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“And we’re zany to the max!” — Animaniacs theme song

We present MaNIACS, a sampling-based randomized algorithm for computing high-quality approximations of
the collection of the subgraph patterns that are frequent in a single, large, vertex-labeled graph, according
to the Minimum Node Image-based (MNI) frequency measure. The output of MaNIACS comes with strong
probabilistic guarantees, obtained by using the empirical Vapnik-Chervonenkis (VC) dimension, a key concept
from statistical learning theory, together with strong probabilistic tail bounds on the difference between the
frequency of a pattern in the sample and its exact frequency. MaNIACS leverages properties of the MNI-
frequency to aggressively prune the pattern search space, and thus to reduce the time spent in exploring
subspaces that contain no frequent patterns. In turn, this pruning leads to better bounds to the maximum
frequency estimation error, which leads to increased pruning, resulting in a beneficial feedback effect. The
results of our experimental evaluation of MaNIACS on real graphs show that it returns high-quality collections
of frequent patterns in large graphs up to two orders of magnitude faster than the exact algorithm.
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abilistic algorithms; • Information systems→ Data mining; • Theory of computation→ Sketching
and sampling; Sample complexity and generalization bounds.
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1 INTRODUCTION
A subgraph pattern (sometimes called “graphlet”) is a small graph, possibly with labeled vertices.
Frequent Subgraph Pattern Mining (FSPM), i.e., finding the patterns that appear frequently in a
single graph, has many applications, from the discovery of protein functionality in computational
biology [40, 57], to the development of recommender systems for video games [2], to social media
marketing [20], to software engineering [26]. It is also a primitive for graph mining tasks such as
classification [18] and clustering [24].

The FSPM task is computationally challenging, for two main reasons: (i) the number of possible
patterns experiences a combinatorial explosion with the maximum number of vertices in a pattern
and with the number of possible vertex labels; and (ii) the subgraph isomorphism operation needed
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to find a pattern in the graph is in general NP-complete. Ingenious exact algorithms exist, but they
tend to scale poorly with the size of the graph and with the maximum size of a pattern.
The use of random sampling is a common solution to speed up time-consuming data analytics

tasks, from approximate database query processing [17], to itemset mining [53], to other tasks on
graphs [54]. It however comes at the price of obtaining an approximate solution to the task at hand.
Such solutions are acceptable when they come with stringent theoretical guarantees on their quality.
A typical approach for sampling algorithms relies on evaluating the function of interest only on a
randomly chosen subset of the input domain. In FSPM, one can, e.g., create a small random sample
of vertices, and evaluate the presence of subgraph isomorphisms between patterns and only those
subgraphs of the graph that include at least one of the sampled vertices.

Random sampling and approximate solutions are necessary when access to the graph is restricted,
as in online social networks, where one cannot inspect the whole graph, but only query a vertex
and its neighborhood through an API. By using vertex sampling schemes [15, 16], an approximation
algorithm enables FSPM in this scenario.

The key challenge in using random sampling is understanding the trade-off between the sample
size, the time needed to analyze the sample (which depends on the sample size, but also on the
analytics task at hand), and the quality that can be obtained from a sample of the specific size.
Large deviation bounds can be applied when there is only one function to be estimated, but in
FSPM, like in most data analytics tasks, we need to accurately estimate the frequencies of many
patterns from the same sample. Classic simultaneous deviation bounds tools such as the union
bound, if applied naïvely, are inherently loose, so more sophisticated techniques must be employed.
For FSPM, having tight bounds to the maximum estimation error is particularly important, as they
are used not only to decide which patterns to include in the approximate solution, but also to prune
the search space via an apriori-like argument, thus avoiding the expensive step of evaluating the
frequency of patterns that are not sufficiently frequent to be included in the output.

Contributions. We present MaNIACS (for “MNI Approximate Computation through Sampling”),
an algorithm to compute high-quality approximations of the collection of frequent subgraph
patterns from a single, large, vertex-labeled graph, according to the MNI-frequency measure [10].
• MaNIACS relies on uniform random sampling of vertices and on computing the patterns to
which these vertices belong. MaNIACS is scalable w.r.t. the size of the graph and is the first
FSPM algorithm on graphs with restricted access. Sampling allows MaNIACS to be easily
parallelized on, e.g., Arabesque [61].
• MaNIACS is the first sampling-based algorithm for the task of FSPM that comes with strong

probabilistic guarantees on the quality of its output. These guarantees are obtained by leverag-
ing sample-dependent quantities: MaNIACS extracts information from the sample to determine
the quality of the approximation in terms of the maximum frequency estimation error, which
is used to avoid false negatives. The estimated quality is output together with the approximate
collection of frequent patterns. To upper bound the maximum estimation error, MaNIACS
relies on the empirical Vapnik-Chervonenkis (eVC) dimension [64], a fundamental concept from
statistical learning theory [59]. The eVC-dimension leads to much better quality guarantees
than could be obtained by using classic approaches such as the union bound. We show that
the eVC-dimension of the task at hand is independent from the number of vertex labels, and
we show how to efficiently compute a tight upper bound to this quantity.
• MaNIACS aggressively leverages the anti-monotonicity of theMNI-frequencymeasure (Facts 2
and 3) to prune parts of the search space that provably do not contain any frequent pat-
tern, and to focus the exploration only on the “promising” subspaces, therefore avoiding
expensive-but-useless computations. Pruning also leads to better bounds to the maximum
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frequency estimation error, which enables additional pruning, thus creating a virtuous cycle
that improves both the computational and statistical properties of MaNIACS.
• The results of our experimental evaluation of MaNIACS on real datasets show that it returns
a high-quality output very quickly, with even lower error than guaranteed by the theory.

