
Published in Transactions on Machine Learning Research (11/2022)

Fast and Accurate Spreading Process Temporal Scale Esti-
mation

Abram Magner amagner@albany.edu
University at Albany, SUNY

Carolyn Kaminski ckaminski@albany.edu
University at Albany, SUNY

Petko Bogdanov pbogdanov@albany.edu
University at Albany, SUNY

Reviewed on OpenReview: https: // openreview. net/ forum? id= k4iWTEdUSF

Abstract

Spreading processes on graphs arise in a host of application domains, from the study of on-
line social networks to viral marketing to epidemiology. Various discrete-time probabilistic
models for spreading processes have been proposed. These are used for downstream statisti-
cal estimation and prediction problems, often involving messages or other information that
is transmitted along with infections caused by the process. These models generally model
cascade behavior at a small time scale but are insufficiently flexible to model cascades that
exhibit intermittent behavior governed by multiple scales. We argue that the presence of
such time scales that are unaccounted for by a cascade model can result in degradation
of performance of models on downstream statistical and time-sensitive optimization tasks.
To address these issues, we formulate a model that incorporates multiple temporal scales
of cascade behavior. This model is parameterized by a clock, which encodes the times at
which sessions of cascade activity start. These sessions are themselves governed by a small-
scale cascade model, such as the discretized independent cascade (IC) model. Estimation
of the multiscale cascade model parameters leads to the problem of clock estimation in
terms of a natural distortion measure that we formulate. Our framework is inspired by
the optimization problem posed by DiTursi et al, 2017, which can be seen as providing
one possible estimator (a maximum-proxy-likelihood estimator) for the parameters of our
generative model. We give a clock estimation algorithm, which we call FastClock, that runs
in linear time in the size of its input and is provably statistically accurate for a broad range
of model parameters when cascades are generated from any spreading process model with
well-concentrated session infection set sizes and when the underlying graph is at least in the
semi-sparse regime. We exemplify our algorithm for the case where the small-scale model
is the discretized independent cascade process and extend substantially to processes whose
infection set sizes satisfy a general martingale difference property. We further evaluate the
performance of FastClock empirically in comparison to the state of the art estimator from
DiTursi et al, 2017. We find that in a broad parameter range on synthetic networks and
on a real network, our algorithm substantially outperforms that algorithm in terms of both
running time and accuracy. In all cases, our algorithm’s running time is asymptotically
lower than that of the baseline.

1 Introduction

There are a variety of well-established and simple probabilistic generative models for graphs and and in-
fectious processes that run over these graphs. In this work we specifically focus on models for spreading

1

https://openreview.net/forum?id=k4iWTEdUSF

Published in Transactions on Machine Learning Research (11/2022)

processes on networks such as the diffusion of innovation (Montanari & Saberi, 2010), information (Bakshy
et al., 2012) and misinformation (Shin et al., 2018) in social networks. In such models, every node at a given
time has a state, and the model stipulates the conditional probabilities of nodes being in given states at
future times, given their states at the current time.

Typically, these models only focus on a single, uniform time scale, thus ignoring global synchronizing events
that occur in reality (such as periodic daily/weekly business schedules governing the actions of network
agents). In this work, we address modeling and estimation of parameters in the common scenario where
spreading process activity occurs intermittently, according to a global synchronizing schedule, as in Exam-
ple 1.
Example 1 (A scenario leading to intermittent spreading process activity). Consider a cascade (of, say, a
hashtag) among users of an online social network. These users may interact with the network only during
certain times of day, owing to their work schedules. For instance, the bulk of interactions may occur in
the morning, during one’s lunch break, during one’s afternoon tea, and after work. Infections are likely to
proceed only during these periods of activity, during which they spread stochastically according to a more
granular temporal process. See Example 2 for a refinement of this scenario, using the terminology of our
model.

The scenario just presented involves two time scales:

1. A larger time scale, consisting of a sequence of sessions during which local spreading process activity
occurs.

2. A smaller time scale during each session, consisting of local spreading process activity as captured
by a typical model.

It is important to take these multiple scales into account in model building and subsequent parameter
estimation, for a variety of reasons:

1. Failing to take the larger time scale into account (i.e., assuming that the process is entirely governed
by the smaller time scale) leads to erroneous parameter estimates for the smaller time scale model.

2. Even when the smaller time scale model parameters are known, failure to account for the larger
time scale leads to error in downstream statistical inference and optimization tasks, such as cascade
doubling time prediction (Cheng et al., 2014) and message model parameter estimation.

3. An estimate of the larger time scale or parameters of a model generating it can themselves be used as
features in machine learning problems involving cascades, such as cascade classification (e.g., where
class labels are “misinformation” or “true information”).

We discuss a few motivations in more detail in Section 1.2. Furthermore, in general, given cascade data
in a large network, the form of the intermittencies in the large time scale are not obvious and may vary
depending on the community from which the cascades originated since different communities and cascades
consisting of different types of information (e.g., long-form essays versus infographics versus videos versus
single-panel web comics) may operate according to different schedules. It is thus important to learn these
intermittencies from observations, as we do in the present work.

Given these motivations, the present paper is concerned with

• the formulation of a generative model for network cascades that is parametrized by an arbitrary
large time scale (which itself may contain events on multiple scales), with the smaller time scale
generated by some given standard model;

• the formulation of the estimation problem for the parameters of the large time scale from cascade
observations;

2

Published in Transactions on Machine Learning Research (11/2022)

• algorithmic techniques for provably accurate and computationally efficient solution of the above
estimation problem.

Our work is inspired by the works of DiTursi et al. (2017) and DiTursi et al. (2019), which took the following
approach: they formulated a problem of clock recovery, in which a “ground-truth” cascade is generated by the
independent cascade model of Kempe et al. (2003), then perturbed by a “clock transformation”, parametrized
by a clock (a sequence of observation timestep endpoints) to yield an observed cascade. The task that they
formulated is an optimization one: from the observed cascade, recover the clock with maximum likelihood.
Among other contributions, they formulated a dynamic programming algorithm that provably achieves
this maximum likelihood, but with a large asymptotic running time (see the discussion in Section 1.3).
Concretely, their dynamic programming algorithm can be seen as implementing one possible
estimator for the clock parameter of our generative model, in the case where the cascade,
viewed on the large time scale, is distributed according to the independent cascade model
of Kempe et al. (2003). We are the first to empirically study the accuracy of their estimator, in terms
of distance to the ground truth parameters, and, thus, it is not a priori clear what types of graphs are most
favorable for its performance.

In the present work, we take a more statistical approach: we rephrase the clock estimation problem via a
generative model that produces cascades with multiple temporal scales. In this model, clocks become the
parameters of the larger temporal scale, and the task is to estimate the unknown clock (the parameter)
from the data that the model produces. We make this estimation task rigorous by introducing a notion of
distortion between clocks, which measures the accuracy of an estimated clock. The clocks in our work are
the same type of object as those in the prior work (but interpreted differently).

Our reformulation is valuable for both performance and philosophical reasons:

1. In the prior work, it is unclear what physical mechanism is being modeled by the clock transformation
which operates on an already generated cascade, while, in contrast, in our work, clocks are a natural
product of global intermittent influences on individual node behavior.

2. In the prior work, the “ground-truth” cascade uses a notion of timesteps that do not map to physical
times, while in our work, the observed cascade operates in a discretization of real, physical time.

3. Prior work does not attempt, even empirically, to quantify the distance between the ground-truth
clock (the one that actually generated the data) and the estimated one – maximizing the likelihood
of the estimated clock, rather than ensuring accuracy, is treated as the end goal. In contrast, in
our work we give a rigorous estimation formulation, which allows us to quantify the accuracy of
the maximum likelihood estimator versus alternatives (such as the estimator that we introduce).
As detailed throughout this paper, our resulting estimator substantially outperforms the previous
work’s dynamic programming-based maximum likelihood estimator in terms of running time and, on
all of our synthetic data and in a broad range of parameters on real networks, in terms of accuracy.
Across the entire parameter range on real networks, the average accuracy of our estimator is quite
low (consistently less than 0.07).

1.1 High-level problem formulation

We next state our problem at a slightly more technical level (we give all formal formulations in Section 2).
To do so, we first introduce preliminaries on spreading process models.

Preliminaries: spreading process models. Several well-studied information diffusion models on a
graph G assume a discrete timeline in which at every time step nodes of G participate in the diffusion process
(i.e., become “infected”) based on influence from network neighbors who became infected in past time steps.
Here, a timeline is simply an ordered sequence of indices: 0, 1, 2, The output of a spreading process
model after timestep N is an infection sequence of disjoint vertex subsets S0, S1, ..., SN , where St is the set
of vertices of G that became infected during timestep t. For example, according to the independent cascade
model infected nodes have one chance to infect their neighbors, while in the linear threshold model nodes

3

Published in Transactions on Machine Learning Research (11/2022)

get infected when a critical fraction of their neighbors have been infected in any prior time steps (Kempe
et al., 2003). In addition to the discrete time models above, there also exist continuous-time counterparts.
For the purposes of computation, the latter are generally discretized by a standard recipe: given a resolution
δ > 0 and a cascade sampled from a continuous-time model over a time interval [0, T], one defines the
δ-discretization of the cascade to be the infection sequence S = (S0, S1, ..., SdT/δe), where Sj consists of the
set of vertices infected during the time interval jδ. In the discussion that follows, we will thus state our
formulation in the discrete-time case, with the understanding that this is without loss of generality.

Formulation of our two-scale model. To capture our motivating scenario, we will define a new two-
scale cascade model, where the smaller scale is given by an arbitrary fixed spreading process model M0 with
the property that, at any given time t, a vertex may only transmit infection if it is in the set of active nodes
At at that time.

The generative process that we will define is parametrized by a sequence of time points t0, t1, ..., tN , giving
the larger time scale. Intuitively, tj is the time at which the jth session starts. The activity within the jth
session (comprising the smaller scale of the model) is dictated by M0 as follows: for any time t ∈ [tj , tj+1),
the distribution of new vertex infection events is given by M0 conditioned on the active set remaining fixed
to its value at time tj . In other words, vertices may become infected in the time interval [tj , tj+1), but the
active set is not updated until time tj+1. This assumption is justified whenever nodes’ “attention spans”
have a finite granularity, in the sense that newly infected vertices do not become infectious immediately.
This is aligned with the intuition of daily activity periods from Example 1 and more broadly justified in
spreading processes on social networks. We give a more specific scenario in Example 2 to illustrate this. In
the appendix, Section G, we explain the behavior of our estimator when this assumption does not strictly
hold.
Example 2 (Scenarios illustrating our active set intermittent update assumption). Here, we give more
detailed examples of scenarios in which spreading process activity satisfies our assumption regarding inter-
mittent updating of the active set.

Consider a social network such as Facebook, where nodes are people and edges are friendships. We consider
cascades in which a person is said to be infected when they post a particular piece of content. Note that
infection of a person is detectable immediately, and can thus be recorded in a dataset. A person is active
(i.e., infectious) when other people see what that person has posted. We assume, furthermore, that people
have, in any given session (defined below), a limited reserve of attention, and will thus be focused on posts
that occurred prior to the current session.

Now, a session starts when some break in the day happens and ends when the break stops. At the start of
a cascade, some initially active vertices Ssess(0) are seen by users in the first session. A subset Ssess(1)
of these users, during that same session, repost, becoming infected. Neighbors of newly infected vertices do
not see these reposts during this session, because of the aforementioned limitations of attention. Thus, the
elements of Ssess(1) are infected, but they are not active until the next session (which may occur several
hours after the current one), at the beginning of which the attention reserves of their neighbors have been
replenished.

An alternative mechanism that could produce the same effect as the attention reserve is a platform playing
an active role in displaying posts non-chronologically, resulting in delays in the display of a post.

We note that in the above example, different types of content may plausibly spread according to different
clocks. For instance, long videos may be shared only after work hours, while technical essays may be shared
during work. Comedic webcomics may be shared throughout the day. Thus, it is of interest to estimate the
clocks of different cascades from data, rather than assuming some hard-coded clocks.

Formulation of our estimation problem. Having formulated our two-scale model, we next formu-
late the central estimation question that we study in this work: given a sample infection sequence
(Sobs(0), Sobs(1), ..., Sobs(N̂)) from the two-scale model parametrized by the larger time scale t0, t1, ..., tN , the
natural question to ask is to what extent t0, ..., tN can be estimated. For many models, this is reducible to a
more fundamental problem, which is the central one that we tackle in this work: estimate the assignment of

4

Published in Transactions on Machine Learning Research (11/2022)

0

1 3

4

2 5

6

0 1 2 3 4 5Timestep
S(1)

∆1 = [0, 0], [1, 4], [5, 5]
6

2
5

0

S(2)

∆2 = [0, 2], [3, 4], [5, 5]

6
2

5
0

Figure 1: An example network and a cascade Sobswith corresponding observed infection sequence Sobs =
({6}, {2}, {}, {}, {5}, {0}), encoding that 6 was infected in timestep 0, 2 in timestep 1, 5 in timestep 4, and 0 in timestep
5. Suppose that this cascade was generated according to our two-scale model with clock ∆1 = ([0, 0], [1, 4], [5, 5]), so that there
are 6 timesteps and 3 sessions. Then the (unobserved) session-level infection sequence is S

(1)
sess = ({6}, {2, 5}, {0}) . An esti-

mator of the clock, given Sobs, might output a different clock: say, ∆2 = ([0, 2], [3, 4], [5, 5]), yielding an estimated session-level
infection sequence of S

(2)
sess = ({6, 2}, {5}, {0}) . In Definition 4, we will define a distance between clocks, under which ∆1 and

∆2 have nonzero distance, because ∆2 entails that vertices 6 and 2 were both infected in the first session.

vertex infection events to the indices of sessions during which they occurred. We call this the clock estimation
problem. We elucidate this estimation problem by the example in Figure 1.

1.2 Motivating applications

We next discuss several motivating applications for our generative model and for the clock recovery problem.
In the listed applications, we explain how failing to account for multiple time scales results in degraded
statistical accuracy or optimization performance on downstream tasks. We note that all of these applications
involve a nontrivial statistical or optimization task even when the parameters of the small-scale cascade model
are known.

