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We evaluate the differential conductance measured in an STM setting at arbitrary electron transmission
between STM tip and a 2D superconductor with arbitrary gap structure. Our analytical scattering theory
accounts for Andreev reflections, which become prominent at larger transmissions. We show that this
provides complementary information about the superconducting gap structure beyond the tunneling
density of states, strongly facilitating the ability to extract the gap symmetry and its relation to the
underlying crystalline lattice. We use the developed theory to discuss recent experimental results on
superconductivity in twisted bilayer graphene.
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Introduction.—The structure of the superconducting
order parameter is a defining property of unconventional
superconductors [1]. The latter range from high-Tc
superconductors such as Ba-doped LaCuO3 [2] and
BiSrCaCu2Ox [3] to novel moiré materials such as twisted
bilayer (TBG) and trilayer (TTG) graphene [4–13] or
twisted double-layer copper oxides [14–18]. In high-Tc
superconductors, the large value of the gap allowed one
to study its momentum dependence via angle-resolved
photoemission spectroscopy [19]. The gap symmetry of
high-Tc materials was also confirmed by quasiparticle
interference [20,21]. The much smaller gaps of super-
conducting TBG and TTG along with the small sample
dimensions complicate the use of angle-resolved photo-
emission spectroscopy, while the large-period moiré pat-
tern impedes the quasiparticle interference method. That
brings scanning tunneling spectroscopy (STS) to the fore.
Recent works on TBG and TTG [12,13] reveal a

V-shaped profile of the differential conductance as a
function of bias in the traditional STS regime of weak
tunneling (tip relatively far from the sample). This was
interpreted as evidence for nodal (d-wave) superconduc-
tivity. The observation of an enhanced low-bias conduct-
ance in the strong-tunneling regime (tip forming a point
contact with TBG) was viewed [12] as evidence of Andreev
reflection, further confirming the unconventional nature of
superconductivity in hole-doped TBG.
This experiment prompted us to develop a theory of

point-contact tunneling into superconductors with arbitrary
gap structures and for arbitrary transmission coefficients of
the contact [22]. As tip-sample tunneling does not conserve
momentum, it is difficult to reconstruct the gap structure
solely from the differential conductance in the weak-
tunneling regime. In this regime, the differential conduct-
ance yields the energy dependence of the tunneling density

of states, which carries some information on the momen-
tum dependence of the absolute value of the gap. Our
theory provides access to considerably more extensive
information, including the gap symmetry, by synthesizing
data taken in the weak- and strong-tunneling regimes. The
additional information enters through the phase sensitivity
of Andreev reflections, which dominate STS data in the
strong-tunneling limit [26].
Scattering matrix formalism for STM tip.—We view the

contact between tip and two-dimensional (2D) system as a
single-mode quantum point contact opening into a (super)
conducting sheet of material. For a pointlike tip and
assuming time-reversal symmetry (TRS) of the normal
state so that sðεÞ ¼ sTðεÞ, the contact can be described by
the two-channel scattering matrix

sðεÞ ¼
 
s00ðεÞ tðεÞ
tðεÞ s0ðεÞ

!
: ð1Þ

The amplitude s00ðεÞ describes reflection between incoming
and outgoing channels in the tip, and the transmission
amplitude tðεÞ controls the differential conductance of the
contact in the normal state, GnðVÞ ¼ GQjtðeVÞj2 [27].
Here, GQ ¼ e2=ðπℏÞ is the conductance quantum.
A pointlike tip couples to a single channel of the 2D

system, so that scattering between in- and outgoing waves
in the 2D system is described by the S-matrix element
s0ðεÞ. For a uniform system, s0ðεÞ describes scattering in
the zero angular momentum channel: an arbitrary incoming
wave ψ in in the substrate is scattered into the outgoing wave
ψout ¼ ½ðÎ − P̂Þ þ s0ðεÞP̂�ψ in, with P̂ projecting onto zero
angular momentum. A reflectionless junction between tip
and system has s0ðεÞ ¼ 0, while js0ðεÞj ¼ 1 in the absence
of tunneling.
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The generalization to 2D crystals modifies the projection
operator P̂. For a given dispersion relation ξðkÞ (measuring
energies from the Fermi energy), the wave vectors k at a
given energy ε are defined by ξðkÞ ¼ ε. The angular
distribution is governed by the Bloch function ukðr0Þ
at the position r0 of STM tip, so that the projection
onto the single channel of the system is effected by the
operator