The present article extends the conference version [47] in multiple ways, including:

• We introduce a new variant of the algorithm (Sect. 4.5), which uses different sample sizes to
mine patterns of different sizes. This strategy leads to additional pruning at the early levels
of the search tree, which results in less work done later, and thus in a significant reduction of
the running time of the algorithm, as verified by a new experimental evaluation.
• We compare our approach with Peregrine [29], the state-of-the-art in exact frequent pattern
mining in graphs, to prove the effectiveness of our pruning and sampling strategies. Results
show that the larger the search space is (e.g., at lower frequency thresholds or when the
number of labels is large), the higher the improvement in performance over Peregrine is.
• We clarify a number of extensions of our algorithm to other settings, such as multigraphs,
and edge-induced pattern mining, and why we cannot easily extend our approach to other
anti-monotonic measures which rely on the concept of overlap graph [11].
• We add a discussion on the size of the pattern search space (Sect. 4.2), that, to our knowledge,
is the first contribution to the study of the properties of this space for labeled patterns.
• We include all the proofs of theorems and lemmas, after carefully tweaking their hypotheses
and assumptions, to make our theoretical contributions as general and as strong as possible.
We add examples and figures to help the understanding of important concepts.

2 RELATEDWORK
There is a vast body of work on subgraph extraction and counting. In the interest of brevity and
clarity, we focus on the single, static graph setting, and we omit others (e.g., transactional, dynamic,
or stream). For a discussion of these many others areas, we refer the reader to the tutorial by
Seshadhri and Tirthapura [58].

The patterns we consider are connected, unweighted, undirected, vertex-labeled graphs with up to

𝑘 vertices. The assignment of the labels to the vertices of the pattern is important, and different
assignments (up to automorphisms of the patterns) generate different patterns (see formal defini-
tions in Sect. 3.1). The collection of patterns is therefore different from the collections of colored
graphlets [51] and heterogeneous graphlets [56], which respectively only consider the set or the
multiset of vertex labels. Graphlets [48] are a special case of patterns with a single label.

FSPM requires finding patterns with a global frequency, for instance as quantified by the popular
Minimum Node Image (MNI) frequency measure [10] (see eq. (4)), at least as large as a user-specified
minimum threshold (see eq. (5)). The MNI measure has also been employed in multigraph set-
tings [27], where edges have multiple labels; adapting MaNIACS to this scenario is straightforward.

The presence of a minimum frequency threshold and the use of the MNI measure distinguish this
task from the well-studied task of counting graphlets or motifs, which require to compute the global
number of vertex- or edge-induced instances of a pattern [4, 8, 9, 25, 28, 42, 45, 50, 65–67]. FSPM is
also different from computing the local counts, i.e., the number of instances of each pattern in which
an edge/vertex participates [43, 56]. The techniques used in these tasks cannot be easily adapted to
FSPM. Measures of global frequency for FSPM other than MNI exist [63], such as Harmful Overlap
(HO) [22], Maximum Independent Set (MIS) [32], and Minimum Instance (MI) [39]. They differ by
the amount of allowed overlap between different pattern instances . Similarly to MNI, they are
anti-monotonic (see Sect. 3.1), so the pattern search space can be pruned efficiently (see Sect. 4),
although the computation of HO and MIS is NP-hard [22, 39], and consequently they have found
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less use than MNI [19]. These measures use the concept of overlap graph of a pattern, which is the
graph whose vertex set is the set of embeddings (subgraph isomorphisms) of a pattern in a given
graph, and whose edges depend on the overlap between pairs of embeddings. The frequency is
then defined by using properties of this graph (e.g., the size of the maximum independent set, for
the MIS [32]). Our approach cannot be extended to these measures, because we draw a uniform
sample of vertices of the original graph, and even if we could use this sample to build a (non-
uniform) sample of the embeddings, i.e., of vertices of the overlap graph, such a sample would not
preserve, even approximately, the properties of the overlap graph needed to compute the support
measures. Using sampling approaches to compute accurate estimations of these measures with
quality guarantees is a very interesting direction for future work.
Algorithms. Elseidy et al. [19] present GraMi, an exact algorithm for FSPM. GraMi transforms
the subgraph isomorphism problem into a constraint-satisfaction problem, and uses ingenious
computation organization to speed up finding the edge-induced frequent patterns, although not
their frequencies. Frequencies are important in patternmining: since theminimum threshold is often
set somewhat arbitrarily, it is important to be able to distinguish between patterns with frequency
much greater than the threshold and those that are “barely” frequent. We define the FSPM task
to include their exact frequencies (see eq. (5)), which is inherently more difficult. GraMi requires
complete access to the whole graph. This assumption is often unrealistic when dealing with online
social networks, in addition to being extremely time consuming. In this setting, approximations of
the collection of frequent patterns are necessary, and sufficient when they come with stringent
quality guarantees, such as the ones provided by MaNIACS (see Thm. 4.7).