1. Parameter estimation for information models running on top of cascade processes: In
one class of applications, one wants to make inferences about some extra piece of information (a
message, sentiment, opinion, etc.) that is spread along with an infection, according to a parametric
statistical model (which we will call, for this discussion, an information model), and the information
associated with a given node is statistically dependent on the corresponding information associated
with the nodes that infected it.
As a concrete example, consider a model of the spread of a sentiment (an information model) that
runs on cascades generated by our two-scale model parametrized by some nontrivial clock, with the
smaller scale generated by the discretized independent cascade model. In particular, the seed nodes
v ∈ S0 of the cascade are endowed with sentiments Xv uniformly distributed in [0, 1]. When a node
w becomes infected, say, by an unknown subset I(w) of active neighbors of w, the sentiment of w is
given as follows:

Xw = θ1θ2 + (1− θ2) 1
|I(w)|

∑
v∈I(W)

Xv. (1)

Here, θ1 is a bias parameter ∈ [0, 1] that represents some base sentiment, and θ2 ∈ [0, 1] is a social
influence parameter that governs how much each node w tends to adopt the average sentiment of
its infectors. The goal in such a model is to estimate θ1, θ2 from observation of a cascade as well as
measured sentiments Xw.
Note that even when the parameters of the smaller-scale spreading process model are known, it is of
interest to estimate the parameters of the information model from sample cascades. Furthermore, in
such applications, clock estimation – the main subject of this paper – is an essential preprocessing
step in order to reduce the complexity of parameter estimation by determining the set of vertices
that could have infected a given vertex w (i.e., the set of active neighbors of w). This set is not
observable, owing to lack of knowledge of the clock. Furthermore, failure to consider multiple time
scales introduces error into the log likelihood function of the information model parameters since

5

Published in Transactions on Machine Learning Research (11/2022)

the correct set of active neighbors is unknown. Ultimately, this results in erroneous parameter
estimation.

2. Time-critical tasks: In certain applications, the goal is to optimize some objective function
defined on the state of the process, subject to a time deadline that is given as input. For instance,
in time-critical influence maximization (Chen et al., 2012b), the problem is to choose seed nodes to
optimize the expected number of infections occurring by a given timestep.
For a given seed set, the expected number of vertices infected by the deadline may change dramat-
ically depending on whether or not a large time scale is incorporated into the model. Intuitively,
this is because delays introduced by a large time scale may make the infection of a particularly
well-connected vertex less likely. Thus, taking into account multiple time scales is essential for the
success of model-based time-critical optimization tasks. This is exacerbated even further in cases
where different subsets of nodes operate according to different large time scales.

3. Cascade doubling time prediction: The cascade doubling time prediction problem was posed
in Cheng et al. (2014). A cascade is observed up to a certain time t, and the goal is to produce an
accurate estimate of the time at which the number of infected nodes doubles from the number at time
t. This problem was introduced as a prototypical prediction problem for cascades. In Example 3 in
Appendix C, we spell out the details of a concrete example in which failure to account for a large
time scale results in avoidable inaccuracy in doubling time prediction.

1.3 Prior work

The general topic of analysis of cascades has received a large amount of attention, both from theoretical and
empirical perspectives. There are many cascade models, with features depending on application domains.
For example, the independent cascade (IC) and linear threshold (LT) models were popularized in Kempe
et al. (2003) for the application of influence maximization. This problem continues to be studied, even in
settings where cascade model parameters are known (Lee et al., 2016; Abbe et al., 2017). Variations on the
influence maximization problem that have time-critical components and, thus, require accurate modeling of
multiple time scales in the sense that we study here, have also been studied (Chen et al., 2012a; Ali et al.,
2019). These models are also used outside the context of influence maximization, e.g., in modeling the spread
of memes on social networks (Adamic et al., 2016).

Statistical prediction tasks involving cascades have also been posed. For instance, the cascade doubling time
prediction task was considered in Cheng et al. (2014). Other works propose models in which a piece of
information, such as a message, an opinion, or a viral genome, is transmitted along with the infection of
a node (Eletreby et al., 2020; De et al., 2016; Park et al., 2020). For such statistical problems, statistical
inferences about the transmitted information can be disrupted by inaccurate estimation of the set of infectious
vertices at a given time, further motivating generative modeling and estimation that takes into account
multiple time scales.

The estimation method that we propose and study here, FastClock, bears a resemblance to methods in the
online change-point detection literature (Veeravalli & Banerjee, 2014). Broadly speaking, the goal of that
problem is to sequentially observe independent and identically distributed random variables X1, X2, ... and
to detect, with as few samples as possible, an index after which the distribution of the variables changes.
One procedure for this, called CuSum, evaluates for each index j a statistic Yj = Yj(Xj) and maintains a
sum Zt =

∑t
j=1 Yt. A changepoint is declared once Zt exceeds a certain threshold. In this paper, we define

a similar rule for detecting session endpoints. In the context of change-point detection, CuSum has been
analyzed in both the iid and more general hidden Markov setting (Fuh, 2003). However, our analysis is
necessarily substantially different from that of CuSum, which rests on stringent assumptions (e.g., that the
Xj are sampled from an ergodic Markov chain).

In DiTursi et al. (2017) (see also followup work in DiTursi et al. (2019)), the authors formulated a version
of the problem of clock recovery from cascade data generated according to an adversarially chosen clock
as a problem of maximization of a function of the clock that serves as a proxy (in particular, an upper
bound) for the log likehood of the observed cascades. They proposed a solution to this problem via a

6

Published in Transactions on Machine Learning Research (11/2022)

dynamic programming algorithm. While the dynamic programming algorithm is an exact solution to their
formulation of the problem, it has a running time of Θ(n4), where n is the total number of vertices in the
graph on which the observed cascade runs. This is prohibitively expensive for graphs of moderate to large
size. Furthermore, their formulation of the problem makes no comparison of the estimated clock with the
ground truth one, and thus there are no theoretical guarantees or empirical evaluations of the accuracy
of their estimator (which we call the maximum likelihood proxy (MLP) estimator) as an approximation to
the ground truth clock. In contrast, the present work gives a rigorous formulation of the problem as one of
statistical estimation of the ground truth clock from observed cascades. We compare our proposed algorithm
and estimator with the MLP estimator in this framework in terms of both accuracy and running time.

1.4 Our contributions

Our contributions in this work are as follows:

• Novel problem formulation. We formulate a two-scale generative model for cascades, where the larger
time scale is parametrized by an arbitrary clock (which may itself be generated by a model with arbitrarily
many time scales). We formalize the problem of clock estimation from observed cascades with respect to a
natural distortion measure. This distortion measure allows us to quantify the proximity of estimated clocks
to the ground truth in a principled manner.

• Provably accurate and computationally efficient solutions. We propose a linear-time algorithm
with provable approximation guarantees for the clock estimation problem. In particular, the distortion
between the true clock and our estimate tends to 0 at a polynomial rate with respect to the average degree
of the graph.

• Generality. We first prove our results in the context of Erdős-Rényi graphs in the semi-sparse regime
and the independent cascade model. The proofs for this setting contain almost all necessary ingredients
for extension of guarantees to a much more general setting: the results also hold when the cardinalities of
infection sets Si satisfy a martingale difference property and the graph is sampled from a sufficiently dense
sparse graphon model. We provide the remaining ingredients in Section 3.5 and culminate with a more
general theorem.

• Confirmation of results in simulation on synthetic and real graphs. We bolster our theoretical
results via experiments on both real and synthetic graphs and synthetic cascades. We find that the FastClock
estimator empirically outperforms the dynamic programming-based estimator from DiTursi et al. (2017) in
terms of accuracy and on all of our synthetic graphs and in a broad range of cascade model parameters on a
real graph, and substantially in terms of running time on all of our synthetic graphs and for all investigated
model parameters on a real graph. We give our simulation results in Section 3.4 and Appendix D.

2 Problem formulation and notation

Our goal in this section is to formulate our generative model and the problem of clock estimation. We give
examples of all definitions in Appendix C.

Preliminary definitions: We fix a graph G on the vertex set [n] = {1, ..., n}, and we define the timeline
of length N , for any number N ∈ N, to be the set [[N]] = {0, 1, ..., N}. The first ingredient of our framework
is a cascade model. We will be concerned in the present work with compartmental models, wherein each node
may be susceptible (uninfected), active (i.e., infected and able to transmit the infection to its neighbors),
or infected (but unable to transmit its infection). We collect the different possible compartments into a set
Ω = {S,A, I}. Nodes may carry additional information from an arbitrary set Ω′. At any given time t, a
node v ∈ [n] is in some state Ψ(v, t) ∈ Ω× Ω′. We call a network state any element of (Ω× Ω′)n.
Definition 1 (Cascade model, observation model). A (discrete-time) cascade model C is a conditional
distribution PC(· | X) , where X ∈ (Ω× Ω′)n is a network state.

For the bulk of the paper, we will be concerned with the following model of observations of cascades: for
a sequence of network states (X0, X1, ..., XN), we observe a corresponding sequence, called an infection

7

Published in Transactions on Machine Learning Research (11/2022)

sequence: (Sobs(0), Sobs(1), ..., Sobs(N)) , where Sobs(j) consists of the set of vertices at time j that move
into either compartment A or I according to Xj. Note that we do not observe which vertices are active or
any of the side information. Any cascade model thus induces a probability distribution on infection sequences.

To begin to define our two-scale generative model, we next define a clock, which encodes the timesteps
belonging to each session. This will be a parameter of our model.
Definition 2 (Clock). A clock C with N+1 sessions on the timeline [[N ′]] is a partition of [[N ′]] into N+1
closed subintervals (i.e., contiguous integer subsets) C0, ..., CN . We call the jth such subinterval, for j = 0
to N , the jth session interval.

Given an observed infection sequence Sobs = (Sobs(0), ...Sobs(N ′)) , a clock C induces an infection sequence
Ssess = (Ssess(0), Ssess(1), ..., Ssess(N)) , where Ssess(j) = ∪k∈CjSobs(k) . We call this the infection
sequence induced by C on Sobs .

For algorithmic purposes, we note that a clock may be encoded as a sequence of non-negative integers giving
its right interval endpoints.

Main definition of the generative model: We now define our main generative model. We fix a cascade
model C0, which will govern the dynamics of the process during each session. This is the small-scale model.
In general, it may depend on the length of the session.
Definition 3 (Two-scale generative model for cascades). The two-scale generative model M(C,X0, T) =
M(C) is parametrized by a clock C, an initial network state Z0 ∈ (Ω × Ω′)n, and a number of sessions
T . Its output is a sequence (X0, X1, ..., XN) of network states, inducing an observed infection sequence
(Sobs(0), ..., Sobs(N)) .

For j = 1, ..., T , at the beginning of the jth session, the network state is given by Zj−1. At each timestep t
in the jth session, a network state is sampled from C0, conditioned on the current network state. Any vertex
that is newly activated according to C0 is set to infected in Xt and active in Zj. For convenience, we also
define the infection sequence Ssess = (Ssess(0), Ssess(1), ..., Ssess(T)), where Ssess(j) consists of the set of
vertices infected during session j (so Ssess is just the infection sequence induced by C on Sobs). We call
Ssess the session-level infection sequence.

Intuitively, in this model, vertices infected during a given session only become active in the next session.
This is justified in scenarios where nodes are not immediately infectious when they become infected. In this
case, sessions may be seen as periods during which a current set of active vertices causes infections.

Measuring distortion between clocks: To formulate the problem of estimating the clock of our model,
given an infection sequence produced by it, we need a means of measuring distortion between clocks. This
is our next goal.

An infection sequence S naturally induces a partial order on the set of vertices: namely, for two vertices a, b,
a < b if and only if a ∈ Si, b ∈ Sj for some i < j. Similarly, a clock C applied to an infection sequence Sobs,
in the sense of Definition 2, induces a partial order. This partial order is the one induced by the infection
sequence S that C induces on Ŝ.

We will consider two clocks C0, C1 to be equivalent with respect to a given observed infection sequence Sobs
if they induce the same partial order. The reason for this is that two equivalent clocks separate vertices in
the same way into a sequence of sessions. We will sometimes abuse terminology and use “clock” to mean
“clock equivalence class”.

We next define a distortion function on clock equivalence classes. This will allow us to measure how far
a given estimated clock is from the ground truth. Note that given an observed infection sequence Sobs, a
clock cannot reverse the order of any pair of events, so that the standard Kendall τ distance between partial
orders is not appropriate here.
Definition 4 (Distortion function on clock pairs). Consider two clocks C0, C1 with respect to an observed
infection sequence Sobs. We define DisC0,C1(i, j) to be the indicator that the clocks C0 and C1 order vertices

8

Published in Transactions on Machine Learning Research (11/2022)

i and j differently (i.e., that the partial order on vertices induced by Cb orders i and j and the partial order
induced by C1−b does not, for b equal to either 0 or 1). If the clocks in question are clear from context, we
may drop the subscript.

We define the following distortion measure on clock pairs:

dSobs
(C0, C1) = 1(

n
2
) ∑
i<j

DisC0,C1(i, j). (2)

Main problem statement: We finally come to the general problem that we would like to solve:

Definition 5 (Clock estimation). Fix a graph G, a small-scale cascade model C0, and a clock C. An infection
sequence Sobs ∼ M(C) is generated on G. Our goal is to produce an estimator Ĉ = Ĉ(Sobs) of C so as to
minimize E[dSobs

(C, Ĉ)] . This is called the clock estimation problem.

The above definition implicitly assumes knowledge of the parameters of the small-scale cascade model.
Estimation of these parameters has been studied extensively in the literature and need not necessarily come
from cascade observations. We discuss this in the appendix, in Section E. Furthermore, knowledge of the
initial conditions of the cascade is necessary in order to achieve an expected estimation error that tends to 0
in general. We thus assume that the initial network state is given to us. Under mild additional assumptions
on the model (e.g., that Ssess(0) consists of Θ(1) vertices chosen uniformly at random, and that the graph
is sparse, so that Ssess(0) is an independent set with high probability), the initial set Ssess can be inferred
with high probability. We discuss how to do this at length in the appendix, in Section F.

Specific small-scale cascade model: Having defined our multiscale generative model, we specify an
example small-scale cascade model for our problem. Our approach generalizes beyond this one, as we will
explain in Section 3.5.

We define the discretized independent cascade (IC) process.

Definition 6 (Discretized independent cascade process). We fix a graph G, an initial infection set S0 of
vertices in G (given by elements of [n] = {1, ..., n}), a number of timesteps K (giving the length of the session)
and probability parameters pn and pe, both in [0, 1]. Here, pn denotes the probability of transmission of an
infection across an edge, and pe denotes the probability of infection from an external source. Additionally,
we fix a probability distribution D on N (for simplicity, we will choose the geometric distribution with mean
1).

When a node v becomes active, for every one of its susceptible neighbors w, it draws an independent
Bernoulli(pn) random variable. If it is 1, v starts a timer by drawing a sample X from D, then defin-
ing τv,w to be the minimum of X and the number of timesteps remaining in the session. The vertex v then
becomes inactive (moves to the I state). After τv,w timesteps, w becomes active.

In parallel, in a given timestep, each susceptible vertex becomes active with probability p′e = 1− (1− pe)1/K ,
independent of anything else. This models infection by external circumstances, with probability pe over the
entire session.

We denote by Sj the set of nodes that become active in timestep j. The process terminates either after K
steps or after all nodes are infected.

There is a natural connection between the discretized IC model and the IC model defined in Kempe et al.
(2003) via our two-scale model: when the small-scale model is the discretized IC model, the sequence
Ssess = (Ssess(0), Ssess(1), ..., Ssess(T)) of sets of vertices infected in the sessions of our model is distributed
according to the model in Kempe et al. (2003). In that model, there is a seed set of vertices S0 that are
active at time 0. In each timestep (our sessions), the vertices that were infected in the previous timestep
become active, and the vertices that were active in the previous timestep become inactive but infected. Each
active vertex chooses to infect each of its neighbors independently with probability pn. Furthermore, each
uninfected vertex becomes infected with probability pe.

