,

is compared to state-of-the-art approaches, and is used to

analyze the effect of different mitigation measures (i.e.,

border lockdown, stay-at-home advisory, and vaccination)

in Section VI. Its usage and limitations are discussed in

Section VII.

II. THE KCDC DATA SET

The data sets [1] used in this paper contain data collected by

the KCDC and local governments from January 20, 2020, to May

31, 2020. PatientInfo and PatientRoute contain information and

routes of COVID-19 patients in Seoul, respectively. The number

of (healthy and sick) people moving across Seoul districts are

provided in the SeoulFloating data set and has been collected

using the Big Data Hub of SK Telecom, a Korean wireless

telecommunications operator.

PatientInfo Data Set. This data set provides epidemiological

data of COVID-19 patients. It contains 4,004 different entries,

each entry represents a different patient identified by a unique ID

(patient_id). Other attributes include their gender and age, their

provenance (country, province, and city), whether they have been

infected in a known case (infection_case, e.g., overseas inflow

or contact with patient) and the ID of the patient that infected

them (infected_by), the number of people that the patient came

in contact with (contact_number), and the date of their first

symptoms (symptom_onset_date).

PatientRoute Data Set. This data set contains 8,092 entries,

each one reporting a visit (to one of 2,992 unique locations) of

1,472 (out of 4,004) unique South Korean COVID-19 patients

logged in the PatientInfo data set. A location is unequivocally

identified by its latitude and longitude. Province, city, and type

(e.g., airport, hospital, store) of each location are also provided.

The attribute type of almost 30% of entries is set to etc (i.e.,

locations that cannot be identified using the rule-based approach

of [1]). We manually look for their type using their geograph-

ical coordinates and OpenStreetMap4 to compensate for this

lack of data. Each entry also contains the patient (identified

by patient_id, the same as in the PatientInfo data set, and by

global_num, another ID used only in this data set) that visited

the location on a specific date. The time spent in the location is

not available. Locations visited by a patient in a single day are

logged in chronological order.

SeoulFloating Data Set. This data set provides hourly data of

people moving across Seoul districts. Data are collected from

January 1 to May 31, 2020, by SK Telecom. Collected data

are grouped by gender, age, and district and allow visualizing

the movement of people in Seoul during this period. Age is

provided at the decade granularity for people in their 20 s through

70 s. No information is provided for children or for people who

are 80 or older. As a result, it is not possible to conclude on

infections at education facilities or directly model mitigation

measures that include school closings. This data set reports data

4https://www.openstreetmap.org/
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Fig. 1. Most visited locations (and their type) in Seoul. Movements between
Gangnam and Seocho districts.

on the entire Seoul population, not just the COVID-19 patients,

and only considers those with cell phones.

III. DATA DISCOVERY: KCDC DATA

Although the information contained in the KCDC data sets is

not as accurate as one would like, it still allows for the analysis

of patient movements and interactions with high accuracy. In

this section, we discuss information and statistical data that we

extract from the data sets and how it is used to parameterize

GeoSpread. All input parameterization data for GeoSpread is

given in the form of distributions [7].

A. Visited Locations

Fig. 1(a) and (b) depict heat maps of the most visited loca-

tions in South Korea and Seoul, respectively, showing where

COVID-19 outbreaks are more likely to happen. Heat maps in

Fig. 1 also show the South Korean cities for which movement

data are recorded. Visibly, Seoul is the city with the most visited

locations. Within Seoul, the south-west and south-east areas

are those with more patient routes. The financial district and

company head-quarters are located in the south-west part of the

city. The south-east region corresponds to the Gangnam and

Seocho districts, outlined in blue and green in Fig. 1(b), respec-

tively. Many shopping and entertainment centers are located

in Gangnam. Fig. 1(c) shows the ten most visited facilities in

Seoul, with Hospital being the first one. This is mainly due to the

KCDC data set being obtained during the COVID-19 pandemic

by monitoring sick people. No information about schools is

available since this data set monitors only people in their 20 s

through 70 s. The scarcity of logged residential facilities is

due to privacy concerns. Fig. 1(d) illustrates the movement of

population between two neighboring districts, Gangnam and

Seocho that we use later in our model.

B. Patient Connections

Fig. 2(a) presents a subgraph of patient connections dis-

covered by linking the PatientRoute and PatientInfo data sets.

To improve visibility, we only present a small portion of the

entire graph. Here, nodes depict patients, black edges connect

patients that visited the same place during the same day from

the PatientRoute data set, and red edges represent the virus

spreading information obtained from the PatientInfo data set

(i.e., infected_by attribute). Some red edges do not overlap with

black edges. This means that, even if one of the two nodes

connected by the red edge infected the other, no connections

(i.e., visits to the same location during the same day) have been

recorded in the data set. The node degree in Fig. 2(a) shows

the contact degree among patients and illustrates visually the

complexity of the problem.

Patient connections can also be visualized in a hypergraph

(i.e., a generalization of a graph where an edge can capture

common relationships between two graphs and offer insights

on the relationship between the graphs that have common hy-

peredges). Here, we use hypergraphs to connect information on

two graphs, i.e., patients and locations, to discover how many

times patients come into contact and at what locations. A small

example can be seen in Fig. 2(b) where a node represents a

patient and a hyperedge represents the connection between any

number of patients who met at a specific location on a specific

date. Visually, a hyperedge is shown as an edge that branches to

connect two or more patients. This allows us to look at gatherings

of groups of people, rather than just the binary relationship

of whether or not two individuals came into contact with one

another. Clusters of cases in Seoul can be seen in the hypergraph

in Fig. 2(c).

Fig. 2(d) shows a summary view of patient connections: the

contact degree cumulative distribution function (CDF) [7] of

all patients for the entire dataset. Three CDFs are shown: one

for the whole South Korea, one for Seoul, and another one for

the Gyeongsangbuk-do province. Interestingly, all CDFs have

a similar shape. High contact degrees indicate potential super

spreaders (i.e., patients that infect many other people). People

who come into contact with many others are not necessarily

super spreaders since it is unknown whether they were sick or

healthy when contact occurred. Further analysis is required to

determine whether or not a patient is a super spreader.