Parallel and distributed systems for FSPM try to address the scalability issue of mining frequent
patterns from very large graphs or when the pattern search space is huge [1, 13, 29, 60, 61, 68].
MaNIACS can be used as a primitive inside these systems, similarly to how sampling-based
approximation algorithms for frequent itemset mining [53] have been integrated in MapReduce [52].
Early works in approximate FSPM include the use of graph summaries [23] or heuristics for

space pruning [31], but they offer no guarantees. Other works tackle the problem via graph
sampling [5, 49, 69], but they also come with no quality guarantees.
Our algorithm samples a set of vertices, but it does not use them to build a graph from the

sample. Neither does it sample subgraphs, which is the approach taken by other works on subgraph
counting [3, 6–9, 41], nor focuses on output sampling [12]. To the best of our knowledge, our
work is the first to use concepts from statistical learning theory [64] for FPSM. Other works used
VC-dimension or other concepts from statistical learning theory for centrality computations [54],
for subgraph counting [41], or for itemsets mining [55], but these approaches cannot be easily
adapted to FSPM, because this problem is clearly very different from centrality computation, and
because the itemsets space is less complex and much easier to “navigate” than the subgraph space
that we consider. In particular, the evaluation of the frequency of an itemset is straightforward and
much cheaper than computing the frequency of a subgraph pattern (see Sect. 4). Thus, approaches
relying on Rademacher averages for generic pattern families [44] do not perform well for FPSM.

3 PRELIMINARIES
Let us now formally define the important concepts used throughout this work, and the task we are
interested in.
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3.1 Graph theory concepts
Any graph 𝐺 we consider is simple (no self loops, no multi-edges),1 unweighted, undirected,
and vertex-labeled, i.e., 𝐺 = (𝑉 , 𝐸, L) where L is a function that assigns labels from a fixed set
𝐿 = {𝜆1, . . . , 𝜆𝑚} to vertices (unlabeled graphs can be seen as labeled graphs with a single label).
For brevity, we usually drop L from the notation, and do not repeat “labeled”, but all the graphs
we consider are labeled, unless otherwise specified. A graph 𝐺 is connected iff, for each pair of
vertices 𝑣 ≠ 𝑢 ∈ 𝑉 , there exists a sequence of vertices 𝑢,𝑤1, . . . ,𝑤𝑛, 𝑣 ∈ 𝑉 and a sequence of edges
(𝑢,𝑤1), . . . , (𝑤𝑖 ,𝑤𝑖+1), (𝑤𝑛, 𝑣) ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑛 − 1.
For a fixed 𝑘 ∈ N, let P be the set of all possible connected graphs with up to 𝑘 vertices and

whose vertices have labels in 𝐿. We call patterns the elements of P. Let 𝑆 ⊆ 𝑉 be a subset of vertices
of a graph 𝐺 = (𝑉 , 𝐸), and let 𝐸 (𝑆) � {(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑆}. We say that 𝐺𝑆 � (𝑆, 𝐸 (𝑆)) is the
subgraph of𝐺 induced by 𝑆 .2 For 𝑘 > 0, we define C to be the set of all connected induced subgraphs
with up to 𝑘 vertices in 𝐺 .3 All subgraphs we consider are connected induced subgraphs, unless
stated otherwise.
Two graphs 𝐺 ′ = (𝑉 ′, 𝐸′, L′) and 𝐺 ′′ = (𝑉 ′′, 𝐸′′, L′′) are isomorphic if there exists a bijection

𝜇 : 𝑉 ′ → 𝑉 ′′ such that (𝑢, 𝑣) ∈ 𝐸′ iff (𝜇 (𝑢), 𝜇 (𝑣)) ∈ 𝐸′′ and the mapping 𝜇 preserves the vertex

labels, i.e., L′ (𝑢) = L
′′ (𝜇 (𝑢)), for all 𝑢 ∈ 𝑉 ′. Isomorphisms from a graph 𝐺 to itself are called

automorphisms and their set is denoted as Aut(𝐺).
Given a pattern 𝑃 = (𝑉𝑃 , 𝐸𝑃 ) in P and a vertex 𝑣 ∈ 𝑉𝑃 , the orbit 𝐵𝑃 (𝑣) of 𝑣 in 𝑃 is the subset of

𝑉𝑃 that is mapped to 𝑣 by any automorphism of 𝑃 , i.e.,
𝐵𝑃 (𝑣) � {𝑢 ∈ 𝑉𝑃 : ∃𝜇 ∈ Aut(𝑃) s.t. 𝜇 (𝑢) = 𝑣} . (1)

The orbits of 𝑃 form a partitioning of𝑉𝑃 , for each𝑢 ∈ 𝐵𝑃 (𝑣), it holds 𝐵𝑃 (𝑢) = 𝐵𝑃 (𝑣), and all vertices
in 𝐵𝑃 (𝑣) have the same label. In Fig. 1 we show examples of two patterns with their orbits.

v3v1

v2

v3 v1 v2

O3O2O1O2

O1

Fig. 1. Examples of patterns and orbits. Colors represent vertex labels, while circles represent orbits. In the

pattern on the left, v1 and v2 belong to the same orbit 𝑂1. On the right, each vertex belongs to its own orbit.