9

Published in Transactions on Machine Learning Research (11/2022)

3 Main results: Algorithm, approximation and running time guarantees, generality

In this section, we present our proposed algorithm (Algorithm 1) for clock estimation, which we call FastClock.
We give full proofs of all theorems in Appendix B.

FastClock takes as input a graph G, an observed infection sequence Sobs = (Sobs(0), ..., Sobs(N)) , and the
parameters θ of the cascade model, including the initial infection set Ssess(0) (see our discussion of this
assumption in the previous section), but not including session lengths. The output of the algorithm is an
estimated clock Ĉ, which takes the form of a sequence of interval right endpoints t̂0, t̂1, ..., t̂N̂ ∈ [[N]], for
some N̂ and is an estimate of the ground truth clock C specified by t0, ..., tN .

Our algorithm proceeds by iteratively computing the estimate t̂j . In the (j + 1)-st iteration, to compute
t̂j+1, it chooses the size of the next interval of the clock so as to match as closely as possible the expected
number of newly infected nodes in the next session. We prove that the resulting clock estimate is very close,
in terms of dSobs

(·, ·) , to the ground truth clock, using concentration inequalities.

The correctness of FastClock is based on the following intuition: if we manage to correctly estimate t0, ..., tj ,
then we can estimate the conditional expected number of vertices infected in the (j + 1)-st session of the
process (i.e., |Ssess(j + 1)|). We can show a conditional concentration result for |Ssess(j + 1)| around its
expectation. Thus, we output as our next clock interval endpoint t̂j+1 the smallest integer t ≥ t̂j for which
the number of vertices in

⋃t
k=tj+1 Sobs(t) does not exceed its conditional expectation, corrected by a small

quantity. This quantity is determined by the concentration properties of the random variable |Ssess(j + 1)|
conditioned on the state of the process given by Sobs(0), ..., Sobs(tj). We choose the threshold to be such
that, under this conditioning, the number of vertices infected in the next session is slightly less than it
with probability tending exponentially to 1. Our approximation analysis illustrates that the approximation
quality depends on the graph structure and the model parameters.

The significance of the approximation and running time results (Theorems 1 and 2 below for the independent
cascade model) is that the clock parameter of our multiscale cascade model can be quickly estimated with
provably high accuracy using relatively simple expected value calculations. The generality of our results
(well beyond the IC model) is discussed in Section 3.5. As long as the expected number of nodes infected in
the next session can be calculated efficiently, the FastClock algorithm can be adapted to a wide variety of
cascade models.

3.1 The FastClock algorithm

Before we define our algorithm we introduce some necessary notation. For a session-level infection sequence
S̃ and a session index t ∈ |S̃|, define σt(S̃) to be the σ-field generated by the event that the first t session-
level infection sets of the cascade process are given by S̃0, S̃1, ..., S̃t. That is, the event in question is that
Ssess(0) = S̃0, ..., Ssess(t) = S̃t. We also define µt(S̃) to be µt(S̃) = E[|Ssess(t+ 1)| | σt(S̃)]. For a vertex
v, we denote by N (v) the set of neighbors of v in G. The algorithm is given in Algorithm 1.

After an initialization, the main loop in FastClock (Steps 5-11) iteratively determines the last infection
event in the next session of the process (whose endpoint timestep we are trying to estimate), by estimating
the expected number of nodes µt to be infected in that session (Step 6). The key step in this procedure is
the computation of µt, which we discuss next.

Computing µt(S̃) in the discretized IC model. Let us be more precise in specifying how to compute
µt(S̃) = E[|Ssess(t + 1)| | σt(S̃)] when the small-scale model is the discretized independent cascade model
(see Definition 6). A node can be infected in one of two ways: through external factors (governed by pe) or
via transmission from a vertex in S̃t through an edge. In the latter case, the node must lie in the frontier
set Ft(S̃), defined as follows: Ft(S̃) is the set Ft(S̃) = N (S̃t) \

⋃t
j=0 S̃t; i.e., it is the set of neighbors of S̃t

that we believe to be uninfected at the beginning of cascade session t. See Example 5 in the appendix for
an illustration of the definition of frontier sets.

For a set of vertices W ⊆ [n] and a vertex v ∈ [n], let degW (v) denote the number of edges incident on v
that are also incident on vertices in W . We can use linearity of expectation to derive a closed-form formula

10

Published in Transactions on Machine Learning Research (11/2022)

Algorithm 1: FastClock
Data: Graph G, small-scale cascade model parameters θ, observed infection sequence

Sobs = (Sobs(0), ..., Sobs(N))
Result: An estimated clock Ĉ.
// An initially empty list for the estimated clock. This will eventually contain a

sequence of estimated endpoints of clock intervals.
1 Set Ĉ = ();

// t: index of the next estimated clock interval, i.e., t is an index in Ssess, the
session-level infection sequence.

// tobs: the index in Sobs of the beginning of the next estimated clock interval
2 Set t = 1, tobs = min{j ≤ N : | ∪jk=0 Sobs(k)| = Ssess(0)};

// S̃: the estimated infection sequence approximating the session-level sequence S.
3 Set S̃0 = ∪tobs

k=0Sobs(k) ;
4 Append tobs to Ĉ;
5 while tobs 6= N do

// Compute the expected number µt of infected nodes in a single session of the
cascade process, starting from the state of the process estimated so far.

6 Set µt = E[|Ssess(t+ 1)| | σt(S̃0, S̃1, ..., S̃t)] ;
7 Set

t′obs = tobs + max
{

∆ |
tobs+∆∑
i=tobs+1

|Sobs(i)| ≤ µt · (1 + µ
−1/3
t)

}
(3)

8 Append t′obs to Ĉ;
9 Set S̃t = ∪t

′
obs
i=tobs+1Sobs(i);

10 Set t = t+ 1;
11 Set tobs = t′obs;
12 end
13 return Ĉ;

for µt(S̃):

µt(S̃) = pe ·

n− |Ft(S̃)| −
t∑

j=0
|S̃j |

+
∑

v∈Ft(S̃)

(pe + (1− pe)(1− (1− pn)degS̃t
(v))). (4)

A similar expression can be derived for the more general case where transmission probabilities across edges
may differ from each other. The calculation of the summation

∑t
j=0 |S̃j | can be performed efficiently by

keeping track of its value in the t-th iteration of the loop of the algorithm. In the t-th iteration, the value of
the summation is updated by adding |S̃t| to the running total. Note also that this estimation will be the only
difference in our algorithm when applied to alternative cascade models such as the linear threshold model.

3.2 Approximation guarantee for FastClock

Our first theorem gives an approximation guarantee for FastClock in the case where the small-scale model
is the discretized IC model. It is subject to an assumption about the parameters of the graph model from
which G is sampled and about the parameters of the small-scale cascade model, which we state next. It is,
however, important to note that FastClock itself does not assume anything about the graph. Furthermore,
we generalize our guarantees beyond these assumptions in Section 3.5, Theorem 3.
Assumption 1 (Assumptions on random graph model parameters). We assume that G ∼ G(n, p) (i.e., that
G is sampled from the Erdős-Rényi model), where p satisfies the following relation with the ground truth

11

Published in Transactions on Machine Learning Research (11/2022)

number of sessions T + 1: p = o(n−
T

T +1). and p ≥ C log n/n, for some C > 1. We substantially relax our
modeling assumptions in Section 3.5.

The former condition on p may be viewed as a constraint on T . It is natural in light of the fact that, together
with our assumptions on pn and pe below, it implies that the cascade does not flood the graph, in the sense of
infecting a Θ(1)-fraction of nodes. Many cascades in practice do not flood the graph in this sense. The lower
bounding condition on p implies that the graph is connected with high probability. In terms of density, this
covers graphs in the semi-sparse regime, wherein the number of edges grows superlinearly with the number of
vertices. This is common in real networks with communities. We exhibit in Section H several real networks
with average degrees that are well within the bounds of our assumption.

Regarding the small-scale cascade process, we assume that it is the discretized IC model from Definition 6,
with the following constraints on the parameters: we assume that pn is some fixed positive constant and that
pe = o(p). Our results also hold if pn is different for every edge e (so that pn = pn(e)), provided that there
are two positive constants 0 < c0, c1 < 1 such that for every edge e, pn(e) ∈ [c0, c1].

The assumption that pn is constant with respect to n is natural in the sense that, for many infectious processes,
the probability of transmission from one node to another should not depend on the number of nodes. The
assumption on pe, the probability of infection from an external source, is reasonable when the cascade is
overwhelmingly driven by network effects, rather than external sources.
Theorem 1 (Main FastClock approximation theorem). Suppose that Assumption 1 holds. We have, with
probability at least 1− e−Ω(np),

dSobs
(C, Ĉ) = O((np)−1/3), (5)

where we recall that Sobs is the observed infection sequence generated by the two-scale cascade model
parametrized by the ground truth clock C, Ssess is the session-level infection sequence, and Ĉ is the es-
timate of C that is output by FastClock.

The proof of Theorem 1 uses an auxiliary result (Theorem 4 in the appendix, which we call the FastClock
utility theorem) stating that with high probability, for every i, the intersection of the session-level infection
sequence element Ssess(i) with the estimated infection sequence element S̃i is asymptotically equivalent in
cardinality to Ssess(i) itself. We prove this by induction on the session index i, which requires a careful design
of the inductive hypothesis. Given the utility theorem, the upper bound on the distortion dSobs

(C, Ĉ) follows
by summing over all possible pairs Ssess(i), Ssess(j) of infection sequence elements in Ssess, the session-level
infection sequence, then summing over all vertex pairs u ∈ Ssess(i), v ∈ Ssess(j) . This inner sum is
approximated using the utility theorem.

3.3 Running time analysis

We have a strong guarantee on the running time of FastClock in the independent cascade case. The run-
ning time of FastClock is asymptotically much smaller than that of the dynamic programming estimator
from DiTursi et al. (2017).
Theorem 2 (Running time of FastClock). The FastClock algorithm for the case where the small-scale cascade
model is the discretized independent cascade model runs in time O(N + n + m), where m is the number of
edges in the input graph.

3.4 Empirical results on synthetic graphs

In this section, we present empirical results on synthetic graphs and cascades. Our goal is to confirm the
theoretical guarantees of FastClock and compare it to the dynamic programming (DP) algorithm optimizing
a proxy of the maximum likelihood for observed cascades proposed by DiTursi et al. (2017). Our comparative
analysis focuses on (i) distance of the estimated clock from the ground truth clock (see Definition 4) and (ii)
empirical running time of both techniques. More extensive empirical results on synthetic and real graphs
are included in the appendix, Section D.

12

Published in Transactions on Machine Learning Research (11/2022)

1000 3000 5000 10000
number of nodes

0.0

0.1

0.2

0.3

0.4

di
st
an

ce

FastClock
DP

(a)

1000 3000 5000 10000
number of nodes

10−2

10−1

100

101

102

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(b)

0.01 0.05 0.1 0.15 0.2 0.25 0.3
pn

0.0

0.1

0.2

0.3

0.4

di
st
an

ce

FastClock
DP

(c)

0.01 0.05 0.1 0.15 0.2 0.25 0.3
pn

100

101

102

103

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(d)

Figure 2: Comparison of the distance and runtime of the estimated clocks by FastClock and the baseline DP from DiTursi
et al. (2017) on Erdős–Rényi graphs (default parameters for all experiments: pn = 0.1, pe = 10−7, n = 3000, p = n−1/3, stretch
l = 2 unless varying in the specific experiment). (a),(b): Varying graph size. (c),(d): Varying infection probability pn.

We generate synthetic graphs using the Erdős–Rényi model (experiments using stochastic block models are
included in Section D). We then generate synthetic cascades on each graph using the independent cascade
(IC) model. Since both algorithms under consideration are invariant to infection timers in the small-scale
model, we determine the set of vertices infected in each session according to IC model of Kempe et al. (2003),
then assign to each infected vertex a uniformly random infection time within its session, which we fix to
have length l (some integer which we call the stretch factor of our cascade). As in our theorems, we denote
by Ssess the session-level infection sequence and by Sobs the observed process infection sequence. These
implicitly specify a ground-truth clock C. We note that while all of our experiments involve sessions with
uniform length, our theoretical contributions are more general. We then employ both FastClock and the
maximum likelihood proxy algorithm to estimate the ground truth clock from Sobs. We draw 50 samples for
each setting and report average and standard deviation for both running time and quality of estimations for
each setting.

Experiments on Erdős–Rényi graphs. We report a subset of the results of our experiment on Erdős-
Rényi graphs in Figure 2. With increasing graph size FastClock’s distance from the ground truth clock
diminishes (as expected based on Theorem 1), while that of DP increases (Fig. 2(a)). Note that DP optimizes
a proxy to the cascade likelihood and in our experiments tend to associate too many early timesteps with
early sessions, which for large graph sizes results in incorrect recovery of the ground truth clock. Similarly,
FastClock’s estimate quality is better than that of DP for varying on pn (Fig. 2(c)), graph density (Fig. 4(e)
in the appendix) and stretch factor for the cascades (Fig. 4(g) in the appendix), with distance from ground
truth close to 0 for regimes aligned with the key assumptions we make for our main results (Assumption 1 or,
more generally, 2). In addition to superior accuracy, FastClock’s running time scales linearly with the graph
size and is orders of magnitude smaller than that of DP for sufficiently large instances (Figs. 2(b), 2(d)).

3.5 Generality of FastClock

We have shown that FastClock achieves small expected distortion on the clock recovery problem when the
small-scale model is as in Definition 6. However, the algorithm works substantially more generally – all that
is needed is concentration of the number of vertices infected in each session, given previous session, around
its conditional expectation, along with concentration of the frontier size in each session. In particular, the
model-dependent parts of the proof of Theorem 1 lie entirely in the proof of Theorem 4 and the associated
auxiliary lemmas.

Below, we formulate sufficient conditions on our model to guarantee these properties. Our discussion culmi-
nates in Assumption 2, which is used as the main hypothesis in Theorem 3.

Concentration of the number of vertices infected in each session A sufficient condition for the
required concentration property to hold is a martingale difference property: for any session index t, we
may write |Ssess(t)| as a sum of indicators of vertex infection events: letting X(v, t) denote the indicator

13

Published in Transactions on Machine Learning Research (11/2022)

that v ∈ Ssess(t), we have |Ssess(t)| =
∑
vX(v, t). We define Z(Ssess, t, v) as follows: we first order the

vertices in F(Ssess, t) arbitrarily and denote them by v1, ..., v|F(Ssess,t)|. Then we define Z(Ssess, t, j) =
E[|Ssess(t)| | σt−1(Ssess), X(v1, t), ..., X(vj , t)].