P̂ψ in
k ¼ ukðr0Þ

X
ξðk0Þ¼ε

u�k0 ðr0Þψ in
k0 ≡ukðr0Þhu�k0 ðr0Þψ in

k0 iε ð2Þ

with a properly normalized ukðr0Þ. Here, h…iε stands for
averaging over the constant-energy contour.
For contacts between normal-metal tip and supercon-

ductor, we extend the scattering matrix to Nambu space,
using s�ð−εÞ instead of sðεÞ for holes [28,29]. Below, we
exploit the particle-hole symmetry to focus on positive
energies ε > 0. We also neglect the energy dependence of
sðεÞ, assuming it to be featureless for energies of the order
of the gap jΔj.
Andreev and normal reflection.—An electron tunneling

into the 2D sample forms an expanding particle wave ψ ð1Þ
pk

with amplitude t and directional profile determined by the

Bloch function, ψ ð1Þ
pk ¼ tukðr0Þ. The superconductor retro-

reflects the particle into a counterpropagating hole [30]; see
Fig. 1 for a sketch. When the coherence length is larger than
the Fermi wavelength, we can account for Andreev
reflection within the eikonal approximation: the Andreev
amplitude αðk; εÞ depends on the superconducting gap
ΔðkÞ at the same wave vector k allowing us to use the
result of Refs. [28,29] at each k,

αp;hðzÞ ¼ exp ð�i arg z− i arccos jzjÞ; zðk; εÞ ¼ ε

ΔðkÞ :

ð3Þ

Here,þð−Þ corresponds to p → h (h → p) conversion [31].
We restrict considerations to a spin-singlet or polarized spin-
triplet superconductor, so ΔðkÞ is viewed as a scalar. The
analytical continuation to jzj > 1 is determined by the
requirement jαp;hj ≤ 1.

The gap anisotropy becomes imprinted in the retrore-

flected wave, ψhk ¼ αpðkÞψ ð1Þ
pk. Only part of it, P̂ψhk,

scatters off the tip, while the complement, ðÎ − P̂Þψhk, is
oblivious to its presence. Thus, the hole escapes into the tip

with amplitude t�hu�kðr0ÞαpðkÞψ ð1Þ
pkiε. The part of the hole

wave ψhk, which remains within the 2D material, takes the

form ψ ð1Þ
hk ¼ ½ðÎ − P̂Þ þ s�0P̂�ψhk, i.e.,

ψ ð1Þ
hk ¼ ½Î− ð1− s�0ÞP̂�αpðkÞψ ð1Þ

pk; ψ ð1Þ
pk ¼ tukðr0Þ: ð4Þ

Retroreflection of the hole wave reconverts it into a particle

wave, αhðkÞψ ð1Þ
hk . Similar to the hole, the particle splits

between the tip and the 2D material with amplitudes

thu�kðr0ÞαhðkÞψ ð1Þ
hkiε, and

ψ ð2Þ
pk ¼ ½Î − ð1 − s0ÞP̂�αhðkÞψ ð1Þ

hk ; ð5Þ

respectively. Then the process repeats: ψ ð2Þ
pk is retroreflected

into a hole; the hole is partially absorbed into the tip with

amplitude t�hu�kðr0ÞαpðkÞψ ð2Þ
pkiε and partially scattered off

it. Summing over cycles, we obtain the full Andreev-
reflection (rph and rhp) and normal-reflection (rp and rh)
amplitudes. For example,

rph ¼ jtj2
�
u�kðr0Þ

X∞
n¼0

L̂nαpðkÞukðr0Þ
�

ε

;