3.2 Frequent patterns
Among the many measures of frequency for subgraphs [22, 38, 39], we adopt the minimum node

image-based (MNI) support [10] metric to count the occurrences of the patterns. MNI is anti-
monotonic: any pattern (e.g., a triangle) has MNI support no larger than any of its subgraphs (e.g.,
an edge) (see Sect. 4.1), which avoids counter-intuitive results. Computationally, anti-monotonicity
enables apriori-like algorithms [62] to prune the pattern space.
Let 𝐺 = (𝑉 , 𝐸) be a graph, and let 𝑆 ⊆ 𝑉 be a subset of vertices. For any orbit 𝐴 of any pattern

𝑃 ∈ P, let the image set Z𝑆 (𝐴) of𝐴 on 𝑆 be the subset of 𝑆 containing all and only the vertices 𝑣 ∈ 𝑆
1Our work can easily be extended to handle both self loops and to work on multigraphs. See the work by Ingalalli et al. [27]
for mining frequent subgraph patterns on multigraphs.
2Our algorithm can also handle edge-induced subgraphs, with minor modifications. See Alg. 4 and discussion in Sect. 4.
3C depends on 𝑘 and𝐺 but we do not use them in the notation to keep it light.
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for which there exists an isomorphism 𝜇 from an induced subgraph 𝐺 ′ = (𝑉 ′, 𝐸′) ∈ C with 𝑣 ∈ 𝑉 ′
to 𝑃 such that 𝜇 (𝑣) ∈ 𝐴. Formally,

Z𝑆 (𝐴) � { 𝑣 ∈ 𝑆 : ∃ isomorphism 𝜇 : (𝑉 ′, 𝐸′) → 𝑃 s.t.
(𝑉 ′, 𝐸′) ∈ C ∧ 𝑣 ∈ 𝑉 ′ ∧ 𝜇 (𝑣) ∈ 𝐴} . (2)

Figure 2a shows an example graph. The pattern on the left of Fig. 1 does not appear in this graph,
thus the image sets of all its orbits are empty. For the pattern on the right of Fig. 1, we report the
image sets of its orbits in Fig. 2b.

(a) Example graph.

2 6

1

8

13

12

5

14

7 11

10

9

15

4

3

(b) Image sets for the orbits

of the pattern in Fig. 1 (right).

Orbit Image set

𝑂1 {1, 4, 5, 9, 11}
𝑂2 {2, 3, 10}
𝑂3 {6, 7, 8}

Fig. 2. Example graph and image sets for the orbits of the pattern on the right of Fig. 1.

The orbit frequency c𝑆 (𝐴) of 𝐴 on 𝑆 is the ratio between the size of its image set Z𝑆 (𝐴) and the
size of 𝑆 , i.e.,

c𝑆 (𝐴) �
|Z𝑆 (𝐴) |
|𝑆 | . (3)

The (relative) MNI-frequency f𝑆 (𝑃) of 𝑃 ∈ P on 𝑆 is the minimum orbit frequency on 𝑆 for any orbit
of 𝑃 , i.e.,

f𝑆 (𝑃) � min{c𝑆 (𝐴) : 𝐴 is an orbit of 𝑃} . (4)
For example, the MNI-frequency of the pattern on the right of Fig. 1 is, using Fig. 2b and the fact
that the example graph in Fig. 2a has 15 vertices, min{5/15, 3/15, 3/15} = 1/5 = 0.2.
When dealing with approximations, it is more straightforward to reason about this quantity

than about the (absolute) MNI-support (i.e., the minimum size of the image set of any orbit of 𝑃 ).4
Given a (large) graph 𝐺 = (𝑉 , 𝐸), and a minimum frequency threshold 𝜏 ∈ (0, 1), for any 𝑆 ⊆ 𝑉 ,

the set FP𝑆 (𝜏) of 𝜏-frequent patterns on 𝑆 contains all and only the patterns with frequency on 𝑆

greater than or equal to 𝜏 , together with their frequencies, i.e.,
FP𝑆 (𝜏) � {(𝑃, f𝑆 (𝑃)) : 𝑃 ∈ P ∧ f𝑆 (𝑃) ≥ 𝜏} . (5)

The task we are interested in requires finding FP𝑉 (𝜏). Due to the exponential number of candidate
patterns, and to the hardness of evaluating the subgraph isomorphisms, finding this collection
is challenging. An approximate solution Q is sufficient, in many cases, provided it comes with
stringent quality guarantees, such as (i) the lack of false negatives, i.e., every pattern in FP𝑉 (𝜏) also
appears in Q, and (ii) guarantees on the frequency estimation error. MaNIACS, outputs a set Q with
such guarantees (see Thm. 4.7), by sampling a subset of vertices from 𝑉 , which are then used to
approximate the frequency of patterns of increasing size, while exploiting the anti-monotonicity of
the frequency measure to prune the search space. To understand the trade-off between the sample
size and the accuracy 𝜀 of the approximation, we use concepts and results from statistical learning
theory [64], described next.
4Henceforth, we use “frequency” to refer to the MNI-frequency.
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3.3 Empirical VC-dimension and 𝜂-samples
We give here the main definitions and results about empirical VC-dimension, tailored to our setting.
For a general discussion, see the textbook by Shalev-Shwartz and Ben-David [59, Ch. 6].

