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Abstract

Permeability of binary mixtures of soils is important for several industrial and engineering applications. Previous models
for predicting the permeability of a binary mixture of soils were primarily developed from Kozeny—Carman equation with
an empirical approach. The permeability is predicted based on an equivalent particle size of the two species. This study is
aimed to develop a model using a more fundamental approach. Instead of an equivalent particle size, the permeability is
predicted based on the bimodal void sizes of the binary mixture. Because the bimodal void sizes are not available as
commonly measured physical properties. We first develop an analytical method that has the capability of predicting the
bimodal void sizes of a binary mixture. A permeability model is then developed based on the bimodal void sizes of the
binary mixture. The developed permeability model is evaluated by comparing the predicted and experimentally measured
results for binary mixtures of glass beads, crush sand, and gravel sand. The findings can contribute to a better understanding

of the important influence of pore structure on the prediction of permeability.

Keywords Bi-dispersed granular packing - Bimodal void distribution - Partial void ratios - Permeability

1 Introduction

Fluid flow in soils is an important consideration on the
design, construction, and stability of many civil engineer-
ing structures. A reliable analytical model for predicting
permeability of soils is a critical element in geotechnical
engineering analysis [1, 6, 15, 28].

Among the various analytical formulas for estimating
permeability for soils, the Kozeny—Carman equation is the
most popularly used, which was derived from Poiseuille’s
law and considered the pore space in soil as a bunch of
capillary tubes [3, 8, 9, 13, 16, 17, 24, 28]. A commonly
used form is as follows:

where SF = particle shape factor (round particles: 6.0-6.6;
angular particles: 7.7-8.4), n is the porosity and d is the
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particle size of the packing [9, 14, 17, 26]. It has been
reported that the prediction of Kozeny—Carman equation is
in good agreement with the measured permeability for
mono-sized packings of glass beads and for packings of
uniformly graded sand [37, 46].

However, it has been found that Eq. (1) does not provide
good predictions for the permeability of natural soils or
geomaterials, which are usually mixtures of two or more
soils of different particle sizes (e.g., silty sand and clayey
sand). For general soils with wide size distribution, a
number of empirical formulas have been proposed, for
example, by Hazen [20], Terzaghi and Peck [40], the
equation of the Naval Facilities Engineering Command
[32], Chapuis [12], Riva et al. [34], Wang et al. [44], etc. In
these empirical equations, the d in Eq. (1) is usually
replaced by an equivalent particle size, for example, djo
(particle size at 10% pass by mass obtained from the par-
ticle-size distribution curve).

Rosas et al. [36] collected 20 empirical equations and
compared the calculated and measured permeabilities for
hundreds of soil samples from different environments in
global locations. They reported that the calculated perme-
ability using empirical equations is poorly correlated to the
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measurements with errors over 500%. The discrepancies
are expected, since an empirical equation is usually derived
from data of given soil types; it cannot be applicable uni-
versally to all types of soil. Thus, these empirical equations
are not suitable for accurate prediction for widely graded
soil.

The Kozeny—Carman equation can also be used to cal-
culate the permeability of a bi-dispersed packing by using
an equivalent size d.q. However, it is not an easy task to
determine the value of d.q, which varies with the particle
sizes, packing porosity and fines content of the binary
mixture. Studies on the value of d.q for various binary
mixtures can be found in the work by Thies-Weesie et al.
[42], Mota et al. [31], Lee and Koo [25], Choo et al. [14].
However, the approach of determining an equivalent size
deq 1s still empirical. Thus, the empirical equation derived
from the experimental data for one type of soil cannot be
applied to all types of soil. Hence, it seems necessary to
take a more fundamental approach rather than an empirical
approach.

Several investigators utilized void size distribution
(VSD) to predict permeability [7, 13, 19, 22, 23, 29]. This
modelling approach is more fundamental because the
cross-sectional area of capillary tubes is directly estimated
from the void sizes and void distribution, instead of particle
sizes.

In order to use this approach to predict permeability, an
accurate void size distribution (VSD) is required for each
binary mixture. The void size distribution (VSD) data are
traditionally measured by mercury intrusion porosimeter or
interpreted by experimentally determined soil-water
retention curves [2, 19, 21]. More recently, Koohmishi and
Azarhoosh [29] attempted to determine the pore size dis-
tribution from two dimensional images of the material.
O’Sullivan et al. [33], Mokwa and Trimble [29] and Taylor
et al. [39] assessed the pore structure for sandy soils using
computer simulation method and computer tomography.

It is noted that the void size distribution varies from
mixture to mixture, which is a complex function of soil
composition and soil type. Although, for each binary
mixture, the VSD can be measured using mercury
porosimeter, retention curves, computer tomography or
possibly computer simulation method, these methods are
practically cumbersome. Furthermore, the measured VSD
is only for a specific binary mixture of a given fines con-
tent, thus, the process of calculating permeability cannot be
regarded as a predictive method. Therefore, an analytical
model is needed to estimate and characterize the void size
distribution of any binary mixture of granular soil.