C. Super Spreaders

Fig. 3 illustrates a subset of patients where the infected_by

relationship (i.e., patient A is infected by patient B) is known

from the PatientInfo data set. The entire graph contains 1,052

patient nodes and 822 edges representing the known infection

spread. For the sake of visibility, we present just a subset of the

entire graph. Red nodes correspond to individuals with available

route information who are known to have infected others, green

nodes correspond to individuals who infected others but have no
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Fig. 2. Patient contacts in Seoul (a)–(c) and contact degree at different levels of governance (d).

Fig. 3. Infection spread subgraph: Red nodes are patients with route information who infected others. Green nodes are patients who infected others but do not
have route information. Blue nodes are patients who did not infect anyone else.

Fig. 4. Super spreader analysis in Seoul.

available route information, and blue nodes correspond to pa-

tients who are not known to have infected others. This particular

subset shows a mix of super spreaders (i.e., people who infected

more than six people) and low spreaders, who infected six or

fewer people.5 The large “fans” in this figure are indicative of

super spreaders. Using this classification of patients based on the

number of people they infect, we discover different behaviors of

super/low spreaders, shown in Fig. 4. Super spreaders account

5We define a “super spreader” as someone who infects at least 6 people. This
allows us to divide the data set to obtain the most noticeable difference in patient
behavior (number of locations, number of days, number of records).

for 3.59% and low spreaders account for the remaining 96.41%

of patients.

Fig. 4 presents frequencies (first row) and their respective

CDFs (second row) for different attributes of low- and super-

spreaders. Frequencies (a)–(d) show how likely low and super

spreaders infect a specific number of people, appear in the logs

for a given number of days, and visit a specific number of

unique or total locations, respectively. CDFs (e)–(h) indicate

that, in general, super spreaders tend to be active for more days,

visit more unique locations, and have longer routes than low

spreaders. Overall, these figures show that all super spreaders in

the data set are active for three or more days and visit three or
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Fig. 5. Daily traveled distance and unique locations visited in Seoul.

more unique locations. Some of these super spreaders are active

for up to 19 days and visit up to 18 unique locations with route

lengths of up to 31 locations.

D. Daily Traveled Distance

Fig. 5(a) plots the density heat map of distance traveled by

patients in Seoul and the number of locations visited in a day, two

important features due to the vital nature of patient movement

to spread COVID-19. The darker the area, the more patients

have the same traveled distance and visited locations. With some

exceptions, people mostly travel short distances and visit only a

few locations each day. The CDF of the daily traveled distance

is shown in Fig. 5(b).

E. Patient Mobility

Patient mobility is another important attribute to consider.

Intuitively, the more places a patient visits, the higher their

mobility is. Analyzing the mobility of patients in the KCDC

data set, there are days where individuals exhibit high mobility

and days where they move significantly less. This leads us to

a more usable definition of mobility as a function of different

time periods (days). Considering how many unique locations

are visited by all patients each day, we observe that a typical

patient visits 1–3 locations in the 88.9% of days, and more than

3 locations in the remaining 11.1% of days.

Defining a high mobility day as a day during which a patient

visits at least L locations, the mobility of a patient is given

as the ratio of the patient high mobility days to all logged

days for this specific individual, depicted in the following

equation.

Mobility =
# High Mobility Days

Total Active Days
. (1)

Note that this is not the only way to define mobility. For

simulation purposes (see Section V), this definition provides

a practical way to capture mobility with a probability. Based

on the analysis of the KCDC data set, days with L ≤ 3 are

considered of low mobility. The CDF of patient mobility using

the above definition is depicted in Fig. 6(a). The figure shows

that the mobility of 57.6% of patients is 0, i.e., those patients

never visit more than L = 3 unique locations in a day since

# High Mobility Days = 0, see (1).

Different classes of patients have different mobility. Fig. 6(b)

shows the difference in mobility between low and super spread-

ers, while Fig. 6(c) illustrates mobility by age groups. Super

Fig. 6. Patient mobility in Seoul.

Fig. 7. Irresponsible behavior of sick patients in Seoul.

spreaders and young people have higher mobility compared to

low spreaders and seniors, respectively. For higher percentiles,

the low spreaders have higher mobility than super spreaders due

to the small number of super spreader agents in the KCDC data

set.

F. Irresponsible Behaviors

Patients may behave irresponsibly when they keep moving af-

ter the onset of their first COVID-19 symptoms, which facilitates

the diffusion of the disease. We present how long all sick people

continue to show mobility after exhibiting symptoms, see Fig. 7.

The figure shows that only 20% of patients stop moving and

isolate immediately after initial symptoms are observed. Many

patients, see Fig. 7(a)–(c), may go to a pharmacy or hospital

after showing symptoms, indicating that a few movements after

onset is not necessarily irresponsible. Some patients, however,

keep moving for more than a week after the onset of symptoms,

see Fig. 7(d). They also visit many locations; Fig. 7(e) and (f)

show the number of unique and total locations that sick patients

visit after initial symptoms are observed.

Summarizing, the answer to RQ1 is as follows.
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TABLE I
AREA AND POPULATION OF SEOUL AND FOUR GERMAN CITIES CONSIDERED

FOR COMPARISON AND CROSS-FERTILIZATION

Fig. 8. Heat map of the most visited Berlin locations.

RQ1: Information from the KCDC Logs

We analyze movement habits of Seoul patients applying

statistical analysis and descriptive statistics to the KCDC data

sets. Patient connections, super spreaders, and irresponsible

behaviors are examples of information that is not directly

provided in the data sets, but can be obtained by manipulating

the available data. These distributions are used as input to

GeoSpread.

IV. THE BERLIN DATA SET

In spite of the detailed data provided in the KCDC data sets,

there is still a lot of unavailable information which is necessary

for understanding how COVID-19 spreads in an urban envi-

ronment. In this section, we compare distributions of different

characteristics of human mobility from Seoul, with distribu-

tions from German cities and districts (i.e., Berlin, Dusseldorf,

Kelheim, and Leipzig) with different areas and population, see

Table I. We focus on commonalities in movements of individual

in Seoul and in German cities that can be used as a basis. After

determining the German city (i.e., Berlin) whose population

behavior better matches the one of people in Seoul, we extract

new information to cross-fertilize the statistical data of the

KCDC data set. Cross-fertilization across data sets is common

in the broader systems area, where similarities across data sets

are explored to fill-in missing data. In the following, we describe

in detail the Berlin data set [3] that we use to cross-fertlize the

KCDC log. Note that data sets of other German cities are similar

to the Berlin one. The Berlin data set contains movement logs

obtained by monitoring people that visited Berlin before the

COVID-19 pandemic, during business days and weekends. It

provides demographic data of all monitored people, the public

transportation used by people for their movement, and the type

and capacity of all visited facilities. Here, we consider move-

ment logs collected during business days by observing people

whose actions are located only in Berlin. Fig. 8 shows the most

active district of Berlin, i.e., areas of the city that appear more

frequently in the Berlin data set.