A range space is a pair (D,R) where D is a finite ground set of elements called points and R is
a family of subsets of D called ranges. For any 𝐴 ⊆ D, let the projection PR (𝐴) of R on 𝐴 be the
set PR (𝐴) � {𝑟 ∩𝐴 : 𝑟 ∈ R} ⊆ 2𝐴. When PR (𝐴) = 2𝐴, i.e., when the projection contains all the
proper and improper subsets of 𝐴, then we say that 𝐴 is shattered by R. Given a subset 𝑌 ⊆ D, the
empirical Vapnik-Chervonenkis (eVC) dimension E𝑌 (R) of R on 𝑌 is the size of the largest shattered
subset of 𝑌 [64]. The VC-dimension of R is the empirical VC-dimension of R on D. For example, let
D be the subset of Z delimited by two finite integers 𝑎 ≤ 𝑏, and let

R = {[𝑐, 𝑑] ∩ Z : 𝑎 ≤ 𝑐 ≤ 𝑑 ≤ 𝑏}

be the set of discrete intervals in D. It is easy to see that shattering any set of two elements of D is
easy, while it is impossible to shatter any set {𝑒, 𝑓 , 𝑔} of three distinct elements 𝑒 < 𝑓 < 𝑔 from D,
as there is no range 𝑟 in R such that 𝑟 ∩ {𝑒, 𝑓 , 𝑔} = {𝑒, 𝑔}, as any 𝑟 that contains 𝑒 and 𝑔 must also
contains 𝑓 by definition. Thus the VC-dimension of this (D,R) is 2.

The concept of 𝜂-sample for (D,R) is crucial for our work. For 0 < 𝜂 < 1, a subset 𝐴 ⊆ D is an
𝜂-sample for (D,R) if it holds���� |𝑅 ||D| − |𝐴 ∩ 𝑅 ||𝐴|

���� ≤ 𝜂, for every 𝑅 ∈ R . (6)

Given an 𝜂-sample 𝐴, we can estimate the relative sizes of any range 𝑅 ∈ R w.r.t. the domain (i.e.,
the first term on the l.h.s.) with its relative size w.r.t. 𝐴 (the second term on the l.h.s.), and the
estimate is guaranteed to be no more than 𝜂-far from its exact value.
Given a sample size 𝑠 , let T be a collection of 𝑠 points sampled from D independently and

uniformly at random (with or without replacement). Knowing an upper bound 𝑑 to the empirical
VC-dimension of (D,R) on T allows the computation of an 𝜂 such that, probabilistically, T is an
𝜂-sample for (D,R).

Theorem 3.1 (34). Let 𝜙 ∈ (0, 1) be an acceptable failure probability. For (D,R), 𝑠 , T , and 𝑑 as

above, it holds that, with probability at least 1 −𝜙 (over the choice of T ), T is an 𝜂-sample for (D,R)
for

𝜂 =

⌜⎷
𝑐

(︂
𝑑 + ln 1

𝜙

)︂
𝑠

, (7)

where 𝑐 is a universal constant.5

When the upper bound 𝑑 to ET (R) is computed from T , the value 𝜂 from eq. (7) depends only on
T and on 𝜙 , i.e., it is a sample-dependent upper bound to the maximum difference, over all ranges,
between the relative sizes of the ranges w.r.t. the sample and the relative sizes w.r.t. the domain, i.e.,
to the l.h.s. of eq. (6).

3.4 Symbols Reference
Table 1 reports the most important and common symbols used throughout the paper, as a quick
reference for the reader.

5In our experiments, we follow Löffler and Phillips [35] and use 𝑐 = 0.5.
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Table 1. Table of symbols.

Symbol Description

G
ra
ph

𝐺 The data graph
𝑉 Set of vertices of 𝐺
E Set of edges of 𝐺
𝐿 Set of possible labels for the vertices 𝑉 of 𝐺
L Labeling function of 𝐺

Pa
tte

rn

𝑃 A graph pattern (a small connected graph)
𝑘 Maximum size (number of vertices) a pattern can have
P Set of all possible patterns (connected graphs of size up to 𝑘)
C Set of all connected induced subgraphs of 𝐺 up to size 𝑘

𝐵𝑃 (𝑣) Orbit of vertex 𝑣 in pattern 𝑃 (set of vertices linked by automorphism)
Z𝑉 (𝐵𝑃 ) Image set of orbit 𝐵𝑃 on the vertices 𝑉 (set of vertices in 𝑉 mapped to 𝐵𝑃 by subgraph

isomorphism)
f𝑉 (𝑃) MNI frequency of pattern 𝑃 on the graph induced by the set of vertices 𝑉

