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Disorder-enabled Andreev reflection of a
quantum Hall edge

Vladislav D. Kurilovich 1 , Zachary M. Raines1 & Leonid I. Glazman 1

We develop a theory of charge transport along the quantum Hall edge
proximitized by a superconductor. We note that generically Andreev
reflection of an edge state is suppressed if translation invariance along the
edge is preserved. Disorder in a “dirty” superconductor enables the
Andreev reflection but makes it random. As a result, the conductance of a
proximitized segment is a stochastic quantity with giant sign-alternating
fluctuations and zero average. We find the statistical distribution of the
conductance and its dependence on electron density, magnetic field, and
temperature. Our theory provides an explanation of a recent experiment
with a proximitized edge state.

Recent interest in engineering an exotic superconductor have
renewed the effort to combine the superconducting proximity effect
with a quantizing magnetic field. The combination of the two has
been proposed as a route to realize new quasiparticles, such as
parafermions1,2, which may be employed for topological quantum
computing3.

The picture of the proximity effect is based onAndreev reflection,
in which an electron incident on the interface between a normal-state
conductor and a superconductor is reflected as a hole4. In fact, this
electron-hole conversion has been demonstrated5,6 in focusing
experiments utilizing a weakmagnetic field B to bend the electron and
hole trajectories. Classically, trajectory bending due to the Lorentz
force leads to formation of skipping orbits propagating along the
boundaries. At fixed energy, quasiclassical quantization results in a
discrete spectrum of angles αn(B) such a trajectory may form with the
boundary. For electron-hole conversion at a boundary with a clean
superconductor, the angles of incidence and reflection obey the ret-
roreflection condition, αn(B) + αm(B) =π. As follows from a simple
geometric analysis, this requires the centers of electron and hole
cyclotron orbits to be mirror-symmetric with respect to the interface,
yc,n(B) + yc,m(B) = 0. In fact, the centers of orbits are integrals ofmotion
and the above symmetry condition is equivalent to the conservation of
momentum component parallel to the interface. Therefore, the sym-
metry condition is exact and valid in a fully-quantum description,
beyond the semiclassical approximation.

In the conditions of the quantumHall effect, yc can be viewed as
the positions of edge states. Their number decreases with the

increase of the magnetic field B. In high field (that is, at filling factor
ν = 2), a single edge state remains, n =m = 1. Application of the
mirror-symmetry condition shows that the proximitization is
effective only when yc,1(B) = 0. This configuration is realized at a
single value of B. Appreciable electron-hole conversion occurs only
at that fine-tuned value of the field (see Supplementary Note 1 for
further discussion).

Disorder, however, breaks the momentum conservation and
relaxes themirror-symmetry constraint. This allows for an appreciable
electron-hole conversion at any magnetic field. Indeed, a strong con-
version signal was observed in recent experiments7–10 without fine-
tuning; the need of high critical fields Hc2 dictated the use of dis-
ordered (“dirty”) superconductors. Robust Andreev reflection, being
enabled by disorder, is naturally sensitive to its realization in a sample.
As a result, the charge transport varies stochastically with control
parameters such as the magnetic field or the electron density, as is
observed both in experiment8 and in numerical simulation11.

The crucial difference of conduction along the proximitized
quantumHall edge from the conventionalmesoscopic transport stems
from the chirality of the edge states. This renders the well-established
theory ofmesoscopic conductancefluctuations12,13 inapplicable. In this
work, we develop a quantitative theory of mesoscopic quantum
transport along the proximitized chiral edge, making predictions for
the statistics of conductance fluctuations and their dependence on
electron density, magnetic field, and temperature. The results
obtained for chiral transport differ substantially from their counter-
part in usual conductors.
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Results
Model
We are interested in the linear conductance G in a three-terminal set-
ting, see Fig. 1(a). To find G, we start with the Hamiltonian

H =H2DEG +HSC +HT: ð1Þ

Here, H2DEG describes the two-dimensional electron gas (2DEG) in a
ν = 2quantumHall state.HSC is theHamiltonianof the superconductor.
We consider the experimentally relevant7–10 “dirty” limit lmfp≪ ξ, where
lmfp and ξ are, respectively, the electron mean free path and the
coherence length in the superconductor. Coupling between the 2DEG
and superconductor is described by the tunneling Hamiltonian14,15

HT = t
X
σ

Z L

0
dxð∂yψ

y
σðx, 0Þ∂yχσðx, 0, 0Þ+h:c:Þ, ð2Þ

where ψσ(x, y) and χσ(x, y, z) are annihilation operators for an electron
with spin σ =↑ or↓ in the 2DEG and superconductor, respectively. The
interface of length L is located at y = z = 0; ∂y denotes the partial deri-
vative in the normal to the interface direction. For simplicity, we
assume that the tunneling amplitude t is uniform along the interface.