EventWeekdays Data Set. People’s movements over 30 hours

are logged in this data set, where almost 6 million activities are

recorded from start to finish. For each entry, the timestamp (in

seconds) is provided as well as the type of entry (i.e., start for

activities that begin or end for activities that are completed) and

the person to which the activity is associated. For this analysis,

we use only logs from people that never leave Berlin during the

observation period, i.e., 67% (i.e., 3,919,990 entries) of this data

set. All activities in this data set represent a visit to a facility or

the usage of public transport. In the former case, facility_id and

link_id allow associating the entry to a venue, while the actType

attribute specifies the type of activity performed in that location

(e.g., home, school, work). When an entry refers to a transport

activity, it provides the vehicle attribute with the ID of the vehicle

that is used for moving.

Demographic Data Set. This data set contains information

about each person (i.e., more than 1.2 million people) whose

activities have been logged in the EventWeekdays data set.

Specifically, age and gender for all people is provided as well

as their home_district, home_id, and home coordinates. The

home_district attribute contains one of the 401 administrative

districts of Germany. Here, since we focus just on Berlin, a

metro area similar to Seoul, we consider people who do not

leave Berlin during the observation period. Therefore only 55%

(671,256) of the original data set is analyzed. The home_id at-

tribute associates each person in the data set to their home-place,

while the coordinates attribute allows placing each building on

a map with an accuracy of 500 meters.

Facility Type Data Set. This data set contains all 631,290 facil-

ities visited in the EventWeekdays data set. The 75% (476,572)

of these venues are located in Berlin. Univocal id and link_id

attributes are associated to all entries of this data set for the iden-

tification of each facility. Coordinates (using the EPSG:25832

coordinate reference system) are also associated to each venue.

This allows placing each venue on a map. Functions (e.g.,

home, school, work) are associated to each facility depending

on the activities that are carried out within that venue. Note that

multiple functions can be associated to the same building. For

each function of a facility, a capacity attribute (i.e., the maximum

number of people that can occupy the facility doing the same

activity) is also provided.

Public Transport Data Set. This data set records vehicles used

for public transportation. An id and a type (e.g., bus, metro,

tram) are associated to each vehicle. Many people use public

transportation: 1,791,061 movements are logged in this data set.

A. Similarities of KCDC and German Data Sets

KCDC and German (i.e., Berlin, Dusseldorf, Kelheim, and

Leipzig) data sets allow retrieving information and attributes

(e.g., Age Group, Travel Distance, Unique Locations, and Con-

tact Degree) that can be used for comparing movement habits

of Seoul patients to those of German inhabitants. Besides vi-

sual and statistical (i.e., mean value and standard deviation)

analyses, three widely used [8], [9], [10] statistical hypothesis

tests (Mann–Whitney or MW, Pearson’s chi-squared or CS,

and Kolmogorov-Smirnov or KS) are considered to evaluate
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Fig. 9. Daily presence of different age groups in Seoul and Berlin. The y-axis
of both figures is normalized over the total number of people monitored in each
city.

TABLE II
AVERAGE DAILY PRESENCE OF DIFFERENT AGE GROUPS IN SEOUL AND

BERLIN

the goodness-of-fit of KCDC and German movement attributes

defined by their CDFs. We use these tests to determine which

German city is the most similar to Seoul in terms of movement

habits, i.e., travel distance, unique locations, and contact degree

attributes. For all these tests, the null/alternative hypothesis is

that the two models are defined by identical/different distribu-

tions. The Mann–Whitney test is not affected by outliers since

it evaluates the center of the distributions. The Pearson’s chi-

squared test evaluates similarities along the whole distributions

by considering sample frequencies. The Kolmogorov-Smirnov

test considers the CDFs of both groups and their maximum

distance. We further evaluate the similarity of KCDC and Ger-

man data sets using the Kullback-Leibler divergence test (KL

or relative entropy), i.e., a statistical distance measure used in

the literature [11]. The analysis of the Age Group parameters is

only visual since no distribution is provided for this attribute.

Moreover, the Berlin data set is the only one providing enough

data to carry out such analysis. In the following, similarities and

differences of KCDC and German attributes are analyzed and

described in detail.

Age Group. Fig. 9 depicts Seoul and Berlin population floating

during a business day. Data is grouped based on people’s age

with decade granularity. For the sake of comparison, since the

number of observations in the two data sets is different, all values

are normalized over the maximum number of people monitored

in each city. Table II reports the average daily presence observed

for each age group to highlight similarties and differences be-

tween the KCDC and Berlin data sets. No comparison between

Seoul and Dusseldorf, Kelheim, or Leipzig population is given

since population age is not reported in the data sets of these

German cities and districts.

The SeoulFloating data set monitors people that are in their

20 s through 70 s for both healthy and sick individuals. As a

result, this data set is valuable for comparison to the Berlin data

set. We investigate the population habits from January 1, 2020,

to May 31, 2020 by age group, see Fig. 9(a). Fig. 9(b) provides

Fig. 10. Movement habits of Seoul patients and Berlin inhabitants. The
number of unique locations (b) is normalized over the total number of visited
locations in each data set.

information on movements of people living in Berlin. Differently

from the KCDC data set, in this case also people younger than

20 or older than 79 are monitored, see dashed lines. Overall,

Seoul and Berlin experience similar people floating dynamics,

probably due to both cities being the capital and the main

economic center of their country. Specifically, the normalized

number of people that are between 60 and 79 is similar in both

cities and it tends to be flat during the day since the number

of working population in this age range is limited. Adults and

young-adults of both cities show also similar dynamics, with the

only exception of people in their 40 s and 50 s. The normalized

number of people that are between 40 and 49 is larger in Seoul

than in Berlin, but they float similarly in both cities, i.e., they

increase around 6 AM and decrease after 3 PM. The normalized

average number of people in their 50 s that live in Seoul and

Berlin is the same (i.e., 0.9), although the two data sets present

slightly different trends. Looking at the Berlin data, it is also

possible to observe that there are not many people older than

80 and that their number does not change during the day. The

only age group whose population decreases in the morning and

increases in the evening is the one representing kids younger

than 10.