Recently, Fujikura [18] proposed an analytical method
for estimating the void size by assuming that each void is
formed by four spheres. The VSD can then be computed by
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taking all combinations of the four spheres selected from
the particle-size distribution curve. However, this method
fails to consider voids formed by geometrical arrangements
not equal to four spherical particles, nor does it consider
non-spherical or frictional particles. There is currently no
analytical method capable of characterizing the void size
distribution of a binary mixture of soil particles.

In this paper, we aim to develop a more precise ana-
lytical method to determine the void size distribution of a
binary mixture through the theory of excess volume
potential proposed in the work by Chang and Deng [11],
and Chang [10], which prescribes the porosities associated
with each species of the binary mixture. Making use of the
excess volume potential, we then develop an analytical
method for predicting the bimodal VSD for the binary
mixture. Utilizing the bimodal VSD, we formulate a per-
meability model for the binary mixtures based on Darcy’s
and Poiseuille’s law and estimate the size of capillary tubes
directly from the viewpoint of pore structure. Finally, the
derived model is evaluated by comparing the predicted and
measured permeabilities of various types of binary mix-
tures for glass beads, crush sand, and gravel sand.

2 Void size distribution for bi-dispersed
granular packing

2.1 Concept of partial void ratios for a bi-
dispersed packing

Based on computer simulation results by Roozbahani et al.
[35], a typical void size distribution for a uniform packing
(i.e., mono-sized packed spheres) is shown in Fig. 1. The
distribution of the void size tends to concentrate towards
smaller void sizes, yielding a positively skewed distribu-
tion. The horizontal axis represents the ratio of void size to
the particle size of spheres. For this packing, the mean
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Fig. 1 Void size distribution for a mono-sized packing of spheres
(data from Roozbahani et al.[35])
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value of this ratio is 0.567, which is found to be equal to
the void ratio e of the packing (e is defined as the ratio of
void volume/solid volume of the packing). Thus, the mean
void size can be obtained by multiplying the void ratio and
the solid particle size of the packing.

A bi-dispersed packing consists of large and small par-
ticles. The void ratio of the binary mixture varies with its
fines content f,. (i.e., volume fraction of small particles). A
typical variation of void ratio is shown by circular symbols
in Fig. 2. The concept of inter-granular and matrix void
ratios is commonly used to describe the characteristics of
packing structures of binary mixtures.

At f. =0, the void ratio of the mono-sized packing of
large particle (or skeleton void ratio) is denoted as €Y. For a
binary mixture with a low fines content, the fine particles
fill in the void space between large particles, but do not
alter the packing structure of large particles (see the insert
in left of Fig. 2). Thus e(l) can be used to estimate the void
ratio, e;, of a packing with a low fines content f, [41]:

e =ely, =y (2)

where y; and y, are the solid volume fractions of the large
and small particles respectively (note: y; =1 — y,). Sub-
script 1 refers to large particles and 2 refers to small par-
ticles. The solid volume fraction of small particles y, is
also termed as fines content f.

On the other hand, at f. = 1, the void ratio of the mono-
sized packing of small particles (or matrix void ratio) is
denoted as 9. For a binary packing with a high fines
content, the large particles are isolated and embedded in
the matrix of small particles. Consider the embedded large
particles, which replace THE volume of small particles, but
do not alter the packing structure of small particles (see
insert in the right of Fig. 2). Thus, ) can be used to esti-
mate the void ratio, ey, of a packing with high fines content
[27], given by
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Fig. 2 Void ratio of binary mixtures of silica sands (Data from
Yilmaz [45])

emM = eg)’z (3)

As shown in Fig. 2, for a packing with low fines content
(< 5%), the void ratio e; of the packing can be approxi-
mated by the inter-granular void ratio calculated from
Eq. (2). In this range of low fines content, the voids are
primarily formed by large particles. The mean void size
can be estimated by ;1. The voids formed by small par-
ticles are negligible, since the small particles are located in
the voids between large particles.

On the other hand, for a packing with high fines content
(> 95%), the void ratio of the packing ey can be approx-
imated by the matrix void ratio from Eq. (3). In this range
of fines content, the voids are primarily formed by small
particles. The mean void size can be estimated by eyv5.
The voids formed by large particles are negligible, since
the large particles are isolated embedded.

However, at the middle range of fines content (between
5 and 95%). The void size is bimodal; the large voids are
formed among large particles, and the small voids are
formed among small particles. Although the overall void
ratio of a packing mixture is known, there is no method for
calculating the two different void sizes associated with
each species of particles.