For the purpose of describing transport at low temperature and
bias, it is convenient to derive an effective Hamiltonian focusing on
chiral electrons at the 2DEG’s edge,

Heff =Hedge +Hprox: ð3Þ

The first term is obtained by projecting H2DEG onto the subspace of
edge states belonging to a single Landau level

Hedge =
X
σ

Z
dx ηy

σðxÞ_v½�i∂x � kμ�ησðxÞ: ð4Þ

Here, ησ(x) is a field operator for chiral electrons with σ =↑ or ↓, v is
their velocity, and kμ is the Fermi momentum; we neglect the Zeeman
splitting. The second term in Eq. (3) describes the effect of super-
conducting proximity. It is obtained by a standard Schrieffer-Wolff
transformation16 that removes coupling (2) to the first order in t. For
electron energies E≪Δ, as measured from the Fermi level, the
transformation results in

Hprox = ð∂yΦÞ2t2
Z L

0
dx1dx2 η̂

yðx1Þ∂2y1y2Gðx1, x2Þη̂ðx2Þ, ð5Þ

where η̂ðxÞ= ðη"ðxÞ,� ηy
#ðxÞÞ

T
, the 2 × 2 matrix Gðx1, x2Þ is the Green’s

function of the superconductor at E =0 (∂2
y1 ,y2

is a mixed partial deri-
vative with respect to y1 and y2; arguments y1,2, z1,2 = 0 are suppressed
for brevity),Δ is the energy gap in the superconductor, andΦ(y) is the
transverse component of the edge state’s wave function at the
Fermi level.

ConductanceG at T = 0 can be expressed in terms of transmission
amplitudes across the proximitized segment in the normal (Ae) and
Andreev (Ah) channels at E = 0,

G=GQð∣Ae∣
2 � ∣Ah∣

2Þ, ð6Þ

whereGQ = 2e2/h is the conductancequantum. To findG in the setup of
Fig. 1(a), we thus need to solve a quantum-mechanical scattering
problem.

Andreev amplitude for a short segment
An electron experiences at most one Andreev reflection while propa-
gating along a sufficiently short proximitized segment. The corre-
sponding Andreev amplitude can be found perturbatively in Hprox.
With the help of Born approximation, we obtain

Ah = � ð∂yΦÞ2t2
_v

Z
dx1dx2e

ikμðx1 + x2Þ∂2
y1y2

Gheðx1, x2Þ, ð7Þ

whereGhe is the anomalous component of the superconductor Green’s
function17.

The Green’s function in Eq. (7) is determined by the interference
of electron waves in the superconductor. The stochastic interference
pattern is sensitive to a particular disorder landscape in the region of
size ~ ξ adjacent to the interface. Thus, Ghe and Ah of Eq. (7) are random
quantities. The latter fluctuates upon varying the magnetic field or the
electron density in the 2DEG.

To characterize the statistical properties of the amplitude,
we first find 〈Ah〉. The averaging here is performed over a suffi-
ciently broad window of magnetic fields or electron densities.
Formally, it is equivalent to averaging over the possible disorder
configurations in the superconductor18. With the help of the lat-
ter, more practical definition we obtain:
hAhi /

R
dx1dx2e

ikμðx1 + x2ÞhGheðx1 � x2Þi /
R
dxe2ikμx / δðkμÞ. We see

that 〈Ah〉 = 0 unless kμ = 0. In the following, we disregard such a
fine-tuning and take 〈Ah〉 = 0.

Next, we compute the average probability of the Andreev reflec-
tion 〈∣Ah∣2〉. As follows from Eq. (7), we need to average product of the
anomalous Green’s functions of the superconductor. Such an average
can be expressed in terms of the normal-state diffuson and Cooperon
via a standard procedure (see, e.g., Ref. 19). Assuming that the thick-
ness of the superconducting film and L exceed ξ, we obtain (see

