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We develop a theory of charge transport along the quantum Hall edge
proximitized by a superconductor. We note that generically Andreev
reflection of an edge state is suppressed if translation invariance along the

edge is preserved. Disorder in a “dirty” superconductor enables the
Andreev reflection but makes it random. As a result, the conductance of a
proximitized segment is a stochastic quantity with giant sign-alternating
fluctuations and zero average. We find the statistical distribution of the
conductance and its dependence on electron density, magnetic field, and
temperature. Our theory provides an explanation of a recent experiment
with a proximitized edge state.

Recent interest in engineering an exotic superconductor have
renewed the effort to combine the superconducting proximity effect
with a quantizing magnetic field. The combination of the two has
been proposed as a route to realize new quasiparticles, such as
parafermions'?, which may be employed for topological quantum
computing’.

The picture of the proximity effect is based on Andreev reflection,
in which an electron incident on the interface between a normal-state
conductor and a superconductor is reflected as a hole*. In fact, this
electron-hole conversion has been demonstrated®® in focusing
experiments utilizing a weak magnetic field B to bend the electron and
hole trajectories. Classically, trajectory bending due to the Lorentz
force leads to formation of skipping orbits propagating along the
boundaries. At fixed energy, quasiclassical quantization results in a
discrete spectrum of angles a,(B) such a trajectory may form with the
boundary. For electron-hole conversion at a boundary with a clean
superconductor, the angles of incidence and reflection obey the ret-
roreflection condition, a,(B)+a,,(B)=m. As follows from a simple
geometric analysis, this requires the centers of electron and hole
cyclotron orbits to be mirror-symmetric with respect to the interface,
Yen(B) +Ye.m(B) = 0. In fact, the centers of orbits are integrals of motion
and the above symmetry condition is equivalent to the conservation of
momentum component parallel to the interface. Therefore, the sym-
metry condition is exact and valid in a fully-quantum description,
beyond the semiclassical approximation.

In the conditions of the quantum Hall effect, y. can be viewed as
the positions of edge states. Their number decreases with the

increase of the magnetic field B. In high field (that is, at filling factor
v=2), a single edge state remains, n=m=1. Application of the
mirror-symmetry condition shows that the proximitization is
effective only when y.;(B) =0. This configuration is realized at a
single value of B. Appreciable electron-hole conversion occurs only
at that fine-tuned value of the field (see Supplementary Note 1 for
further discussion).

Disorder, however, breaks the momentum conservation and
relaxes the mirror-symmetry constraint. This allows for an appreciable
electron-hole conversion at any magnetic field. Indeed, a strong con-
version signal was observed in recent experiments’° without fine-
tuning; the need of high critical fields H., dictated the use of dis-
ordered (“dirty”) superconductors. Robust Andreev reflection, being
enabled by disorder, is naturally sensitive to its realization in a sample.
As a result, the charge transport varies stochastically with control
parameters such as the magnetic field or the electron density, as is
observed both in experiment® and in numerical simulation”.

The crucial difference of conduction along the proximitized
quantum Hall edge from the conventional mesoscopic transport stems
from the chirality of the edge states. This renders the well-established
theory of mesoscopic conductance fluctuations™" inapplicable. In this
work, we develop a quantitative theory of mesoscopic quantum
transport along the proximitized chiral edge, making predictions for
the statistics of conductance fluctuations and their dependence on
electron density, magnetic field, and temperature. The results
obtained for chiral transport differ substantially from their counter-
part in usual conductors.
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Fig. 1| Transport along the quantum Hall edge proximitized by a disordered
superconductor. a Electrons are launched toward the proximitized segment from
an upstream electrode biased by voltage V. An electron propagating along the
segment converts randomly into a hole over the distance /5, which is controlled by
disorder in the superconductor, see Eq. (8). b Evolution of the electronic wave
function, see Eq. (10), is similar to the motion of a “spin” in a stochastic effective
“magnetic field”. The conductance G =//V is determined by the result of a random
walk of a point on a Bloch sphere. ¢ G is a random quantity that fluctuates upon
varying the electron density n in the 2DEG (traces are simulated using Eq. (10); units
of n are the same for the two plots and are otherwise arbitrary). d The loss of
correlation between the values of G upon a change in n is quantified by function
C(6n), see Eqs. (15)-(17). The origin of the correlations loss is illustrated by the
divergence between two stochastic trajectories on a Bloch sphere. The “spins”
corresponding to different values of n experience a different effective “magnetic
field”, and thus drift apart in the course of evolution. The separation of the “spins” is
slower for stronger disorder. As the result, the trace G(n) in (c) is smoother for
smaller [,.