In order to calculate the two different void sizes asso-
ciated with each species of particles, a useful view is to
consider the volume of a particle packing being partitioned
into cells (e.g., Voronoi tessellation). Each cell consists of
a solid particle of volume v‘f (i =1, 2 for particles of both
species) and its associated void space. The volume of the
associated void space is e/"v¥, with e/" defined as the void
ratio of the mth cell of the ith species. The mth cell volume
is (e 4+ 1)v¢. Given that the overall space of a packing can
be divided into Voronoi cells, there are N; particles for the
ith species. The sum of all cell-volumes is equal to the
overall volume V of the packing.

Ny N,
V:Z(l—&—e'l")v[f—FZ(l—i—e?)vﬁ (4a)
m=1 m=1
Let the partial void ratio e; be defined as the mean void
ratio for all cells of the ith species. Then Eq. (4a) can be
written as
1
V=Nil+e)v Nl ea)ie =3 el (4b)

m=1

In Eq. (4b), the total volume is the sum of void volume
and solid volume (i.e.,V = V, + V), where the solid vol-
ume of the packing Vs = Nyv{ + NV, and the total void
volumeV, = eV,. Furthermore, by replacing the particle
number N; in Eq. (4) to the solid volume fractions (i.e.,
y1 = Nvi/Vs, y, = Novi /Vy), the mixture void ratio e can
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be expressed as the volume average of two partial void
ratios, e; ande,, of each species.

e=Yye +ye (5)

As previously mentioned, for a mono-sized packing the
void size can be estimated from the solid particle size
multiplied by void ratio. For a binary packing, the bimodal
mean void sizes can be estimated from the partial void
ratios by e;v} and e;v3. The measured two groups of void
sizes change in a complex fashion with fines content. As
schematically shown in Fig. 3, the void sizes evolute in
magnitude with fines content. With an increase of fines
content, the large void sizes decrease but the small void
sizes increase. Also, the volume fractions of the two void
sizes varies with fines content. This trend of void size
evolution is consistent with that observed from porosimeter

[S].

2.2 Prediction of the partial void ratios of a bi-
dispersed packing

As described in the previous section, the bimodal void sizes
in a bi-dispersed particle packing can be obtained from the
partial void ratios e; and e, of each species. However, the
partial void ratios cannot be measured directly from the
specimen of a binary mixture, because the particles of
different species are mixed and randomly distributed in the
sample space. In order to obtain the partial void ratios e;
and e, for each species using the Voronoi tessellation
method describe in Eqs. (4) and (5), it is necessary to know
the geometric information of the packing structure at
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Fig. 3 A schematic plot for the bimodal void size distribution of a bi-
dispersed packing mixture at various fines contents
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microscale level, so that a statistical analysis of the Vor-
onoi cell structure can be performed.

A statistical analysis is not feasible, because the detailed
packing structure can only be obtained by CT scanning or
by computer simulation method. CT scanning is expensive
and not practical. The computer simulation does not real-
istically represent the physical material. Furthermore, both
methods are limited to a small range of problems due to the
incapacity of handling the required resolution for binary
mixtures with large contrast of particle sizes.

Another way to study the partial void ratios is through
Euler’s theory of homogeneous function [11, 38]. For a bi-
dispersed packing with volume V which consists of N
large particles and N, small particles, the volume of the
packing is a homogeneous function of the first degree, thus
can be expressed as

V(N;,Ny) = N, (661\‘7/1) + N, <§]\‘;2> (6)

Comparing this equation with Eq. (4b), the value
Vo, = (1+e)vs.

Thus, the partial void ratio e; can be obtained by knowing
the change of packing volume due to a small change of
particle number N;. Applying this definition of partial void
ratio, then Eqgs. (6) and (5) can lead to the following
expressions for the particle void ratios of the two species
[36].

Oe Oe
o e =e+ (1 _fC)a_fC

Using this equation, the partial void ratios can be
obtained from the test results that provide the relationship
between the void ratio and the fines content

(i.e., 66/aﬁ)

of the soil mixture. Studied from the characteristics of
partial void ratios, Chang [10] has developed a concept of
excess volume potential, which is a function that charac-
terizes the difference between the partial void ratio e; of the
packing mixture and the void ratio of the mono-sized
packing ¢ due to interaction of species. An analytical
method was derived, based on the theory of thermody-
namics, for the prediction of e; and e, of a bi-dispersed
packing of any given fines content. This model has been
verified to be an effective and reliable particle packing
model, which can predict the void ratio of a bi-dispersed
packing of any given fines content based on the void ratios
of the two mono dispersed packings of both species. The
model is briefly summarized in Appendix 1.

