
RESEARCH PAPER

Void size distribution and hydraulic conductivity of a binary granular
soil mixture

C. S. Chang1 • T. T. Ma1

Received: 16 September 2022 / Accepted: 14 July 2023

� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Permeability of binary mixtures of soils is important for several industrial and engineering applications. Previous models

for predicting the permeability of a binary mixture of soils were primarily developed from Kozeny–Carman equation with

an empirical approach. The permeability is predicted based on an equivalent particle size of the two species. This study is

aimed to develop a model using a more fundamental approach. Instead of an equivalent particle size, the permeability is

predicted based on the bimodal void sizes of the binary mixture. Because the bimodal void sizes are not available as

commonly measured physical properties. We first develop an analytical method that has the capability of predicting the

bimodal void sizes of a binary mixture. A permeability model is then developed based on the bimodal void sizes of the

binary mixture. The developed permeability model is evaluated by comparing the predicted and experimentally measured

results for binary mixtures of glass beads, crush sand, and gravel sand. The findings can contribute to a better understanding

of the important influence of pore structure on the prediction of permeability.
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1 Introduction

Fluid flow in soils is an important consideration on the

design, construction, and stability of many civil engineer-

ing structures. A reliable analytical model for predicting

permeability of soils is a critical element in geotechnical

engineering analysis [1, 6, 15, 28].

Among the various analytical formulas for estimating

permeability for soils, the Kozeny–Carman equation is the

most popularly used, which was derived from Poiseuille’s

law and considered the pore space in soil as a bunch of

capillary tubes [3, 8, 9, 13, 16, 17, 24, 28]. A commonly

used form is as follows:

k ¼
1

5

d

SF

� �2
n3

1� nð Þ2
ð1Þ

where SF = particle shape factor (round particles: 6.0–6.6;

angular particles: 7.7–8.4), n is the porosity and d is the

particle size of the packing [9, 14, 17, 26]. It has been

reported that the prediction of Kozeny–Carman equation is

in good agreement with the measured permeability for

mono-sized packings of glass beads and for packings of

uniformly graded sand [37, 46].

However, it has been found that Eq. (1) does not provide

good predictions for the permeability of natural soils or

geomaterials, which are usually mixtures of two or more

soils of different particle sizes (e.g., silty sand and clayey

sand). For general soils with wide size distribution, a

number of empirical formulas have been proposed, for

example, by Hazen [20], Terzaghi and Peck [40], the

equation of the Naval Facilities Engineering Command

[32], Chapuis [12], Riva et al. [34], Wang et al. [44], etc. In

these empirical equations, the d in Eq. (1) is usually

replaced by an equivalent particle size, for example, d10
(particle size at 10% pass by mass obtained from the par-

ticle-size distribution curve).

Rosas et al. [36] collected 20 empirical equations and

compared the calculated and measured permeabilities for

hundreds of soil samples from different environments in

global locations. They reported that the calculated perme-

ability using empirical equations is poorly correlated to the
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measurements with errors over 500%. The discrepancies

are expected, since an empirical equation is usually derived

from data of given soil types; it cannot be applicable uni-

versally to all types of soil. Thus, these empirical equations

are not suitable for accurate prediction for widely graded

soil.

The Kozeny–Carman equation can also be used to cal-

culate the permeability of a bi-dispersed packing by using

an equivalent size deq. However, it is not an easy task to

determine the value of deq, which varies with the particle

sizes, packing porosity and fines content of the binary

mixture. Studies on the value of deq for various binary

mixtures can be found in the work by Thies-Weesie et al.

[42], Mota et al. [31], Lee and Koo [25], Choo et al. [14].

However, the approach of determining an equivalent size

deq is still empirical. Thus, the empirical equation derived

from the experimental data for one type of soil cannot be

applied to all types of soil. Hence, it seems necessary to

take a more fundamental approach rather than an empirical

approach.

Several investigators utilized void size distribution

(VSD) to predict permeability [7, 13, 19, 22, 23, 29]. This

modelling approach is more fundamental because the

cross-sectional area of capillary tubes is directly estimated

from the void sizes and void distribution, instead of particle

sizes.

In order to use this approach to predict permeability, an

accurate void size distribution (VSD) is required for each

binary mixture. The void size distribution (VSD) data are

traditionally measured by mercury intrusion porosimeter or

interpreted by experimentally determined soil–water

retention curves [2, 19, 21]. More recently, Koohmishi and

Azarhoosh [29] attempted to determine the pore size dis-

tribution from two dimensional images of the material.

O’Sullivan et al. [33], Mokwa and Trimble [29] and Taylor

et al. [39] assessed the pore structure for sandy soils using

computer simulation method and computer tomography.

It is noted that the void size distribution varies from

mixture to mixture, which is a complex function of soil

composition and soil type. Although, for each binary

mixture, the VSD can be measured using mercury

porosimeter, retention curves, computer tomography or

possibly computer simulation method, these methods are

practically cumbersome. Furthermore, the measured VSD

is only for a specific binary mixture of a given fines con-

tent, thus, the process of calculating permeability cannot be

regarded as a predictive method. Therefore, an analytical

model is needed to estimate and characterize the void size

distribution of any binary mixture of granular soil.