Results

Model

We are interested in the linear conductance G in a three-terminal set-
ting, see Fig. 1(a). To find G, we start with the Hamiltonian

H=Hypge + Hsc t Hr. 1)

Here, Hypeg describes the two-dimensional electron gas (2DEG) in a
v =2 quantum Hall state. Hsc is the Hamiltonian of the superconductor.
We consider the experimentally relevant’° “dirty” limit [y, < & where
lmp and & are, respectively, the electron mean free path and the
coherence length in the superconductor. Coupling between the 2DEG
and superconductor is described by the tunneling Hamiltonian'*"

L
Hr=t) /0 dx(@,}(x,0)d,x,(x,0,0) +h.c), 2)

where ¢,(x, y) and x,(x, y, z) are annihilation operators for an electron
with spin o= 1 or ¥ in the 2DEG and superconductor, respectively. The
interface of length L is located at y =z = 0; 0, denotes the partial deri-
vative in the normal to the interface direction. For simplicity, we
assume that the tunneling amplitude ¢ is uniform along the interface.

For the purpose of describing transport at low temperature and
bias, it is convenient to derive an effective Hamiltonian focusing on
chiral electrons at the 2DEG'’s edge,

Heff = Hedge + Hprox . (3)

The first term is obtained by projecting H,peg onto the subspace of
edge states belonging to a single Landau level

Hedge = ;/ dx ’YZ(X)hV[—iax - ky]rlo(x)- (4)

Here, n,(x) is a field operator for chiral electrons with =1 or V, v is
their velocity, and &, is the Fermi momentum; we neglect the Zeeman
splitting. The second term in Eq. (3) describes the effect of super-
conducting proximity. It is obtained by a standard Schrieffer-Wolff
transformation' that removes coupling (2) to the first order in ¢. For
electron energies F< A, as measured from the Fermi level, the
transformation results in

L
Hprox = (ay(D)ZtZ /0 dxldx2 ﬁT(xl)bijzg(xl,xz)ﬁ(xz), (5)

where 7(x)=(n,(x), — rfl(x))r, the 2 x2 matrix G(x;, x,) is the Green’s
function of the superconductor at =0 (0;1&2 is a mixed partial deri-
vative with respect to y; and y,; arguments y; », z;, = O are suppressed
for brevity), A is the energy gap in the superconductor, and ®(y) is the
transverse component of the edge state’s wave function at the
Fermi level.

Conductance G at T= 0 can be expressed in terms of transmission
amplitudes across the proximitized segment in the normal (4.) and
Andreev (A;,) channels at E=0,

G=Gy(lAc* — 1AnP), (6)

where G, =2¢€%/h is the conductance quantum. To find Gin the setup of
Fig. 1(a), we thus need to solve a quantum-mechanical scattering
problem.

Andreev amplitude for a short segment

An electron experiences at most one Andreev reflection while propa-
gating along a sufficiently short proximitized segment. The corre-
sponding Andreev amplitude can be found perturbatively in Hpox.
With the help of Born approximation, we obtain

2
0P t?

An= h

dx1dxzeik"(xl+x2)a§1yz Gne(X1,X2), @)
where G, is the anomalous component of the superconductor Green'’s
function”.