(7)

ep=e—f;
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2.3 Prediction of the bi-modal void sizes of a bi-
dispersed packing

The section describes how the mean bi-modal void sizes
are determined from the partial void ratios e; and e; for a
binary packing of a given fines content. Let the solid par-
ticle volumes be denoted by v{ for a large particle and v§
for a small particle. The mean void volumes v{ and v}
respectively for the large and the small particles can be
obtained by

v o__ S. YV — 8
v =epv]; vy =ens (8)

Accordingly, the void sizes d) (i = 1,2) associated with
each species can be estimated by a dimensional analysis
(&) = ei(d).

In addition to the void sizes, we are also interested in
knowing the volume fractions of v and vj for the two
species. It is noted that the volume fractions of the voids
are different from that of the solid particles for the two
species. The volume fractions of the solid particles for the

two species are defined by y; = N",—:g(z =1,2) where the
total solid volumeVs = Nyv{ 4+ Npv3. Correspondingly, the
total void volume is V, = Njv| + N,v3, and the volume
fractions of the voids x; are defined by
Ny}

v o)

Xi

Expressing the void volume v} in terms of the partial
void ratios of the mixture e; = v} / V,g, using the void ratio e
in Egs. (5), (9) becomes

€;

L=y 10
X =y (10)

As an example, experimental results by Choo et al. [12]
on crushed sand mixtures of two different size ratios are
used: dy = 1.09 mm and d; = 0.43 mm (d,/d, = 2.53)
and d; = 1.09 mm and d, = 0.15 mm (d;/d, = 7.1). The
mono sized packing void ratio is 0.8879 for particle size
1.09 mm, 0.8395 for particle size 0.43 mm, and 0.8213 for
particle size 0.15 mm.

The predicted void ratio e of the binary mixtures for
various fines contents are shown in Fig. 4a and b. The
predicted void ratio of the mixture in solid line is compared
with the experimental results in symbols. At point A, the
void ratio of the mixture is lowest denoted as eqy. The
corresponding fines content is denoted as optimum fines
content f . For a packing sample with fines content less
than f,,, the packing structure is dominant by large par-
ticles with small particles filled in the voids between large
particles. On the other hand, for a sample with fines content
more than f ., the packing structure is dominant by small

particles with the large particles embedded in the matrix of
small particles.

The predicted values of e; and e, vary with fines content
are also shown in Fig. 4a and b. It is noted that Eq. (5) is
satisfied. The general pattern of the curves is similar for the
two different size ratios. The partial void ratios, e; and ey,
are negatively correlated, i.e., one decreases while the other
increases. At the optimum point, the partial void ratios
e = ej.

It is noted that, for the case in Fig. 4b, the value of e; is
negative at low fines content. From the Euler’s equation
(i.e., Eqg. (6)), the magnitude of e, is related to the increase
of packing void volume due to an increase of the number of
small particles. A negative value of e, means that, when
the particles are sufficiently small, it would fill in the void
space between large particles. This does not increase the
total void volume of the packing mixture. Instead, the small
particle occupies the void space and decreases the total
void volume of the mixture, resulting in a negative value.

As the fines content increases, some small particles may
wedge between two large particles increasing the void
volume of the packing mixture. However, the magnitude of
increased void volume is less than the decreased void
volume due to the occupancy of the small particles. Thus,
the overall e, may still be negative. As the fines content
continues to increase, the filled small particles tend to
cluster and form layers between large particles, resulting a
continued increase of e,. At point A, the voids between
large particles are fully filled (i.e., optimum fines content
fop)- When fines content is higher than f,,, more large
particles are separated by small particles, and the packing
structure is starting to be dominant by small particles.
Further increase of fines content makes the large particles
isolate and embedded in the matrix of small particles. At
fines content approaches one, e, is increased to the value of
the mono-sized €J while e, approaches zero.

Observed from Fig. 4a and b, it is noted that e; > 0
occurs for all fines contents, but e, > 0 occurs only for the
range of higher fines content. At low fines contents, two
conditions can be observed: (1) e, > 0 when the size ratio
dy/d, is small (see Fig. 4a), (2) e; <0 when the size ratio
dy/d, is large (see Fig. 4b). The methods of interpreting
void sizes are considered for the two different conditions:

(1) e, >0, the mean void volumes v} and vy can be
calculate from Eq. (8). The volume fraction of voids
X; can be obtained from Eq. (9).