L̂≡ αpðkÞ½Î − ð1 − s0ÞP̂�αhðkÞ½Î − ð1 − s�0ÞP̂�: ð6Þ

Symbolically performing the summation in Eq. (6) gives
rph ¼ jtj2hu�kðr0ÞMðkÞiε with

MðkÞ ¼ ðÎ − L̂Þ−1αpðkÞukðr0Þ: ð7Þ

We recast Eq. (7) as the integral equation

ðÎ − L̂ÞMðkÞ ¼ αpðkÞukðr0Þ: ð8Þ

Since the operator L̂ has a separable kernel [32], we solve
Eq. (8) by standard means [33] and express MðkÞ in terms
of three parameters:

ap;h ¼
�
jukðr0Þj2

αp;hðk; εÞ
1 − αpðk; εÞαhðk; εÞ

�
ε

; ð9Þ

FIG. 1. Electron transport in a setup where an STM tip is placed
over a high-symmetry point of a 2D superconductor. Symmetric
blue arrows: the particle wave spreading from the tip carries the
symmetry of crystalline lattice. Asymmetric green arrows: the
Andreev-reflected hole wave [Eq. (4)] carries information about
the superconducting gap symmetry, which may differ from the
crystalline one.
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aph ¼
�
jukðr0Þj2

αpðk; εÞαhðk; εÞ
1 − αpðk; εÞαhðk; εÞ

�
ε

: ð10Þ

Here, we restored the energy argument in αp;hðk; εÞ. The
averaging hjukðr0Þj2…iε is defined by

hjukðr0Þj2…iε ¼
R
d2kδðξðkÞ − εÞjukðr0Þj2…R
d2kδðξðkÞ − εÞjukðr0Þj2

: ð11Þ

Using the explicit form [33] of MðkÞ in the expression for
rph, we find the Andreev-refection amplitude

rph ¼
jtj2ap

1þð2− s0− s�0Þaphþj1− s0j2ða2ph−apahÞ
: ð12Þ

Similarly, the normal-reflection amplitude is

rp ¼ s00 þ
t2½aph þ ð1 − s�0Þða2ph − apahÞ�

1þ ð2 − s0 − s�0Þaph þ j1 − s0j2ða2ph − apahÞ
:

ð13Þ

The amplitudes rhp and rh are obtained from Eqs. (12) and
(13) by replacing ap ↔ ah, s0 ↔ s�0, and t ↔ t�. Because
of the unitarity of the scattering matrix Eq. (1), rph and jrpj
depend only on a single matrix element s0; its magnitude
(but not phase) is fixed by Gn=GQ ≡ jtj2 ¼ 1 − js0j2.
The Andreev- and normal-reflection amplitudes in

Eqs. (12) and (13) depend on the energy ε of the incoming
electron via Eqs. (9) and (10). The information on the gap
structure ΔðkÞ and the crystal symmetry is encoded,
respectively, in the k-dependences of the retroreflection
amplitudes Eq. (3) and the Bloch functions ukðr0Þ.

Differential conductance.—We can now express the
differential conductance GðVÞ ¼ dIðVÞ=dV in terms of
the amplitudes rph and rp. For V > 0, one has [34]

GðV; r0Þ ¼ GQ½1 − jrpðeV; r0Þj2 þ jrphðeV; r0Þj2�: ð14Þ

The conductance for V < 0 follows by replacing
rpðeV; r0Þ→ rhð−eV; r0Þ and rphðeV; r0Þ → rhpð−eV; r0Þ.
Equations (9)–(14) provide a highly flexible framework

for describing local tunneling spectroscopy of 2D super-
conductors and constitute the main advance of this Letter.
They account for arbitrary superconducting gaps as well as
the band structure, covering the entire crossover from weak
to strong tunneling between tip and superconductor. While
the weak-tunneling regime probes the local tunneling
density of states, the strong-tunneling regime is dominated
by Andreev processes, providing complementary informa-
tion about the superconducting order parameter. Below, we
illustrate the utility of our approach by focusing on several
characteristic limits.
In the weak-tunneling limit s0 → 1, the differential