The Green’s function in Eq. (7) is determined by the interference
of electron waves in the superconductor. The stochastic interference
pattern is sensitive to a particular disorder landscape in the region of
size ~  adjacent to the interface. Thus, G;,. and Ay, of Eq. (7) are random
quantities. The latter fluctuates upon varying the magnetic field or the
electron density in the 2DEG.

To characterize the statistical properties of the amplitude,
we first find (A,). The averaging here is performed over a suffi-
ciently broad window of magnetic fields or electron densities.
Formally, it is equivalent to averaging over the possible disorder
configurations in the superconductor'. With the help of the lat-
ter, more practical definition we obtain:
(Ap) o [ dx;dx,e* ™1 >2(G (x; — x,)) o [ dxe? ¥ oc b(k,). We see
that (Ap) =0 unless k,=0. In the following, we disregard such a
fine-tuning and take (Ap) =0.

Next, we compute the average probability of the Andreev reflec-
tion (JAn]). As follows from Eq. (7), we need to average product of the
anomalous Green’s functions of the superconductor. Such an average
can be expressed in terms of the normal-state diffuson and Cooperon
via a standard procedure (see, e.g., Ref. 19). Assuming that the thick-
ness of the superconducting film and L exceed § we obtain (see
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Methods section for a detailed derivation):

1 _ 4ng?

3
I, G0 g ®)

Apl?) =
(Al .

L
N

Hereg= ZITZGQtZ(ayCD)ZVQH vmPr/h is the conductance per unit length
of the interface between the quantum Hall edge and the metal in the
normal state. Along with the dependence on ®(y), the conductance gis
proportional to the one-dimensional density of edge states vou=1/
(2mfw). It is also proportional to the normal-state density of states vy
and Fermi momentum pf in the superconductor. Unlike in the clean
case, the leading contribution to the Andreev reflection comes from
electron trajectories much longer than the Fermi wave length, with
length scale set instead by §> [ng. The presence of the logarithmic
factor and the appearance of the normal-state conductivity o in 1/l
results from the diffusive motion of electron in the superconductor.

The perturbative result, Eq. (7), is applicable at L < [,. Under this
condition, Ay is a Gaussian random variable which allows one to
compute all moments of Ay distribution. Using Eq. (6) we find
(G)=Go(1-2L/ly) and ((G?)) = (G?) — (G)? =4G4L? /L for the average
value and fluctuation of the conductance.

Conductance of a long segment
AtL > [y, an incident electron experiences multiple Andreev reflections
upon traversing the proximitized segment. The first-order perturba-
tion theory cannot be applied directly to find the amplitude Ay, in this
case. Instead, we track how the quasiparticle wave function evolves
along the segment piece by piece.

We break the segment into a series of short elements with length
6L satisfying £ < 6L < [,. Under these conditions, the Andreev ampli-
tudes of different elements 6A,(x) are statistically independent and
may still be evaluated perturbatively, §4;,(x) =a(x) - +/6L. In addition
to Andreev reflections, a quasiparticle may experience forward scat-
tering due to an excursion in the superconductor. Similarly to 64n(x),
we find for the electron forward scattering phase §0(x)=9(x) - v/6L
(see Supplementary Note 2 for details of the derivation). Variables a(x)
and 9(x) are Gaussian and independent, (a(x)3(x")) =0. Using Eq. (8)
and a similar relation for (©%) we obtain for the correlators

1
{(a()a*(x')) = (3(0)8(x")) = i 6(x —x'). 9

The change of the wave function across each element is small.
Therefore, we can describe the wave function evolution by a differ-
ential equation:

l.g <ae(x)> _ <—9(X) a*(x)> <ae(x)>

ox \ ag(x) ax)  8(x) J\ay,x))
Here a.(x) and an(x) are the electron and hole components of the
quasiparticle wave function, respectively (we also promoted a(x) and
8(x) from the variables defined on a discrete set of elements to the
continuous fields).