Recently, Fujikura [18] proposed an analytical method

for estimating the void size by assuming that each void is

formed by four spheres. The VSD can then be computed by

taking all combinations of the four spheres selected from

the particle-size distribution curve. However, this method

fails to consider voids formed by geometrical arrangements

not equal to four spherical particles, nor does it consider

non-spherical or frictional particles. There is currently no

analytical method capable of characterizing the void size

distribution of a binary mixture of soil particles.

In this paper, we aim to develop a more precise ana-

lytical method to determine the void size distribution of a

binary mixture through the theory of excess volume

potential proposed in the work by Chang and Deng [11],

and Chang [10], which prescribes the porosities associated

with each species of the binary mixture. Making use of the

excess volume potential, we then develop an analytical

method for predicting the bimodal VSD for the binary

mixture. Utilizing the bimodal VSD, we formulate a per-

meability model for the binary mixtures based on Darcy’s

and Poiseuille’s law and estimate the size of capillary tubes

directly from the viewpoint of pore structure. Finally, the

derived model is evaluated by comparing the predicted and

measured permeabilities of various types of binary mix-

tures for glass beads, crush sand, and gravel sand.

2 Void size distribution for bi-dispersed
granular packing

2.1 Concept of partial void ratios for a bi-
dispersed packing

Based on computer simulation results by Roozbahani et al.

[35], a typical void size distribution for a uniform packing

(i.e., mono-sized packed spheres) is shown in Fig. 1. The

distribution of the void size tends to concentrate towards

smaller void sizes, yielding a positively skewed distribu-

tion. The horizontal axis represents the ratio of void size to

the particle size of spheres. For this packing, the mean

Fig. 1 Void size distribution for a mono-sized packing of spheres

(data from Roozbahani et al.[35])
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value of this ratio is 0.567, which is found to be equal to

the void ratio e of the packing (e is defined as the ratio of

void volume/solid volume of the packing). Thus, the mean

void size can be obtained by multiplying the void ratio and

the solid particle size of the packing.

A bi-dispersed packing consists of large and small par-

ticles. The void ratio of the binary mixture varies with its

fines content f c (i.e., volume fraction of small particles). A

typical variation of void ratio is shown by circular symbols

in Fig. 2. The concept of inter-granular and matrix void

ratios is commonly used to describe the characteristics of

packing structures of binary mixtures.

At f c ¼ 0, the void ratio of the mono-sized packing of

large particle (or skeleton void ratio) is denoted as e01. For a

binary mixture with a low fines content, the fine particles

fill in the void space between large particles, but do not

alter the packing structure of large particles (see the insert

in left of Fig. 2). Thus e01 can be used to estimate the void

ratio, eI , of a packing with a low fines content f c [41]:

eI ¼ e01y1 � y2 ð2Þ

where y1 and y2 are the solid volume fractions of the large

and small particles respectively (note: y1 ¼ 1� y2). Sub-

script 1 refers to large particles and 2 refers to small par-

ticles. The solid volume fraction of small particles y2 is

also termed as fines content f c.

On the other hand, at f c ¼ 1, the void ratio of the mono-

sized packing of small particles (or matrix void ratio) is

denoted as e02. For a binary packing with a high fines

content, the large particles are isolated and embedded in

the matrix of small particles. Consider the embedded large

particles, which replace THE volume of small particles, but

do not alter the packing structure of small particles (see

insert in the right of Fig. 2). Thus, e02 can be used to esti-

mate the void ratio, eM , of a packing with high fines content

[27], given by

eM ¼ e02y2 ð3Þ

As shown in Fig. 2, for a packing with low fines content

(\ 5%), the void ratio eI of the packing can be approxi-

mated by the inter-granular void ratio calculated from

Eq. (2). In this range of low fines content, the voids are

primarily formed by large particles. The mean void size

can be estimated by eIv
g
1. The voids formed by small par-

ticles are negligible, since the small particles are located in

the voids between large particles.

On the other hand, for a packing with high fines content

([ 95%), the void ratio of the packing eM can be approx-

imated by the matrix void ratio from Eq. (3). In this range

of fines content, the voids are primarily formed by small

particles. The mean void size can be estimated by eMv
g
2.

The voids formed by large particles are negligible, since

the large particles are isolated embedded.

However, at the middle range of fines content (between

5 and 95%). The void size is bimodal; the large voids are

formed among large particles, and the small voids are

formed among small particles. Although the overall void

ratio of a packing mixture is known, there is no method for

calculating the two different void sizes associated with

each species of particles.

In order to calculate the two different void sizes asso-

ciated with each species of particles, a useful view is to

consider the volume of a particle packing being partitioned

into cells (e.g., Voronoi tessellation). Each cell consists of

a solid particle of volume v
g
i (i = 1, 2 for particles of both

species) and its associated void space. The volume of the

associated void space is emi v
g
i , with emi defined as the void

ratio of the mth cell of the ith species. The mth cell volume

is (emi þ 1Þvgi . Given that the overall space of a packing can

be divided into Voronoi cells, there are N i particles for the

ith species. The sum of all cell-volumes is equal to the

overall volume V of the packing.