conductance is governed by the tunneling density of states
νðeVÞ of the superconductor. Indeed, for s0 → 1, only the
term ∝ aph in Eq. (13) contributes, so that Eq. (14) reduces
to GðVÞ ¼ GnνðeVÞ=νn (with the tunneling density of
states νn of the normal state). A fully gapped anisotropic
superconductor with minfjΔðkÞjg ¼ Δmin is signaled by
zero conductance in the interval jeVj < Δmin; see, e.g.,
Figs. 2(a),2(c)–2(e). In contrast, a nodal point in ΔðkÞ
results in a V-shape profile GðVÞ ∼GnjeVj=Δ at low
biases; see Fig. 2(b); hereinafter, Δ is the characteristic
value of jΔðkÞj. Apart from this distinction, weak-tunnel-
ing data do not reveal the symmetry of the superconducting
order parameter.

(a) (b) (c) (d) (e)

FIG. 2. Dependence of the normalized differential conductance G=Gn on bias V for weak (s0 → 1, red) and strong (s0 ¼ 0, blue)
tunneling at a high-symmetry point. The conductance is evaluated with the help of Eqs. (9)–(14) for a 2D superconductor with a circular
Fermi surface (parameterized by the angle φ) and gap ΔðkÞ ¼ ΔðφÞ. (a) s-wave superconductor; (b) d-wave superconductor preserving
time-reversal symmetry;GðVÞ remains linear in the limit V → 0 at any tunneling strength; the van Hove singularity at s0 → 1 is replaced
by a Fano resonance (inset) at strong tunneling; (c) sþ d gap preserving time-reversal symmetry, but breaking the lattice point
symmetry; parameters chosen to preserve the Gð0Þ ¼ 2GQ, but significantly shrink the plateau GðVÞ < 2GQ at V > 0 compared to the
case of s-wave superconductor [cf. (a)]; (d) dþ id gap preserving point-group symmetry, but breaking time-reversal symmetry; GðVÞ
remains zero below the gap at any s0; (e) sþ dþ id gap breaking point-group and time-reversal symmetries; a prominent Fano
resonance develops at eV ¼ minfjΔðφÞjg in the strong tunneling limit.
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Complementary information on the gap structure is
provided by Andreev reflections. This becomes most
evident at zero bias V ¼ 0, where the differential con-
ductance is fully controlled by Andreev reflections,
jαp;hj ¼ 1 and hence jrphj2 þ jrpj2 ¼ 1. In the correspond-
ing limit jεj → 0, the Andreev amplitudes, Eq. (3), are
αpðkÞ ¼ −α�hðkÞ ¼ −iΔðkÞ=jΔðkÞj. We can then evaluate
Eqs. (14) and (12) for arbitrary junction conductance Gn
and obtain

GðV ¼ 0; r0Þ ¼ 2GQjrphðε ¼ 0; r0Þj2;

rph ¼
ð2=iÞð1 − js0j2Þhjukðr0Þj2ΔðkÞ=jΔðkÞji0

j1þ s0j2 þ j1 − s0j2jhjukðr0Þj2ΔðkÞ=jΔðkÞji0j2
:

ð15Þ

This expression shows that the zero-bias conductance is
sensitive to the interplay of the symmetries of the Bloch
functions and the superconducting gap. Since the symmetry
of the Bloch function varies with the tip position r0, it
provides a powerful tool to extract the gap structure.
If r0 is invariant under the lattice point symmetry group,

then ukðr0Þ as a function of k belongs to an irreducible
representation of the point group. Assuming that the only
degeneracy of the Bloch states at the Fermi energy is
associated with TRS, ukðr0Þ belongs to a one-dimensional
representation, i.e., ukðr0Þ acquires only a phase factor and
jukðr0Þj2 is invariant under point-group operations. In
contrast, there is no corresponding symmetry requirement
when r0 is a generic point within the unit cell. Now consider
the symmetry of ΔðkÞ=jΔðkÞj, entering into Eq. (15). First
we note that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ðkÞ þ jΔðkÞj2