FP𝑉 (𝜏) Set of patterns with MNI frequency at least 𝜏 on 𝑉
F𝑖 Set of patterns of size 𝑖 in FP𝑉 (𝜏)

VC
-d
im

en
si
on D A finite ground set of elements (corresponds to 𝑉 in our case)

R A family of subsets of D (corresponds to Z𝑉 (𝐵𝑃 ) in our case)
ET (R) The empirical Vapnik-Chervonenkis (eVC) dimension of R on T ⊆ D (the size of the

largest shattered subset of T )
R𝑖 Set of image sets on 𝑉 of all the orbits of patterns in F𝑖

4 APPROXIMATE FSPM
We now present MaNIACS, our algorithm for mining high-quality approximations to FP𝑉 (𝜏)
through sampling. At a very high level, MaNIACS draws a sample 𝑆 from 𝑉 and uses the orbit
frequencies, the frequency of the patterns on 𝑆 , and the eVC-dimension of appropriately-designed
range spaces, to derive the output quality guarantees. MaNIACS does not consider the subgraph
of𝐺 induced by 𝑆 . Rather, it always considers the whole graph 𝐺 when checking the existence of
isomorphisms from patterns to induced subgraphs of 𝐺 . The sample is instead used to compute
f𝑆 (𝑃) as an estimation of f𝑉 (𝑃), as obtaining the former is faster given that |𝑆 | ≪ |𝑉 |.
The following fact is at the basis of MaNIACS, and it is immediate from the definition of

MNI-frequency (see eq. (4)).

Fact 1. Given 𝑃 ∈ P and 𝑆 ⊆ 𝑉 , let 𝜀 be such that it holds

|c𝑆 (𝐴) − c𝑉 (𝐴) | ≤ 𝜀, for every orbit 𝐴 of 𝑃 . (8)

Then it must be |f𝑆 (𝑃) − f𝑉 (𝑃) | ≤ 𝜀.

This corollary suggests how to identify patterns that cannot be frequent, and that can therefore
be pruned.

Corollary 4.1. Let 𝑃 , 𝑆 , and 𝜀 as in Fact 1. If it holds f𝑆 (𝑃) < 𝜏 − 𝜀, then it must be f𝑉 (𝑃) < 𝜏 , i.e.,

𝑃 ∉ FP𝑉 (𝜏).

Statistical learning theory gives us the tools to compute values 𝜀 which satisfy the condition
from eq. (8). Given the exponential number of patterns, it would be unfeasible to compute f𝑆 (𝑃)
for every 𝑃 ∈ P. Thus, we rely on properties of the orbit frequency and of the MNI-frequency
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functions (see Sect. 4.1) to prune the space of patterns, in an apriori-like way, and therefore to avoid
computing the frequencies of orbits whose pattern is not in FP𝑉 (𝜏).

4.1 Search space and frequency properties
We now define a partial order between patterns in P: we say that 𝑃 ′′ is a child of 𝑃 ′ if (i) 𝑃 ′′ has
exactly one more vertex than 𝑃 ′; and (ii) there exists an isomorphism between 𝑃 ′ and some induced
subgraph of 𝑃 ′′. When 𝑃 ′′ is a child of 𝑃 ′ we say that 𝑃 ′ is a parent of 𝑃 ′′. A pattern may have
multiple parents, while patterns with a single vertex have no parent. The anti-monotone property
of the MNI-frequency gives the following fact.

Fact 2 ([10]). For any pattern 𝑃 ∈ P, any pattern 𝑄 ∈ P that is a child of 𝑃 , and any 𝑆 ⊆ 𝑉 , it

holds that f𝑆 (𝑄) ≤ f𝑆 (𝑃).

We define a similar parent-child relation between pairs of orbits. Given two distinct patterns
𝑃,𝑄 ∈ P and two orbits 𝐵𝑃 and 𝐵𝑄 of each respectively, we say that 𝐵𝑄 is the child of 𝐵𝑃 iff 𝑄 is a
child of 𝑃 and there is a subgraph isomorphism from 𝑃 to𝑄 that maps at least one vertex of 𝐵𝑃 to a
vertex of 𝐵𝑄 . When 𝐵𝑄 is the child of 𝐵𝑃 , we say that 𝐵𝑃 is the parent of 𝐵𝑄 , and denote all the
children of 𝐵𝑃 as C(𝐵𝑃 ). Figure 3 shows some examples of the parent-child relationships. An orbit
can have multiple parents, and the orbits of patterns containing a single vertex have no parent.
Our algorithm leverages the following important property of this relationship, which is immediate
from the definition, to quickly prune the search space of patterns.

Fact 3. Let 𝐴 and 𝐷 be two orbits such that 𝐷 is a child of 𝐴. Then, for any 𝑆 ⊆ 𝑉 , it holds

Z𝑆 (𝐷) ⊆ Z𝑆 (𝐴).

Fig. 3. Examples of parent-child relations for orbits (labels represented as colors). We represent each orbit by

using its pattern with the vertices of the orbit in a thicker border.