Daily Traveled Distance. Fig. 10(a) plots the CDF of daily

traveled distance (in miles) for people living in Seoul and the

considered German cities and districts (i.e., Berlin, Dusseldorf,

Kelheim, and Leipzig). CDFs of Seoul and Berlin populations

match closely meaning that Korean patients and Berlin inhabi-

tants travel the same distance on a daily basis. Specifically, 75%

of people move less than 5 miles and only a small percentage of

the population travels more than 15 miles.

People living in Dusseldorf and Kelheim travel more than

Seoul and Berlin inhabitants, possibly due to facilities and

businesses more spread on the territory. Instead, the Leipzig

population moves less than 10 miles every day. Table III reports

mean value and standard deviation for all data sets and shows

that the Berlin data set is the one whose average travel distance is

closer to the one observed in the KCDC data set. All considered

statistical tests accept the null hypothesis (i.e., samples are

drawn from the same distribution) with 95% confidence (i.e.,

p-value > 0.05) only when comparing the distance traveled

by Berlin and Seoul inhabitants. The divergence test further

confirms the similarity between these attributes.

Unique Locations. Fig. 10(b) depicts the daily number of

unique locations visited by all monitored people in Seoul and
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TABLE III
STATISTICAL ANALYSIS, HYPOTHESIS TESTS, AND DIVERGENCE TEST FOR PARAMETERS SHARED BY THE KCDC AND GERMAN DATA SETS. COLUMN 1 REPORTS

SHARED PARAMETERS; COLUMNS 2 AND 4 SHOW THE MEAN VALUE AND STANDARD DEVIATION FOR THE KCDC AND GERMAN DATA SETS, RESPECTIVELY;
COLUMN 3 REPORTS THE CONSIDERED GERMAN DATA SETS; COLUMNS 5–10 SHOW RESULTS (I.E., STATISTIC AND P-VALUE) FROM THREE WELL KNOWN

HYPOTHESIS TESTS, MANN-WHITNEY (MW), CHI-SQUARED (CS), AND KOLMOGOROV-SMIRNOV (KS); COLUMN 11 SHOWS RESULTS FROM THE

KULLBACK-LEIBLER (KL) DIVERGENCE TEST. FOR EACH PARAMETER, THE GERMAN DATA SET THAT IS MORE SIMILAR TO THE KCDC ONE IS HIGHLIGHTED

USING ITALIC. THE BEST RESULTS FOR EACH TEST IS ALSO HIGHLIGHTED USING ITALIC

Germany. To compare observations from different data sets, the

attribute is normalized over the maximum number of unique

visits for each city. Differences between Seoul and Dusseldorf

population are noticeable when looking at Fig. 10(b), with

inhabitants of the German city visiting in a day more unique

locations than Seoul patients. Such differences are less visible

when considering other German cities (i.e., Berlin and Leipzig)

or districts (i.e., Kelheim), with Berlin and Kelheim having

very similar CDFs except for 0.25 ≤ CDF ≤ 0.6, see the box

inside Fig. 10(b). Therefore, we leverage statistical analysis and

hypothesis tests (i.e., Table III) to determine which German

city better matches Seoul habits when considering this attribute.

Specifically, Seoul and Kelheim populations visit the same

number of unique locations on average, with Berlin and Leipzig

showing similar average values. The three considered tests do not

reject the null hypothesis with 95% confidence when comparing

Seoul observations to Kelheim and Berlin ones, whereas the

null hypothesis is accepted only by the Mann-Whitney test (i.e.,

the test which evaluates only the center of distributions) when

the Seoul and Leipzig CDFs are compared. The divergence test

shows smaller relative entropy when comparing Seoul unique

locations to those of Berlin and Kelheim. These similarities

might be due to the area of Seoul, Berlin, and Kelheim (i.e.,

all larger than 200 square miles), see Table I.

Contact Degree. The analysis of how many people are met by

each person logged in KCDC and German data sets (i.e., contact

degree) allows discovering relationships that can facilitate the

spread of the virus. Intuitively, the more people a COVID-19

patient meets, the faster the virus can spread. In the KCDC

data set, no data is provided about the time a patient visits a

facility, only the date is known. For this reason, their contact

degree is computed as the number of other people that visit

the same facilities on the same day. People’s movements in

German data sets are provided with their exact time. This enables

a more precise evaluation of the contact degree since we can

determine who is in the same facility during the same period.

The contact degree of inhabitants of Seoul and German cities

Fig. 11. Contact degree of Seoul patients and Berlin inhabitants normalized
(over the maximum value) for comparison. Outliers are considered in (a) and
discarded in (b).

is normalized over the maximum number of contacts for each

city and compared in Fig. 11(a). Dusseldorf and Leipzig are

the German cities whose contact degree follows a distribution

similar to the Seoul CDF, whereas Berlin and Kelheim show

large differences with respect to Seoul. This is due to a few

individuals living in Berlin and Kelheim meeting many other

people, i.e., the tail of the CDFs is long. As expected, when all

monitored individuals are considered, the statistical tests reject

the null hypothesis when the KCDC data set is compared to the

Berlin or Kelheim ones. Instead, Dusseldorf and Leipzig show

promising results, with the contact degree of Leipzig population

being more similar to the one of Seoul patients.

To further investigate how outliers (i.e., few people that meet

many others) impact the goodness-of-fit of Seoul and German

data sets, we also consider the contact degree of German cities

up to the 99th percentile to exclude possible outliers from the

analysis. Results are shown in Fig. 11(b), where the contact

degree observed in Berlin and Kelheim is now closer to the

one of Seoul patients. Such results are confirmed by analyzing

distributions of these data sets with statistical tests. The null

hypothesis is not rejected for Berlin or Kelheim by any of the

considered tests with 95% confidence (i.e., p-value > 0.05).
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TABLE IV
MAIN ATTRIBUTES, PARAMETERS, AND INFORMATION THAT CAN(NOT) BE EXTRACTED FROM THE KCDC AND BERLIN DATA SETS

Fig. 12. PDFs and CDFs of unique features from the Berlin data set. (a)–(c) depict the mean value, the median, and the 95% confidence interval of the continuous
distributions. (d) reports the mean value and the standard deviation of the discrete distribution. (e)–(h) depict CDFs of the four Berlin features.

