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We evaluate the differential conductance measured in an STM setting at arbitrary electron transmission
between STM tip and a 2D superconductor with arbitrary gap structure. Our analytical scattering theory
accounts for Andreev reflections, which become prominent at larger transmissions. We show that this
provides complementary information about the superconducting gap structure beyond the tunneling
density of states, strongly facilitating the ability to extract the gap symmetry and its relation to the
underlying crystalline lattice. We use the developed theory to discuss recent experimental results on

superconductivity in twisted bilayer graphene.
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Introduction.—The structure of the superconducting
order parameter is a defining property of unconventional
superconductors [1]. The latter range from high-T,
superconductors such as Ba-doped LaCuO; [2] and
BiSrCaCu,O0, [3] to novel moiré materials such as twisted
bilayer (TBG) and trilayer (TTG) graphene [4-13] or
twisted double-layer copper oxides [14—18]. In high-T,
superconductors, the large value of the gap allowed one
to study its momentum dependence via angle-resolved
photoemission spectroscopy [19]. The gap symmetry of
high-7'. materials was also confirmed by quasiparticle
interference [20,21]. The much smaller gaps of super-
conducting TBG and TTG along with the small sample
dimensions complicate the use of angle-resolved photo-
emission spectroscopy, while the large-period moiré pat-
tern impedes the quasiparticle interference method. That
brings scanning tunneling spectroscopy (STS) to the fore.

Recent works on TBG and TTG [12,13] reveal a
V-shaped profile of the differential conductance as a
function of bias in the traditional STS regime of weak
tunneling (tip relatively far from the sample). This was
interpreted as evidence for nodal (d-wave) superconduc-
tivity. The observation of an enhanced low-bias conduct-
ance in the strong-tunneling regime (tip forming a point
contact with TBG) was viewed [12] as evidence of Andreev
reflection, further confirming the unconventional nature of
superconductivity in hole-doped TBG.

This experiment prompted us to develop a theory of
point-contact tunneling into superconductors with arbitrary
gap structures and for arbitrary transmission coefficients of
the contact [22]. As tip-sample tunneling does not conserve
momentum, it is difficult to reconstruct the gap structure
solely from the differential conductance in the weak-
tunneling regime. In this regime, the differential conduct-
ance yields the energy dependence of the tunneling density
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of states, which carries some information on the momen-
tum dependence of the absolute value of the gap. Our
theory provides access to considerably more extensive
information, including the gap symmetry, by synthesizing
data taken in the weak- and strong-tunneling regimes. The
additional information enters through the phase sensitivity
of Andreev reflections, which dominate STS data in the
strong-tunneling limit [26].

Scattering matrix formalism for STM tip.—We view the
contact between tip and two-dimensional (2D) system as a
single-mode quantum point contact opening into a (super)
conducting sheet of material. For a pointlike tip and
assuming time-reversal symmetry (TRS) of the normal
state so that s(¢) = s7 (&), the contact can be described by
the two-channel scattering matrix

[ sole)  1(e)
s(e)(t(g) SO(€)>. (1)

The amplitude s{,(¢) describes reflection between incoming
and outgoing channels in the tip, and the transmission
amplitude 7(¢) controls the differential conductance of the
contact in the normal state, G,(V) = Gylt(eV)|* [27].
Here, Gy = €*/(nh) is the conductance quantum.

A pointlike tip couples to a single channel of the 2D
system, so that scattering between in- and outgoing waves
in the 2D system is described by the S-matrix element
so(€). For a uniform system, sy(e) describes scattering in
the zero angular momentum channel: an arbitrary incoming
wave ™" in the substrate is scattered into the outgoing wave
wo = [(T = P) + so(e) Ply™, with P projecting onto zero
angular momentum. A reflectionless junction between tip
and system has sy(e) = 0, while |sy(¢)| = 1 in the absence
of tunneling.
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The generalization to 2D crystals modifies the projection
operator P. For a given dispersion relation & (k) (measuring
energies from the Fermi energy), the wave vectors k at a
given energy ¢ are defined by &(k) =& The angular
distribution is governed by the Bloch function u (ry)
at the position ry, of STM tip, so that the projection
onto the single channel of the system is effected by the
operator

Pyt = uy (ro) Z s (ro)yye = g (ro) (ug (ro)yr) e (2)
é(k)=e

with a properly normalized uy (ry). Here, (...), stands for

averaging over the constant-energy contour.