Then {Z(Ssess, t, j)}|F(Ssess,t)|
j=1 is the Doob martingale with respect to the natural filtration on the vertex

infection events in the frontier up to vertex vj . By the Azuma-Hoeffding inequality, the desired concentration
property holds whenever

|Z(Ssess, t, j)− Z(Ssess, t, j − 1)| = O(|F(S, t)|1/2−const), (6)

for all t, j, with probability 1, where the O(·) is uniform in all parameters and 0 < const < 1/2. Intuitively,
this means that knowledge of whether or not a given susceptible vertex becomes infected in session t does not
substantially alter our best guess of the total number of vertices infected in that session. This encompasses
our IC-based model but is substantially more general, since it allows for, e.g., weak dependence among
infection events.

Concentration of the frontier size Concentration of the frontier size at each step is assured when G
is drawn from any random graph model coming from a sparse graphon (Borgs et al., 2017) W with density
parameter ρn within the range of p specified by Assumption 1 and with all entries bounded away from 0.
More precisely, all that is needed is concentration of the frontier size, conditioned on the latent positions of
all nodes. This concentration follows immediately from a Chernoff bound.

To make this rigorous, we first explain the sparse graphon framework. This is encapsulated in Definitions 7
and 8 below.
Definition 7 (Graphon). A graphon is a symmetric, Lebesgue-measurable function W : [0, 1]2 → [0, 1].
Definition 8 (Sparse random graph model associated with a graphon). The sparse random graph model
G(W,ρn) with sparsity parameter ρn (a function of n whose codomain is [0, 1]) associated with the graphon
W is the following distribution on graphs with n vertices {1, 2, ..., n}: first, n numbers X1, ..., Xn are sampled
uniformly at random from [0, 1]. Conditioned on these, an edge exists between vertices i, j independently of
anything else with probability ρn ·W (Xi, Xj).

We can now formulate the more general assumptions under which we can prove an accuracy guarantee for
FastClock.
Assumption 2 (General assumptions on the random graph model and the small-scale model). We assume
that the graph G is sampled from a sparse graphon G(W,ρn), where ρn satisfies the same properties that
p does in Assumption 1. Furthermore, we assume that there exist two constants p0, p1 ∈ (0, 1) such that
p0 ≤W (x, y) ≤ p1 for all x, y ∈ [0, 1]. We denote p = p0 · ρn.

We assume that the small-scale cascade model C0 satisfies the following conditions:

a) The martingale difference condition described in (6).

b) At any timestep t and for any vertex v in the current frontier, the conditional probability that v
becomes infected during timestep t depends only on the set of its active neighbors.

c) There exists a universal constant c0 > 0 such that in any timestep, the probability of infection of
any frontier vertex is bounded below by c0.

Then our generalized accuracy guarantee for FastClock is given in the following theorem.
Theorem 3 (FastClock accuracy guarantee, generalized). Suppose that Assumption 2 holds. We have, with
probability at least 1− e−Ω(nρn),

dSobs
(C, Ĉ) = O((nρn)−1/3). (7)

We note that Theorem 1 is a consequence of Theorem 3. To show that this is the case, it suffices to check
that Assumption 2 follows from Assumption 1. Since G is sampled from an Erdős-Rényi model with edge

14

Published in Transactions on Machine Learning Research (11/2022)

probability p = p0ρn, it is equivalently a sample from a sparse graphon model W satisfying W (x, y) = p0
for all x, y ∈ [0, 1], and with ρn as a sparsity parameter. Regarding the assumptions about the small-scale
model, assumptions (b) and (c) hold for the IC model trivially: specifically, the constant c0 is simply the
minimum transmission probability for any edge. Assumption (a), the martingale difference condition, is also
checked simply: in the IC model, the terms of the sum

∑
j X(v, t) defining |Ssess(t)| are independent, and so

it may be checked that |Z(Ssess, t, j)− Z(Ssess, t, j − 1)| ≤ |X(vj , t)− E[X(vj , t) | σt−1(Ssess)]| ≤ 1, where
the last step is because X(vj , t) is an indicator function. This martingale difference bound is substantially
less than the required one. This completes the proof that Assumption 2 follows from Assumption 1.

4 Conclusions and future work

We have formulated a generative model and statistical estimation framework for network spreading processes
whose activity periods (which we called sessions) are intermittent. The model is parametrized by a clock,
which encodes the large-scale behavior of the process. We showed that this clock can be estimated with
high accuracy and low computational cost, subject to certain natural constraints on the structure of the
underlying graph and on the small-scale cascade model: in essence, these must be such that the graph is an
expander with appropriate parameters; that, conditioned on an estimated current state of the process at any
time, the expected number of vertices infected in the next session is immune to small errors in the estimated
state; and that the number of vertices infected in the next session is well-concentrated around its conditional
expected value. We empirically showed that the FastClock algorithm is superior in accuracy and running
time to the current state of the art dynamic programming algorithm. Furthermore, unlike this baseline,
FastClock comes with theoretical accuracy guarantees. Our results hold for a broad class of small-scale
cascade models, provided that they satisfy a certain martingale difference property. Furthermore, the class
of random graph models for which our guarantees hold is similarly broad.

We intend to pursue further work on this problem: most pressingly, our empirical results and intuition
derived from our theorems indicate that FastClock may not perform accurately when the graph contains
very sparse cuts (so that it is not an expander graph, and it cannot have been generated by a sparse graphon
model with the assumed parameter ranges, except with very small probability). Our empirical evidence is
consistent with the conjecture that the degradation of performance on real networks in comparison to the
DP algorithm is a result of sparse cuts. In such graphs, we envision that FastClock can be used within
communities as a subroutine of a more complicated algorithm. Further work is needed to determine whether
accuracy and computational efficiency can be achieved for such graphs. Additionally, our model can be
extended to the case where different subsets of nodes behave according to distinct clocks. It is important to
clarify the information-theoretic limits of clock estimation and related hypothesis testing questions in this
scenario.

5 Acknowledgements

This research is funded by an academic grant from the National Geospatial-Intelligence Agency (Award
No. # HM0476-20-1-0011, Project Title: Optimizing the Temporal Resolution in Dynamic Graph Mining).
Approved for public release, NGA-U-2022-02239. The work was also supported in part by the NSF Smart
and Connected Communities (SC&C) CMMI grant 1831547 and by NSF CCF grant number #2212327.

References
Emmanuel Abbe, Sanjeev Kulkarni, and Eun Jee Lee. Nonbacktracking bounds on the influence in
independent cascade models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
8b5040a8a5baf3e0e67386c2e3a9b903-Paper.pdf.

Lada A. Adamic, Thomas M. Lento, Eytan Adar, and Pauline C. Ng. Information evolution in social
networks. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining,

15

https://proceedings.neurips.cc/paper/2017/file/8b5040a8a5baf3e0e67386c2e3a9b903-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8b5040a8a5baf3e0e67386c2e3a9b903-Paper.pdf

Published in Transactions on Machine Learning Research (11/2022)

WSDM ’16, pp. 473–482, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450337168. doi: 10.1145/2835776.2835827. URL https://doi.org/10.1145/2835776.2835827.

Junaid Ali, Mahmoudreza Babaei, Abhijnan Chakraborty, Baharan Mirzasoleiman, Krishna P. Gummadi,
and Adish Singla. On the fairness of time-critical influence maximization in social networks, 2019.

Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and Lada Adamic. The role of social networks in infor-
mation diffusion. In Proceedings of the 21st international conference on World Wide Web, pp. 519–528,
2012.

Petko Bogdanov, Michael Busch, Jeff Moehlis, Ambuj K. Singh, and Boleslaw K. Szymanski. The social
media genome: Modeling individual topic-specific behavior in social media. 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), pp. 236–242, 2013.

Christian Borgs, Jennifer T. Chayes, Henry Cohn, and Nina Holden. Sparse exchangeable graphs and their
limits via graphon processes. J. Mach. Learn. Res., 18:210:1–210:71, 2017. URL http://jmlr.org/
papers/v18/16-421.html.

Wei Chen, Wei Lu, and Ning Zhang. Time-critical influence maximization in social networks with time-
delayed diffusion process. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, pp. 592–598. AAAI Press, 2012a.

Wei Chen, Wei Lu, and Ning Zhang. Time-critical influence maximization in social networks with time-
delayed diffusion process. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, pp. 592–598. AAAI Press, 2012b.

Justin Cheng, Lada Adamic, P. Alex Dow, Jon Michael Kleinberg, and Jure Leskovec. Can cascades be
predicted? In Proceedings of the 23rd International Conference on World Wide Web, WWW ’14, pp.
925–936, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450327442. doi:
10.1145/2566486.2567997. URL https://doi.org/10.1145/2566486.2567997.

Abir De, Isabel Valera, Niloy Ganguly, Sourangshu Bhattacharya, and Manuel Gomez-Rodriguez. Learning
and forecasting opinion dynamics in social networks. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 397–405, Red Hook, NY, USA, 2016. Curran
Associates Inc. ISBN 9781510838819.

Daniel J DiTursi, Gregorios A Katsios, and Petko Bogdanov. Network clocks: Detecting the temporal scale
of information diffusion. In 2017 IEEE International Conference on Data Mining (ICDM), pp. 841–846.
IEEE, 2017.

Daniel J DiTursi, Carolyn S Kaminski, and Petko Bogdanov. Optimal timelines for network processes. In
2019 IEEE International Conference on Data Mining (ICDM), pp. 1024–1029. IEEE, 2019.

Rashad Eletreby, Yong Zhuang, Kathleen Carley, Osman Yagan, and H. Vincent Poor. The effects of
evolutionary adaptations on spreading processes in complex networks. Proceedings of the National Academy
of Sciences, 117:201918529, 03 2020. doi: 10.1073/pnas.1918529117.

Cheng-Der Fuh. SPRT and CUSUM in hidden Markov models. The Annals of Statistics, 31(3):942 – 977,
2003. doi: 10.1214/aos/1056562468. URL https://doi.org/10.1214/aos/1056562468.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03, pp. 137–146, New York, NY, USA, 2003. Association for Computing Machinery. ISBN
1581137370. doi: 10.1145/956750.956769. URL https://doi.org/10.1145/956750.956769.

Eun Jee Lee, Sudeep Kamath, Emmanuel Abbe, and Sanjeev R. Kulkarni. Spectral bounds for independent
cascade model with sensitive edges. In 2016 Annual Conference on Information Science and Systems
(CISS), pp. 649–653, 2016. doi: 10.1109/CISS.2016.7460579.

16

https://doi.org/10.1145/2835776.2835827
http://jmlr.org/papers/v18/16-421.html
http://jmlr.org/papers/v18/16-421.html
https://doi.org/10.1145/2566486.2567997
https://doi.org/10.1214/aos/1056562468
https://doi.org/10.1145/956750.956769

Published in Transactions on Machine Learning Research (11/2022)

Andrea Montanari and Amin Saberi. The spread of innovations in social networks. Proceedings of the
National Academy of Sciences, 107(47):20196–20201, 2010.

Sang Park, Benjamin Bolker, David Champredon, David Earn, Michael Li, Joshua Weitz, Bryan Grenfell,
and Jonathan Dushoff. Reconciling early-outbreak estimates of the basic reproductive number and its
uncertainty: framework and applications to the novel coronavirus (sars-cov-2) outbreak. Journal of The
Royal Society Interface, 17:20200144, 07 2020. doi: 10.1098/rsif.2020.0144.

Jieun Shin, Lian Jian, Kevin Driscoll, and François Bar. The diffusion of misinformation on social media:
Temporal pattern, message, and source. Computers in Human Behavior, 83:278–287, 2018.

Venugopal V. Veeravalli and Taposh Banerjee. Chapter 6 - quickest change detection. In Abdelhak M.
Zoubir, Mats Viberg, Rama Chellappa, and Sergios Theodoridis (eds.), Academic Press Library in Signal
Processing: Volume 3, volume 3 of Academic Press Library in Signal Processing, pp. 209–255. Elsevier,
2014. doi: https://doi.org/10.1016/B978-0-12-411597-2.00006-0. URL https://www.sciencedirect.
com/science/article/pii/B9780124115972000060.

A Glossary of notation

Here we collect the notation that is used in the main body of the paper and in the proofs in the appendix.

1. N (S): Neighborhood of the set S of vertices in a given graph.

2. Ssess = (Ssess(0), Ssess(1), ..., Ssess(T)) – A session-level infection sequence with T + 1 sessions.
Each Ssess(j) is a subset of vertices, and Ssess(i) ∩ Ssess(j) = ∅ for i 6= j. We denote by |Ssess| the
number of sessions of Ssess: T + 1.

3. Sobs = (Sobs(0), Sobs(1), ..., Sobs(N)) – The observed infection sequence, as generated by our multi-
scale cascade model.

4. C – The ground-truth clock in our estimation problem.

5. Ĉ – The clock estimated by our algorithm.

6. S̃ – The estimate of the session-level infection sequence Ssess induced by our estimate Ĉ of the clock
C applied to the observed infection sequence Sobs.

7. σt(S), for an infection sequence S and a timestep index t ∈ |S| – The σ-field generated by the event
that the first t session-level infection sets of the process are given by S0, ..., St.

8. µt(S), for an infection sequence S and a timestep index t ∈ |S| – E[|Ssess(t+ 1)| | σt(S)]. This is the
expected number of vertices infected in the t+ 1st session, given the session-level infection sequence
up to and including timestep t.

9. N – The index of the last observed infection set. That is, |Sobs| = N + 1.

10. T – The index of the last session-level infection set. That is, |Ssess| = T + 1.

11. n – The size of the graph.

12. pn – The probability in the IC model of transmission across an edge in a single timestep.

13. pe – The probability of infection of a vertex in a single timestep by a non-network source.

14. R(S, i) – For an infection sequence S and an index i, define the ith running sum to be

R(S, i) =
⋃
j≤i

Sj . (8)

17

https://www.sciencedirect.com/science/article/pii/B9780124115972000060
https://www.sciencedirect.com/science/article/pii/B9780124115972000060

Published in Transactions on Machine Learning Research (11/2022)

15. Fi(S) = F(S, i) – For an infection sequence S and an index i ∈ {0, 1, ..., |S|}, define the ith frontier
set to be

F(S, i) = N (Si) \R(S, i). (9)

The ith frontier with respect to S is the set of neighbors of vertices infected in session i that have
not infected by the end of session i.

16. CF(S, i) – The candidate frontier set at the end of session i in infection sequence S. That is, this is

CF(S, i) = [n] \R(S, i). (10)

Note that F(S, i) ⊆ CF(S, i).

17. CCF(S, S̃, i, j) – The common candidate frontier:

CCF(S, S̃, i, j) = CF(S, i) ∩ CF(S̃, j). (11)

B Proofs

In this section, we give full proofs of all results.

B.1 Proof of Theorem 1

To prove the main FastClock approximation theorem, we start by characterizing the growth of µi(Ssess) and
|Ssess(i)| as a function of n and i. Note that this is a result about the independent cascade process, not the
FastClock algorithm.
Lemma 1 (Growth of µi(Ssess) and |Ssess(i)|). We have that, with probability at least 1 − e−np, for all
i ≤ T ,

µi(Ssess) = Θ((np)i+1), (12)

where the Θ(·) is uniform in i. Furthermore, with probability at least 1− e−np, we have

|Ssess(i)| = Θ((np)i) (13)

for every i.