Comparing movement habits of Seoul patients to habits

of inhabitants of German cities (i.e., Berlin, Dusseldorf, and

Leipzig) and districts (i.e., Kelheim) with different areas and

populations, we identify the Berlin data set as a good candidate

to cross-fertilize the KCDC data set. Besides close similarities

among movement habits of Berlin and Seoul (that are confirmed

by visual and statistical analysis, as well as hypothesis and diver-

gence tests), the Berlin data set provides more information than

other German data sets, i.e., Dusseldorf, Kelheim, and Leipzig

data sets come without any information about population age

and floating.

B. Unique Characteristics of the Berlin Data Set

The prior analysis of KCDC and German data sets show

that Seoul and Berlin share many attributes, summarized in the

first section of Table IV. In addition to this, both data sets also

contain a wealth of unique characteristics. Unique distributions

pertaining to the KCDC data set are summarized in the sec-

ond section of Table IV, and unique distributions pertaining

to the Berlin data set are summarized in the third section of

Table IV.

While both data sets contain information about distance trav-

eled, the Berlin data set contains additional information about

travel time and speed. The probability density function (PDF) [7]

of these attributes are depicted in Fig. 12(a)–(b). The time spent

for each travel is skewed towards small values, each movement

takes less than 10 minutes on average, and the 95% of travels is

completed in less than 40 minutes. The PDF of speed shows a tri-

modal distribution: the first and second peaks may represent peo-

ple walking at two different speeds (i.e., between 1.8 and 5 mph).

The last peak might be people using a vehicle to move. In this
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Fig. 13. Simulation life cycle and visualization.

case, people might move at a reduced speed (i.e., around 15 mph)

due to the typical traffic of metropolitan cities. One notable draw-

back of the KCDC data set is the lack of fine-grained time stamps

on patient routes. The KCDC logs only contain the date and the

order in which locations were visited by that patient on that date.

The Berlin data set has detailed time stamps and records of the

amount of time spent performing a specific activity (e.g., shop-

ping or working). Fig. 12(c) shows the PDF of activity lengths,

from which it is visible that 50% of activities last only 2 hours

and, on average, activities are completed within 3.22 hours.

Since the KCDC data sets only contain information about in-

dividuals with COVID-19 and route information is often incom-

plete due to privacy concerns, no information can be extracted

about the number of people living together. On the other hand,

household size is available in the Berlin data sets. This informa-

tion is shown in Fig. 12(d). More than 50% of households are

made of only one person, while the average household size is less

than 2. This might help to limit the spread of COVID-19 through

a household. These unique characteristics have the potential to

cross-fertilize the information extracted from the KCDC data

sets, and aid us in modeling and understanding different factors

of human mobility that affect virus spread. CDFs of travel time,

travel speed, activity length, and household size are depicted in

Fig. 12(e)–(h) and fed to GeoSpread in Section VI to study the

spread of COVID-19 in Seoul.

The answer to RQ2 can be summarized as follows.

RQ2: Cross-fertilization of Data Sets

Attributes of Seoul and Berlin data sets (i.e., one of the avail-

able German data sets) generally follow similar distributions.

Moreover, the Berlin data set provides information that are

not contained in other German data sets (e.g., daily presence

of different age groups). Therefore, the KCDC data set is

enriched with Berlin data to provide more information in the

input of GeoSpread.

V. AGENT-BASED MODEL

In this section, we show how to parameterize a simulation

based on GeoSpread [6]. The attributes, life cycle, and states of

an agent are shown in Fig. 13(a). The following attributes are

set during the initialization phase:

1) Infection status. One or more random agents are selected

as the initial case(s).

2) Position. Agents are randomly placed on a road in the

simulated area.

3) Speed. Speed determines how fast an agent moves from

one location to another and is selected according to a

distribution. Specifically, we sample from the speed dis-

tribution from the Berlin data set characterization to select

an agent’s speed, see Fig. 12(f).

4) Type of spreaders. We define two classes of spreaders:

3.59% of patients are super spreaders and 96.41% are low

spreaders (see Section III-C).

5) Mobility. We use the mobility of super spreaders and low

spreaders depicted in Fig. 6(b) to model different types of

patient mobility.

6) Home district and home building. We assign agents a home

building within their home district based on Fig. 1(d).

Agents select destination buildings in the simulation de-

pending on how agents move between these districts, see

Fig. 1(d).

7) Family size and family members. Agents are assigned

family members who all live together in a home building.

While at home, agents are able to infect family members

they are in contact with. The number of individuals in a

family is determined by sampling from the household size

distribution in Berlin described in Fig. 12(h).

In addition to the mobility distribution of super spreaders and

low spreaders, the CDF of daily traveled distance in Fig. 5(a)

is also used to determine the distance to a destination. The

location type an agent will travel to is determined by Fig. 1(c).

The amount of time agents spend at a location is determined

according to Fig. 12(g). Simulation time is defined by cycles.
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In each simulation cycle, agents outside a building move along

the road toward their destination; agents inside a building can

choose to stay or leave, based on their mobility. Agents with

high mobility have a high probability to leave the building and

visit many others. Note that agents stay in a building for at least

15 minutes in order to meet the definition of close contact.6 If

multiple agents are inside the same building, they may infect

each other with a certain probability.

When infection happens, the agent state changes from healthy

to infected, as the state transition shown in Fig. 13(a). We assume

the outdoor infection probability to be negligible. Given the

probability of infection inside a building, α, and the number

of infected agents in the building, n, the probability of a healthy

agent to be infected by a contact within the building is

Pr(infection) = 1− (1− α)n. (2)

Note that the probability of infection defined by (2) is nominal.

Any model can be used here to capture the viral load: the total

number of people in the location, the duration of interaction

among individuals, the square footage of the room, its air circu-

lation, wearing a mask or not, see [3] for examples on how to

adjust (2).

It takes 1–14 days for patients to show symptoms after in-

fection according to the WHO.7 GeoSpread supports any distri-

bution (e.g., uniform, log-normal) to define the transition of an

individual from infected to symptomatic. This allows capturing

different scenarios and model future variants of SARS-CoV-2

or different pathogens.

Since there exist patients who continue to move even after

showing symptoms, as seen in Fig. 7, we use the CDF in

Fig. 7(d) to determine the number of active days after their first

symptoms. After each infected person exhausts their active days

after infection, they are isolated.