For contacts between normal-metal tip and supercon-
ductor, we extend the scattering matrix to Nambu space,
using s*(—¢) instead of s(¢) for holes [28,29]. Below, we
exploit the particle-hole symmetry to focus on positive
energies € > (0. We also neglect the energy dependence of
s(g), assuming it to be featureless for energies of the order
of the gap |A|.

Andreev and normal reflection.—An electron tunneling

into the 2D sample forms an expanding particle wave 1//571]2

with amplitude ¢ and directional profile determined by the

Bloch function, z//glz = tuy (ry). The superconductor retro-

reflects the particle into a counterpropagating hole [30]; see
Fig. I for a sketch. When the coherence length is larger than
the Fermi wavelength, we can account for Andreev
reflection within the eikonal approximation: the Andreev
amplitude a(k,¢) depends on the superconducting gap
A(k) at the same wave vector k allowing us to use the
result of Refs. [28,29] at each k,

Ak
(

a,,(z) =exp(iarg z—iarccos|z|), z(k,e)=

~—

3)

Here, +(—) corresponds to p — h (h — p) conversion [31].
We restrict considerations to a spin-singlet or polarized spin-
triplet superconductor, so A(k) is viewed as a scalar. The
analytical continuation to |z| > 1 is determined by the
requirement |a, | < 1.

The gap anisotropy becomes imprinted in the retrore-
flected wave, y = ap(k)y/;llz. Only part of it, Py,
scatters off the tip, while the complement, (I — P)y ., is
oblivious to its presence. Thus, the hole escapes into the tip
ap(k)y/;lb The part of the hole

wave ;. , which remains within the 2D material, takes the

form ‘/’21() =[(I-P) + s Ply, ie.,

with amplitude 7*(uj; (ro)

1 ~ A 1 1
il = 1= (1=sp)Pla, ('), vl =nn(r). (@)

izsiEQ\\~!L;¢”§E§

'//p 1‘7”11

@D

FIG. 1. Electron transport in a setup where an STM tip is placed
over a high-symmetry point of a 2D superconductor. Symmetric
blue arrows: the particle wave spreading from the tip carries the
symmetry of crystalline lattice. Asymmetric green arrows: the
Andreev-reflected hole wave [Eq. (4)] carries information about
the superconducting gap symmetry, which may differ from the
crystalline one.

Retroreflection of the hole wave reconverts it into a particle
wave, ah(k)wilk). Similar to the hole, the particle splits

between the tip and the 2D material with amplitudes
" 1
(i o), (K)o and

2 _ I

w') = (1= (1 = s0) Play (K}, (5)

respectively. Then the process repeats: 1//57212 is retroreflected
into a hole; the hole is partially absorbed into the tip with
ap(k)lp;zbg and partially scattered off

it. Summing over cycles, we obtain the full Andreev-
reflection (r,;, and ry,) and normal-reflection (r, and r;)
amplitudes. For example,

Fon = |z|2< i a, (K ) r0)> ,

n—0 .
— (1 =s0)Pla,(K)[T = (1 = 55)P].  (6)

Symbolically performing the summation in Eq. (6) gives
rpn = [t*(ui (r)M (k). with

amplitude * (uy, (ro)

M(K) = (I = L) a, (k)ux(ro). (7)

We recast Eq. (7) as the integral equation
(1 = L)M(K) = a, (K)uy (rp)- (8)

Since the operator [ has a separable kernel [32], we solve
Eq. (8) by standard means [33] and express M (k) in terms
of three parameters:

ap,h(k,s)
%W@%mak’ ®)

apn = ()P
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a,(k,e)a,(k, e)
S iemicn), 19

am = (o)

Here, we restored the energy argument in ), (k. ¢). The
averaging (|uy (ry)|*...), is defined by

_ S Pks(E(k) — &) |uye (o) ...
[ d*kS(€(k) — &) uy (ro) 2

<|uk(r0)|2“'>e (11)

Using the explicit form [33] of M (k) in the expression for
1> We find the Andreev-refection amplitude

ta,,

rph = * .
P+ (2= s0 = sp)apn + |1 = sol*(ay, —apan)

(12)

Similarly, the normal-reflection amplitude is

tz[aph + (1 - SS)(azh - apah)]

L+ (2= s = sp)apn + |1 = so|* (a3, — apap)