Fig. 1 | Transport along the quantum Hall edge proximitized by a disordered
superconductor. a Electrons are launched toward the proximitized segment from
an upstream electrode biased by voltage V. An electron propagating along the
segment converts randomly into a hole over the distance lA, which is controlled by
disorder in the superconductor, see Eq. (8). b Evolution of the electronic wave
function, see Eq. (10), is similar to the motion of a “spin” in a stochastic effective
“magnetic field”. The conductance G = I/V is determined by the result of a random
walk of a point on a Bloch sphere. c G is a random quantity that fluctuates upon
varying the electron density n in the 2DEG (traces are simulated using Eq. (10); units
of n are the same for the two plots and are otherwise arbitrary). d The loss of
correlation between the values of G upon a change in n is quantified by function
CðδnÞ, see Eqs. (15)–(17). The origin of the correlations loss is illustrated by the
divergence between two stochastic trajectories on a Bloch sphere. The “spins”
corresponding to different values of n experience a different effective “magnetic
field”, and thus drift apart in the course of evolution. The separation of the “spins” is
slower for stronger disorder. As the result, the trace G(n) in (c) is smoother for
smaller lA.
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Methods section for a detailed derivation):

h∣Ah∣
2i= L

lA
,

1
lA

=
4πg2

GQσ
ln

ξ
lmfp

: ð8Þ

Here g = 2π2GQt
2ð∂yΦÞ2νQHνMpF=_ is the conductance per unit length

of the interface between the quantum Hall edge and the metal in the
normal state. Alongwith the dependenceonΦ(y), the conductance g is
proportional to the one-dimensional density of edge states νQH = 1/
(2πℏv). It is also proportional to the normal-state density of states νM
and Fermi momentum pF in the superconductor. Unlike in the clean
case, the leading contribution to the Andreev reflection comes from
electron trajectories much longer than the Fermi wave length, with
length scale set instead by ξ≫ lmfp. The presence of the logarithmic
factor and the appearance of the normal-state conductivity σ in 1/lA
results from the diffusive motion of electron in the superconductor.

The perturbative result, Eq. (7), is applicable at L≪ lA. Under this
condition, Ah is a Gaussian random variable which allows one to
compute all moments of Ah distribution. Using Eq. (6) we find
〈G〉 =GQ(1− 2L/lA) and hhG2ii= hG2i � hGi2 = 4G2

QL
2=l2A for the average

value and fluctuation of the conductance.

Conductance of a long segment
At L≫ lA, an incident electronexperiencesmultipleAndreev reflections
upon traversing the proximitized segment. The first-order perturba-
tion theory cannot be applied directly to find the amplitude Ah in this
case. Instead, we track how the quasiparticle wave function evolves
along the segment piece by piece.

We break the segment into a series of short elements with length
δL satisfying ξ≪ δL≪ lA. Under these conditions, the Andreev ampli-
tudes of different elements δAh(x) are statistically independent and
may still be evaluated perturbatively, δAhðxÞ=αðxÞ �

ffiffiffiffiffiffi
δL

p
. In addition

to Andreev reflections, a quasiparticle may experience forward scat-
tering due to an excursion in the superconductor. Similarly to δAh(x),
we find for the electron forward scattering phase δΘðxÞ= ϑðxÞ �

ffiffiffiffiffiffi
δL

p

(see Supplementary Note 2 for details of the derivation). Variables α(x)
and ϑ(x) are Gaussian and independent, hαðxÞϑðx0Þi =0. Using Eq. (8)
and a similar relation for 〈Θ2〉 we obtain for the correlators

hαðxÞα?ðx0Þi= hϑðxÞϑðx0Þi= 1
lA

δðx � x0Þ: ð9Þ

The change of the wave function across each element is small.
Therefore, we can describe the wave function evolution by a differ-
ential equation:

i
∂
∂x

aeðxÞ
ahðxÞ

� �
=

�ϑðxÞ α?ðxÞ
αðxÞ ϑðxÞ

� �
aeðxÞ
ahðxÞ

� �
: ð10Þ

Here ae(x) and ah(x) are the electron and hole components of the
quasiparticle wave function, respectively (we also promoted α(x) and
ϑ(x) from the variables defined on a discrete set of elements to the
continuous fields).

Equation (10) describes a unitary evolution of a two-component
spinor, which can be visualized as a randomwalk of a point on a Bloch
sphere, see Fig. 1(b). We parameterize aeðxÞ= cosðθðxÞ=2Þ and
ahðxÞ= eiϕðxÞ sinðθðxÞ=2Þ, where θ and ϕ are polar and azimuthal angles
on the sphere, respectively (in the parameterization, we suppressed
the common phase as it is inconsequential for G). The conductance
G=GQ cosθðLÞ can be expressed in terms of a solution of Eq. (10) with
initial condition θ(0) = 0.