Equation (10) describes a unitary evolution of a two-component
spinor, which can be visualized as a random walk of a point on a Bloch
sphere, see Fig. 1(b). We parameterize a.(x)= cos(6(x)/2) and
a,(x) =€%™ sin(6(x)/2), where 6 and ¢ are polar and azimuthal angles
on the sphere, respectively (in the parameterization, we suppressed
the common phase as it is inconsequential for G). The conductance
G=Ggcos (L) can be expressed in terms of a solution of Eq. (10) with
initial condition 6(0) = 0.

To determine the statistics of conductance fluctuations, we derive
a Fokker-Planck equation? for the distribution function P(6,¢|x) with

10)

help of Eq. (9):
1)

Here Ag, is the Laplace-Beltrami operator. Parameter 1/[, plays the
role of a diffusion coefficient in the amplitude’s random walk. Equation
(11) can solved straightforwardly in terms of angular harmonics,
PO, plx)= 372 2L+ )P (cos O)e !+ Dx/lx j4r,  where  P(z) are
Legendre polynomials. The independence of P(8, ¢|x) on ¢ stems
from the azimuthal symmetry of Eq. (11) and its initial condition.

Using the found distribution function, we obtain for the average
conductance:

(G)=Gge 2/, 12)

At L>1,, conductance G is distributed uniformly in the interval
[~ Gq, Ggl with (G)=0 and variance ((G*))=Gg/3. Thus, the con-
ductance fluctuations pattern is sign-alternating and evenly distrib-
uted between positive and negative values, see Fig. 1(c). While the
exponential with L decay similar to our Eq. (12) was also demonstrated
in related setups in Refs. 21,22, these works missed the giant
fluctuations of conductance.

Suppression of fluctuations by vortices
Only a type Il superconductor can withstand magnetic field B required
to enter the quantum Hall regime in the 2DEG. Such field induces
vortices, which lead to a non-vanishing density of states in the super-
conductor at the Fermi level®. As a result, an electron or a hole pro-
pagating along the edge can tunnel normally into the superconducting
electrode thus not contributing to G. This leads to attenuation of
conductance fluctuations.

The probability of an incident electron to survive the propagation
along the proximitized segment and reach the downstream electrode
(as a particle or as a hole) decreases exponentially with L:

v
Dsury = €Xp(—=YL), y= G*a 13)

Here y is the probability of normal tunneling into superconductor per
unit length of the segment. It is determined by the induced by vortices
density of states v taken at £=0 and averaged along the interface.
Despite the attenuation, at L > [, the conductance distribution remains
uniform. However, its spread reduces to the interval [— Gy, Gmax] and
its variance becomes

GZ
((GZ>) = %' Gmax = GQ Psurv- (14)

Ratio /vy, in Eq. (13) increases with B/H,, reaching unity at the upper
critical field, B = H.,. Consequently, ((G?)) decreases with increasing B.
This is qualitatively consistent with the observations of Ref. 8.

Conductance correlation function
We now find the correlation function of the conductance fluctuations
with the electron density n in the 2DEG,
C(6n)=((G(n) - G(n+6n))). 15)
Variation of density én shifts the Fermi momentum of chiral electrons
by 6k, = 6n(0p/0n)/(hv), where du/on is the inverse compressibility of
the quantum Hall state. 6k, affects the phases of Andreev reflection
amplitudes, whose interference determines the conductance. We see
from Eq. (7) that a(x) — a(x)e?®%* upon changing n > n + én. Applying
this modification to Eq. (10) and using Eq. (9), we derived a differential
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equation for C(6n) as a function of L (see Supplementary Note 3).
Solving it, we find at L > [,:

2
c(6n)=((G*)) exp _4 <6—"> ) (16)
3 nCOl‘
The correlation density no, is given by:
on h
= 17)

e o L

The dependence of Eq. (17) on L and [, is of particular note. Firstly,
Ngor o 1/+/L reflects the diffusive character of the wave function evo-
lution. In contrast, periodic oscillations of the quasiparticle between
electron and hole states in the absence of disorder would lead to C(6n)
variation on a scale 6n o< 1/L*. Secondly, n.,, o« 1/,/I, increases with
disorder in superconductor, as [, = g, cf. Eq. (8). Thus, the pattern of
mesoscopic fluctuations is smoother for a dirtier superconductor, see
Fig. 1(c). This unusual behavior is similar in its origin to the motional
narrowing in nuclear magnetic resonance®.