4.2 The number of labeled patterns
The number of unlabeled (or, equivalently, single-labeled, when |𝐿 | = 1) connected patterns with 𝑘
vertices is well known,6 as is the number of orbits in this case [50, Table 1]. Conversely, to the best
of our knowledge, the number of labeled patterns and of labeled orbits with𝑚 labels and 𝑘 vertices
is not known. We show how to compute the number of labeled patterns by using the Redfield–Pólya
(enumeration) theorem [46] (Thm. 4.2). A similar analysis for the number of orbits in the presence
of multiple labels seems quite complicated, due to the symmetries that are broken in different ways

6http://oeis.org/A001349
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when assigning different labels to vertices belonging to the same unlabeled orbit. Nevertheless, it
remains a very interesting direction for future work.

Let {𝑝1,𝑘 = (𝑉1,𝑘 , 𝐸1,𝑘 ), . . . , 𝑝𝑢𝑘 ,𝑘 = (𝑉𝑢𝑘 ,𝑘 , 𝐸𝑢𝑘 ,𝑘 )} be the set of the 𝑢𝑘 unlabeled patterns of size 𝑘 ,
with 𝑝𝑢𝑘 ,𝑘 being the clique, and all other patterns given arbitrarily distinct values for 𝑖 , 1 ≤ 𝑖 < 𝑢𝑘 .
Our goal is to compute the number of different possible assignments of the𝑚 labels to the vertices
of 𝑝𝑖,𝑘 , 1 ≤ 𝑖 ≤ 𝑢𝑘 . To do so, we use the following celebrated combinatorics result.

Theorem 4.2 (Redfield–Pólya theorem [46]). Let 𝑋 be a finite set and 𝑍 be a group of permuta-

tions of 𝑋 . Let 𝑌 be a finite set with |𝑌 | = 𝑞, and 𝑌𝑋
be the set of functions from 𝑌 to 𝑋 (the group 𝑍

acts on 𝑌𝑋
). The number of group orbits7 under 𝑍 is��𝑌𝑋 /𝑍

�� = 1
|𝑍 |

∑︂
𝑔∈𝑍

𝑞c(𝑔) , (9)

where c(𝑔) is the number of (permutation) cycles in the permutation 𝑔 ∈ 𝑍 .8

We use this result as follows. We fix 𝑌 = 𝐿 and 𝑞 = 𝑚. For each unlabeled pattern 𝑝𝑖,𝑘 , we set
𝑋 = 𝑉𝑖,𝑘 , and𝑍 as the automorphism group of𝑋 , i.e., the set Aut(𝑝𝑖,𝑘 ) of graph automorphisms of 𝑝𝑖,𝑘 ,
seen as permutations on 𝑋 , with the composition operator. The quantity

��𝑌𝑋 /𝑍
�� is then the number

of different ways of labeling the vertices of 𝑝𝑖,𝑘 by using the labels in 𝐿, up to automorphisms.
Therefore, it is the number of labeled patterns that, up to the labels, are isomorphic to 𝑝𝑖,𝑘 . To
compute this quantity by using eq. (9), we therefore need to analyze each 𝑔 ∈ 𝑍 to obtain c(𝑔).

For example, for the clique 𝑝𝑢𝑘 ,𝑘 , 𝑍 contains all 𝑘! permutations. The number of permutations of
𝑘 objects with 𝑖 cycles is known as the unsigned Stirling number of the first kind

[︁
𝑘
𝑖

]︁
. For the clique,

we can then rewrite (9) as ��𝑌𝑋 /𝑍
�� = 1

𝑘!

𝑘∑︂
𝑖=1

[︃
𝑘

𝑖

]︃
𝑚𝑖 .9

The value of this expression may not be immediately evident, but it can be derived by using
the Stars and Bars theorem [21], which tells us that the number of distinct ways to arrange 𝑘
indistinguishable objects (the vertices) into𝑚 distinguishable boxes (the labels) is

(︁
𝑘+𝑚−1

𝑘

)︁
. Thus,

the number of labeled cliques of size 𝑘 that can be created with𝑚 labels is

patterns(𝑢𝑘 , 𝑘,𝑚) �
(︃
𝑘 +𝑚 − 1

𝑘

)︃
. (10)

For each non-clique unlabeled pattern 𝑝𝑖,𝑘 , we can explicitly identify the permutations inAut(𝑝𝑖,𝑘 )
(i.e., the automorphisms), and for each permutation 𝑔 ∈ Aut(𝑝𝑖,𝑘 ), compute the number c(𝑔) of
cycles of 𝑔. To obtain this information, we analyze the rotational and reflection symmetries of the
(graphical representation of the) pattern 𝑝𝑖,𝑘 , as follows. In Fig. 7 in App. A.1 (inspired by [36,
Fig. 1]) we show, for 𝑘 ∈ {3, 4, 5}, each unlabeled (i.e., single-labeled) pattern, where nodes of the
same color belong to the same orbit (in the unlabeled pattern). A pattern has a 𝑑-degree rotational
symmetry if, by rotating its graphical representation by 𝑑 degrees counterclockwise, we obtain
the same graphical representation. A pattern has a reflection symmetry around a certain axis if, by
reflecting its graphical representation around the axis, we obtain the same graphical representation.