Todetermine the statistics of conductancefluctuations,we derive
a Fokker-Planck equation20 for the distribution function Pðθ,ϕ∣xÞ with

help of Eq. (9):

∂P
∂x

=
1
lA

Δθ,ϕ +∂2
ϕ

� �
P: ð11Þ

Here Δθ,ϕ is the Laplace-Beltrami operator. Parameter 1/lA plays the
role of a diffusion coefficient in the amplitude’s randomwalk. Equation
(11) can solved straightforwardly in terms of angular harmonics,
Pðθ,ϕ∣xÞ= P1

l =0ð2l + 1ÞPlðcosθÞe�lðl + 1Þx=lA=4π, where Pl(z) are
Legendre polynomials. The independence of Pðθ,ϕ∣xÞ on ϕ stems
from the azimuthal symmetry of Eq. (11) and its initial condition.

Using the found distribution function, we obtain for the average
conductance:

hGi=GQe
�2L=lA : ð12Þ

At L≫ lA, conductance G is distributed uniformly in the interval
[ −GQ,GQ] with 〈G〉 = 0 and variance hhG2ii=G2

Q=3. Thus, the con-
ductance fluctuations pattern is sign-alternating and evenly distrib-
uted between positive and negative values, see Fig. 1(c). While the
exponential with L decay similar to our Eq. (12) was also demonstrated
in related setups in Refs. 21,22, these works missed the giant
fluctuations of conductance.

Suppression of fluctuations by vortices
Only a type II superconductor can withstandmagnetic field B required
to enter the quantum Hall regime in the 2DEG. Such field induces
vortices, which lead to a non-vanishing density of states in the super-
conductor at the Fermi level23. As a result, an electron or a hole pro-
pagating along the edge can tunnel normally into the superconducting
electrode thus not contributing to G. This leads to attenuation of
conductance fluctuations.

The probability of an incident electron to survive the propagation
along the proximitized segment and reach the downstream electrode
(as a particle or as a hole) decreases exponentially with L:

psurv = expð�γLÞ, γ =
g
GQ

�ν

νM
: ð13Þ

Here γ is the probability of normal tunneling into superconductor per
unit length of the segment. It is determined by the induced by vortices
density of states �ν taken at E =0 and averaged along the interface.
Despite the attenuation, at L≫ lA the conductance distribution remains
uniform. However, its spread reduces to the interval ½�Gmax,Gmax� and
its variance becomes

hhG2ii= G2
max

3
, Gmax =GQ psurv: ð14Þ

Ratio �ν=νM in Eq. (13) increases with B/Hc2, reaching unity at the upper
critical field, B =Hc2. Consequently, 〈〈G2〉〉 decreases with increasing B.
This is qualitatively consistent with the observations of Ref. 8.

Conductance correlation function
We now find the correlation function of the conductance fluctuations
with the electron density n in the 2DEG,

CðδnÞ= hhGðnÞ � Gðn + δnÞii: ð15Þ

Variation of density δn shifts the Fermi momentum of chiral electrons
by δkμ = δn(∂μ/∂n)/(ℏv), where ∂μ/∂n is the inverse compressibility of
the quantum Hall state. δkμ affects the phases of Andreev reflection
amplitudes, whose interference determines the conductance. We see
fromEq. (7) thatαðxÞ ! αðxÞe2iδkμx upon changingn→ n + δn. Applying
this modification to Eq. (10) and using Eq. (9), we derived a differential
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equation for CðδnÞ as a function of L (see Supplementary Note 3).
Solving it, we find at L≫ lA:

CðδnÞ= hhG2ii exp �4
3

δn
ncor

� �2
" #

: ð16Þ

The correlation density ncor is given by:

ncor =
∂n
∂μ

_vffiffiffiffiffiffiffi
lAL

p : ð17Þ

The dependence of Eq. (17) on L and lA is of particular note. Firstly,
ncor / 1=

ffiffiffi
L

p
reflects the diffusive character of the wave function evo-

lution. In contrast, periodic oscillations of the quasiparticle between
electron and hole states in the absence of disorder would lead to CðδnÞ
variation on a scale δn∝ 1/L24. Secondly, ncor / 1=

ffiffiffiffiffi
lA

p
increases with

disorder in superconductor, as lA∝ σ, cf. Eq. (8). Thus, the pattern of
mesoscopic fluctuations is smoother for a dirtier superconductor, see
Fig. 1(c). This unusual behavior is similar in its origin to the motional
narrowing in nuclear magnetic resonance25.