Proof. We prove this by induction on i and use the formula (4) throughout.

Base case (i = 0): In the base case, we are to verify that µ0(Ssess) = Θ(np). The first term of (4) is
non-negative and at most pe · n. By our assumption, we have that pe = o(pn), implying that the first term
is o(np). Thus, it remains for us to show that the second sum is Θ(np). The dominant contribution comes
from the second term of each term of the sum:∑
v∈F0(Ssess)

(pe + (1− pe)(1− (1− pn))degSsess(0)(v)) = Θ(
∑

v∈F0(Ssess)

1− (1− pn)degSsess(0)(v)) (14)

= Θ(|F0(Ssess)| −
∑

v∈F0(Ssess)

(1− pn)degSsess(0)(v)). (15)

In the final expression above, the remaining sum is lower bounded by 0 and upper bounded by C|F0(Ssess)|
for some constant C < 1, since each term is between 0 and C. Thus, we have shown that, with probability
exactly 1,

µ0(Ssess) = Θ(|F0(Ssess)|) + o(np). (16)

18

Published in Transactions on Machine Learning Research (11/2022)

Since |F0(Ssess)| is the set of uninfected neighbors of all vertices in Ssess(0), and, by assumption, |Ssess(0)| =
Θ(1), we have that with probability at least 1− e−np,

|F0(Ssess)| = Θ(np). (17)

Thus, we have

µ0(Ssess) = Θ(np) (18)

with probability ≥ 1−e−np. Conditioning on this event (which is only an event dealing with the graph struc-
ture), we have that |Ssess(1)| ∼ Binomial(Θ(np), pn), and a Chernoff bound gives us that with probability
1− e−Ω(np), |Ssess(1)| = Θ(np), as desired. This completes the proof of the base case.

Induction (i > 0, and we verify the inductive hypothesis for i): We assume that µj(Ssess) =
Θ((np)j+1) and |Ssess(j + 1)| = Θ((np)j+1) for j = 0, 1, ..., i − 1. We must verify that it holds for j = i,
with probability at least 1 − e−np. As in the base case, the first term of (4) is O(npe) � np � (np)i+1.
It is, therefore, negligible with probability 1. The second term again provides the dominant contribution
and is easily seen to be Θ(|Fi(Ssess)|), just as in the base case. Thus, it remains to show that |Fi(Ssess)| =
Θ((np)i+1) with probability at least 1−e−Ω(np), which implies the desired result for µi(Ssess). The inductive
hypothesis implies that |Ssess(i)| = Θ((np)i), and the number of uninfected vertices is n−

∑i
j=0 |Ssess(j)| =

n−Θ((np)i+1). Since i ≤ T − 1, this is asymptotically equivalent to n.

Now, conditioned on the first i elements of Ssess, the ith frontier |Fi(Ssess)| ∼ Binomial(n · (1 − o(1)), 1 −
(1− p)|Ssess(i)|). Thus, with probability at least 1− e−Ω((np)i), we have

|Fi(Ssess)| = Θ(n · (1− (1− p)|Ssess(i)|)). (19)

Now,

1− (1− p)|Ssess(i)| = 1− (1− p)(np)i

. (20)

Since p = o(1), we have

1− (1− p)(np)i

∼ 1− e−p
i+1ni

(21)

Now, using the fact that the fact that p = o(n−
T

T +1), we have

pi+1ni = o(n−
T

T +1 (i+1)+i), (22)

from our assumption on the growth of p. Thus, in particular,

pi+1ni = o(1). (23)

This implies that

1− e−p
i+1ni

= 1− (1− pi+1ni)(1 +O(pi+1ni)) = pi+1ni(1 + o(1)). (24)

Thus, with probability at least 1− e−Ω((np)i),

|Fi(Ssess)| = Θ((np)i+1), (25)

which implies that

µi(Ssess) = Θ((np)i+1). (26)

By concentration of |Ssess(i)|, we then have that with probability at least 1− e−Ω(µi(Ssess)),

|Ssess(i)| = Θ((np)i+1), (27)

as desired.

19

Published in Transactions on Machine Learning Research (11/2022)

Completing the proof Let Gi be the event that the inductive hypothesis holds for index i = 0, 1, ..., T−1.
Then we have

Pr[∩i≥0Gi] = Pr[G0] ·
∏
i≥1

Pr[Gi | ∩i−1
j=0 Gj] ≥

T−1∏
i=0

(1− e−Ω((np)i))1− e−Ω((np)). (28)

This completes the proof.

Next, we state and prove a utility theorem (Theorem 4 below). To state it, we need some notation: our
estimated clock Ĉ induces an estimate S̃ of the ground truth session-level infection sequence Ssess. In
particular, S̃ is the unique infection sequence such that distorting S̃ according to Ĉ yields Sobs as an
observed infection sequence.
Theorem 4 (Main FastClock analysis utility theorem). We have that with probability 1− e−Ω(np), for every
i ≤ T − 1,

|Ssess(i) ∩ S̃i| = |Ssess(i)| · (1−O((np)−1/3)). (29)

We will prove this theorem by induction on i. The inductive hypothesis needed is subtle, as a na ive hypothesis
is too weak. To formulate it and to prove our result, we need some notation: for an infection sequence W ,
we define the ith running sum to be

R(W, i) =
i⋃

j=0
Wj . (30)

We define the frontier and running sum discrepancy sets between two session-level infection sequences S, Ŝ
as follows:

∆F(S, Ŝ, i, j) = Fi(S) 4 Fj(Ŝ) (31)
∆R(S, Ŝ, i, j) = R(S, i) 4 R(Ŝ, j), (32)

where 4 denotes the symmetric difference between two sets.

We define the candidate frontier at index i in infection sequence S to be

CF(S, i) = [n] \R(S, i). (33)

This is the set of vertices that are not yet infected after index i.

We define the common candidate frontier to be

CCF(S, Ŝ, i, j) = CF(S, i) ∩ CF(Ŝ, j). (34)

With this notation in hand, we define the following inductive hypotheses:
Hypothesis 1. There is a small discrepancy between the running sums of the true and estimated clocks:

||R(Ssess, i)| − |R(S̃, i|| ≤ f1(n, i), (35)

where we set, with foresight, f1(n, i) = µi−1(Ssess).66 = o(µi−1(Ssess)2/3).
Hypothesis 2. There is a small discrepancy between Ssess(i) and S̃i:

1− |Ssess(i) ∩ S̃i|
|Ssess(i)|

≤ f2(n, i), (36)

where we set, with foresight, f2(n, i) = D · µi−1(Ssess)−1/3, for some large enough constant D.

20

Published in Transactions on Machine Learning Research (11/2022)

We will use these to prove Theorem 4. The base case and inductive steps are proven in Propositions 1 and 2
below. First, we start by proving an upper bound (Theorem 5) on the following difference:

|µi(Ssess)− µi(S̃)|. (37)

In essence, the upper bound says that at any given clock time step, the expected number of nodes infected
in the next timestep is almost the same according to both the true and estimated clock. This will later be
used to verify the two inductive hypotheses stated above.
Theorem 5 (Upper bound on (37)). Granted the inductive hypotheses explained above, we have that

|µi(Ssess)− µi(S̃)| ≤ pµi−1(Ssess)2/3µi(Ssess), (38)

with probability ≥ 1− e−Ω(µi(Ssess)).

Proof. To upper bound (37), we apply the triangle inequality to (4) to get

|µi(Ssess)− µi(S̃)| ≤ pe ·
∣∣|Fi(Ssess)| − |Fi(S̃)|

∣∣ (39)

+ pe

∣∣∣∣∣∣
i∑

j=0
|S̃j | −

i∑
j=0
|Ssess(j)|

∣∣∣∣∣∣ (40)

+

∣∣∣∣∣∣
∑

v∈Fi(Ssess)

Q(i, Ssess, v)−
∑

v∈Fi(S̃)

Q(i, S̃, v)

∣∣∣∣∣∣ , (41)

where Q(i, Ssess, v) = pe + (1− pe)(1− (1− pn)degSsess(i)(v)).

We will upper bound each of the three terms (39), (40), and (41) separately.

Upper bounding (39) by O(pe|Fi(Ssess)|): We first note that∣∣|Fi(Ssess)| − |Fi(S̃)|
∣∣ ≤ |∆F(Ssess, S̃, i, i)|. (42)

So it is enough to upper bound the frontier discrepancy set cardinality. In order to do this, we decompose
it as follows:

|∆F(Ssess, S̃, i, i)| = |∆F(Ssess, S̃, i, i) ∩∆R(Ssess, S̃, i, i)|+ |∆F(Ssess, S̃, i, i) ∩ CCF(Ssess, S̃, i, i)|. (43)

This decomposition holds for the following reason: let v be a vertex in the frontier discrepancy set
∆F(Ssess, S̃, i, i). Suppose, further, that v is not in the common candidate frontier for Ssess(i), S̃i (so it
does not contribute to the second term on the right-hand side of (43)). We will show that it must be a
member of ∆R(Ssess, S̃, i, i), which will complete the proof of the claimed decomposition. Then v must be
a member of at least one of R(Ssess, i), R(S̃, i) (i.e., it must already be infected in at least one of these). If
it were a member of both, then it would not be a member of either frontier, so it could not be a member
of the frontier discrepancy set. Thus, v is only a member of one of R(Ssess, i) or R(S̃, i). This implies that
v ∈ ∆R(Ssess, S̃, i, i). This directly implies the claimed decomposition (43).

We now compute the expected value of each term of the right-hand side of (43), where the expectation is taken
with respect to the graph G. After upper bounding the expectations, standard concentration inequalities
will complete our claimed bound on the size of the frontier discrepancy set.

In the first term, the size of the intersection of the frontier discrepancy with the running sum discrepancy
is simply the number of vertices in the running sum discrepancy set that have at least one edge to some
vertex in Ssess(i) (here we assume, without loss of generality, that |R(Ssess, i)| ≤ |R(S̃, i)|). Using linearity
of expectation, the expected number of such vertices is

E[|∆F(Ssess, S̃, i, i) ∩∆R(Ssess, S̃, i, i)|] = |∆R(Ssess, S̃, i, i)| · (1− (1− p)|Ssess(i)|). (44)

21

Published in Transactions on Machine Learning Research (11/2022)

Here (1 − (1 − p)|Ssess(i)|) is the probability that, for a fixed vertex w ∈ ∆R(Ssess, S̃, i, i), there is at least
one edge between w and some vertex in Ssess(i).

We compute the expected value of the second term of (43) as follows.

We claim that

∆F(Ssess, S̃, i, i) ∩ CCF(Ssess, S̃, i, i) ⊆ CCF(Ssess, S̃, i, i) ∩ (N (∆R(Ssess, S̃, i, i)) \ N (Ssess(i))). (45)

To show this, let v ∈ ∆F(Ssess, S̃, i, i) ∩ CCF(Ssess, S̃, i, i). The fact that v is in the frontier discrepancy
set means that it has an edge to exactly one of Ssess(i), S̃i. This implies that it has an edge to the running
sum discrepancy set. Recalling that we assumed wlog that |R(Ssess, i)| ≤ |R(S̃, i)|, we must have that
∆R(Ssess, S̃, i, i) ∩ Ssess(i) = ∅, and so we must also have that there are no edges from v to Ssess(i). This
completes the proof of the claimed set inclusion. This implies that

E[|∆F(Ssess, S̃, i, i) ∩ CCF(Ssess, S̃, i, i)|] ≤ E[|CCF(Ssess, S̃, i, i) ∩ (N (∆R(Ssess, S̃, i, i)) \ N (Ssess(i)))|].
(46)

As above, the expectation is taken with respect to the random graph G.

For a single vertex in the common candidate frontier, the probability that it lies in the frontier discrepancy
set is thus at most

(1− (1− p)|∆R(Ssess,S̃,i,i)|) · (1− p)|Ssess(i)|. (47)

Thus, using linearity of expectation, the expected size of the second term in (43) is upper bounded by

E[|∆F(Ssess, S̃, i, i) ∩ CCF(Ssess, S̃, i, i)| | σi(Ssess)] (48)

≤ |CCF(Ssess, S̃, i, i)| · (1− (1− p)|∆R(Ssess,S̃,i,i)|) · (1− p)|Ssess(i)|. (49)

Combining (44) and (49) and defining q = 1 − p, we have the following expression for the expected size of
the frontier discrepancy set:

E[|∆F(Ssess, S̃, i, i)|] (50)
= |∆R(Ssess, S̃, i, i)| · (1− q|Ssess(i)|) (51)

+ |CCF(Ssess, S̃, i, i)| · (1− q|∆R(Ssess,S̃,i,i)|) · q|Ssess(i)|. (52)

We would like this to be O(E[|Fi(Ssess)| | σi(Ssess)]). Note that E[|Fi(Ssess)| | σi(Ssess)] can be expressed
as follows:

E[|Fi(Ssess)| | σi(Ssess)] = (|∆R(Ssess, S̃, i, i)| (53)
+ |CCF(Ssess, S̃, i, i)|) · (1− q|Ssess(i)|). (54)

The intuition behind (50) being O(E[|Fi(Ssess)| | σi(Ssess)]) is as follows: the ∆R term is exactly the same as
in (53). However, this term is negligible compared to the common candidate frontier term in both expected
values. The second term, (52), can be asymptotically simplified as follows: we have

1− q|∆R(Ssess,S̃,i,i)| = 1− (1− p)|∆R(Ssess,S̃,i,i)| (55)
∼ 1− (1− p) · |∆R(Ssess, S̃, i, i)|) (56)
= p · |∆R(Ssess, S̃, i, i)| (57)

= p|Ssess(i)| ·
|∆R(Ssess, S̃, i, i)|
|Ssess(i)|

(58)

∼ (1− q|Ssess(i)|) · |∆R(Ssess, S̃, i, i)|
|Ssess(i)|

. (59)

Here, we have used the following facts:

22

Published in Transactions on Machine Learning Research (11/2022)

• For the first asymptotic equivalence, we used the fact that p|∆R(Ssess, S̃, i, i)| = o(1). More precisely,
we have from the inductive hypothesis that

|∆R(Ssess, S̃, i, i)| = o(µi−1(Ssess)0.66) = o((np)i·0.66), (60)

so we have

p|∆R(Ssess, S̃, i, i)| = o(p0.66i+1n0.66i) = o(n−T/(T+1)+0.66i/(T+1)), (61)

which is polynomially decaying in n.

• For the second asymptotic equivalence, we used the fact that p|Ssess(i)| = o(1). More precisely, this
comes from the fact that

p|Ssess(i)| = O(p(np)i) = O(pi+1ni). (62)

Now, we use the fact that p = o(n−
T

T +1):

pi+1ni = o(n−
T

T +1 (i+1)+i), (63)

from our assumption on the growth of p. Now, we need to show that the exponent is sufficiently
negative and bounded away from 0.