V ¼
X

N1

m¼1

ð1þ e
m
1 Þv

g
1 þ

X

N2

m¼1

ð1þ e
m
2 Þv

g
2 ð4aÞ

Let the partial void ratio ei be defined as the mean void

ratio for all cells of the ith species. Then Eq. (4a) can be

written as

V ¼ N1 1þ e1ð Þvg1 þ N2 1þ e2ð Þvg2; ei ¼
1

N i

X

N i

m¼1

emi ð4bÞ

In Eq. (4b), the total volume is the sum of void volume

and solid volume (i.e.,V ¼ Vv þ VsÞ, where the solid vol-

ume of the packing V s ¼ N1v
g
1 þ N2v

g
2, and the total void

volumeVv ¼ eV s. Furthermore, by replacing the particle

number N i in Eq. (4) to the solid volume fractions (i.e.,

y1 ¼ N1v
g
1=V s, y2 ¼ N2v

g
2=Vs), the mixture void ratio e can

Fig. 2 Void ratio of binary mixtures of silica sands (Data from

Yilmaz [45])
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be expressed as the volume average of two partial void

ratios, e1 ande2, of each species.

e ¼ y1e1 þ y2e2 ð5Þ

As previously mentioned, for a mono-sized packing the

void size can be estimated from the solid particle size

multiplied by void ratio. For a binary packing, the bimodal

mean void sizes can be estimated from the partial void

ratios by e1v
g
1 and e2v

g
2: The measured two groups of void

sizes change in a complex fashion with fines content. As

schematically shown in Fig. 3, the void sizes evolute in

magnitude with fines content. With an increase of fines

content, the large void sizes decrease but the small void

sizes increase. Also, the volume fractions of the two void

sizes varies with fines content. This trend of void size

evolution is consistent with that observed from porosimeter

[5].

2.2 Prediction of the partial void ratios of a bi-
dispersed packing

As described in the previous section, the bimodal void sizes

in a bi-dispersed particle packing can be obtained from the

partial void ratios e1 and e2 of each species. However, the

partial void ratios cannot be measured directly from the

specimen of a binary mixture, because the particles of

different species are mixed and randomly distributed in the

sample space. In order to obtain the partial void ratios e1
and e2 for each species using the Voronoi tessellation

method describe in Eqs. (4) and (5), it is necessary to know

the geometric information of the packing structure at

microscale level, so that a statistical analysis of the Vor-

onoi cell structure can be performed.

A statistical analysis is not feasible, because the detailed

packing structure can only be obtained by CT scanning or

by computer simulation method. CT scanning is expensive

and not practical. The computer simulation does not real-

istically represent the physical material. Furthermore, both

methods are limited to a small range of problems due to the

incapacity of handling the required resolution for binary

mixtures with large contrast of particle sizes.

Another way to study the partial void ratios is through

Euler’s theory of homogeneous function [11, 38]. For a bi-

dispersed packing with volume V which consists of N1

large particles and N2 small particles, the volume of the

packing is a homogeneous function of the first degree, thus

can be expressed as

V N1;N2ð Þ ¼ N1

oV

oN1

� �

þ N2

oV

oN2

� �

ð6Þ

Comparing this equation with Eq. (4b), the value

oV=oNi
¼ ð1þ eiÞv

g
i :

Thus, the partial void ratio ei can be obtained by knowing

the change of packing volume due to a small change of

particle number N i. Applying this definition of partial void

ratio, then Eqs. (6) and (5) can lead to the following

expressions for the particle void ratios of the two species

[36].

e1 ¼ e� fc
oe

ofc
; e2 ¼ eþ 1� fcð Þ

oe

ofc
ð7Þ

Using this equation, the partial void ratios can be

obtained from the test results that provide the relationship

between the void ratio and the fines content

i:e:; oe=ofc

� �

of the soil mixture. Studied from the characteristics of

partial void ratios, Chang [10] has developed a concept of

excess volume potential, which is a function that charac-

terizes the difference between the partial void ratio ei of the

packing mixture and the void ratio of the mono-sized

packing e0i due to interaction of species. An analytical

method was derived, based on the theory of thermody-

namics, for the prediction of e1 and e2 of a bi-dispersed

packing of any given fines content. This model has been

verified to be an effective and reliable particle packing

model, which can predict the void ratio of a bi-dispersed

packing of any given fines content based on the void ratios

of the two mono dispersed packings of both species. The

model is briefly summarized in Appendix 1.

Fig. 3 A schematic plot for the bimodal void size distribution of a bi-

dispersed packing mixture at various fines contents
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2.3 Prediction of the bi-modal void sizes of a bi-
dispersed packing

The section describes how the mean bi-modal void sizes

are determined from the partial void ratios e1 and e2 for a

binary packing of a given fines content. Let the solid par-

ticle volumes be denoted by v
g
1 for a large particle and v

g
2

for a small particle. The mean void volumes vv1 and vv2
respectively for the large and the small particles can be

obtained by

vv1 ¼ e1v
g
1; vv2 ¼ e2v

g
2 ð8Þ

Accordingly, the void sizes dvi i ¼ 1; 2ð Þ associated with

each species can be estimated by a dimensional analysis

ðdvi Þ
3 ¼ eiðd

g
i Þ

3
.