The conductance also fluctuates with the magnetic field. The
generalization of Eq. (16) reads Cðδn,δBÞ= hhG2ii exp½� 4

3 δk
2
μlAL�

exp½� 8
3 ðδg=gÞ

2L=lA�. Change in the Fermi momentum δkμ(δn, δB)
varies the phases of the Andreev reflection amplitudes (as discussed
above). Variation δg(δn, δB) affects the amplitudesmagnitude through
the dependence ofΦ(y) and v on B and n, cf. Eq. (7). Functions δg and
δkμ acquire a particularly simple form in the limit of a small disorder-
induced broadening of Landau levels, δε≪ ℏωc (here ωc is the cyclo-
tron frequency). We find δg/g = δB/B and δkμðδn,δBÞ=
1
v
∂μ
∂n ½δn� νδB=ϕ0�, where ν(n,B) is the quantum Hall filling factor and

ϕ0 = hc/e (see Supplementary Note 3 for details of the derivation). In
expression for δkμ(δn, δB), we also assumed the London penetration
depth λ≫ lA to neglect the diamagnetic current effect.

Effect of a vortex entrance
In the above we disregarded the entrance of vortices in the super-
conductor through the interface. An entering vortex introduces a kink
in the phase of the order parameter near the interface. This affects the
interference between the Andreev reflection processes thus leading to
a jump δG in the conductance.

The magnitude of δG is a random quantity whose statistical
properties depend on the relation between d and lA, where d is the
distance of the vortex core to the interface. We compute the variance,
CjumpðdÞ= hðδGÞ2i, where the average is evaluated over a window of
electron densities of width exceeding ncor. To do that, we compare the
results of the wave function evolution along the proximitized segment
before and after the vortex has entered.

In treating the entrance of a new vortex, we assume the regime of
strong pinning, and thus neglect the shifts in the positions of other
vortices. In these conditions, the vortex entrance leads to αðxÞ !
αðxÞe�iδφðx�xvÞ in Eq. (10). Here, the phaseδφðx � xvÞ=π +2 arctanð½x �
xv�=dÞ interpolates between 0 and 2π over the interval ∣x − xv∣ ~ d,
where xv is the x-coordinate of the vortex core. Theoverall interference
pattern does not change substantially if d≪ lA. Under this condition,
the conductance jump is small. It is also small in the opposite limit,
d≫ lA, in which the presence of δφ(x − xv) can be accounted for with
the help of the adiabatic approximation applied to Eq. (10). We find
(see Supplementary Note 4 for details of the derivation):

CjumpðdÞ
hhG2ii

=
32πd
3lA

, d≪ lA,

4πlA
3d , d≫ lA:

(
ð18Þ

The two asymptotes match each other at d ~ lA. In this case, the con-
ductance jump is maximal and comparable to the signal itself,

CjumpðdÞ∼ hhG2ii. This regime is relevant for the data presented
in Ref. 8.

Conductance fluctuations at finite temperature
In a conventional mesoscopic conductor, the electron transmission
amplitudes at energies E1 and E2 are uncorrelated if ∣E1 − E2∣ ≳ ETh. The
Thouless energy here is determined by the electron propagation time
across the sample; ETh = ℏv/L in the ballistic limit. Thus, the ordinary
mesoscopic conductance fluctuations12,13 are smeared out at tem-
perature T ≳ Tsm = ℏv/L.

While quasiparticles propagate ballistically along the prox-
imitized quantumHall edge, the energy scale ℏv/L is irrelevant for the
correlation of Andreev amplitudes. Themainmechanism responsible
for the variation of Ah with E is the dependence of the anomalous
Green’s function on E/Δ in Eq. (7) generalized to finite energy (we
assume Δ≪ ℏωc and disregard other mechanisms which are con-
trolled by E/(ℏωc)). Due to this dependence, the size of each step in
the amplitude’s random walk [cf. Eq. (10)] changes by a relative
amount ~ E2/Δ2 from its E = 0 value. This leads to the divergence of
trajectories corresponding to energies E1 and E2 on the Bloch sphere.
The fluctuations of G are smeared out above Tsm such that the
angular separation between the trajectories end-points is δθ ~ 1 for
∣E1 − E2∣, E1 ~ Tsm. We estimate ðδθÞ2 ∼ ðE2

1�E2
2Þ

2

Δ4
L
lA
, and thus find

T sm ∼ΔðlA=LÞ1=4. The dependence of Tsm on L is in stark contrast with
a conventional ballistic conductor result. The difference stems from
the chiral nature of the edge, which prohibits backscattering and
formation of standing waves.

The found weak dependence, Tsm∝ L−1/4, prompts us to explore
inelastic scattering as a mechanism of the fluctuations suppression. In
one dimension, inelastic pair collisions are forbidden by the energy
and momentum conservation26. Violation of translation invariance by
disorder allows for the pair collisions at the edge and leads to a stan-
dard Fermi liquid estimate for the scattering rate27, τ�1

in ðTÞ= bT2. The
conductancefluctuations are suppressed at temperature exceedingTin
such that v τin(Tin) ~ L. We then find Tin∝ L−1/2. The comparison of Tin
and Tsm is sensitive to a coefficient b which is not universal and
depends on disorder (see Supplementary Note 5).