− T

T + 1(i+ 1) + i = −T · (i+ 1) + i · (T + 1)
T + 1 = −T + i

T + 1 ≤
−1
T + 1 . (64)

We have used the fact that i ≤ T − 1. Now, the constraints that we imposed on p imply that
T = o(log n), so

n
−1

T +1 = e
− log n

T +1 = o(1), (65)

as desired, since the exponent tends to −∞ as n→∞.

Let us be more precise about what we proved so far. We have

E[|∆F(Ssess, S̃, i, i)| | σi(Ssess)] ∼ (1− q|Ssess(i)|) · |CCF(Ssess, S̃, i, i)| ·
(
|∆R|
|CCF|

+ |∆R|
|Ssess(i)|

q|Ssess(i)|
)
.

(66)

Meanwhile,

E[|Fi(Ssess)| | σi(Ssess)] = (1− q|Ssess(i)|) · |CCF| ·
(

1 + |∆R|
|CCF|

)
. (67)

We have that

E[|∆Fi| | σi(Ssess)]
E[|Fi| | σi(Ssess)]

∼
|∆R|
|CCF| + |∆R|

|Ssess(i)| · q
|Ssess(i)|

1 + |∆R|
|CCF|

. (68)

This can be simplified as follows:

E[|∆Fi| | σi(Ssess)]
E[|Fi| | σi(Ssess)]

∼
|∆R|
|CCF| + |∆R|

|Ssess(i)| · q
|Ssess(i)|

1 + |∆R|
|CCF|

=
|∆R| ·

(
1 + |CCF|

|Ssess(i)|q
|Ssess(i)|

)
|CCF|+ |∆R| . (69)

This can be upper bounded as follows, by distributing in the numerator and upper bounding |∆R| by
|∆R|+ |CCF| in the numerator of the resulting first term:

|∆R| ·
(

1 + |CCF|
|Ssess(i)|q

|Ssess(i)|
)

|CCF|+ |∆R| ≤ 1 + |∆R| · |CCF|q|Ssess(i)|

|Ssess(i)|(|CCF|+ |∆R|)
. (70)

23

Published in Transactions on Machine Learning Research (11/2022)

We can further upper bound by noticing that |CCF|+ |∆R| ≥ |CCF|, so

E[|∆Fi| | σi(Ssess)]
E[|Fi| | σi(Ssess)]

≤ 1 + |∆R|
|Ssess(i)|

. (71)

Now, by our inductive hypothesis, we know that |∆R|i = o(µi−1(Ssess)0.66), and by concentration, we know
that |Ssess(i)| = Θ(µi−1(Ssess)). Thus, we have

E[|∆Fi| | σi]
E[|Fi| | σi]

≤ 1 + |∆R|
|Ssess(i)|

= 1 + o(µi−1(Ssess)−(1−0.66)) = O(1). (72)

Thus,

E[|∆F(Ssess, S̃, i, i)| | σi(Ssess)] = O(E[|Fi(Ssess)| | σi(Ssess)]). (73)

Now, remember that our goal is to show that |∆F(Ssess, S̃, i, i)| = O(|Fi(Ssess)|) with high probability,
conditioned on σi(Ssess). This follows from the expectation bound above and the fact that the size of the
frontier in both clocks is binomially distributed, so that standard concentration bounds apply. This results
in the following:

pe|∆Fi| = O(pe|Fi|) (74)

with conditional probability at least 1− e−Ω((np)i).

Upper bounding (40) by o(pe|R(Ssess, i)|): To upper bound (40), we note that

i∑
j=0
|Ssess(j)| = |R(Ssess, i)|, (75)

and an analogous identity holds with S̃ in place of Ssess. Moreover,∣∣R(Ssess, i)−R(S̃, i)
∣∣ = |∆R(Ssess, S̃, i, i)|. (76)

Thus, we have

(40) = pe|∆R(Ssess, S̃, i, i)| ≤ pef1(n, i), (77)

where the inequality is by the inductive hypothesis. We want this to be o(pe · |R(Ssess, i)|), which means
that we want |∆R(Ssess, S̃, i, i)| = o(|R(Ssess, i)|). This follows from the inductive hypothesis. In particular,
we know that |R(Ssess, i)| ≥ |Ssess(i)|, since Ssess(i) ⊂ R(Ssess, i). Furthermore, we have by the inductive
hypothesis that |∆R(Ssess, S̃, i, i)| = o(µi−1(Ssess)0.66) = o(|Ssess(i)|0.66). Thus, we have

pe|∆R(Ssess, S̃, i, i)| = o(pe|R(Ssess, i)|), (78)

with (conditional) probability 1, as desired.

Upper bounding (41) by
∑
v∈Fi(Ssess)Q(i, Ssess, v)pµ2/3

i−1(Ssess(i)): To upper bound (41), we apply the
triangle inequality and extend both sums to v in Fi(Ssess)∪Fi(S̃). This results in the following upper bound:

(41) ≤
∑

v∈Fi(Ssess)∪Fi(S̃)

|Q(i, Ssess, v)−Q(i, S̃, v)|. (79)

To proceed, we will upper bound the number of nonzero terms in (79). Each nonzero term can be upper
bounded by 1, since Q(i, Ssess, v), Q(i, S̃, v) are both probabilities. We will show that the number of nonzero
terms is at most O(|Fi(Ssess)|p · µ2/3

i−1(Ssess(i))) with high probability.

24

Published in Transactions on Machine Learning Research (11/2022)

We write

Q(i, Ssess, v)−Q(i, S̃, v) (80)

= pe + (1− pe)(1− (1− pn)degSsess(i)(v))− pe − (1− pe)(1− (1− pn)degS̃i
(v)) (81)

= (1− pe)((1− pn)degS̃i
(v) − (1− pn)degSsess(i)(v)). (82)

Thus, a term in the sum (79) is nonzero if and only if degSsess(i)(v) 6= degS̃i
(v). This happens if and only

if v has at least one edge to some vertex in S̃i4Ssess(i). Thus, our task reduces to figuring out how many
vertices v there are that connect to some element of S̃i4Ssess(i). The expected number of such vertices is

|Fi(Ssess) ∪ Fi(S̃)| · (1− q|S̃i4Ssess(i)|). (83)

This is an upper bound on the contribution of (41). We thus have

(41) ≤ |Fi(Ssess) ∪ Fi(S̃)| · (1− q|S̃i4Ssess(i)|). (84)

Next, we show that |Fi(Ssess)∪Fi(S̃)| = O(|Fi(Ssess)|). To do this, we apply the results from upper bounding
(39). In particular,

|Fi(Ssess) ∪ Fi(S̃)| = |Fi(Ssess) ∩ Fi(S̃)|+ |∆F(Ssess, S̃, i, i)| (85)
≤ |Fi(Ssess)|+ |∆F(Ssess, S̃, i, i)| = O(|Fi(Ssess)|). (86)

Next, we show that 1− q|S̃i4Ssess(i)| = pµ
2/3
i−1(Ssess(i)). We can write

q|S̃i4Ssess(i)| = (1− p)|S̃i4Ssess(i)| ∼ e−p|S̃i4Ssess(i)|, (87)

provided that p · |S̃i4Ssess(i)| = o(1). Now from the inductive hypothesis, |S̃i4Ssess(i)| = O(|Ssess(i)|2/3),
and from Lemma 1, we know that |Ssess(i)| = O((np)i). Then we have that

1− q|S̃i4Ssess(i)| ≤ 1− e−O(p(np)2/3i). (88)

In order for this second term to be 1− o(1), it is sufficient to have that

pi+1ni = o(1). (89)

This happens if and only if

pi+1 = o(n−i) ⇐⇒ p = o(n−
i

i+1). (90)

This is guaranteed by our assumption that p = o(n−
T

T +1). Thus,

1− q|S̃i4Ssess(i)| ≤ 1− e−O(p(np)2/3i) ∼ pµ2/3
i−1(Ssess(i)). (91)

We have shown that

(41) = O(|Fi(Ssess)|ṗµ2/3
i−1(Ssess(i))). (92)

Next, we show that
∑
v∈Fi(Ssess)Q(i, Ssess, v) = Ω(|Fi(Ssess)|). We have

Q(i, Ssess, v) ≥ 1− (1− pn)degSsess(i)(v). (93)

Since the sum is over v ∈ Fi(Ssess), this implies that degSsess(i)(v) ≥ 1. So

Q(i, Ssess, v) ≥ 1− (1− pn) = pn = Ω(1). (94)

25

Published in Transactions on Machine Learning Research (11/2022)

Thus, ∑
v∈Fi(Ssess)

Q(i, Ssess, v) ≥ |Fi(Ssess)| · pn = Ω(|Fi(Ssess)|). (95)

Thus, we have shown that

(41) ≤ const ·
∑

v∈Fi(Ssess)

Q(i, Ssess, v) · (1− q|S̃i4Ssess(i)|) = const
∑

v∈Fi(Ssess)

Q(i, Ssess, v)pµ2/3
i−1(Ssess), (96)

with conditional probability at least 1− e−Ω((np)i).

Completing the proof We combine (96), (74), and (78) to complete the proof.

So we have that the difference between µi(Ssess) and µi(S̃) is negligible in relation to µi(Ssess).

Now, the next two propositions give the base case and inductive step of the proof of Theorem 4.
Proposition 1 (Base case of the proof of Theorem 4). We have that, with probability 1, |∆R0| =
|∆R(Ssess, S̃, 0, 0)| = 0, and |S̃04S0| = 0.

Proof. This follows directly from the assumed initial conditions.

Proposition 2 (Inductive step of the proof of Theorem 4). Assume that the inductive hypotheses (35) and
(36) hold for i. Then we have the following:

|S̃i+14Ssess(i+ 1)| ≤ |∆Ri|+ o(1) = |∆R(Ssess, S̃, i, i)|+ o(1) = o(µi−1(Ssess)2/3) = o(µi(Ssess)2/3). (97)

Equivalently,

1− |S̃i+1 ∩ Ssess(i+ 1)|
|Ssess(i)|

= o(µi(Ssess)−1/3). (98)

Furthermore,

|∆Ri+1| ≤ |∆Ri| ≤ o(µi−1(Ssess)2/3) = o(µi(Ssess)2/3). (99)

In other words, both inductive hypotheses Hypothesis 1 and Hypothesis 2 are satisfied for i + 1. This holds
with probability at least 1− e−Ω(µi(Ssess)).

Proof. To prove this, we first need a few essential inequalities.

• By definition of the algorithm,

|S̃i+1| ≤ µi(S̃)(1 + µi(S̃)−1/3), (100)

with probability 1.

• We will also need to prove an upper bound on |S̃i+1| − |Ssess(i + 1)|. In particular, we will show
that with probability at least 1− e−Ω(µi(Ssess)),

|S̃i+1| ≤ |Ssess(i+ 1)| · (1 +O(µi(Ssess)−1/3)). (101)

We show this as follows. From Theorem 5,

µi(S̃) ≤ µi(Ssess)(1 + pµi−1(Ssess)2/3),

26

Published in Transactions on Machine Learning Research (11/2022)

with probability ≥ 1− e−Ω(µi(Ssess)). This implies, via (100), that

|S̃i+1| ≤ µi(Ssess) · (1 + pµi−1(Ssess)2/3) · (1 +O(µi(Ssess)−1/3)).

By concentration of |Ssess(i+ 1)|, with probability at least 1− e−Ω(µi(Ssess)), this is upper bounded
as follows:

|S̃i+1| ≤ |Ssess(i+ 1)|(1 +O(|Ssess(i+ 1)|−1/2+const))(1 + pµi−1(Ssess)2/3)(1 +O(µi(Ssess)−1/3)).

Now, we can see from (63) that this is equal to the desired upper bound. We have thus shown (101).

Now, with the preliminary inequalities proven, we proceed to prove the proposition. We split into two cases:

• Ssess(i+ 1) begins before S̃i+1 (in other words, |R(Ssess, i)| < |R(S̃, i)|).
In this case, we will show (i) that Ssess(i + 1) must end before S̃i+1 (i.e., that |R(Ssess, i + 1)| ≤
|R(S̃, i+ 1)|) with high probability, (ii) that

∆Ri+1 = o(µi(Ssess).66), (102)

and (iii) that

|S̃i+14Ssess(i+ 1)| ≤ 2|∆Ri|+ o(1) = o(µi(Ssess).66). (103)

To show that (i) is true, we note that because Ssess(i+ 1) begins before S̃i+1, Ssess(i+ 1) consists
of an initial segment Sobs(j1), Sobs(j1 + 1), ..., Sobs(j2) with total cardinality |∆Ri|, ending in a
session endpoint (specifically, the one corresponding to R(S̃, i)), followed by a segment Sobs(j2 +
1), ..., Sobs(j3) of total cardinality |Ssess(i+ 1)| − |∆Ri|, again ending in a session endpoint. This is
true by definition of ∆Ri. The second segment begins at the same point as S̃i+1 (that is, R(S̃, i) =⋃j2+1
j=0 Sobs(j)), and we know that it has cardinality

|Ssess(i+ 1)| − |∆Ri| ≤ |Ssess(i+ 1)| ≤ µi(Ssess)(1 + µi(Ssess)−1/2+const) ≤ µi(S̃)(1 + µi(S̃)−1/3),
(104)

by concentration of |Ssess(i+1)|. The last inequality follows from the fact that µi(Ssess) = Θ(µi(S̃)).
Thus, the second segment of Ssess(i + 1) must be contained in S̃i+1, by (100), by definition of the
FastClock algorithm, as desired.
This has the following implication: we can express |∆Ri+1| as

|∆Ri+1| = |S̃i+1| − (|Ssess(i+ 1)| − |∆Ri|) ≤ µi(Ssess)−1/3 + |∆Ri|. (105)

We have used (101). Since, by the inductive hypothesis, we have |∆Ri| = o(µi−1(Ssess)0.66) =
o(µi(Ssess).66), and since µi(Ssess)→∞, this implies that

|∆Ri+1| = o(µi(Ssess).66). (106)

Thus, we have established (ii).
We next show (iii). We have

|S̃i+14Ssess(i+ 1)| = |∆Ri|+ |∆Ri+1|, (107)

and by the proof of (ii) we can upper bound |∆Ri+1| to get

|S̃i+14Ssess(i+ 1)| ≤ 2|∆Ri|+ o(1) = o(µi(Ssess).66). (108)

This completes the proof of (iii).