In addition to the void sizes, we are also interested in

knowing the volume fractions of vv1 and vv2 for the two

species. It is noted that the volume fractions of the voids

are different from that of the solid particles for the two

species. The volume fractions of the solid particles for the

two species are defined by yi ¼
Niv

g

i

Vs
i ¼ 1; 2ð Þ where the

total solid volumeVs ¼ N1v
g
1 þ N2v

g
2. Correspondingly, the

total void volume is Vv ¼ N1v
v
1 þ N2v

v
2, and the volume

fractions of the voids xi are defined by

xi ¼
Niv

v
i

Vv

ð9Þ

Expressing the void volume vvi in terms of the partial

void ratios of the mixture ei ¼ vvi =v
g
i , using the void ratio e

in Eqs. (5), (9) becomes

xi ¼
ei

e
yi ð10Þ

As an example, experimental results by Choo et al. [12]

on crushed sand mixtures of two different size ratios are

used: d1 ¼ 1:09 mm and d2 ¼ 0:43 mm (d1=d2 ¼ 2:53)

and d1 ¼ 1:09 mm and d2 ¼ 0:15 mm (d1=d2 ¼ 7:1). The
mono sized packing void ratio is 0.8879 for particle size

1.09 mm, 0.8395 for particle size 0.43 mm, and 0.8213 for

particle size 0.15 mm.

The predicted void ratio e of the binary mixtures for

various fines contents are shown in Fig. 4a and b. The

predicted void ratio of the mixture in solid line is compared

with the experimental results in symbols. At point A, the

void ratio of the mixture is lowest denoted as eopt. The

corresponding fines content is denoted as optimum fines

content f opt. For a packing sample with fines content less

than f opt, the packing structure is dominant by large par-

ticles with small particles filled in the voids between large

particles. On the other hand, for a sample with fines content

more than f opt, the packing structure is dominant by small

particles with the large particles embedded in the matrix of

small particles.

The predicted values of e1 and e2 vary with fines content

are also shown in Fig. 4a and b. It is noted that Eq. (5) is

satisfied. The general pattern of the curves is similar for the

two different size ratios. The partial void ratios, e1 and e2,

are negatively correlated, i.e., one decreases while the other

increases. At the optimum point, the partial void ratios

e1 ¼ e2.

It is noted that, for the case in Fig. 4b, the value of e2 is

negative at low fines content. From the Euler’s equation

(i.e., Eq. (6)), the magnitude of e2 is related to the increase

of packing void volume due to an increase of the number of

small particles. A negative value of e2 means that, when

the particles are sufficiently small, it would fill in the void

space between large particles. This does not increase the

total void volume of the packing mixture. Instead, the small

particle occupies the void space and decreases the total

void volume of the mixture, resulting in a negative value.

As the fines content increases, some small particles may

wedge between two large particles increasing the void

volume of the packing mixture. However, the magnitude of

increased void volume is less than the decreased void

volume due to the occupancy of the small particles. Thus,

the overall e2 may still be negative. As the fines content

continues to increase, the filled small particles tend to

cluster and form layers between large particles, resulting a

continued increase of e2. At point A, the voids between

large particles are fully filled (i.e., optimum fines content

f opt). When fines content is higher than f opt, more large

particles are separated by small particles, and the packing

structure is starting to be dominant by small particles.

Further increase of fines content makes the large particles

isolate and embedded in the matrix of small particles. At

fines content approaches one, e2 is increased to the value of

the mono-sized e02 while e1 approaches zero.

Observed from Fig. 4a and b, it is noted that e1 [ 0

occurs for all fines contents, but e2 [ 0 occurs only for the

range of higher fines content. At low fines contents, two

conditions can be observed: (1) e2 [ 0 when the size ratio

d1=d2 is small (see Fig. 4a), (2) e2\0 when the size ratio

d1=d2 is large (see Fig. 4b). The methods of interpreting

void sizes are considered for the two different conditions:

(1) e2 [ 0, the mean void volumes vv1 and vv2 can be

calculate from Eq. (8). The volume fraction of voids

xi can be obtained from Eq. (9).

(2) e2\0, vv2 ¼ 0, and vv1 ¼ ev
g
1. In this case, the small

particles are insignificant in amount and free-to-

move rather than packed in the void spaces of large

particles. Thus, there exists no matrix of small

particles, and no void volume can be considered as

formed by the species of small particles (i.e. vv2 ¼ 0Þ.
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The effect of small particles is simply a reduction of

the void volume associated with large particles vv1.

Thus, vv1 is modified by subtracting the voids

occupied by the small particles, i.e., vv1 ¼ ðy1e1 þ

y2e2Þv
g
1 with e2 being negative. Applying Eq. (5),

vv1 ¼ ev
g
1, in which e is the void ratio of mixture as

shown in Eq. (5). The volume fraction of voids xi
can be obtained from Eq. (9).