Discussion
In summary, disorder allows for efficient Andreev reflection of a
quantum Hall edge without fine-tuning, but it introduces random-
ness in the edge transport. Electrons stochastically convert into
holes over a length scale lA, see Eq. (8). This stochasticity results in
conductance fluctuations with the variation of electron density or
magnetic field strength. For a long edge, L≫ lA, the average con-
ductance 〈G〉 vanishes, see Eq. (12), while in the absence of vortices
the individual realizations of G vary within an interval ± 2e2/h. Elec-
tron tunneling into the cores of the vortices in the superconductor
shrinks this interval, see Eqs. (13) and (14), due to electrons being
lost to ground. The ensemble averaging of G can be experimentally
achieved in a given sample by varying the electron density n by
amount exceeding ncor of Eq. (17). At smaller variation, the values of
G are correlated, see Eq. (16). Variation of magnetic field also results
in conductance fluctuations, including abrupt changes associated
with a vortex entering the superconductor, see Eq. (18). At a finite
temperature, thermal smearing and inelastic scattering suppress
conductance fluctuations. The chiral nature of edge states, however,
weakens the suppression compared to the case of conventional
conductors.

We derived the above results for a single edge state, ν = 2. How-
ever, they can be readily extended to the case of ν > 2. The con-
ductance of a long edge remains a random quantity with 〈G〉 = 0 and a
symmetric about zero distribution function. Using the randommatrix
theory,wecanestimate the conductancevariance as hhG2ii∼G2

Q (in the
absence of vortices). The independence of 〈〈G2〉〉 of the number of

Article https://doi.org/10.1038/s41467-023-37794-1

Nature Communications | (2023)14:2237 4



conduction channels is in the spirit of universal conductance
fluctuations28,29.

Our work uncovers the crucial role of disorder in inducing
superconductivity in quantum Hall edge states. It explains the basic
findings of experiment8 including the observation of random con-
ductance, with zero average. The quantum Hall effect requires appli-
cation of a highmagnetic field. Disorder is needed not only to facilitate
proximity, but also tomake the coherence length short, thus allowing a
superconductor to withstand the high field. Therefore, understanding
the effect of disorder is vital for assessing the prospects of engineering
topological superconductors by proximitizing counter-propagating
edge states1,2,7,9.

Methods
Derivation of 1/lA
In this section, we present a detailed derivation of Eq. (8). For calcu-
lations, it is convenient to choose a gauge inwhich the vector potential
vanishes at the interfacebetween the superconductor and the 2DEG. In
this gauge, the wave vector kμ in the expression for the Andreev
amplitude [see Eq. (7)] is related to the position of the edge state
yc, kμ = yc=l

2
B, where lB =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_c=eB

p
is themagnetic length. At ν = 2,we can

estimate kμ≲ 1/lB.
In the derivation of 1/lA, we dispense with the effect of the mag-

netic field in the superconductor. This is justified in sufficiently small
fields, B≪Hc2, where Hc2 is the upper critical field. Indeed, we will see
that 1/lA is determined by processes in which the quasiparticle pro-
pagates over a distance ~ ξ within the superconductor. The magnetic
field affects such processes leading to additional phase factors in their
amplitudes. The corresponding phases can be estimated as ~ Bξ2/
ϕ0 ~B/Hc2, where ϕ0 is the flux quantum. We see that the phases are
small for fields B≪Hc2, and can be neglected.

Dispensing with the effect of the field, we describe the super-
conductor with the standard BCS Hamiltonian:

HSC =
X
σ

Z
d3r χyσðrÞ � _2∂2

r

2m
� μ+UðrÞ

" #
χσðrÞ

+
Z

d3r Δ χy"ðrÞχy#ðrÞ+ χ#ðrÞχ"ðrÞ
� �

:

ð19Þ

Here χσ(r) is an annihilation operator for an electron with spin σ,m is
the effective mass, μ is the chemical potential, and Δ is the super-
conducting order parameter. U(r) is the disorder potential, which we
assume to be a Gaussian random variable with a short-ranged
correlation function,

hUðrÞUðr 0Þi= _

2πνMτmfp
δðr � r 0Þ: ð20Þ

Weparameterized the correlation function by the normal-state density
of states in the metal νM and the electron mean free time τmfp. We
assume that the superconductor is “dirty”, Δ ⋅ τmfp/ℏ≪ 1.