(13)

o
rp—50+

The amplitudes ry,, and r, are obtained from Egs. (12) and
(13) by replacing a,, <> a;, sy <> s, and ¢ <> t*. Because
of the unitarity of the scattering matrix Eq. (1), r,, and |r,|
depend only on a single matrix element s,; its magnitude
(but not phase) is fixed by G,/Gy = [1]> =1 — |5~
The Andreev- and normal-reflection amplitudes in
Egs. (12) and (13) depend on the energy ¢ of the incoming
electron via Eqgs. (9) and (10). The information on the gap
structure A(k) and the crystal symmetry is encoded,
respectively, in the k-dependences of the retroreflection
amplitudes Eq. (3) and the Bloch functions u (ry).

Differential conductance.—We can now express the
differential conductance G(V) = dI(V)/dV in terms of
the amplitudes r,;, and r,. For V > 0, one has [34]

G(V.ry) = Goll = |r,(eV.,ro) | + |rpu(eV.ro) Pl (14)

The conductance for V <0 follows by replacing
r,(eV.ry) = r(—=eV.,ry) and r,,(eV,rg) = ry,(—eV,rg).

Equations (9)—(14) provide a highly flexible framework
for describing local tunneling spectroscopy of 2D super-
conductors and constitute the main advance of this Letter.
They account for arbitrary superconducting gaps as well as
the band structure, covering the entire crossover from weak
to strong tunneling between tip and superconductor. While
the weak-tunneling regime probes the local tunneling
density of states, the strong-tunneling regime is dominated
by Andreev processes, providing complementary informa-
tion about the superconducting order parameter. Below, we
illustrate the utility of our approach by focusing on several
characteristic limits.

In the weak-tunneling limit sy, — 1, the differential
conductance is governed by the tunneling density of states
v(eV) of the superconductor. Indeed, for sq — 1, only the
term o a,,, in Eq. (13) contributes, so that Eq. (14) reduces
to G(V)=G,v(eV)/v, (with the tunneling density of
states v, of the normal state). A fully gapped anisotropic
superconductor with min{|A(k)|} = A, is signaled by
zero conductance in the interval |eV| < A;,; see, e.g.,
Figs. 2(a),2(c)-2(e). In contrast, a nodal point in A(k)
results in a V-shape profile G(V)~G,|leV|/A at low
biases; see Fig. 2(b); hereinafter, A is the characteristic
value of |A(Kk)|. Apart from this distinction, weak-tunnel-
ing data do not reveal the symmetry of the superconducting
order parameter.

30 Alp)=A A(p)=Acos(2¢) A(@)=0.55A+0.45Ac0s2p) ,  A(p)=Ae™ A(p)=0.4A+0.6Ae*¢
@) sl )
—50=0
2F - %0 -
S
Gq
1r s
0, . x x x — . x x
01 150 1 1.500.1 1 1501 1.50 0.2 1 1.5
leVI/A leVI/A leV]/A leV]/A leV|/A

FIG. 2. Dependence of the normalized differential conductance G/G,, on bias V for weak (sy — 1, red) and strong (so = 0, blue)
tunneling at a high-symmetry point. The conductance is evaluated with the help of Egs. (9)—(14) for a 2D superconductor with a circular
Fermi surface (parameterized by the angle ¢) and gap A(k) = A(¢). (a) s-wave superconductor; (b) d-wave superconductor preserving
time-reversal symmetry; G(V) remains linear in the limit V — 0 at any tunneling strength; the van Hove singularity at s, — 1 is replaced
by a Fano resonance (inset) at strong tunneling; (c) s + d gap preserving time-reversal symmetry, but breaking the lattice point
symmetry; parameters chosen to preserve the G(0) = 2G, but significantly shrink the plateau G(V) < 2G at V > 0 compared to the
case of s-wave superconductor [cf. (a)]; (d) d + id gap preserving point-group symmetry, but breaking time-reversal symmetry; G(V)
remains zero below the gap at any sg; (e) s + d + id gap breaking point-group and time-reversal symmetries; a prominent Fano
resonance develops at eV = min{|A(¢)|} in the strong tunneling limit.
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Complementary information on the gap structure is
provided by Andreev reflections. This becomes most
evident at zero bias V = 0, where the differential con-
ductance is fully controlled by Andreev reflections,
la, | = 1 and hence |r,,|* + |r,|* = 1. In the correspond-
ing limit |e| - 0, the Andreev amplitudes, Eq. (3), are
a,(k) = —aj; (k) = —iA(k)/|A(k)|. We can then evaluate
Egs. (14) and (12) for arbitrary junction conductance G,
and obtain