Using Eqs. (8) and (10), the evolution of the two mean

void sizes with varying fines content is shown in Fig. 4c

and d. The general pattern of the evolution is similar to that

in Fig. 2 described in the previous section.

2.4 Prediction of the permeability of a bi-
dispersed packing

One of the pioneer methods used to model flow and

transport in porous media is based on the concept of flow in

capillary tubes. In this approach, the complex structure of

irregular pore space in porous media is replaced with a

bundle of tortuous capillary tubes of various sizes. Using

Darcy’s law and the Poiseuille formula for capillary tube

[4, 15, 16, 30], the intrinsic permeability of a bundle of

tortuous tubes of the same radius R is given by

k ¼
c

8s
R2n ð11Þ

in which n is the porosity, c is shape factor and s ¼

ðLe=LsÞ
2
is the tortuosity, the ratio of effective flow path

length Le to sample length Ls [4]. The Kozeny–Carman

equation shown in Eq. (1) is derived from Eq. (11) by

assuming a connection between the radius of tube R and

Fig. 4 Predicted and measure void ratios for mixtures a d1=d2 = 2.53, b d1=d2 = 7.1, and predicted mean bimodal void sizes for mixtures c

d1=d2 = 2.53, d d1=d2 = 7.1 (Data from Choo et al. [14])
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the particle size D using the concept of a hydraulic radius

for a packing of uniform spheres [8, 24]. Thus, Eq. (11) is

more fundamental than the Kozeny–Carman equation.

For the case (2) shown above (i.e., e2\0Þ, the small

particles in the voids between the primary matrix do not

carry effective stress and are free to move. There are two

situations that may occur during the permeability test,

which will change the pore structure significantly. Thus,

the two situations need to be considered separately.

(a) Non-percolation condition. These small particles are

free to move within the void but cannot transport to

other voids of sample, because the inter-void

connections are narrower than the particle or the

seepage force is not sufficiently large.

(b) Percolation condition. These small particles transport

from void to void by seepage force and settle to the

bottom of the sample as schematically shown in

Fig. 5a, since the inter-void connections within the

primary matrix are large enough.

2.4.1 Permeability of a bi-dispersed packing (non-

percolation condition)

We attempt to relate the radius of tube R in Eq. (11)

directly to the pore structure by knowing the bimodal mean

void sizes and their volume fractions of a packing. Since

the bimodal voids are randomly distributed in the granular

packing, the pore structure can be viewed as a bundle of

tortuous tubes of the same size R. Each tortuous tube is

formed by connected voids through the sample length. The

large voids and small voids are randomly connected in a

serial connection. Thus, the effective void size dv can be

computed by

1

dv
¼

x1

dv1
þ

x2

dv2
ð12Þ

The value of R ¼ dv=2.
For the non-percolation condition, as mentioned previ-

ously, when e2 [ 0, the mean void volumes vv1 and vv2 can

be calculated from Eq. (8). When e2\0, the volume of

voids for the two species, vv2 ¼ 0, and vv1 ¼ ev
g
1. The

effective void size and the permeability of the packing can

be calculated from Eqs. (8), (11) and (12).

The value of c=ð8sÞ in Eq. (11) is related to the tortu-

osity and particle shape, which can be back calculated from

the measured permeability for each sample with a given

fines content. It was found that the variation of c=ð8sÞ with
respect to fines content is insignificant for a given type of

binary mixture. This feature will be discussed later.

2.4.2 Permeability of a bi-dispersed packings (percolation

condition)

For the percolation condition, the permeability of the

granular packing is calculated based on the segregated

packing structure. Note that, before the particle percolation

occurs due to fluid flow, the packing has a fines content y2.

Due to percolation, we assume that all small particles

transport to and fill the lower part of the sample (hbÞ. Thus,
the upper part of the sample in Fig. 5a (haÞ has a zero fines

content, i.e., f a ¼ 0, and the fines content of the lower part

of the sample is equal to the optimum fines content f opt the

point A shown in Fig. 5b.

The relative thickness of ha and hb are dependent on the

initial fines content y2 of the sample, which can be calcu-

lated by

Fig. 5 Schematic diagram of particle segregation in a bi-dispersed sample for permeability test. On the right is the porosity characteristic for the

lower part of the bi-dispersed mixtures
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y2h ¼ f a � ha þ f opt � hb ð13Þ

since f a ¼ 0, thus

hb=h ¼ y2=fopt and ha=h ¼ 1� y2=fopt
� �

ð14Þ

Similarly, we calculate the porosities of the upper and

lower parts of the sample. The porosity of the mixture is

denoted as n, which is related to void ratio by e = n/

(1 - n). At a given fines content y2, the porosity n is

known. We assume that the total volume of the sample is

not changed after particle percolation. Since the porosity is

nopt for the lower part of the sample, which is fully filled

with small particles, the porosity of the upper part na can be

computed by

nh ¼ naha þ nopthb or na ¼
n� noptðhb=hÞ

ha=h
ð15Þ

After substituting Eq. (14) into Eq. (15), the porosity of

the upper part sample is

na ¼
n� nopt y2=fopt

� �

1� ðy2=foptÞ
ð16Þ

With the thickness and porosities described above for

the upper and lower part of the sample, the corresponding

permeabilities ka and kb for the two parts can be calculated.