The conductance also fluctuates with the magnetic field. The
generalization of Eq. (16) reads C(6n,B)=((G*)) exp[—§6k§[AL]
exp[—%(&g/g)zL /1,]. Change in the Fermi momentum &6k,(6n, 6B)
varies the phases of the Andreev reflection amplitudes (as discussed
above). Variation 6g(6n, 6B) affects the amplitudes magnitude through
the dependence of ®(y) and v on B and n, cf. Eq. (7). Functions §g and
6k, acquire a particularly simple form in the limit of a small disorder-
induced broadening of Landau levels, 6¢ <« hiw. (here w. is the cyclo-
tron frequency). We find 0g/g=6B/B and 6k, (6n,6B)=
%g—’,: [6n — v6B/ @], where v(n, B) is the quantum Hall filling factor and
¢o = hc/e (see Supplementary Note 3 for details of the derivation). In
expression for 6k,(6n, 6B), we also assumed the London penetration
depth 1> [, to neglect the diamagnetic current effect.

Effect of a vortex entrance

In the above we disregarded the entrance of vortices in the super-
conductor through the interface. An entering vortex introduces a kink
in the phase of the order parameter near the interface. This affects the
interference between the Andreev reflection processes thus leading to
a jump 6G in the conductance.

The magnitude of 6G is a random quantity whose statistical
properties depend on the relation between d and [, where d is the
distance of the vortex core to the interface. We compute the variance,
Ciump(d) = ((6G)*), where the average is evaluated over a window of
electron densities of width exceeding n.,,. To do that, we compare the
results of the wave function evolution along the proximitized segment
before and after the vortex has entered.

In treating the entrance of a new vortex, we assume the regime of
strong pinning, and thus neglect the shifts in the positions of other
vortices. In these conditions, the vortex entrance leads to a(x) —
a(x)e~6¢x-x) in Eq. (10). Here, the phase 6¢(x — x,) = + 2 arctan([x —
x,]/d) interpolates between O and 2m over the interval |x-x,|~d,
where X, is the x-coordinate of the vortex core. The overall interference
pattern does not change substantially if d < [,. Under this condition,
the conductance jump is small. It is also small in the opposite limit,
d > [y, in which the presence of §@(x - x,) can be accounted for with
the help of the adiabatic approximation applied to Eq. (10). We find
(see Supplementary Note 4 for details of the derivation):

Cumpl@) _ [ 517 A<l 18)
(G M, dsi,.

The two asymptotes match each other at d - [,. In this case, the con-
ductance jump is maximal and comparable to the signal itself,

Cjump(d)~<<62)). This regime is relevant for the data presented
in Ref. 8.

Conductance fluctuations at finite temperature

In a conventional mesoscopic conductor, the electron transmission
amplitudes at energies £; and E; are uncorrelated if |E; — E5| 2 Erp,. The
Thouless energy here is determined by the electron propagation time
across the sample; Et, =fiv/L in the ballistic limit. Thus, the ordinary
mesoscopic conductance fluctuations'> are smeared out at tem-
perature T2 Ty, =Av/L.