G(V = 0.1) = 2Go|rp(e = 0.r) 2,
o /D0 = Iso) (i (ro) PA(K)/|A(K) [}
PR 5o (1= o2 (e (ro) PA(K) /| A (K) )2
(15)

This expression shows that the zero-bias conductance is
sensitive to the interplay of the symmetries of the Bloch
functions and the superconducting gap. Since the symmetry
of the Bloch function varies with the tip position rg, it
provides a powerful tool to extract the gap structure.

If r( is invariant under the lattice point symmetry group,
then u, (ry) as a function of k belongs to an irreducible
representation of the point group. Assuming that the only
degeneracy of the Bloch states at the Fermi energy is
associated with TRS, uy () belongs to a one-dimensional
representation, i.e., uy (ro) acquires only a phase factor and
|uy (ro)|? is invariant under point-group operations. In
contrast, there is no corresponding symmetry requirement
when r(, is a generic point within the unit cell. Now consider
the symmetry of A(k)/|A(k)|, entering into Eq. (15). First
we note that \/&(k) + |A(k)|? is an eigenvalue of the
Bogoliubov—de-Gennes Hamiltonian. If A(k) does not
break the lattice symmetry, then the eigenvalues of the
Bogoliubov—de-Gennes Hamiltonian, as well as &(k)
are invariant under point-group transformations. Thus,
|A(k)| belongs to the trivial representation [35], while
A(K)/|A(K)| together with A(k) belongs to some repre-
sentation of the lattice point group. If that representation is
trivial (as for s-wave superconductivity), then A(k)/|A(K)|
is independent of k and Eq. (15) reproduces the conven-
tional result [34] |r ;| = (1 = |so|?)/(1 + |so|*), evenifrgis
not a lattice symmetry point. With increasing tunneling
strength, G(V = 0) varies from ~G3/G, at sy — 1 to the
saturation value 2G at sy = 0.

If A(k) belongs to a nontrivial representation of the point
group, then at a high-symmetry point the V shape of dI/dV
with G(V = 0,ry) = 0 persists for any G,,; see Fig. 2(b),
but G(V = 0,r) is finite at a generic ry. Lastly, if A(k)
breaks the lattice symmetry, one expects a nonzero,
position-dependent G(V = 0,ry); depending on details,
G(0) may or may not reach the saturation value 2Gy,
see also Figs. 2(c) and 2(e). One may understand these
results pictorially; see Fig. 1. The total Andreev-reflection

amplitude is a superposition of partial ones coming from
the different directions k/|k|. Each partial amplitude
carries a phase, governed by the gap an injected particle
“sees” in the given direction. For a real-valued and
symmetric nodal gap, the negative and positive contribu-
tions to the sum cancel each other. The presence of Bloch
functions may lift the cancellation if their symmetry is
different from that of the gap, or if the tunneling point is
away from a high-symmetry point.

The conductance G(V) depends strongly on the strength
G, of the tunneling contact; see Fig. 2. Focusing on the
strong-tunneling limit of s, = 0 (i.e., G, = Gy), we can
analytically extract the asymptotes of G(V) for V — 0 and
V — A [33].

We start with the V — 0 asymptote. For a real-valued
gap without nodal points (TRS is preserved, but spatial
symmetry may be broken), we find G(V) =2G,|[l -
yr(eV/A)* to leading nontrivial order in eV/A. The
coefficient yz > 0 depends on details of the gap structure
as well as r(. For isotropic gaps, yg =0 at any r, and
Eq. (14) is identical to known results in a one-dimensional
geometry [34]. A real-valued gap with nodal points leads to
G(V) = G(0) + GgyyleV|/A with the sign of the coef-
ficient yy depending on details of the gap and the tip
position; for gaps respecting the lattice symmetry and r
located at a symmetry point, G(0) =0 and yy, > 0, see
Fig. 2(b). If the gap is complex valued and nodeless (broken
TRS), but does not break the point-group symmetry (as in a
d._y + id,, superconductor), we find G(V) =0 in the
entire interval |eV| < min {A(k)} for tunneling at a sym-
metry point; see Fig. 2(d). Away from symmetry points,
G(V) = G(0) = GyycleV/A|* with model-dependent val-
ues of G(0) and y. If the point-group symmetry is broken
in addition to TRS (as in noncollinear A, + E; + iE,
states  [36]), then G(V) = G(0) — GyycleV/A]* with
G(0) < 2G, regardless of tip position; see Fig. 2(e). The
coefficients y. in the last two asymptotes depend on the
specific gap structure.