Let us now compute the average probability of the Andreev
reflection (our approach is similar in spirit to that in Ref. 19). Using
Eq. (7), we first represent 〈∣Ah∣2〉 as

h∣Ah∣
2i= ð∂yΦÞ4t4

_2v2

Z L

0

Y4
i = 1

dxi

" #
eikμðx1 + x2�x3�x4Þ

×∂2
y1 ,y2

∂2
y3,y4

Gheðr1,r2Þ � Gehðr4,r3Þ
� �� �

∣yα ,zα =0

ð21Þ

(wemake explicit all of the spatial arguments in the Green’s functions).
On the right hand side, we replaced the average by its irreducible
component; this is possible because 〈Ah〉 =0 at kμ ≠0.

The superconductor Green’s functions in Eq. (21) can be expres-
sed in terms of the retarded Green’s function GR

N of the metal in the

normal state. At E =0:

Gðr1, r2Þ=
Z

dϵ
π

ϵτz +Δτx
Δ2 + ϵ2

ImGR
Nðr1, r2∣ϵÞ, ð22Þ

where τx,z are the Pauli matrices in the Nambu space. Substituting this
relation into Eq. (21) we obtain

h∣Ah∣
2i= ð∂yΦÞ4t4

π2_2v2

Z L

0

Y4
i= 1

dxi

" #
eikμðx1 + x2�x3�x4Þ

×
Z

Δdϵ

Δ2 + ϵ2
Δdϵ0

Δ2 + ϵ02
∂2y1 ,y2∂

2
y3,y4

ImGR
Nðr1, r2∣ϵÞ � ImGR

Nðr4, r3∣ϵ0Þ
� �� �

∣yα ,zα =0:

ð23Þ

Let us focus on the averaged-over-disorder product of the Green’s
functions here. We can represent it as

ImGR
Nðr1, r2∣ϵÞ � ImGR

Nðr4, r3∣ϵ0Þ
� �� �
=
1
2
Re GR

Nðr1, r2∣ϵÞ � GA
Nðr4, r3∣ϵ0Þ

D ED E
� GR

Nðr1, r2∣ϵÞ � GR
Nðr4, r3∣ϵ0Þ

� �� �h i
,
ð24Þ

where GA
N is the advanced normal state Green’s function. We will see

below that the contribution of the first term to 〈∣Ah∣2〉 is determined by
long diffusive electron trajectories of size ~ ξ. On the other hand, the
contribution of the second term is determined by trajectories of
length≲ λF only (λF is the Fermi wave length in the superconductor).
This means that the latter contribution is small compared to the one
produced by the first term in Eq. (24). In what follows we neglect the
second term.

The average hhGR
N � GA

Nii can be expressed in terms of the normal-
state diffuson and Cooperon30. Using Eq. (20) and neglecting small
corrections that have a relative magnitude ~ λF/lmfp≪ 1 (with
lmfp = vFτmfp being the mean free path), we represent hhGR

N � GA
Nii as

hhGR
Nðr1, r2∣ϵÞ � GA

Nðr4, r3∣ϵ0Þii

=
_

2πνMτ
2
mfp

Z
d3rd3r0 hGR

Nðr1, r∣ϵÞihGA
Nðr, r3∣ϵ0Þi

×DDðr, r 0∣ϵ� ϵ0ÞhGA
Nðr4, r 0∣ϵ0ÞihGR

Nðr 0, r2∣ϵÞi

+
_

2πνMτ
2
mfp

Z
d3rd3r0 GR

Nðr1, r∣ϵÞ
� �hGA

Nðr, r4∣ϵ0Þi

×DCðr, r 0∣ϵ� ϵ0ÞhGA
Nðr3, r0∣ϵ0ÞihGR

Nðr 0, r2∣ϵÞi:

ð25Þ

Here functionsDDðr, r 0∣ϵ� ϵ0Þ andDCðr, r0∣ϵ� ϵ0Þ are the diffuson and
the Cooperon, respectively. As discussed in the beginning of the
section, we focus on B≪Hc2 and thus neglect the effect of the
magnetic field penetrating the superconductor. In this
case, DDðr, r 0∣ϵ� ϵ0Þ=DCðr, r 0∣ϵ� ϵ0Þ30.

In the time domain, DDðr, r 0∣tÞ satisfies the diffusion equation30,

ð∂t � D∂2r ÞDDðr, r 0∣tÞ= δðtÞδðr � r 0Þ, ð26Þ

with the boundary condition corresponding to the vanishing of the
probability current at the metal’s surface. Here D = vFlmfp/3 is the dif-
fusion constant.