(2) e<0,vy=0,and v{ = ev‘f. In this case, the small
particles are insignificant in amount and free-to-
move rather than packed in the void spaces of large
particles. Thus, there exists no matrix of small
particles, and no void volume can be considered as
formed by the species of small particles (i.e. v§ = 0).
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Fig. 4 Predicted and measure void ratios for mixtures a d;/d, = 2.53, b dy /d, = 7.1, and predicted mean bimodal void sizes for mixtures ¢

dy/dy =2.53,d d,/d, = 7.1 (Data from Choo et al. [14])

The effect of small particles is simply a reduction of
the void volume associated with large particles vy.
Thus, v} is modified by subtracting the voids
occupied by the small particles, i.e., v{ = (y,e; +
y.e2)v§ with e, being negative. Applying Eq. (5),
v} = ev{, in which e is the void ratio of mixture as
shown in Eq. (5). The volume fraction of voids x;
can be obtained from Eq. (9).

Using Egs. (8) and (10), the evolution of the two mean
void sizes with varying fines content is shown in Fig. 4c
and d. The general pattern of the evolution is similar to that
in Fig. 2 described in the previous section.
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2.4 Prediction of the permeability of a bi-
dispersed packing

One of the pioneer methods used to model flow and
transport in porous media is based on the concept of flow in
capillary tubes. In this approach, the complex structure of
irregular pore space in porous media is replaced with a
bundle of tortuous capillary tubes of various sizes. Using
Darcy’s law and the Poiseuille formula for capillary tube
[4, 15, 16, 30], the intrinsic permeability of a bundle of
tortuous tubes of the same radius R is given by

c
8t

in which n is the porosity, ¢ is shape factor and t =
(L./Ly)* is the tortuosity, the ratio of effective flow path
length L, to sample length L; [4]. The Kozeny—Carman
equation shown in Eq. (1) is derived from Eq. (11) by
assuming a connection between the radius of tube R and

k=—Rn (11)
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the particle size D using the concept of a hydraulic radius
for a packing of uniform spheres [8, 24]. Thus, Eq. (11) is
more fundamental than the Kozeny—Carman equation.

For the case (2) shown above (i.e., e; <0), the small
particles in the voids between the primary matrix do not
carry effective stress and are free to move. There are two
situations that may occur during the permeability test,
which will change the pore structure significantly. Thus,
the two situations need to be considered separately.

(a) Non-percolation condition. These small particles are
free to move within the void but cannot transport to
other voids of sample, because the inter-void
connections are narrower than the particle or the
seepage force is not sufficiently large.

(b) Percolation condition. These small particles transport
from void to void by seepage force and settle to the
bottom of the sample as schematically shown in
Fig. 5a, since the inter-void connections within the
primary matrix are large enough.

2.4.1 Permeability of a bi-dispersed packing (non-
percolation condition)

We attempt to relate the radius of tube R in Eq. (11)
directly to the pore structure by knowing the bimodal mean
void sizes and their volume fractions of a packing. Since
the bimodal voids are randomly distributed in the granular
packing, the pore structure can be viewed as a bundle of
tortuous tubes of the same size R. Each tortuous tube is
formed by connected voids through the sample length. The
large voids and small voids are randomly connected in a
serial connection. Thus, the effective void size d" can be
computed by

RN | ]

a <038

2
hg

& 0.4 ,

1

I 1

hy '
‘ opt
e 0 At .

1 X1 X2
I _xa x 12
Fa s (12)

The value of R =d"/2.

For the non-percolation condition, as mentioned previ-
ously, when e, > 0, the mean void volumes v} and v} can
be calculated from Eq. (8). When e; <0, the volume of
voids for the two species, vy =0, and v} = evi. The
effective void size and the permeability of the packing can
be calculated from Egs. (8), (11) and (12).

The value of ¢/(81) in Eq. (11) is related to the tortu-
osity and particle shape, which can be back calculated from
the measured permeability for each sample with a given
fines content. It was found that the variation of ¢/(87t) with
respect to fines content is insignificant for a given type of
binary mixture. This feature will be discussed later.

2.4.2 Permeability of a bi-dispersed packings (percolation
condition)

For the percolation condition, the permeability of the
granular packing is calculated based on the segregated
packing structure. Note that, before the particle percolation
occurs due to fluid flow, the packing has a fines content y,.
Due to percolation, we assume that all small particles
transport to and fill the lower part of the sample (/). Thus,
the upper part of the sample in Fig. 5a (h,) has a zero fines
content, i.e., f, = 0, and the fines content of the lower part
of the sample is equal to the optimum fines content f,, the
point A shown in Fig. 5b.