The upper part of the sample is a mono-size packing with a

void ratio ea¼ na=ð1� naÞ, and the mean void volume

vv1 ¼ eav
g
1. Thus, the permeability ka can be determined

from Eq. (11). The lower part of the sample is a bi-dis-

persed packing with the optimum fines content. The partial

void ratios can be obtained from the particle packing model

(Appendix 1), and the bimodal void volumes can be

obtained from Eq. (8). The permeability kb can be deter-

mined from Eqs. (11) and (12).

The overall permeability k for the sample can be com-

puted by ka and kb on a Ruess average, given by

h

k
¼

ha

ka
þ
hb

kb
or k ¼

1
1�y2=fopt

ka
þ

y2=fopt
kb

ð17Þ

Therefore, for the case of e2\0 representing a binary

packing with a large size ratio and a low fines content,

there are two ways to calculate the permeability of the

sample; the percolation condition, and the non-percolation

condition. Since in reality, the percolation may partially

occur, thus these two conditions are the upper and lower

bound of the true solution. This will be discussed later.

3 Model evaluation

For the evaluation of the proposed model, experimental

results in the literature for three types of material, glass

beads, crushed sand, and gravel sand, are selected and

listed in Table 1. For each type of material, several classes

of binary mixtures were made of different particle size

ratios. For each class of binary mixtures, several fines

contents were performed for permeability tests. For all

binary mixtures, the measured mono-sized void ratios for

the two species are listed in Table 1. About the model

prediction, the parameter g required for the packing density

model and the coefficient c=ð8sÞ required for the packing

permeability model are listed for each type of binary

mixtures.

3.1 Spherical glass beads

The model prediction is first verified with the experiments

on glass beads by Mota et al. [31] and by Lee and Koo [25].

In the experiments by Mota et al. [31], glass bead mixtures

were carried out with three classes of size ratios

(d1=d2 ¼ 10:22; 6:37; 3:33). For each class of mixtures, the

smallest particles (d2 ¼ 0:3375 mm) were mixing with one

of the larger size particles (d1 = 3.45 mm, 2.5 mm, and

1.125 mm). The measured and predicted void ratios of

mixtures e with various fines contents are compared in

Fig. 6a, c and e. The predicted variation of e1 and e2 is also

plotted. The measured and predicted permeabilities with

various fines content are compared in Fig. 6b, d and f.

The permeability of each specimen of the mixtures is

also calculated using Kozeny–Carman equation (see

Eq. (1)). For each specimen of binary mixture, d is the

effective particle diameter d ¼ f c
d2
þ 1�f cð Þ

d1

� ��1

, n is the

measured porosity for the specimen, and SF is the constant

Table 1 List of materials and parameters

Material type d1
(mm)

d2
(mm)

d1
d2

e01 e02 g
c
8s

Glass baeds

[31]

3.45 0.34 3.33 0.629 0.662 1.8 0.010

2.15 0.34 6.37 0.630 0.641 2.5 0.010

1.13 0.34 10.22 0.646 0.667 1.8 0.010

Glass baeds

[25]

0.70 0.50 1.40 0.630 0.626 1.7 0.022

0.50 0.20 2.50 0.620 0.630 2.7 0.022

Crush sand [14] 1.09 0.15 6.75 0.890 0.820 2.7 0.008

1.09 0.43 2.40 0.890 0.840 2.0 0.008

1.09 0.67 1.58 0.890 0.850 2.0 0.008

Gravel sand

[18]

8.00 0.40 20.00 0.488 0.751 5.0 0.020
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shape factor for all specimens of the glass bead mixtures.

The value of SF is determined by having the calculated

permeabilities of all specimens best fit to the measured data

points. In Fig. 6, the value of SF is 6.5. The calculated

permeabilities are plotted in dashed lines. Both the current

model and Kozeny–Carman equation show good agree-

ment with the measured permeabilities.

It is noted that Kozeny–Carman equation is not a pre-

dictive model because the equation demands an input

parameter (porosity n), which must be physically measured

for each specimen. Whereas, in the current model, the

permeability is calculated from the bimodal pore sizes,

which can be predicted based on the particle sizes and fines

content of the specimen.

In the experiments by Lee and Koo [25], glass bead

mixtures were carried out with two classes of size ratios

(d1=d2 ¼ 2:5; 1:4). For each class of mixtures, particles of

size 0.5 mm, mixing with particles of 0.7 mm or 0.2 mm.

The measured and predicted void ratios of mixtures with

various fines contents are compared in Fig. 7a and c. The

predicted variation of e1 and e2 are also plotted. The

measured and predicted permeabilities with various fines

contents are compared in Fig. 7b and d.

Permeabilities are also calculated using Kozeny–Car-

man equation (see Eq. (1)) and plotted in dashed lines. In

Fig. 7, the value of SF is 4. Both the current model and

Kozeny–Carman equation show good agreement with the

measured permeabilities.