While quasiparticles propagate ballistically along the prox-
imitized quantum Hall edge, the energy scale fiv/L is irrelevant for the
correlation of Andreev amplitudes. The main mechanism responsible
for the variation of Ay, with £ is the dependence of the anomalous
Green’s function on E/A in Eq. (7) generalized to finite energy (we
assume A <fw. and disregard other mechanisms which are con-
trolled by E/(hiw.)). Due to this dependence, the size of each step in
the amplitude’s random walk [cf. Eq. (10)] changes by a relative
amount ~ F/A? from its £=0 value. This leads to the divergence of
trajectories corresponding to energies £; and £, on the Bloch sphere.
The fluctuations of G are smeared out above Ty, such that the
angular separation between the trajectories end-points is 66-1 for

- 5 2 E1-E) 1
|Ey1 - E5|, By~ Tsm. We  estimate  (66)° ~ RN and thus find
Tom~ A(lA/L)1/4. The dependence of Ty, on L is in stark contrast with
a conventional ballistic conductor result. The difference stems from
the chiral nature of the edge, which prohibits backscattering and
formation of standing waves.

The found weak dependence, Ty, = L™"*, prompts us to explore
inelastic scattering as a mechanism of the fluctuations suppression. In
one dimension, inelastic pair collisions are forbidden by the energy
and momentum conservation®. Violation of translation invariance by
disorder allows for the pair collisions at the edge and leads to a stan-
dard Fermi liquid estimate for the scattering rate”, 7, |(T)=b T2. The
conductance fluctuations are suppressed at temperature exceeding T;,
such that v 1;o(Tip) - L. We then find T, =< L™2. The comparison of Tj,
and Ty is sensitive to a coefficient b which is not universal and
depends on disorder (see Supplementary Note 5).

Discussion

In summary, disorder allows for efficient Andreev reflection of a
quantum Hall edge without fine-tuning, but it introduces random-
ness in the edge transport. Electrons stochastically convert into
holes over a length scale /5, see Eq. (8). This stochasticity results in
conductance fluctuations with the variation of electron density or
magnetic field strength. For a long edge, L > [,, the average con-
ductance (G) vanishes, see Eq. (12), while in the absence of vortices
the individual realizations of G vary within an interval + 2¢?/h. Elec-
tron tunneling into the cores of the vortices in the superconductor
shrinks this interval, see Eqgs. (13) and (14), due to electrons being
lost to ground. The ensemble averaging of G can be experimentally
achieved in a given sample by varying the electron density n by
amount exceeding nco, of Eq. (17). At smaller variation, the values of
G are correlated, see Eq. (16). Variation of magnetic field also results
in conductance fluctuations, including abrupt changes associated
with a vortex entering the superconductor, see Eq. (18). At a finite
temperature, thermal smearing and inelastic scattering suppress
conductance fluctuations. The chiral nature of edge states, however,
weakens the suppression compared to the case of conventional
conductors.

We derived the above results for a single edge state, v=2. How-
ever, they can be readily extended to the case of v>2. The con-
ductance of a long edge remains a random quantity with (G)=0 and a
symmetric about zero distribution function. Using the random matrix
theory, we can estimate the conductance variance as ((G?)) ~ Gé (inthe
absence of vortices). The independence of ((G*) of the number of
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conduction channels is in the spirit of universal conductance
fluctuations™?,

Our work uncovers the crucial role of disorder in inducing
superconductivity in quantum Hall edge states. It explains the basic
findings of experiment® including the observation of random con-
ductance, with zero average. The quantum Hall effect requires appli-
cation of a high magnetic field. Disorder is needed not only to facilitate
proximity, but also to make the coherence length short, thus allowing a
superconductor to withstand the high field. Therefore, understanding
the effect of disorder is vital for assessing the prospects of engineering
topological superconductors by proximitizing counter-propagating
edge states'*’’.

Methods

Derivation of 1/l

In this section, we present a detailed derivation of Eq. (8). For calcu-
lations, it is convenient to choose a gauge in which the vector potential
vanishes at the interface between the superconductor and the 2DEG. In
this gauge, the wave vector k, in the expression for the Andreev
amplitude [see Eq. (7)] is related to the position of the edge state
Yoo ky :yc/lf;, where [z = \/hc/eB is the magnetic length. At v=2, we can
estimate k,, $1/s.