The relative thickness of &, and h;, are dependent on the
initial fines content y, of the sample, which can be calcu-
lated by

0 02 04 06 08 1
Fines Content, f_ (%)

Fig. 5 Schematic diagram of particle segregation in a bi-dispersed sample for permeability test. On the right is the porosity characteristic for the

lower part of the bi-dispersed mixtures
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Yoh = fo* ha + fope * hy (13)
since f,, = 0, thus
hy/h = y2/for and hg/h=1— (yz/fopl) (14)

Similarly, we calculate the porosities of the upper and
lower parts of the sample. The porosity of the mixture is
denoted as n, which is related to void ratio by e = n/
(1 — n). At a given fines content y,, the porosity n is
known. We assume that the total volume of the sample is
not changed after particle percolation. Since the porosity is
nep Tor the lower part of the sample, which is fully filled
with small particles, the porosity of the upper part n, can be
computed by
nh = nghg + nophy, or ng = %t/(:b/h) (15)

After substituting Eq. (14) into Eq. (15), the porosity of
the upper part sample is

= n — Nopt (yZ/fopl)
¢ 1 - (yZ/fopl)

With the thickness and porosities described above for
the upper and lower part of the sample, the corresponding
permeabilities k, and k;, for the two parts can be calculated.
The upper part of the sample is a mono-size packing with a
void ratio e,=n,/(l —n,), and the mean void volume
v] = e,v§. Thus, the permeability k, can be determined
from Eq. (11). The lower part of the sample is a bi-dis-
persed packing with the optimum fines content. The partial
void ratios can be obtained from the particle packing model
(Appendix 1), and the bimodal void volumes can be
obtained from Eq. (8). The permeability k; can be deter-
mined from Eqgs. (11) and (12).

The overall permeability k for the sample can be com-
puted by k, and k, on a Ruess average, given by

hoh, hy 1
—_ta k
Pk

(16)

(17)

- 17Y2/f0p\ }’Z/fup[
ka + kp

Therefore, for the case of e; <0 representing a binary
packing with a large size ratio and a low fines content,
there are two ways to calculate the permeability of the
sample; the percolation condition, and the non-percolation
condition. Since in reality, the percolation may partially
occur, thus these two conditions are the upper and lower
bound of the true solution. This will be discussed later.
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Table 1 List of materials and parameters

Material type  d, d % &) & =
(mm) (mm)
Glass baeds 345 034 333 0629 0662 1.8 0.010
[31] 215 034 637 0630 0641 2.5 0.010
113 034 1022 0.646 0.667 1.8 0.010
Glass baeds 070 050 140 0.630 0.626 1.7 0.022
[25] 050 020 250 0.620 0.630 2.7 0.022
Crushsand [14] 1.09 0.15  6.75 0.890 0.820 2.7 0.008
1.09 043 240 0.890 0.840 2.0 0.008
1.09 067 158 0.890 0.850 2.0 0.008
Gravel sand 800 040 20.00 0488 0.751 5.0 0.020

(18]

3 Model evaluation

For the evaluation of the proposed model, experimental
results in the literature for three types of material, glass
beads, crushed sand, and gravel sand, are selected and
listed in Table 1. For each type of material, several classes
of binary mixtures were made of different particle size
ratios. For each class of binary mixtures, several fines
contents were performed for permeability tests. For all
binary mixtures, the measured mono-sized void ratios for
the two species are listed in Table 1. About the model
prediction, the parameter # required for the packing density
model and the coefficient ¢/(8t) required for the packing
permeability model are listed for each type of binary
mixtures.

3.1 Spherical glass beads

The model prediction is first verified with the experiments
on glass beads by Mota et al. [31] and by Lee and Koo [25].
In the experiments by Mota et al. [31], glass bead mixtures
were carried out with three classes of size ratios
(d/dr = 10.22,6.37,3.33). For each class of mixtures, the
smallest particles (d» = 0.3375 mm) were mixing with one
of the larger size particles (d; = 3.45 mm, 2.5 mm, and
1.125 mm). The measured and predicted void ratios of
mixtures e with various fines contents are compared in
Fig. 6a, c and e. The predicted variation of e; and e, is also
plotted. The measured and predicted permeabilities with
various fines content are compared in Fig. 6b, d and f.
The permeability of each specimen of the mixtures is
also calculated using Kozeny—Carman equation (see
Eq. (1)). For each specimen of binary mixture, d is the

-1
effective particle diameter d = (d—z—&—%) , n is the

measured porosity for the specimen, and SF is the constant
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Fig. 6 Comparison of measured and predicted variation of void ratio and permeability for three classes of glass bead mixtures as a function of
fines content. a and b d, /d, = 10.22, ¢ and d d, /d, = 6.37, e and f d,/d, = 3.33 (Data from Mota et al. [31])

shape factor for all specimens of the glass bead mixtures.
The value of SF is determined by having the calculated
permeabilities of all specimens best fit to the measured data
points. In Fig. 6, the value of SF is 6.5. The calculated
permeabilities are plotted in dashed lines. Both the current
model and Kozeny—Carman equation show good agree-
ment with the measured permeabilities.

It is noted that Kozeny—Carman equation is not a pre-
dictive model because the equation demands an input
parameter (porosity n), which must be physically measured
for each specimen. Whereas, in the current model, the
permeability is calculated from the bimodal pore sizes,
which can be predicted based on the particle sizes and fines
content of the specimen.