Consistent with infectious disease simulation studies [12], we

set the simulation cycle to 5 minutes. The simulation stops either

when all agents are infected or after a number of cycles defined

by the user.8

A summary of all distributions used for simulations is

recorded in the last column of Table IV. Note that we do not

directly incorporate patient age due to lack of detailed infection-

spread data, and we do not directly use the contact degree and

unique number of locations visited due to the individual-centric

nature of the simulations. Contact degree and the number of

unique locations visited are used for validation since these are

not explicitly used as parameters. Tunable simulation parameters

are listed in the last section of Table IV.

We simulate the COVID-19 outbreak in the Seocho and Gang-

nam districts, i.e., the region of Seoul with the most hotspots,

see Fig. 1(b). This area9 has 11,438 road intersections and

7,043 buildings. GeoSpread loads the GIS data (e.g., roads, road

6https://bit.ly/3FkLHRn
7https://bit.ly/3EXl2Jh
8In this simulation, we do not explicitly model agent recovery: a recovered

agent that resumes its mobility is considered immune and non-contagious,
therefore does not contribute to the disease spread. The simulation can be trivially
extended to model recovered agents re-entering the simulation cycle.

9https://bit.ly/3gWMD5g

intersections, buildings) stored in a shapefile format, i.e., a file

that stores geometric locations and their attribute information.

Although the longest distance we observe in the PatientRoute

data set in Seoul is 30 miles, the longest distance between

two buildings in the simulated Gangnam district is 7.06 miles.

Therefore, we normalize the maximum distance to 3.53, which is

half of the longest distance in the simulated area, to ensure a valid

building selection as the agent’s destination. In the Gangnam

district there are 604,586 people and a total of 7,043 buildings.

We do not have any information on building stories, entries,

or number of rooms. This information is crucial, especially for

apartment buildings, where multiple people can be inside the

same building at the same time without contact. To address this

lack of information, we limit the population in our simulations.

We validate parameter choices against ground truth data in

Section VI.

A screenshot of the GeoSpread simulation execution can be

seen in Fig. 13(b). Black lines are roads that agents travel on

and green areas are buildings where agents stop. Agents only

have two states in terms of infection, i.e., healthy (blue dots) or

infected (red dots). The box in the top-right corner zooms on a

detail of the GeoSpread view.

VI. MODEL VALIDATION AND CASE STUDY

After presenting the generic GeoSpread tool in Section V,

we showcase the flexibility of this simulation model. We first

validate the simulation using the ground truth and show that

GeoSpread can efficiently predict the temporal evolution of

COVID-19 cases in a given place. We investigate the effect

of each data distribution on the prediction accuracy. Then, we

compare GeoSpread to two state-of-the-art approaches, i.e.,

mathematical [13] and an agent-based model [3]. Hence, we

use GeoSpread to simulate different mitigation measures (i.e.,

stay-at-home advisory, border lockdown, and vaccination) and

assess their effectiveness.

A. Validation

We focus on agents moving between Seocho and Gagnam.

Fig. 1(d) shows the percentage of residents in these two districts

that have been infected, the figure also illustrates the frequency

of residents visiting buildings in their home district, as well as

visiting the other district. We use this information to parameter-

ize the simulation. During the initialization phase, we separate

the agents into Gangnam residents (70.4% of the population) and

Seocho residents (29.6% of the population). Next, we retrieve

the distributions of agent mobility and spreader types from the

data set for residents of each district to set their attributes.

After initialization, when selecting destination buildings, the

probability of a resident staying or leaving their home district

follows Fig. 1(d).

Since two districts are considered in this simulation, starting

with only one infected agent in one of the two areas could bias the

results. Here, we start the simulation with 55 infected agents, i.e.,

the number of infections observed from the data set on March

9, 2020, proportionally assigned to agents in the two districts

(29.6% in Seocho, 70.4% in Gangnam). We selected March 9,
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Fig. 14. Validation. Results are presented with 95% confidence intervals
(shaded areas).

2020 because mitigation efforts in Seoul have yet to produce a

noticeable effect on disease spread, while also allowing us to

clearly see trends. Simulations starting at any time earlier or

around March 9, result in similar infection trends.

Fig. 14(a) depicts the number of COVID-19 cases in the

Gangnam and Seocho districts observed from the data set (black

line) and simulation (red and blue lines). The ground truth line

illustrates the COVID-19 outbreak in the two districts. At the

beginning of April, the curve flattens. This is likely due to effec-

tive counter-measures executed in Seoul, especially the Strong

Social Distancing Campaign (i.e., stay-at-home advisory) which

began on March 22. Consistent with the COVID-19 incubation

timeline, the effectiveness of the Strong Social Distancing Cam-

paign does not show immediately, but after the beginning of

April. Our simulation in Fig. 14(a) does not model the effect of

social distancing campaign so it is expected not to capture the

knee of the ground truth curve.

We align the beginning of simulation data to the time of 55

infection cases in the ground truth, since this is the starting point

of the simulation. The two simulation lines in Fig. 14(a) (whose

95% confidence interval is represented by the shaded areas)

closely follow the ground truth: the simulation of population

10,000 with infection rate 0.004 and the simulation of population

20,000 with infection rate 0.002 are in excellent agreement with

the ground truth from March 26, 2020 to April 5, 2020, when

the effects of any counter-measures are not discernible yet. The

overlap of two simulation cases with the ground truth validates

the simulation. Different population and infection rate values can

be adopted, e.g., using the approach proposed in [14] to estimate

dynamic parameters from real epidemic trends. The integra-

tion of dynamic parameters with GeoSpread is left for future

work.

Fig. 15. Hotspots in the data set (ground truth) and model.

We note in Fig. 14(a) an interesting relationship between

population and infection rate: when the population is doubled,

dividing the infection rate in half gives similar simulation out-

comes. This observation also meets the results in the generic

simulation that higher population leads to faster spreading of the

COVID-19 virus, while lowering the infection rate slows down

the virus spreading. We conclude that we can use a “limited”

population with an adjusted infection rate to efficiently (yet

accurately) model the expected behavior of larger populations.