In the derivation of 1/[,, we dispense with the effect of the mag-
netic field in the superconductor. This is justified in sufficiently small
fields, B < H.,, where H, is the upper critical field. Indeed, we will see
that 1/, is determined by processes in which the quasiparticle pro-
pagates over a distance ~ £ within the superconductor. The magnetic
field affects such processes leading to additional phase factors in their
amplitudes. The corresponding phases can be estimated as-BE&/
$o ~ B/H.», where ¢ is the flux quantum. We see that the phases are
small for fields B < H.,, and can be neglected.

Dispensing with the effect of the field, we describe the super-
conductor with the standard BCS Hamiltonian:

Hge = Z/ d3r)(g(r)[

v [ @raxion e, o).

}Xg(l')
9

Here x,(r) is an annihilation operator for an electron with spin o, m is
the effective mass, u is the chemical potential, and A is the super-
conducting order parameter. U(r) is the disorder potential, which we
assume to be a Gaussian random variable with a short-ranged
correlation function,

h

UEUF))
2 Um mfp

6r—r). (20)

We parameterized the correlation function by the normal-state density
of states in the metal vy and the electron mean free time 7rq. We
assume that the superconductor is “dirty”, A - Tmep/fi < 1.

Let us now compute the average probability of the Andreev
reflection (our approach is similar in spirit to that in Ref. 19). Using
Eq. (7), we first represent (JAn|*) as

_ 6,0 e

(141 PER

/ |:H dx:| 1k L+ X5 —X3-Xy)

ajlyz y3y4<<ghe(r1rr2) geh(r4rr3)>>|yaz =

@n

(we make explicit all of the spatial arguments in the Green'’s functions).
On the right hand side, we replaced the average by its irreducible
component; this is possible because (Ap) =0 at k, # 0.

normal state. At £=0:

Gry, ry) = / deet; * ATy |y R, yle), 22)

T Al+e2

where 17, , are the Pauli matrices in the Nambu space. Substituting this
relation into Eq. (21) we obtain

(1Anl?) =

4.4 4
(6y<1>2) ¢ / t {H dxl} k0 + Xy -x)

mh°v? Jo |iq
Ade Ade ,
A1 i a2+ o2 O (MA@ o) Im GNPy r51E)) )y 2,0

(23)

Let us focus on the averaged-over-disorder product of the Green’s
functions here. We can represent it as

((ImGX(ry, rale) - IMG(ry, 130€)))

1 (24)
= 5Re[((ARr1. 1210 R(rs, 151€)) ) = (R, rale) - Rirsrsie)))],

where Gy is the advanced normal state Green’s function. We will see
below that the contribution of the first term to (|Ap|?) is determined by
long diffusive electron trajectories of size ~ . On the other hand, the
contribution of the second term is determined by trajectories of
length S AF only (Af is the Fermi wave length in the superconductor).
This means that the latter contribution is small compared to the one
produced by the first term in Eq. (24). In what follows we neglect the
second term.

The average ((gﬁ . Gﬁ)) can be expressed in terms of the normal-
state diffuson and Cooperon®’. Using Eq. (20) and neglecting small
corrections that have a relative magnitude - Ag/lqg <1 (with
Imip = UrTmep being the mean free path), we represent <<gﬁ . g§>> as

({GR(ry, 1yl€) - GR(ry, 151E))

:M/ &rd’r (GY(ry, FleN G (F, F5l€)

><DD(" Fle — €)(GN(ry, F€))(GR(F, 3 l€))

/ Prd’r (GR (e, rIe))(GAF, Fyle)

25

Zm/M Tmfp

X De(r, F'le — €)(GN(r3, F'1€)) (GN (T, 12l€)).

Here functions Dy(r, ¥'|€ — €') and D¢(r, ¥ | — €') are the diffuson and
the Cooperon, respectively. As discussed in the beginning of the
section, we focus on B<H., and thus neglect the effect of the
magnetic field penetrating the superconductor. In this
case, Dp(F, F'|€ — €)=Dc(r, Fle — €)°.