3.2 Crushed sands

Other than glass beads, the model prediction is verified

with the experiments on crushed sand performed by Choo

et al. [14], in which sands were crushed from the same

parent rock and sieved into four different group of particle

sizes, (1.09, 0.67, 0.43, 0.15 mm). Unlike glass beads, the

particle size of the crushed sands, for each sieved group,

cannot be made identical for all sand particles. Choo et al.

[14] indicated that the size varies slightly with a coefficient

of uniformity between 1.27 and 1.74, which is considered

uniform sand. The shape also varies from particle to par-

ticle. The crushed sands are angular in shape; the roundness

Fig. 6 Comparison of measured and predicted variation of void ratio and permeability for three classes of glass bead mixtures as a function of

fines content. a and b d1=d2 = 10.22, c and d d1=d2 = 6.37, e and f d1=d2 = 3.33 (Data from Mota et al. [31])
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of tested materials range from 0.17 to 0.20 according to the

method of Wadell [43].

The crushed sand mixtures were carried out with three

classes of size ratio (d1=d2 ¼ 6:75; 2:4; 1:58). For each

class of mixtures, d1 ¼ 1:09 mm as the largest particles,

mixing with particles of other sizes 0.67 mm, 0.43 mm,

and 0.15 mm respectively. The measured and predicted

void ratios of mixtures with various fines contents are

compared in Fig. 8a, c and e. The variation of e1 and e2 are

also plotted. The measured and predicted permeabilities

with various fines contents are compared in Fig. 8b, d and

f.

Permeabilities are also calculated using Kozeny–Car-

man equation (see Eq. (1)) and plotted in dashed lines. In

Fig. 8, the value of SF is 9. Both the current model and

Kozeny–Carman equation show good agreement with the

measured permeabilities.

3.3 Gravel sand

The model prediction is verified with the experiments by

Fujikura [18] on Gravel sand. In the experiments by Fuji-

kura [18], the size range of sand is 0.075–2 mm, and the

size range of gravel is 2–26.5 mm. Each species cannot be

regarded as mono-sized packing. Thus, the binary mixtures

of gravel and sand with a wide range of particle sizes do

not have the same meaning as bi-dispersed packing, which

is supposed to be made of particles of two distinct sizes.

However, Fujikura [18] considered the mean size to be

8 mm for gravel and 0.4 mm for sand. The experiments

Fig. 7 Comparison of measured and predicted variation of void ratio and permeability for two classes of glass bead mixtures as a function of

fines content. a and b d1=d2 = 2.5, c and d d1=d2 = 1.4 (Data from Lee and Koo [25])
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Fig. 8 Comparison of measured and predicted variation of void ratio and permeability for three classes of crushed sand mixtures as a function of

fines content. a and b d1=d2 = 6.75, c and d d1=d2 = 2.4, e and f d1=d2 = 1.58 (Data from Choo et al. [14])

Fig. 9 Comparison of measured and predicted variation of void ratio and permeability for gravel sand mixtures as a function of fines content.

(Data from Fujikura [18])
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were carried out treating the mixtures were bi-dispersed

packings.

The sand and gravel are sub-round in shape. Using the

mean particle sizes, the gravel sand mixtures have a size

ratio d1=d2 ¼ 20. The measured and predicted void ratios

of mixtures with various fines contents are compared in

Fig. 9a. The computed e1 and e2 is also plotted. The

measured and predicted permeabilities with various fines

contents are compared in Fig. 9b.

Comparing the predicted and measured results, the

agreement is not as good as in the previous cases. How-

ever, the trend is well captured. The disagreement may be

due to the wide particle size range for each species.

Permeabilities are also calculated using Kozeny–Car-

man equation (see Eq. (1)) and plotted in dashed lines. In

Fig. 9, the value of SF is 10. Both the current model and

Kozeny–Carman equation show reasonably good agree-

ment with the measured permeabilities. It is noted that in

Fig. 9a, the measured void ratio of sand is much higher

than that of gravel, thus the porosity increases rapidly when

the volume fraction of sand is dominant (i.e., fines content

greater than 0.6). Therefore, the permeabilities calculated

using Kozeny–Carman equation show an increasing trend

in the range of fines content greater than 0.6, which seems

to be unrealistic. On the other hand, the unrealistic trend is

not shown in the current model because the current model

calculated permeability based on the bimodal pore sizes,

rather than the porosity, of a mixture.

4 Discussion

In all above predictions, the value of c=ð8sÞ in Eq. (11) is

assumed to be a constant for each material type. With this

assumption, the predicted and measured results show very

good agreement for binary mixtures with various fines

contents and particle size ratios. The value of c=ð8sÞ is 0.01

for the glass beads tested by Mota et.al. [31], 0.022 for the

glass beads tested by Lee and Koo [25], 0.008 for crushed

sand [14] and 0.002 for gravel sand [18]. The range of

c=ð8sÞ varies from 0.002 to 0.022, which reflects the factor

of tortuosity/particle shape for different material type.