In the experiments by Lee and Koo [25], glass bead
mixtures were carried out with two classes of size ratios
(dy/dr = 2.5,1.4). For each class of mixtures, particles of
size 0.5 mm, mixing with particles of 0.7 mm or 0.2 mm.
The measured and predicted void ratios of mixtures with
various fines contents are compared in Fig. 7a and c. The
predicted variation of e; and e, are also plotted. The

measured and predicted permeabilities with various fines
contents are compared in Fig. 7b and d.

Permeabilities are also calculated using Kozeny—Car-
man equation (see Eq. (1)) and plotted in dashed lines. In
Fig. 7, the value of SF is 4. Both the current model and
Kozeny—Carman equation show good agreement with the
measured permeabilities.

3.2 Crushed sands

Other than glass beads, the model prediction is verified
with the experiments on crushed sand performed by Choo
et al. [14], in which sands were crushed from the same
parent rock and sieved into four different group of particle
sizes, (1.09, 0.67, 0.43, 0.15 mm). Unlike glass beads, the
particle size of the crushed sands, for each sieved group,
cannot be made identical for all sand particles. Choo et al.
[14] indicated that the size varies slightly with a coefficient
of uniformity between 1.27 and 1.74, which is considered
uniform sand. The shape also varies from particle to par-
ticle. The crushed sands are angular in shape; the roundness

@ Springer
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of tested materials range from 0.17 to 0.20 according to the
method of Wadell [43].

The crushed sand mixtures were carried out with three
classes of size ratio (d;/d, = 6.75,2.4,1.58). For each
class of mixtures, d; = 1.09 mm as the largest particles,
mixing with particles of other sizes 0.67 mm, 0.43 mm,
and 0.15 mm respectively. The measured and predicted
void ratios of mixtures with various fines contents are
compared in Fig. 8a, c and e. The variation of e; and e, are
also plotted. The measured and predicted permeabilities
with various fines contents are compared in Fig. 8b, d and
f.

Permeabilities are also calculated using Kozeny—Car-
man equation (see Eq. (1)) and plotted in dashed lines. In
Fig. 8, the value of SF is 9. Both the current model and

@ Springer

Kozeny—Carman equation show good agreement with the
measured permeabilities.

3.3 Gravel sand

The model prediction is verified with the experiments by
Fujikura [18] on Gravel sand. In the experiments by Fuji-
kura [18], the size range of sand is 0.075-2 mm, and the
size range of gravel is 2-26.5 mm. Each species cannot be
regarded as mono-sized packing. Thus, the binary mixtures
of gravel and sand with a wide range of particle sizes do
not have the same meaning as bi-dispersed packing, which
is supposed to be made of particles of two distinct sizes.
However, Fujikura [18] considered the mean size to be
8 mm for gravel and 0.4 mm for sand. The experiments
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were carried out treating the mixtures were bi-dispersed
packings.

The sand and gravel are sub-round in shape. Using the
mean particle sizes, the gravel sand mixtures have a size
ratio dy /d, = 20. The measured and predicted void ratios
of mixtures with various fines contents are compared in
Fig. 9a. The computed e; and e; is also plotted. The
measured and predicted permeabilities with various fines
contents are compared in Fig. 9b.

Comparing the predicted and measured results, the
agreement is not as good as in the previous cases. How-
ever, the trend is well captured. The disagreement may be
due to the wide particle size range for each species.

Permeabilities are also calculated using Kozeny—Car-
man equation (see Eq. (1)) and plotted in dashed lines. In
Fig. 9, the value of SF is 10. Both the current model and
Kozeny—Carman equation show reasonably good agree-
ment with the measured permeabilities. It is noted that in
Fig. 9a, the measured void ratio of sand is much higher
than that of gravel, thus the porosity increases rapidly when
the volume fraction of sand is dominant (i.e., fines content
greater than 0.6). Therefore, the permeabilities calculated
using Kozeny—Carman equation show an increasing trend
in the range of fines content greater than 0.6, which seems
to be unrealistic. On the other hand, the unrealistic trend is
not shown in the current model because the current model
calculated permeability based on the bimodal pore sizes,
rather than the porosity, of a mixture.

@ Springer

4 Discussion

In all above predictions, the value of ¢/(8t) in Eq. (11) is
assumed to be a constant for each material type. With this
assumption, the predicted and measured results show very
good agreement for binary mixtures with various fines
contents and particle size ratios. The value of ¢/(87) is 0.01
for the glass beads tested by Mota et.al. [31], 0.022 for the
glass beads tested by Lee and Koo [25], 0.008 for crushed
sand [14] and 0.002 for gravel sand [18]. The range of
¢/(81) varies from 0.002 to 0.022, which reflects the factor
of tortuosity/particle shape for different material type.
However, for a given material type, the applicability of
using a constant ¢/(81) indicates that, the variation of fines
content and particle size ratio has insignificant effect on the
factor of tortuosity/particle shape. Thus, for a given
material type, the permeability is primarily influenced by
the effective void size.