p
is an eigenvalue of the

Bogoliubov–de-Gennes Hamiltonian. If ΔðkÞ does not
break the lattice symmetry, then the eigenvalues of the
Bogoliubov–de-Gennes Hamiltonian, as well as ξðkÞ
are invariant under point-group transformations. Thus,
jΔðkÞj belongs to the trivial representation [35], while
ΔðkÞ=jΔðkÞj together with ΔðkÞ belongs to some repre-
sentation of the lattice point group. If that representation is
trivial (as for s-wave superconductivity), thenΔðkÞ=jΔðkÞj
is independent of k and Eq. (15) reproduces the conven-
tional result [34] jrphj ¼ ð1 − js0j2Þ=ð1þ js0j2Þ, even if r0 is
not a lattice symmetry point. With increasing tunneling
strength, GðV ¼ 0Þ varies from ∼G2

n=GQ at s0 → 1 to the
saturation value 2GQ at s0 ¼ 0.
IfΔðkÞ belongs to a nontrivial representation of the point

group, then at a high-symmetry point the V shape of dI=dV
with GðV ¼ 0; r0Þ ¼ 0 persists for any Gn; see Fig. 2(b),
but GðV ¼ 0; r0Þ is finite at a generic r0. Lastly, if ΔðkÞ
breaks the lattice symmetry, one expects a nonzero,
position-dependent GðV ¼ 0; r0Þ; depending on details,
Gð0Þ may or may not reach the saturation value 2GQ,
see also Figs. 2(c) and 2(e). One may understand these
results pictorially; see Fig. 1. The total Andreev-reflection

amplitude is a superposition of partial ones coming from
the different directions k=jkj. Each partial amplitude
carries a phase, governed by the gap an injected particle
“sees” in the given direction. For a real-valued and
symmetric nodal gap, the negative and positive contribu-
tions to the sum cancel each other. The presence of Bloch
functions may lift the cancellation if their symmetry is
different from that of the gap, or if the tunneling point is
away from a high-symmetry point.
The conductance GðVÞ depends strongly on the strength

Gn of the tunneling contact; see Fig. 2. Focusing on the
strong-tunneling limit of s0 ¼ 0 (i.e., Gn ¼ GQ), we can
analytically extract the asymptotes of GðVÞ for V → 0 and
V → Δ [33].
We start with the V → 0 asymptote. For a real-valued

gap without nodal points (TRS is preserved, but spatial
symmetry may be broken), we find GðVÞ ¼ 2GQ½1 −
γRðeV=ΔÞ4� to leading nontrivial order in eV=Δ. The
coefficient γR > 0 depends on details of the gap structure
as well as r0. For isotropic gaps, γR ¼ 0 at any r0 and
Eq. (14) is identical to known results in a one-dimensional
geometry [34]. A real-valued gap with nodal points leads to
GðVÞ ¼ Gð0Þ þ GQγV jeVj=Δ with the sign of the coef-
ficient γV depending on details of the gap and the tip
position; for gaps respecting the lattice symmetry and r0
located at a symmetry point, Gð0Þ ¼ 0 and γV > 0, see
Fig. 2(b). If the gap is complex valued and nodeless (broken
TRS), but does not break the point-group symmetry (as in a
dx2−y2 þ idxy superconductor), we find GðVÞ ¼ 0 in the
entire interval jeVj < min fΔðkÞg for tunneling at a sym-
metry point; see Fig. 2(d). Away from symmetry points,
GðVÞ ¼ Gð0Þ −GQγCjeV=Δj2 with model-dependent val-
ues of Gð0Þ and γC. If the point-group symmetry is broken
in addition to TRS (as in noncollinear A2 þ E1 þ iE2

states [36]), then GðVÞ ¼ Gð0Þ −GQγCjeV=Δj2 with
Gð0Þ < 2GQ regardless of tip position; see Fig. 2(e). The
coefficients γC in the last two asymptotes depend on the
specific gap structure.
Extrema Δextr in jΔðkÞj lead to van Hove singularities in

the tunneling density of states, which appear as “coherence
peaks” ∝ lnðΔextr=jΔextr − eVjÞ in the tunneling conduct-
ance atGn ≪ GQ. At stronger tunneling, the peaks turn into
singular minima of the form Aþ Bln−1ðΔextr=jΔextr − eVjÞ
analogous to Fano resonances [Fig. 2(b)]. This structure
becomes most prominent at full transmission (s0 ¼ 0),
where GðVÞ may vanish at the singularity; see, e.g.,
Figs. 2(b) and 2(e) [33].