27

Published in Transactions on Machine Learning Research (11/2022)

• Or Ssess(i + 1) begins after or at the same time as S̃i+1 (in other words, |R(Ssess, i)| ≥
|R(S̃, i)|).
In this case, we will show (i) that

|∆Ri+1| = o(µi(Ssess).66), (109)

and (ii) that

|S̃i+14Ssess(i+ 1)| ≤ 2|∆Ri|+ o(1) = o(µi(Ssess).66). (110)

To prove (i), we start by showing the following identity:

|S̃i+1| = |∆Ri|+ |Ssess(i+ 1)|+ |∆Ri+1|Ii+1, (111)

where

Ii+1 =
{

1 Ssess(i+ 1) stops before S̃i+1

−1 otherwise
(112)

The identity (111) is a consequence of the following derivation, which relies on the definitions of all
involved terms.

|∆Ri|+ |Ssess(i+ 1)|+ |∆Ri+1|Ii+1

=
i∑

k=0
|Ssess(k)| −

i∑
k=0
|S̃k|+ |Ssess(i+ 1)|+

∣∣∣∣∣
i+1∑
k=0
|Ssess(k)| −

i+1∑
k=0
|S̃k|

∣∣∣∣∣ Ii+1

=
i+1∑
k=0
|Ssess(k)| −

i∑
k=0
|S̃k| −

(
i+1∑
k=0
|Ssess(k)| −

i+1∑
k=0
|S̃k|

)
= |S̃i+1|.

Rearranging (111) to solve for |∆Ri+1|, we have that

|∆Ri+1| = ||S̃i+1| − |∆Ri| − |Ssess(i+ 1)|| ≤ ||S̃i+1| − |Ssess(i+ 1)||+ |∆Ri|
= ||S̃i+1| − |Ssess(i+ 1)||+ o(µi−1(Ssess)2/3)
≤ O(µi(Ssess)−1/3) + o(µi−1(Ssess)2/3) = o(µi(Ssess).66).

Here, we have used the triangle inequality and the inductive hypothesis Hypothesis 1 on |∆Ri|,
followed by the inequality (101). This completes the proof of (i).
Furthermore, this implies, by the same logic as in the previous case (108), that

|S̃i+14Ssess(i+ 1)| ≤ 2|∆Ri|+ o(1) = o(µi(Ssess).66), (113)

which verifies the inductive hypothesis Hypothesis 2 on |S̃i+14Ssess(i+ 1)|.

The inductive hypotheses Hypotheses 1 and 2 follow directly from the above.

We can now prove the utility theorem, Theorem 4.

Proof of Theorem 4. Let Bi denote the bad event that either inductive hypothesis fails to hold at step i. We
will lower bound Pr[

⋂T−1
i=0 ¬Bi]. By the chain rule, we have

Pr[
T−1⋂
i=0
¬Bi] = Pr[¬B0]

T−1∏
i=1

Pr[¬Bi |
i−1⋂
j=0
¬Bj]. (114)

28

Published in Transactions on Machine Learning Research (11/2022)

From Proposition 2, Proposition 1, and Lemma 1, this is lower bounded by

T−1∏
i=1

(1− e−D·(np)
i+1

) = exp
(
T−1∑
i=1

log
(

1− e−D(np)i+1
))

= exp
(
−
T−1∑
i=1

e−D(np)i+1
· (1 + o(1))

)
= 1− e−Ω(np).

Now, the event that none of the bad events hold implies the claim, which completes the proof.

With Theorem 4 in hand, we can prove the main result, Theorem 1.

Proof of Theorem 1. Let us recall the definition of dSobs
(C, Ĉ). We have

dSobs
(C, Ĉ) = 1(

n
2
) ∑
i<j

DisC,Ĉ(i, j). (115)

What we need is an upper bound on this quantity in terms of the error term f(n) = (np)−1/3 in Theorem 4.
To this end, we partition the sum according to vertex membership in clock intervals as follows:(

n

2

)
dSobs

(C, Ĉ) =
|S|∑
k1=1

∑
i<j∈Sk1

DisC,Ĉ(i, j) +
|S|∑
k1=1

|S|∑
k2=k1+1

∑
i∈Sk1 ,j∈Sk2

DisC,Ĉ(i, j). (116)

In the first sum, i and j are not ordered by C, because they lie in the same set in S. We consider the
corresponding set in S̃. From the theorem, at least

(|Ck1 |·(1−f(n))
2

)
vertex pairs from Sk1 are correctly placed

together in S̃. Furthermore, at least

|Sk1 | · (1− f(n)) ·
|S|∑

k2=k1+1
(1− f(n))|Sk2 | (117)

pairs of vertices with one vertex in Sk1 are correctly placed in different intervals. So the number of correctly
ordered/unordered vertex pairs is at least

|S|∑
k1=1

 |Sk1 |2 · (1− f(n))2

2 +
|S|∑

k2=k1+1
|Sk1 ||Sk2 |(1− f(n))2

 ∼ (n2
)
· (1− f(n))2. (118)

Since f(n) = o(1), this is asymptotically equal to
(
n
2
)
· (1− 2f(n)).

This completes the proof.

B.2 Proof of Theorem 2

We analyze the worst-case running time of FastClock as follows: initialization takes O(1) time. The dominant
contribution to the running time is the while loop. Since tobs is initially 0 and increases by at least 1 in each
iteration, the total number of iterations is at most N . The remaining analysis involves showing that each
vertex and edge is only processed, a constant number of times, in O(1) of these loop iterations, so that the
running time is at most O(N + n+m), as claimed.

In particular, the calculation of µt in every step involves a summation over all edges from currently active
vertices to their uninfected neighbors, along with a calculation involving the current number of uninfected
vertices (which we can keep track of using O(1) calculations per iteration of the loop). A vertex is only active
in a single iteration of the loop. Thus, each of these edges is only processed once in this step. The calculation
of t′obs entails calculating a sum over elements of Sobs that are only processed once in all of the iterations of
the loop. The calculation of all of the |Sobs(i)| can be done as a preprocessing step via an iteration over all n
vertices of G. Finally, the calculation of Ft+1 entails a union over the same set of elements of Sobs as in the

29

Published in Transactions on Machine Learning Research (11/2022)

calculation of the maximum, followed by a traversal of all edges incident on elements of S̃t+1 whose other
ends connect to uninfected vertices. These operations involve processing the vertices in S̃t+1 (which happens
only in a single iteration of the loop, and, thus, with the preprocessing step of calculating the |Sobs(i)|, only
a constant number of times in the entire algorithm). The edges leading to elements of Ft+1 from elements
of S̃t+1 are traversed at most twice in the loop: once in the building of Ft+1 and once in the next iteration
in the calculation of µt.

This implies that each vertex and edge is only processed O(1) times in the entire algorithm. This leads to
the claimed running time of O(N + n+m), which completes the proof.

B.3 Proof of Theorem 3

To generalize the proof of Theorem 1, we need to generalize the following auxiliary results:

1. Concentration of |Ssess(i)|. This follows from the martingale difference property, immediately. Con-
centration is then used in the inductive proof Proposition 2, as well as in Lemma 1, which we
generalize to Lemma 2.

2. Lemma 1 on the growth of µi(Ssess) and |Ssess(i)|. This follows simply from the graphon assumption
and from concentration of |Ssess(i)|. The resulting generalization is as follows.

Lemma 2 (Growth of µi(Ssess) and |Ssess(i)|). We have that, with probability at least 1− e−Ω(nρn),
for all i ≤ T ,

µi(Ssess) = Ω((np0ρn)i+1), O((np1ρn)i+1), (119)

where the Ω, O are uniform in i. Furthermore, with probability at least 1− e−Ω(nρn), we have

|Ssess(i)| = Ω((np0ρn)i), O((np1ρn)i) (120)

for every i.

Proof. The structure of the proof is exactly as in that of Lemma 1. Namely, we prove this by
induction on i. The base case follows from the graphon density assumption, along with the assumed
lower bound (the assumption c)) on the probability of infection of each frontier vertex to establish the
bounds on µ0(Ssess). The bounds on |Ssess(1)| then follow from the assumption a). The inductive
step follows in exactly the same way.

3. Theorem 5, upper bounding the difference |µi(Ssess)− µi(S̃)|.

Theorem 6 (Generalized upper bound on |µi(Ssess) − µi(S̃)|). Granted the inductive hypotheses
Hypothesis 1 and 2, we have the following upper bound:

|µi(Ssess)− µi(S̃)| ≤ p1ρnµi−1(Ssess)2/3µi(Ssess), (121)

with probability ≥ 1− e−Ω(µi(Ssess)).

Proof. The contribution of pe in the general case is exactly as before, since pe plays the same role.
We thus ignore it in the following analysis. Recalling that µi(Ssess) is an expected value, we can
decompose it by linearity of expectation as follows:

µi(Ssess) =
∑

v∈F(Ssess,i)

Pr[X(v, i) = 1 | σi−1(Ssess)] (122)

We may upper bound |µi(Ssess)− µi(S̃)| as follows:

|µi(Ssess)− µi(S̃)| ≤
∑

v∈F(Ssess,i)∪F(S̃,i)

|Pr[X(v, i) = 1 | σi−1(Ssess)]− Pr[X(v, i) = 1 | σi−1(S̃)]|.

(123)

30

Published in Transactions on Machine Learning Research (11/2022)

Exactly as in the proof of Theorem 5, we upper bound the sum in (123) by its number of nonzero
terms. By Assumption 2, any term in this sum is nonzero only if the vertex v has at least one active
neighbor in S̃i4Ssess(i). The remainder of the proof, in which we upper bound the number of such
vertices, is exactly the same as in the proof of Theorem 5, with the exception that q is replaced by
the interval [1− p1ρn, 1− p0ρn].

With these ingredients, the statement of Proposition 2 remains the same. Its proof changes slightly: we use
Theorem 6 in place of Theorem 5, and in place of p we use p1ρn.

Propositions 2 and Lemma 2 allow us to prove a generalization of the utility theorem Theorem 4, which is
as follows.
Theorem 7 (Generalization of the FastClock utility theorem). We have that with probability 1− e−Ω(nρn),
for every i ≤ T − 1,

|Ssess(i) ∩ S̃i| = |Ssess(i)| · (1−O(nρn)−1/3). (124)

Proof. The proof steps are exactly the same, except that we apply the lower bounds given in Lemma 2,
rather than Lemma 1.

Finally, Theorem 1 generalizes to Theorem 3, whose proof remains intact, except that we use the generalized
version of the utility theorem in place of Theorem 4. This concludes the proof of Theorem 3.

C Examples

Example 3 (Failure to account for multiple time scales affects downstream statistical inference). Here we
describe a simple example that demonstrates that failure to account for multiple time scales in a cascade
can negatively impact the accuracy of downstream statistical inference. As this is only an example, we opt
for simplicity of analysis and, thus, leave certain details to the reader. These may be filled in by standard
concentration arguments.

Specifically, we focus on the problem of cascade doubling time prediction, studied in Cheng et al. (2014). The
problem is stated as follows: given cascade observations up to/including a time t ∈ R in which m vertices
are infected, the task is to predict an interval [a, b] such that, with probability at least 1 − δ, for some fixed
parameter δ > 0, the time of the 2m-th infection event lies in [a, b].

Consider a small-scale cascade model M given by the discretized independent cascade model as detailed in
Definition 6 on a graph G with n vertices, with edge transmission parameter pn = 1, probability of infection
from an external source pe = 0, and transmission timer distributed according to a geometric distribution
with success parameter λ. Consider a cascade generated by our two-scale model with small-scale model M
and clock C = ([0, k − 1], [k, 2k − 1], [2k, 3k − 1], [3k, 4k − 1], ...), for some fixed k ∈ N. Assume that G is a
complete binary tree and that the infection starts at the root node. Finally, assume that we have observed
the cascade up to and including the midpoint of session j: t = (j + 1/2)k.

We first calculate the typical number of vertices infected up to and including time t. The number of vertices
infected by the beginning of session j is given by

∑j−1
i=0 2i = 2j − 1, by the geometric sum formula. This

holds with probability 1. The number of vertices infected by time t is then 2j − 1 +C · 2j+1, for some specific,
computable constant C > 0. Thus, easily, the number of infected vertices approximately doubles by time t+k.

Next, we consider what our estimate of the doubling time would be if we were to incorrectly assume that the
cascade is generated by model M (that is, if we were to ignore the existence of the larger time scale). To do
this, we need to introduce some notation:

• Xj(t) – the number of vertices with j uninfected children at the end of timestep t.

• Y (t) – the number of uninfected children of infected parents at the end of timestep t. We call such
nodes “open slots”.

31

Published in Transactions on Machine Learning Research (11/2022)

• Z(t) – the number of vertices infected in timestep t.

• W (t) – the total number of vertices infected by the end of timestep t.

For any t′ > t, we have that Z(t′) is approximately λ · Y (t′ − 1), and Y (t′) is exactly Y (t′ − 1) + Z(t′),
because each new infection removes an open slot (the newly infected vertex) and creates two new open slots
(the children of the newly infected vertex). Thus, we have that Z(t′) ≈ λ(Y (t′ − 2) + Z(t′ − 1)), so that

Z(t′) ≈ λY (t′ − 1) = λ(Y (t′ − 2) + Z(t′ − 1)) (125)
= λ(Y (t) + Z(t+ 1) + Z(t+ 2) + ...+ Z(t′ − 1)) (126)
= λ(Y (t) + Z(t+ 1) + ...+ Z(t′ − 2)) + λZ(t′ − 1) (127)

= (1 + λ)Z(t′ − 1) = (1 + λ)t
′−t−1Z(t+ 1). (128)

Next, note that Y (t) can be related to W (t): since each new infection increases the number of open slots by
1, we must have that Y (t) = W (t) + 1. So we have Z(t′) ≈ (1 + λ)t′−t−1λ(W (t) + 1). Then

W (t′)−W (t) =
t′∑

i=t+1
Z(i) ≈ λ(W (t) + 1)

t′∑
i=t+1

(1 + λ)i−t−1 = λ(W (t) + 1) ·
t′−t−1∑
i=0

(1 + λ)i

= λ(W (t) + 1) · (1 + λ)t′−t − 1
λ

= (W (t) + 1) · ((1 + λ)t
′−t − 1).

Then, in order for t′ to be the doubling time for t, we must have that ((1 + λ)t′−t − 1) ≥ 1. It is then easily
seen that the required t′ is constant with respect to k, so that we substantially underestimate the doubling
time when k is large. Thus, failure to account for the larger time scale in this setting leads to substantial
and, in this setting, avoidable inaccuracy.

More realistic empirical experiments in DiTursi et al. (2017; 2019) confirm that accounting for multiple
timescales can, in practical settings, improve performance on doubling time prediction and several other
downstream statistical tasks.
Example 4 (Infection sequences and clocks). Consider a graph G with n = 10 vertices. A cascade may
produce an observed infection sequence Sobs = ({7}, {4}, {1, 3}, {5}, {2}, {8}, {}, {10}, {6, 9}), indicating that
vertex 7 is infected at time t = 0, 4 at time t = 1, 1 and 3 at time 2, etc. If the cascade was generated
according to our multiscale model with session end points at t = 1, 3, 4, 8, then this would induce the following
session infection sequence: Ssess = ({4, 7}, {1, 3, 5}, {2}, {6, 8, 9, 10}). The clock that induced this session
infection sequence is given by the session end points. As a partition into subintervals, it is encoded by
([0, 1], [2, 3], [4, 4], [5, 8]).
Example 5 (Frontier sets of an infection sequence). Consider the graph depicted in Figure 3, where
sets of vertices are arranged from left to right according to the example infection sequence Ssess =
({1}, {3, 5}, {2, 4}, {6}). The frontier sets corresponding to Ssess on this graph are

F0(Ssess) = {3, 4, 5, 6}, (129)
F1(Ssess) = {2, 4, 7}, (130)
F2(Ssess) = {6, 7}, (131)
F3(Ssess) = ∅. (132)

D Empirical results on synthetic and real graphs

In this section, we give our complete set of empirical results, continuing the material in Section 3.4.