Extrema A, in |A(k)]| lead to van Hove singularities in
the tunneling density of states, which appear as “coherence
peaks” « In(A.y/|Acxe — €V]) in the tunneling conduct-
ance at G, < G. At stronger tunneling, the peaks turn into
singular minima of the form A + BIn™! (Ayyy/|Aexee — €V|)
analogous to Fano resonances [Fig. 2(b)]. This structure
becomes most prominent at full transmission (s, = 0),
where G(V) may vanish at the singularity; see, e.g.,
Figs. 2(b) and 2(e) [33].

Discussion and summary.—Our theory summarized in
Eqgs. (9)—(14) describes the differential conductance G(V)
in an STS setting for a 2D superconductor at arbitrary
junction transmission as well as arbitrary symmetries of the
order parameter and Bloch functions. The zero-bias results
are expressed, in an intuitive way, by Eq. (15). We used the
theory to perform a symmetry analysis of the conductance
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and make specific predictions for tunneling both at and
away from high-symmetry points of the lattice; see Fig. 2
and Table S1 [33] for further details.

Moiré materials such as TBG have a Fermi wavelength
that is much larger than that of the metallic tip. Thus the
single-channel-contact approximation is adequate unless
the normal conductance G, exceeds G, indicating a
substantial increase in a contact area. As long as the
contact preserves its single-channel nature, the observation
of a zero-bias conductance maximum at strong tunneling
along with a prominent V-shaped conductance at weak
tunneling, as reported in [12], is incompatible with a nodal
gap respecting the lattice point symmetry. Indeed, in the
latter case the low-bias behavior of G(V) is linear at any
tunneling strength; see, e.g., Fig. 2(b). The experimental
data [12] for filling factors between —2 and —3 may be
consistent with a strongly anisotropic gap with a small
Anin, as exemplified in Fig. 2(c). However, while the
superconducting gap symmetry of TBG is unknown, the
required fine-tuning (e.g., between the strengths of s- and
d-wave orders) would hardly persist over the entire filling-
factor range [37]. A possible resolution [38] of this
conundrum is provided by the data in Fig. S6 of
Ref. [12]. There, the differential conductance is V-shaped
as long as G(V) remains below the maximal single-channel
conductance 2G, for Andreev reflection. The V-shaped
traces evolve into a zero-bias maximum only upon further
increasing the junction conductance, where the tip may
have developed a contact area of the order of the Moiré
period and thus created a multichannel junction [38].

The differential conductance G(V) in the STM setting
was also recently obtained numerically in Ref. [39], using
the tunneling Hamiltonian approach. For d- or p-wave
superconductivity of TBG, the V-shaped dependence and
the absence of a zero-bias peak persist for all tunneling
strengths #,. Our theory, applied under the same conditions,
is consistent with the conclusions of Ref. [39], but also
more nuanced. First, including the Bloch functions
accounts for the dependence of G(V) on the point of
tunneling. In particular, G(V = 0) may be nonzero, even if
the gap does not break the lattice symmetry. Second, our
fully analytical solution based on scattering theory over-
comes limitations of the tunneling Hamiltonian. At partial
transmission, G(V) depends not only on 7, = /1 — |so|?,
but also on the phase of the scattering amplitude s.
Accounting for the phase is important even at the
qualitative level, affecting, e.g., the V — —V symmetry
of G(V) [33]. Our analytical solution also exposes the low-
bias behavior of G(V) and the emergence of a Fano
resonance at stronger tunneling; see Fig. 2(b).

While we made several simplifying assumptions, our
method applies more generally and allows for various
extensions. For example, we assumed that, in the absence
of tunneling, the tip does not create a scattering potential
within the 2D material, i.e., so(e) = 1. Such a potential is

readily incorporated through a scattering phase in s,
leading to subgap resonances. Thus, our work provides a
flexible and powerful framework to analyze future STM
experiments aimed at revealing and analyzing the structure
of the superconducting gap in TBG and other novel 2D
superconductors.
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