However, for a given material type, the applicability of

using a constant c=ð8sÞ indicates that, the variation of fines

content and particle size ratio has insignificant effect on the

factor of tortuosity/particle shape. Thus, for a given

material type, the permeability is primarily influenced by

the effective void size.

For binary packings with high particle size ratios, the

packing structure at low fines content would cause the

partial void ratio e2\0, and the packing tends to have

some degree of particle percolation during the permeability

tests. If the non-percolation case is assumed, the predicted

permeability would be much higher than the measured

results as shown by the dash lines in Fig. 10.

Thus, the upper bound is the non-percolation case. The

lower bound is the complete percolation case with two

distinct parts of the sample as shown in Fig. 5. It is noted

that all the model predictions shown in the previous section

are based on the assumption of complete percolation.

Therefore, the analyses show that high degree of particle

percolation has occurred on all the cases with e2\0.

Hence, percolation is a more realistic assumption for

Fig. 10 The upper bound solution for the permeability of bi-dispersed packings with a large particle size ratio. a crushed sand (Choo et al. [14])

b glass beads (Mota [31])
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predicting permeability of binary mixtures with high par-

ticle size ratios.

The developed model is capable of predicting the

bimodal pore sizes of a specific assembly of granular

mixture with any given fines content. The prediction is

based on the void ratios (e01 and e
0
2Þ, which are measured, at

a specified compaction level, separately for the mono-sized

packings of large particles and small particles. Thus, the

assembly of granular mixture must be regarded to have the

same specified compaction level as the mono-sized pack-

ings, in order for the prediction of bimodal pore sizes to be

valid.

Consequently, in the analysis of permeabilities using the

developed model, the specimens of various fines content

must be compacted at the same compaction level. In this

study, the specimens of crushed sand mixture and gravel-

sand mixture were compacted to the same relative densities

[14, 18]. For the specimens of glass bead mixtures, relative

densities were not measured, but the specimens were

compacted using the same preparation procedure [25, 31].

5 Conclusion

There are two goals of the current study. The first goal was

to develop a model for the bimodal void size distribution

predicted from the particle size distribution of a binary

mixture of soil. The second goal was to develop the per-

meability of the binary soil mixture based on the bimodal

void size distribution.

The conclusion of this study is listed below:

1. The applicability of the developed model is demon-

strated by comparing the predicted and measured

permeabilities for binary mixtures of glass beads,

crushed sand, gravel sand.

2. This model can be used for materials made of two

types of non-plastic soil particles, such as sand and

gravel. The model is restricted by the following

conditions: (1) the size ratio of the two types of

particles should not exceed 20, and (2) all specimens

must be prepared at the same compaction level.

3. The conventional Kozeny–Carman model is not a

predictive model for binary mixtures, because the

porosity of each specimen needs to be physically

measured as an input parameter. Whereas, the devel-

oped model predicts permeability based on the bimodal

pore sizes, which can be predicted with particle sizes

and fines content. Thus, it can be used as a tool to

predict permeabilities for binary mixtures.

4. The concept of partial void ratios [11] is useful for

predicting the evolution of pore sizes with respect to

the variation of fines content. The magnitudes of

calculated partial void ratios are also useful for

identifying the condition of particle percolation, which

allows more precise and realistic analysis.

Appendix 1: A brief summary of a particle
packing model by Chang and Deng [11]

In the model derivation for particle packing of binary

mixtures, specific volume t was used. By definition,

specific volume t is related to void ratio e by t ¼ 1þ e.

Thus, the equations in the derivation for the specific vol-

ume of a binary packing mixture can be replaced by the

void ratio, which is a function of the solid fractions of

species (y1, y2) and the partial void ratios, given by

e ¼ e1y1 þ e2y2 ð18Þ

Based on the concept of excess particle volume-poten-

tial for each species in a mixture [11], the partial void ratios

of the two species in a granular mixture were postulated to

be:

e1 ¼ e01 � a1 e01 � 1
� �

ð19Þ

e2 ¼ e02 � a2e
0
2 ð20Þ

where e01 and e02 are respectively the mono-sized void ratios

of the two species. The values of two activity coefficients

a1, a2 are between 0 and 1. With Eqs. (18), (19), and (20),

the void ratio of the mixture can be expressed as:

e ¼ e01 � a1ðe
0
1 � 1Þ

� �

y1 þ 1� a2ð Þe02y2 ð21Þ

The activity coefficients ai is hypothesized to be a

function of the two characteristic lengths in the form of

power law, given by

a1 ¼ 1�
x

d1

� �

g

; a2 ¼ 1�
d2

x

� �

g

ð22Þ

where d1 and d2 are the particle size of the two species, x is

the characteristic length of the packing and g is a material

coefficient.

Based on the thermodynamics second law, the excess

volume potential must be minimized at equilibrium of the

system, thus it leads to

oa1ðxÞ

ox
ðe01 � 1Þy1 þ

oa2ðxÞ

ox
e02y2 ¼ 0 ð23Þ

The unknown variables, a1, a2 and x can be solved by

Eqs. (22) and (23). Then, the void ratio e of the binary

mixture can be determined from Eq. (21). The partial void

ratios can be determined from Eqs. (19) and (20).
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