At relevant energies ϵ� ϵ0 ∼Δ, the diffuson DDðr, r 0∣ϵ� ϵ0Þ varies
at a length scale of the order of ξ. The latter satisfies ξ≫ lmfp for a dirty
superconductor. At the same time, the average Green’s functions
decay at a distance ~ lmfp. This means that in Eq. (25) the argument r of
DD and DC is close to r1 and the argument r 0 is close to r2. Conse-
quently, we can approximate hhGR

N � GA
Nii as

hhGR
Nðr1, r2∣ϵÞ � GA

Nðr4, r3∣ϵ0Þii=
2πνM
_

DDðr1, r2∣ϵ� ϵ0Þ
× ½V ðr1, r3ÞV ðr2, r4Þ+V ðr1, r4ÞV ðr2, r3Þ�,

ð27Þ
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where we abbreviated

V ðr1, r3Þ=
_

2πνMτmfp

Z
d3r GR

Nðr1, r∣ϵÞ
� �hGA

Nðr, r3∣ϵ0Þi: ð28Þ

Combining Eqs. (23), (24), and (27), we obtain the following expression
for 〈∣Ah∣2〉:

h∣Ah∣
2i= νMð∂yΦÞ4t4

π_3v2

Z L

0

Y4
i= 1

dxi

" #
eikμðx1 + x2�x3�x4Þ

×
Z

Δdϵ

Δ2 + ϵ2
Δdϵ0

Δ2 + ϵ02
ReDDðx1, x2∣ϵ� ϵ0Þ∂2

y1 ,y2
∂2y3,y4

× ½V ðr1, r3ÞV ðr2, r4Þ+ ð3 $ 4Þ�∣yα ,zα =0,

ð29Þ

where DDðx1, x2∣ϵ� ϵ0Þ � DDðr1, r2∣ϵ� ϵ0Þ∣y1,2,z1,2 = 0.
Functions V in Eq. (29) stipulate r1 ≈ r3, r2 ≈ r4 in the diffuson’s

contribution and r1 ≈ r4, r2 ≈ r3 in the Cooperon’s contribution. By
making a direct calculation of the integral in Eq. (28), we find for the
combination of functions V in Eq. (29):

∂2y1 ,y2∂
2
y3,y4

½V ðr1, r3ÞV ðr2, r4Þ+ ð3 $ 4Þ�∣yα ,zα =0
= ðπpF Þ2 δðx1 � x3Þδðx2 � x4Þ+ ð3 $ 4Þ	 


=_2,
ð30Þ

where pF is the Fermi momentum of the superconductor. The delta-
functions in this expression should be interpreted as peaks of
width ~ λF. With the help of Eq. (30), we can rewrite Eq. (29) as

h∣Ah∣
2i= 2πνMð∂yΦÞ4t4p2

F

_5v2

Z L

0
dx1dx2

×
Z

Δdϵ

Δ2 + ϵ2
Δdϵ0

Δ2 + ϵ02
ReDDðx1, x2∣ϵ� ϵ0Þ:

ð31Þ

The expression for DDðx1, x2∣ϵ� ϵ0Þ is sensitive to a particular geo-
metry of the considered device. We will assume that the thickness of
the superconducting film exceeds ξ. In this case, the film can be
regarded as being three-dimensional for diffusion. We then find:

DDðx1, x2∣ϵ� ϵ0Þ=2
Z +1

0

dt e�iðϵ�ϵ0 Þt=_

ð4πDtÞ3=2
e�

ðx1�x2 Þ2
4Dt ð32Þ

(the factor of 2 results from the boundary condition for Eq. (26)). Using
this expression, one can easily show that

Z
Δdϵ

Δ2 + ϵ2
Δdϵ0

Δ2 + ϵ02
ReDDðx1, x2∣ϵ� ϵ0Þ= π

2D∣x1 � x2∣
e�∣x1�x2 ∣=ξ , ð33Þ

where ξ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_D=ð2ΔÞ

p
. We will assume that the length of the prox-

imitized segment exceeds the coherence length, L≫ ξ. Then, using
Eq. (33) in Eq. (31) we obtain

h∣Ah∣
2i= 2π2νMð∂yΦÞ4t4p2

F

_5v2D
ln

ξ
lmfp

� L: ð34Þ

In the latter equality, we regularized the logarithmic divergence at
small distances by the mean free path lmfp, i.e., by the length scale at
which the diffusive behavior ceases.

Finally, it is convenient to express the factor in front of the loga-
rithm in Eq. (34) in terms of the normal-state conductivity of themetal
σ = 2e2νMD, and of the conductance per unit length of the interface
g =2π2GQt

2ð∂yΦÞ2νQHνMpF=_. In this way we obtain Eq. (8).

Data availability
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Code availability
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