In the time domain, Dp(r, r'|¢) satisfies the diffusion equation®,

@, — DODy(r, F|t)=6t)6(r — F), (26)
with the boundary condition corresponding to the vanishing of the
probability current at the metal's surface. Here D = vdng/3 is the dif-
fusion constant.

At relevant energies € — € ~ A, the diffuson Dy(r, ¥'|€ — €') varies
at a length scale of the order of £ The latter satisfies §> l¢, for a dirty
superconductor. At the same time, the average Green’s functions
decay at a distance ~ [mgp. This means that in Eq. (25) the argument r of
Dp and D is close to r; and the argument r’ is close to r,. Conse-
quently, we can approximate ((GR - G&)) as

(GR(r ole) - QA F1E) = oM Dy, 1 e — €)

The superconductor Green’s functions in Eq. (21) can be expres- h (27)
sed in terms of the retarded Green’s function GY of the metal in the X[V, 1) V(ry, 1) + V(r, 1)V, r)),
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where we abbreviated
h /
V)= g | @r(@ero)@erien. @)

Combining Egs. (23), (24), and (27), we obtain the following expression
for (JApl?):

0,0t L[4 )
(1A% = %/O [de,} ik X, X3 xy)
i=1

Ade Ade
J A*+e2 A’ +e2
x [V(rl'rS)V(rer4)+(3 -~ 4‘)]|ya,zn=0'

g ®

A2
ReDp(xy, X5l€ — € )aJ’m’z V3

where Dp(x;, x;|€ — €) = Dp(ry, r,l€ — €ly,,z1, =0

Functions V in Eq. (29) stipulate r,=r;, r,=r, in the diffuson’s
contribution and r;=ry, r,=r; in the Cooperon’s contribution. By
making a direct calculation of the integral in Eq. (28), we find for the
combination of functions Vin Eq. (29):

0 0 VL, 1)V, r) +(3 < D, . o

(30
=(mpp) (606, — X3)6(x, — X))+ (3 < &) /17,

where pr is the Fermi momentum of the superconductor. The delta-
functions in this expression should be interpreted as peaks of
width ~ A With the help of Eq. (30), we can rewrite Eq. (29) as

21y (0, 0)* t*p2 L
(lAh|2>=M dXIdXZ
2 0
(3D
Ade Ade

Araalier Re Dp(xy,X,1€ — €)).

The expression for Dp(x;,X,|€ — €) is sensitive to a particular geo-
metry of the considered device. We will assume that the thickness of
the superconducting film exceeds §. In this case, the film can be
regarded as being three-dimensional for diffusion. We then find:

+oo dt e—le—€Nt/h xy)?

Dp(xy,X5l€ — € =2/ —— e W
(X1, X3 ) o @

(32
(the factor of 2 results from the boundary condition for Eq. (26)). Using
this expression, one can easily show that

Ade Ade

e*lxlfle/f,
J A’ +2 A +e?

33)

, m
Re Dp(xy, x5l€ — €)= 2D, — %]

where £=./hD/(2A). We will assume that the length of the prox-
imitized segment exceeds the coherence length, L > §. Then, using
Eq. (33) in Eq. (31) we obtain

4
2y (9, D) t4p%lni~L

34
2D G

Apl?) =
(Al L

In the latter equality, we regularized the logarithmic divergence at
small distances by the mean free path I, i.e., by the length scale at
which the diffusive behavior ceases.

Finally, it is convenient to express the factor in front of the loga-
rithm in Eq. (34) in terms of the normal-state conductivity of the metal
o=2¢e’vyD, and of the conductance per unit length of the interface
8 =2m2 Gy, D) vqurwPr/h. In this way we obtain Eq. (8).

Data availability

The numerical data used to plot Fig. 1(c) are available from the cor-
responding author upon a reasonable request. No other data was
produced.

Code availability

The code used to produce Fig. 1(c) is available from the corresponding
author upon a reasonable request. No other code was used in
the study.
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