Discussion and summary.—Our theory summarized in
Eqs. (9)–(14) describes the differential conductance GðVÞ
in an STS setting for a 2D superconductor at arbitrary
junction transmission as well as arbitrary symmetries of the
order parameter and Bloch functions. The zero-bias results
are expressed, in an intuitive way, by Eq. (15). We used the
theory to perform a symmetry analysis of the conductance
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and make specific predictions for tunneling both at and
away from high-symmetry points of the lattice; see Fig. 2
and Table S1 [33] for further details.
Moiré materials such as TBG have a Fermi wavelength

that is much larger than that of the metallic tip. Thus the
single-channel-contact approximation is adequate unless
the normal conductance Gn exceeds GQ, indicating a
substantial increase in a contact area. As long as the
contact preserves its single-channel nature, the observation
of a zero-bias conductance maximum at strong tunneling
along with a prominent V-shaped conductance at weak
tunneling, as reported in [12], is incompatible with a nodal
gap respecting the lattice point symmetry. Indeed, in the
latter case the low-bias behavior of GðVÞ is linear at any
tunneling strength; see, e.g., Fig. 2(b). The experimental
data [12] for filling factors between −2 and −3 may be
consistent with a strongly anisotropic gap with a small
Δmin, as exemplified in Fig. 2(c). However, while the
superconducting gap symmetry of TBG is unknown, the
required fine-tuning (e.g., between the strengths of s- and
d-wave orders) would hardly persist over the entire filling-
factor range [37]. A possible resolution [38] of this
conundrum is provided by the data in Fig. S6 of
Ref. [12]. There, the differential conductance is V-shaped
as long asGðVÞ remains below the maximal single-channel
conductance 2GQ for Andreev reflection. The V-shaped
traces evolve into a zero-bias maximum only upon further
increasing the junction conductance, where the tip may
have developed a contact area of the order of the Moiré
period and thus created a multichannel junction [38].
The differential conductance GðVÞ in the STM setting

was also recently obtained numerically in Ref. [39], using
the tunneling Hamiltonian approach. For d- or p-wave
superconductivity of TBG, the V-shaped dependence and
the absence of a zero-bias peak persist for all tunneling
strengths t0. Our theory, applied under the same conditions,
is consistent with the conclusions of Ref. [39], but also
more nuanced. First, including the Bloch functions
accounts for the dependence of GðVÞ on the point of
tunneling. In particular, GðV ¼ 0Þ may be nonzero, even if
the gap does not break the lattice symmetry. Second, our
fully analytical solution based on scattering theory over-
comes limitations of the tunneling Hamiltonian. At partial
transmission, GðVÞ depends not only on t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − js0j2

p
,

but also on the phase of the scattering amplitude s0.
Accounting for the phase is important even at the
qualitative level, affecting, e.g., the V → −V symmetry
of GðVÞ [33]. Our analytical solution also exposes the low-
bias behavior of GðVÞ and the emergence of a Fano
resonance at stronger tunneling; see Fig. 2(b).
While we made several simplifying assumptions, our

method applies more generally and allows for various
extensions. For example, we assumed that, in the absence
of tunneling, the tip does not create a scattering potential
within the 2D material, i.e., s0ðεÞ ¼ 1. Such a potential is

readily incorporated through a scattering phase in s0,
leading to subgap resonances. Thus, our work provides a
flexible and powerful framework to analyze future STM
experiments aimed at revealing and analyzing the structure
of the superconducting gap in TBG and other novel 2D
superconductors.
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