For binary packings with high particle size ratios, the
packing structure at low fines content would cause the
partial void ratio e; <0, and the packing tends to have
some degree of particle percolation during the permeability
tests. If the non-percolation case is assumed, the predicted
permeability would be much higher than the measured
results as shown by the dash lines in Fig. 10.

Thus, the upper bound is the non-percolation case. The
lower bound is the complete percolation case with two
distinct parts of the sample as shown in Fig. 5. It is noted
that all the model predictions shown in the previous section
are based on the assumption of complete percolation.
Therefore, the analyses show that high degree of particle
percolation has occurred on all the cases with e; <O0.
Hence, percolation is a more realistic assumption for
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predicting permeability of binary mixtures with high par-
ticle size ratios.

The developed model is capable of predicting the
bimodal pore sizes of a specific assembly of granular
mixture with any given fines content. The prediction is
based on the void ratios (e? and eg), which are measured, at
a specified compaction level, separately for the mono-sized
packings of large particles and small particles. Thus, the
assembly of granular mixture must be regarded to have the
same specified compaction level as the mono-sized pack-
ings, in order for the prediction of bimodal pore sizes to be
valid.

Consequently, in the analysis of permeabilities using the
developed model, the specimens of various fines content
must be compacted at the same compaction level. In this
study, the specimens of crushed sand mixture and gravel-
sand mixture were compacted to the same relative densities
[14, 18]. For the specimens of glass bead mixtures, relative
densities were not measured, but the specimens were
compacted using the same preparation procedure [25, 31].

5 Conclusion

There are two goals of the current study. The first goal was
to develop a model for the bimodal void size distribution
predicted from the particle size distribution of a binary
mixture of soil. The second goal was to develop the per-
meability of the binary soil mixture based on the bimodal
void size distribution.

The conclusion of this study is listed below:

1. The applicability of the developed model is demon-
strated by comparing the predicted and measured
permeabilities for binary mixtures of glass beads,
crushed sand, gravel sand.

2. This model can be used for materials made of two
types of non-plastic soil particles, such as sand and
gravel. The model is restricted by the following
conditions: (1) the size ratio of the two types of
particles should not exceed 20, and (2) all specimens
must be prepared at the same compaction level.

3. The conventional Kozeny—Carman model is not a
predictive model for binary mixtures, because the
porosity of each specimen needs to be physically
measured as an input parameter. Whereas, the devel-
oped model predicts permeability based on the bimodal
pore sizes, which can be predicted with particle sizes
and fines content. Thus, it can be used as a tool to
predict permeabilities for binary mixtures.

4. The concept of partial void ratios [11] is useful for
predicting the evolution of pore sizes with respect to
the variation of fines content. The magnitudes of

calculated partial void ratios are also useful for
identifying the condition of particle percolation, which
allows more precise and realistic analysis.

Appendix 1: A brief summary of a particle
packing model by Chang and Deng [11]

In the model derivation for particle packing of binary
mixtures, specific volume v was used. By definition,
specific volume v is related to void ratio e by v =1 +e.
Thus, the equations in the derivation for the specific vol-
ume of a binary packing mixture can be replaced by the
void ratio, which is a function of the solid fractions of
species (v, y,) and the partial void ratios, given by

e=ey +ey (18)

Based on the concept of excess particle volume-poten-
tial for each species in a mixture [11], the partial void ratios
of the two species in a granular mixture were postulated to
be:

er=¢) —oy(e] — 1) (19)
ey = ) — e (20)

where ¢! and €9 are respectively the mono-sized void ratios
of the two species. The values of two activity coefficients
oy, o are between 0 and 1. With Egs. (18), (19), and (20),
the void ratio of the mixture can be expressed as:

e= (6(1) — o (e} — D)y, + (1 - o)edy, (21)

The activity coefficients o; is hypothesized to be a
function of the two characteristic lengths in the form of
power law, given by

n n
a1:<1—;—1) ;a2=<1—%> (22)

where d; and d, are the particle size of the two species, X is
the characteristic length of the packing and 7 is a material
coefficient.

Based on the thermodynamics second law, the excess
volume potential must be minimized at equilibrium of the
system, thus it leads to

0oy (x) Oop (x)

0
T(El — Dy + o

The unknown variables, o, o and x can be solved by
Egs. (22) and (23). Then, the void ratio e of the binary
mixture can be determined from Eq. (21). The partial void
ratios can be determined from Egs. (19) and (20).

egyz =0 (23)

@ Springer
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