As further validation, we simulate the effects of applying a

stay-at-home advisory mid-simulation in order to capture the

effects of the mitigation measures taken in Seoul on March 22

– the Strong Social Distancing Campaign. Fig. 14(b) depicts

the results of these simulations (with 95% confidence interval)

against the ground truth. In this simulation case, we begin with

no mitigation measures and apply a stay-at-home advisory once

we reach a certain threshold number of infections. Here, we

select this threshold based on the number of infections in the

ground truth data when the Strong Social Distancing campaign

was enacted, however, this threshold is a parameter and we can

choose to transition between no measures and a stay-at-home

advisory at any given number of infections. After applying the

stay-at-home advisory mid-simulation, the simulation results

also exhibit a flattening trend, which is consistent with the

ground truth. This further highlights the ability of the model

to capture what-if scenarios of different patterns of population

movement.

Next, we focus on hotspot locations. In Fig. 15(a), we present

the heat map of most visited locations in the Gangnam and

Seocho districts from the data set (ground truth). The most

visited areas are in the northern part of Gangnam and across the

border between the two districts. These hotspots correspond to

the density of commercial buildings in these areas, which results

in higher traffic areas. Fig. 15(b) and (c) show the heat map of

visits in the first week for simulated populations of 10,000 and

20,000, accordingly. From both simulations, we observe similar

hotspots, consistent with the ground truth heat map.

Additionally, we examine properties of clusters (i.e., out-

breaks) in the ground truth KCDC logs and the simulations.

Fig. 16(a) depicts the number of patients seen in infection

clusters in a 7-day sliding window. Fig. 16(b) shows the number

of unique locations visited by patients in infection clusters in

a 7-day sliding window. Finally, we can see the contact degree

between patients over seven days in Fig. 16(c). The similarity

of these curves further validates the accuracy of the simulation.

Here, we consider the effects of the different distributions

on the simulation accuracy. To this end, we either remove an
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Fig. 16. Validation of clusters and contact degree.

Fig. 17. Effects of removing parameters or using simpler distributions.

Fig. 18. Results from a state-of-the-art ABM [3] and a mathematical model
(SIR) [13]: comparisons with ground truth and GeoSpread.

input parameter from the simulation or utilize a more generic

distribution (i.e., Uniform) for sampling. When using the Uni-

form distribution, we assume to know the approximate minimum

and maximum values, but no further information. Results are

presented in Fig. 17. The simulation matches the ground truth

closely only when all data distributions and mitigation measures

are considered. Larger errors are detected when (i) low and super

spreaders are not considered, (ii) when irresponsible behaviors,

i.e., mobility after symptoms onset, are neglected, and (iii) when

the location type is selected from a Uniform distribution.

In Fig. 18, we compare GeoSpread to two other mod-

els: the Kermack-McKendrick Susceptible-Infected-Recovered

(SIR) model [13] as well as a state of the art agent-based

model [3]. While both models achieve reasonable accuracy, it

is important to highlight that both have shortcomings for our

particular case. The SIR model cannot take into account spatial

information and this cannot be used to simulate situations such

as border lockdowns (see Section VI-B for using GeoSpread to

evaluate this scenario). Additionally, it is not suited for analyzing

different classes of patients, such as super spreaders. On the other

hand, the state-of-the-art ABM is able to perform this kind of

analysis, however, this model requires synthetic traces to achieve

its results. The results shown here are based on a synthetic

Fig. 19. Comparison of mitigation measures.

mobility trace constructed using GeoSpread, and achieves high

accuracy since GeoSpread accurately captures patient mobility.

B. Applying Mitigation Measures

We now turn to the evaluation of the effectiveness of counter-

measures. We first consider stay-at-home advisory that allows

for only essential activity outside of the agent’s domicile. On

average, agents stay at home for longer periods time under the

advisory, but are are permitted to leave periodically. The proba-

bility of leaving home is set to 20% of the agent’s mobility. This

can be tuned to simulate a stricter (or more relaxed) stay-at-home

advisory. Once the agent arrives at the destination building, the

probability of leaving the building is defined by the mobility

without any additional scaling (i.e., the time spent outside the

domicile is not affected).

In addition to this counter-measure, we also consider strict dis-

trict border control between the Gangnam and Seocho districts,

i.e., forbid movements between these two areas entirely. With a

strict border control between these two districts, agents can only

stay in their home district: the probability of leaving their home

district is set to 0. We simulate these two mitigation measures

under population 10,000, see Fig. 19(a) where all results are

shown with 95% confidence intervals. First, the application of

a stay-at-home advisory decreases the rate of virus spread in

comparison to the baseline scenario where no counter-measures

are applied. The strict border control offers a mild mitigation

measure comparing to the baseline scenario.

Other mitigation measures (e.g., [15], [16], [17]) can be

evaluated by tuning available parameters to simulate different

behaviors of the population. For example, the effect of counter-

measures that limit the transmission of the virus (e.g., face

masks) can be studied by changing the parameter Infection Rate,

see Table IV.
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Finally, we consider the effects of vaccination. We consider

the situations where 75% and 100% of the population are vacci-

nated, with the vaccine being 50% and 75% effective. The four

variations are compared against simulations with no mitigation

measures in Fig. 19(b). We see that a more effective vaccine is

very important to slowing the spread of the virus when much

of the population receives the vaccine. All cases see notable

improvement over the baseline case. The answer to RQ3 is given

in this section and is summarized below.

RQ3: Efficiency and Accuracy of GeoSpread

Despite its simple input parameters, GeoSpread predicts

accurately the spread of COVID-19 in two Seoul neigh-

borhoods. Other mathematical and agent-based models may

achieve similar accuracy but they have shortcomings: they

cannot assess mitigation measures and need an actual syn-

thetic trace as input. GeoSpread uses as input empirical dis-

tributions extracted from available data sets and can evaluate

an array of counter-measures (e.g., stay-at-home advisory,

border lockdown, and vaccinations).

VII. DISCUSSION AND LIMITATIONS

The proposed model captures the spread of COVID-19 in an

urban setting. Although the model is validated using ground

truth, incomplete and/or missing data may limit its general-

ization and make it far from being the definitive COVID-19

spreading model. Main limitations of our approach include:

First Wave Data. This data is from the first wave in the

disease in South Korea. With South Korea having one of the best

responses to the disease globally, the mobility patterns reflect

inevitably cultural and demographic characteristics as well as

policy decisions.

Privacy Concerns. The KCDC data set is anonymized and

no sensitive data of monitored patients can be retrieved. No data

about the underage population is provided as well as movements

of patients from/to their private homes. In order to help address

this problem, we examine distributions from the Berlin data set

regarding household size, but this problem still limits the sce-

narios that can be analyzed, e.g., the impact of school closures.