Experiments on Erdős–Rényi graphs. We first experiment with Erdős–Rényi to confirm the theoretical
behavior of our estimator and compare its running time and quality to the DP baseline. We report the results

32

Published in Transactions on Machine Learning Research (11/2022)

31 2

45

6

7

Figure 3: The network for the frontier example, Example 5. Distinct shaded regions from left to right denote distinct
infection sets from the sequence Ssess in the example.

1000 3000 5000 10000
number of nodes

0.0

0.1

0.2

0.3

0.4

di
st
an

ce

FastClock
DP

(a)

1000 3000 5000 10000
number of nodes

10−2

10−1

100

101

102

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(b)

0.01 0.05 0.1 0.15 0.2 0.25 0.3
pn

0.0

0.1

0.2

0.3

0.4

di
st
an

ce

FastClock
DP

(c)

0.01 0.05 0.1 0.15 0.2 0.25 0.3
pn

100

101

102

103

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(d)

1 3 5 7 9
density (alpha)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

di
st
an

ce

FastClock
DP

(e)

1 3 5 7 9
densit (alpha)

10−4

10−3

10−2

10−1

100

101

ru
nt
im

es
 (s

ec
on

ds
) FastClock

DP

(f)

2 4 6 8
stretch

0.00

0.05

0.10

0.15

0.20

0.25
di
st
an

ce

FastClock
DP

(g)

2 4 6 8
stretch

100

101

102

103

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(h)

Figure 4: Comparison of the distance and runtime of the estimated clocks by FastClock and the baseline DP from DiTursi
et al. (2017) on Erdős–Rényi graphs (default parameters for all experiments: pn = 0.1, pe = 10−7, n = 3000, p = n−1/3, stretch
l = 2 unless varying in the specific experiment). (a),(b): Varying graph size. (c),(d): Varying infection probability pn. (e),(f):
Varying graph density p = n−1/α. (g),(h): Varying stretch.

in Figure 4. With increasing graph size FastClock’s distance from the ground truth clock diminishes (as
expected based on Theorem 1), while that of DP increases (Fig. 4(a)). Note that DP optimizes a proxy to
the cascade likelihood and in our experiments tend to associate too many early timesteps with early sessions,
which for large graph sizes results in incorrect recovery of the ground truth clock. Similarly, FastClock’s
estimate quality is better than that of DP for varying on pn (Fig. 4(c)), graph density (Fig. 4(e)) and stretch
factor for the cascades (Fig. 4(g)), with distance from ground truth close to 0 for regimes aligned with the
key assumptions we make for our main results (Assumption 1 or, more generally, 2). In addition to superior
accuracy, FastClock’s running time scales linearly with the graph size and is orders of magnitude smaller
than that of DP for sufficiently large instances (Figs. 4(b), 4(d), 4(f), 4(h)).

Experiments on Stochastic Block Model (SBM) graphs. We would also like to understand the
behavior of our estimator on graphs with communities where the cascade may cross community boundaries.
To this end, we experiment with SBM graphs varying the inter-block connectivity and virality (pn) of the
cascades and report results in Fig. 5. As the cross-block connectivity increases and approaches that within
blocks (i.e. the graph structure approaches that of an ER graph) FastClock’s quality improves and is
significantly better than that of DP (Fig. 5(a)). When, however, the transmission probability pn is high,
coupled with sparse inter-block connectivity, FastClock’s estimation quality deteriorates beyond that of DP
(Fig. 5(c)). This behavior is due to the relatively large variance of µt when the cascade crosses a sparse cut

33

Published in Transactions on Machine Learning Research (11/2022)

0.01 0.05 0.1 0.15 0.2
connectivity

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

di
st
an

ce

FastClock
DP

(a)

0.01 0.05 0.1 0.15 0.2
connectivity

100

101

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(b)

0.01 0.05 0.1 0.15 0.2 0.25 0.3
pn

0.0

0.1

0.2

0.3

0.4

0.5

0.6

di
st
an

ce

FastClock
DP

(c)

0.01 0.05 0.1 0.15 0.2 0.25 0.3
pn

10−3

10−2

10−1

100

101

102

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

(d)

Figure 5: Comparison of the distance and runtime of the estimated clocks by FastClock and the baseline DP from DiTursi
et al. (2017) on Stochastic Block Model graphs (default parameters: n = 5000, two blocks/communities of sizes n/

√
n and

n − n/
√

n, pe = 10−7, stretch l = 2). (a),(b): Varying inter-block connectivity (pn = 0.1) where a setting of 0.2 makes the
graph equivalent to an Erdős–Rényi graph with p = 0.2. (c),(d): Varying infection probability pn (inter-block connectivity is
set to 0.01).

in the graph with high probability. This challenging scenario opens an important research direction we plan
to explore in future work.

D.1 Empirical results on a real graph

Here we evaluate the performance of FastClock and the DP algorithm from DiTursi et al. (2017) via synthetic
cascades on a real network. The graph in question, harvested by Bogdanov et al. (2013), is a Twitter
subnetwork consisting of 3000 nodes, with edges representing follower-followee relationships. The network
was constructed by a breadth-first search starting from a set of seed nodes consisting of the authors of that
work and their labmates. We generated cascades on this network with a single random initially infected node
and varied pn from 0.01 to 0.15. We plotted the accuracy and running time (Figure 6) of the two algorithms
versus pn, averaged over 50 trials. For all values of pn, the running time of FastClock is substantially
smaller than that of the DP algorithm. Regarding accuracy, for smaller pn, FastClock’s average distance is
smaller than or equal to that of DP. The accuracy of FastClock decays past approximately pn = 0.15 but
remains below an average distance of 0.07. We note that these larger values for pn may not be practically
relevant. E.g., in Kempe et al. (2003), values of pn between 0.01 and 0.1 (and, in general, varying inversely
in proportion to the degrees of nodes) were considered relevant.

E Discussion of knowledge of small-scale cascade model parameters

Our algorithm relies on knowledge of the parameters of the small-scale cascade model. Here we discuss this
aspect further. Our main messages are as follows:

1. Joint estimation of small-scale model parameters and the clock from a sample cascade is, without
any assumptions, information-theoretically impossible. This is to be expected: the small-scale model
parameters determine the local temporal dynamics of the process, and large-scale effects can distort
these local dynamics.
This makes the issue subtle and motivates work that is beyond the scope of the present paper.

2. In many use cases, small-scale model parameters may be estimated from data beyond sample cas-
cades. We give an example setting where this is plausible. In other settings, with certain assump-
tions, joint estimation from a sample cascade is possible. The main message here is that estimation
of small-scale model parameters is of interest, but a full exploration of practical methods is beyond
the scope of this paper. It is appropriate and plausible to regard these cascade parameters as being
given to us.

3. We can show that our algorithm is robust to random model parameter uncertainty.

34

Published in Transactions on Machine Learning Research (11/2022)

0.01 0.05 0.1 0.15
Pn

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

di
st
an

ce

FastClock
DP

0.01 0.05 0.1 0.15
pn

10−1

100

101

102

ru
nt

im
es

 (s
ec

on
ds

) FastClock
DP

Figure 6: 50 Synthetic cascades generated on a real-world Twitter graph of about 3000 nodes. a and b)
distance and runtime over pn. DP exhibits higher accuracy at higher pn and FastClock does better at lower
pn. FastClock is much faster than DP, but loses a small amount of accuracy.

E.1 Estimation of transmission probabilities from non-cascade data

In some situations, cascade model parameters (i.e., transmission probabilities for individual edges) are de-
termined by observable pairwise node features and, hence, do not require cascade observations and ground
truth clock information for estimation. In other words, in these scenarios, it is plausible and appropriate
to think of the cascade model parameters as being already determined and available to us when we observe
sample cascades and estimate clocks.

More concretely, nodes v may be endowed with feature vectors ~fv ∈ Rd, for some dimension d, and the
single-timestep transmission probability across an edge (v, w) may be stipulated to depend deterministically
on ~fv and ~fw, in a way to be determined. I.e., the transmission probability is stipulated to be of the
form Fθ(~fv, ~fw), where Fθ(·, ·) is a known function depending on a parameter θ, which is to be estimated.
This can be estimated in certain settings by experiment: for a sufficiently large number of pairs (v, w) of
individuals (not necessarily coming from a graph), the experimenter infects vertex v and exposes v to w. If
the experimenter can reliably determine whether or not w becomes infected, then this provides an estimate
of the probability of transmission Fθ(~fv, ~fw), and could be used to estimate θ.

E.2 Robustness to cascade model parameter uncertainty

We can extend our theoretical guarantees for FastClock to the case where the small-scale cascade model
parameters are not known exactly, but where instead each edge transmission probability is an independent
sample from a fixed unknown distribution with known expected value and support bounded away from 0
and 1. That is, fix an arbitrary distribution D supported on [A,B], where 0 < A ≤ B < 1, with known
expected value pn. We stress that we do not know A or B. For each ordered pair of vertices (v, w) such that
{v, w} is an edge in the graph, pn((v, w)) ∼ D.

The FastClock algorithm’s guarantees remain the same. This is because the crucial property on which it relies
is concentration of each |Ssess(i)| around its expected value, conditioned on σi−1(Ssess). This conditional
expectation is µi(Ssess) in the setting where D assigns probability 1 to some fixed pn (or all of the pn(e) are
deterministic). When D is a nontrivial distribution, the analysis is slightly more complicated: we must show
that |Ssess(i)| remains concentrated around its conditional expected value (call it ¯|Ssess(i)|), but this number
is no longer exactly equal to µi(Ssess). Under our assumptions on the random graph model, ¯|Ssess(i)| is
asymptotically close to µi(Ssess) whenever |Ssess(i− 1)| → ∞. This is the case when i > 1. Thus, the only

35

Published in Transactions on Machine Learning Research (11/2022)

trouble comes when i = 1 and the seed set Ssess(0) has small cardinality (Θ(1) with respect to n). In this
case, with high probability, every vertex in F0(Ssess) has exactly one neighbor in Ssess(0) (unless the graph
is extremely dense). For each vertex v ∈ F0(Ssess), let e(v) denote this unique edge from v to Ssess(0). Then

¯|Ssess(1)| is asymptotically equivalent to µ1(Ssess) provided that∑
v∈F0(Ssess)

(1− pn(e(v))) ∼
∑

v∈F0(Ssess)

(1− pn). (133)

This is trivially the case because E[pn(e(v))] = pn and because the pn(e(v)), for different v, are independent.

Thus, our algorithm’s accuracy and running time guarantees are robust to random uncertainty in model
parameters.

F Estimation of Ssess(0)

Here we describe how |Ssess(0)| might be estimated under various assumptions.

In some application scenarios, we are free to choose cascade seeds: e.g., in influence maximization. In this
case, the problem is trivial.

Alternatively, if we assume that the seeds are uniformly randomly chosen, then with high probability they
form an independent set (if the graph is sparse enough). We can estimate Ssess(0) to be S′0 =

⋃k∗
j=0 Sobs(j),

where k∗ = max{k : ∪kj=0 Sobs(j)is an independent set in G}. This yields the correct result with high
probability if pe is small enough (which we assume in our theorems).

Without any assumptions, any algorithm must be given Ssess(0), because, e.g., it is impossible to distinguish
between a cascade C with T sessions versus zero sessions of a cascade whose seed set is the final state of C.

G Behavior of FastClock under deviations from the modeling assumption

Here we consider deviations from one of the modeling assumptions and their consequences for FastClock.
Specifically, we consider what happens when, within any given session, a small set of vertices that become
infected also can immediately begin the process of infecting a subset of their neighbors.

To examine this scenario, we consider a relaxation of our model, wherein, in each session j, a subset of at
most kj vertices may be “non-compliant”, in the sense that they become active immediately. Let us call
the non-compliant set for session j NCj . In this case, the total number of vertices in the infection trees of
these vertices is at most

∑
v∈NCj

deg(v), which is, with high probability, at most O(kjnp). Provided that
kj � (np)j , this does not affect the performance guarantee on FastClock.

In an extreme scenario where all vertices are non-compliant, we can modify the FastClock algorithm as
follows: starting at the beginning of each session, we keep a running total of the conditional expected
number of vertices infected since the start of the session. Simultaneously, we keep a running total of the
number of vertices actually infected since the session start. At the first time point at which these two numbers
differ by more than a certain threshold, we declare the previous timestep to be the end of the current session.
The threshold is chosen in the same manner as in the original FastClock algorithm, to provide a certain
probability of error guarantee.

H Real network statistics

Table 1 lists the structural statistics for large online social networks often used in empirical network science
research. Such networks are well within the expected density ranges we employ in our theoretical analysis,
namely their average degree is in the order (and typically higher) than a natural logarithm of the number
of nodes.

36

Published in Transactions on Machine Learning Research (11/2022)

Name Description Type Nodes N Edges AVG degree ln(N)
ego-Facebook Social circles from Facebook (anonymized) Undirected 4,039 88,234 22 8
ego-Gplus Social circles from Google+ Directed 107,614 13,673,453 127 12
ego-Twitter Social circles from Twitter Directed 81,306 1,768,149 22 11
soc-Epinions1 Who-trusts-whom network of Epinions.com Directed 75,879 508,837 7 11
soc-LiveJournal1 LiveJournal online social network Directed 4,847,571 68,993,773 14 15
soc-Pokec Pokec online social network Directed 1,632,803 30,622,564 19 14
soc-Slashdot0811 Slashdot social network from November 2008 Directed 77,360 905,468 12 11
soc-Slashdot0922 Slashdot social network from February 2009 Directed 82,168 948,464 12 11
wiki-Vote Wikipedia who-votes-on-whom network Directed 7,115 103,689 15 9

Table 1: Statistics of some of the real-world social and information network datasets from SNAP (http:
//snap.stanford.edu/data).

37

http://snap.stanford.edu/data
http://snap.stanford.edu/data

	Introduction
	High-level problem formulation
	Motivating applications
	Prior work
	Our contributions

	Problem formulation and notation
	Main results: Algorithm, approximation and running time guarantees, generality
	The FastClock algorithm
	Approximation guarantee for FastClock
	Running time analysis
	Empirical results on synthetic graphs
	Generality of FastClock

	Conclusions and future work
	Acknowledgements
	Glossary of notation
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Examples
	Empirical results on synthetic and real graphs
	Empirical results on a real graph

	Discussion of knowledge of small-scale cascade model parameters
	Estimation of transmission probabilities from non-cascade data
	Robustness to cascade model parameter uncertainty

	Estimation of Ssess(0)
	Behavior of FastClock under deviations from the modeling assumption
	Real network statistics