Transportation Assumptions. The KCDC data set does not

show the transportation mode of patients. We overcome this

limitation by extracting such information from the Berlin data

set. The Seoul and Berlin data sets present comparable attributes

and can be used for cross-fertilization.

Data Set Volume. Despite more than 9.5 million people lived

in Seoul in 2020,10 movements of only 4004 unique patients are

logged in the KCDC data set. This might give rise to doubts

on the representativeness of the data set. Although data sets

with more information about movements of Korean people are

not available, we verify that the information extracted from the

KCDC data set (i.e., distributions presented in Section III) is

emblematic of the population of a metropolitan city by compar-

ing it with the information from the German data sets [3] which

10https://bit.ly/3AZhe99

collects the movements of millions of individuals in Germany

before the COVID-19 pandemic. We compare movements and

habits of Seoul patients with those of the Berlin, Dusseldorf,

Kelheim (district), and Leipzig. These data sets are suited for

this analysis since they monitor movements of millions of people

through their cellphones (i.e., provide person-centric data) but

cannot be used to validate GeoSpread since they do not include

information about the virus spread.

VIII. RELATED WORK

The COVID-19 pandemic has been studied extensively in

recent months due to its disruptive effects. Different approaches

have been adopted to increase our knowledge on the pandemic.

Bao et al. [18] propose COVID-GAN, a framework that allows

generating human mobility traces when different real-world

conditions apply (e.g., local policies and disease severity). Pung

et al. [19] interview COVID-19 patients in Singapore to collect

epidemiological/clinical data to study the spread of the virus in

three different Singapore clusters, this approach by its nature

can be applied to populations of a small scale only. Blockchain

is used to deploy a contact tracing system [15] and to predict

the pandemic evolution from real-time data [16], Internet-of-

Medical-Things is adopted to limit the contagion while gradually

lifting restrictions [17]. A co-location model is used in [20] to

study the spread of SARS-CoV-2 with limited data. Contreras

et al. [21] use a numerical simulation to evaluate the efficiency

of a test-trace-and-isolate strategy in containing the COVID-19

pandemic in Germany. An ML-based framework is proposed

in [14] to estimate dynamically changing values (i.e., contact,

recovery, and mortality rates) of a SIRD epidemiological model

(acronym of Susceptible, Infected, Recovered and Deceased

individual) starting from available mobility data and epidemic

trends. Epidemiological models study how an infection spreads

on a larger scale and are either mathematical or agent-based.

Mathematical models are defined by a set of equations that

allow describing the evolution of the disease [22]. Kermack

et al. [13] develop a SIR model based on differential equations

to study the spread of diseases. SIR models are widely adopted

in the literature. Since they do not consider spatial attributes, the

analysis of space-related scenarios is not supported. Bi et al. [23]

use conditional logistic regression to study the transmission of

COVID-19 in Shenzhen, China. Using data from contact-based

surveillance and accurate infector-infectee relationships, they

confirm that, on average, COVID-19 has an incubation period

of less than a week and a long clinical course. Rader et al. [24]

evaluate the socio-economic and environmental aspects of a

region affect the spreading of COVID-19 but do not focus on

the actual virus spread.

Pejó and Biczók [25] use game theory to evaluate the ef-

ficiency of face masks and social distancing in limiting the

spread of COVID-19 when some selfish patients do not use

any counter-measures. Bhattacharyya and Bauch [26] use game

theory to study the efficiency of protective vaccines, i.e., the

safest way to achieve herd immunity [27].

Agent-based models (ABMs) are a simulation-based al-

ternative of mathematical models that incorporate human
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interactions [28]. ABMs are widely used in the literature to

successfully model the spread of diseases [29].

Ferguson et al. [30] model the spread of influenza in British

and American households, schools, and workplaces. Their simu-

lations are parameterized using census and land use data as well

as air travel patterns. Note that the above work considers only

large scale (international) population movements. ABMs param-

eterized by census data have been used to capture the spread of

COVID-19 in Australia [31]. Using census and age-distribution

data from Germany and Poland, Bock et al. [32] investigate the

efficiency of mitigation strategies by accounting for interactions

within households where it is hard to social distance. Almagor

et al. [33] use an ABM to evaluate the effectiveness of contact

tracing app to limit the spread of COVID-19. Kim et al. [12] use

synthetic, location-based social network data to study outbreaks

and evaluate the effectiveness of different mitigation strategies,

especially how social behaviors affect the virus spread. ABMs

are used also to model the spread of SARS-CoV-2 in small

areas, e.g., supermarkets [34]. Differently from our approach, no

fine-grained movement data is used in any of the above works.

The above models are parameterized using census or synthetic

data while population movement habits are captured at a coarse

granularity.

Müller et al. [3] use an ABM parameterized with mobility

traces from mobile phone data for public transportation appli-

cations to study the COVID-19 outbreak in Berlin. This work

is the closest to the one presented here but does not have any

detailed statistics on agent mobility during the pandemic.

Here, we extract human movement habits and dynamics from

the KCDC data set of real COVID-19 patients. Statistics on

patient mobility, traveled distance, and visited locationare used

to tune GeoSpread and model the COVID-19 outbreak in two

districts of Seoul. Agent movements and behaviors are simulated

using the statistics of actual human movements, other structures

(e.g., networks or graphs) are not required. GeoSpread allows

the investigation and identification of mitigation strategies.

IX. CONCLUSION

Information and routes of South Korean COVID-19 patients

are analyzed to study the disease outbreak in the Gangnam and

Seocho districts of Seoul. We enrich this analysis by analyzing

detailed mobility data of four German cities and districts, i.e.,

Berlin, Dusseldorf, Kelheim (district), and Leipzig. Movement

habits in South Korea are extracted from available data sets

(i.e., the KCDC dataset cross-fertilized with the Berlin one) to

parameterize simulations in GeoSpread, our tool based on ABM

and GIS, and to study interactions among people. Simulation

results are in excellent agreement with ground truth and show

that this model can be used to flexibly examine and evaluate

a wide variety of different scenarios based on different human

mobility patterns from real-world data. While we do not claim

that it is a definitive COVID-19 spread model, GeoSpread can be

used to investigate useful what-if scenarios. We plan to (i) expand

the simulation model to capture more details on a wide variety

of mitigation measures, (ii) extract additional information from

the data in [3] to investigate the impact of public transport and

minors’ movement habits on the COVID-19 pandemic, and (iii)

include dynamic parameter computation in GeoSpread.
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