7The group orbit of 𝑥 ∈ 𝑋 , not to be confused with eq. (1), is {𝑦 ∈ 𝑋 | ∃𝑔 ∈ 𝑍 . 𝑦 = 𝑔 ∗ 𝑥 }, where ∗ is the group action.
8A permutation cycle is a subset of a permutation whose elements are permuted among themselves, and not with elements
not in the cycle. The length of a cycle is the number of elements it contains. For example, the identity permutation on 𝑧

elements has 𝑧 cycles of length 1, while a “circular shift” permutation of 𝑧 elements has one cycle of length 𝑧.
9For signed Stirling numbers of the first kind, this expression would be equal to

(︁𝑚
𝑘

)︁
, but it is not the case.
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Table 2. Number of labeled patterns with𝑚 labels, for each unlabeled pattern as in Fig. 7 in App. A.1.

Pattern patterns(𝑖, 𝑘,𝑚) Explanation

1 (𝑚3 +𝑚2 )/2 The identity has three cycles, the reflection around the v-axis has two.

2 (𝑚3 + 3𝑚2 + 2𝑚)/6 The pattern is a clique, so we use eq. (10).

3 (𝑚4 +𝑚2 )/2 The identity has four cycles, the reflection around the v-axis has two.

4 (𝑚4 + 3𝑚3 + 2𝑚2 )/6 The identity has four cycles, the three reflections along the axis defined by each edge have
three cycles each, and the two rotations by 120◦ and 240◦ have two each.

5 (𝑚4 + 2𝑚3 + 3𝑚2 + 2𝑚)/8
The identity has four cycles, the two reflections along the diagonals have three each, the
two reflections around the h- and v-axis have two each, the rotation by 180◦ has two, the
rotations by 90◦ and 270◦ one each.

6 (𝑚4 +𝑚3 )/2 The identity has four cycles, the reflection along the h-axis has three.

7 (𝑚4 + 2𝑚3 +𝑚2 )/4 The identity has four cycles, the two reflections along the diagonals have three each, and
the rotation by 180◦ has two.

8 (𝑚4 + 6𝑚3 + 11𝑚2 + 6𝑚)/24 The pattern is a clique, so we use eq. (10).

9 (𝑚5 +𝑚3 )/2 The identity has five cycles, the reflection around the v-axis has three.

10 (𝑚5 +𝑚4 )/2 The identity has five cycles, the reflection around the h-axis has four.

11 (𝑚5 + 6𝑚4 + 11𝑚3 + 6𝑚2 )/24 For each permutation 𝑔 over four elements, there is a permutation 𝑔′ of the pattern vertices
obtained by applying𝑔 to the black vertices (the white one is fixed). It holds c(𝑔′ ) = c(𝑔) +1.

12 (𝑚5 +𝑚3 )/2 The identity has five cycles, the reflection around the v-axis has three.

13 (𝑚5 +𝑚4 )/2 The identity has five cycles, the reflection along the h-axis has four.

14 (𝑚5 + 2𝑚4 +𝑚3 )/4
The identity has five cycles, the two permutations that only permute the white vertices or
only the black vertices have four each, the permutation that permutes both the white and
the black vertices (in pairs) has three.

15 (𝑚5 + 5𝑚3 + 4𝑚)/10
The identity has five cycles, the five reflections along each of the axis going from a vertex
to the mid point of the opposite edge have three cycles each, and the other four rotations
by multiples of 72◦ have one cycle each.

16 (𝑚5 +𝑚4 )/2 The identity has five cycles, the reflection along the h-axis has four.

17 (𝑚5 +𝑚4 )/2 Same as #16.

18 (𝑚5 + 2𝑚4 + 3𝑚3 + 2𝑚2 )/8

The identity has five cycles, the two permutations that only swap the two top or the two
bottom black vertices (in pairs) have four cycles each, the two reflections along the h- or
v-axis have three each, the rotation by 180◦ has three. There are then two permutations
obtained by first rotating by 180◦ and swapping, respectively, the resulting two top or the
resulting two bottom nodes, and each of these permutation has two cycles.

19 (𝑚5 +𝑚4 )/2 The identity has five cycles, the reflection along the h-axis has four.

20 (𝑚5 + 4𝑚4 + 5𝑚3 + 2𝑚2 )/12
For each permutation 𝑔 of three elements, there are two permutations 𝑔′ and 𝑔′′ of the
pattern vertices, with 𝑔′ applying 𝑔 to the black vertices and keeping the white ones fixed,
and 𝑔′′ applying 𝑔 to the black vertices and also permuting the two white vertices. It holds
c(𝑔′ ) = c(𝑔) + 2 and c(𝑔′′ ) = c(𝑔) + 1.

21 (𝑚5 +𝑚3 )/2 The identity has five cycles, the reflection around the v-axis has three.

22 (𝑚5 + 4𝑚4 + 5𝑚3 + 2𝑚2 )/12 Same as #20.

23 (𝑚5 + 3𝑚4 + 2𝑚3 )/6 For each permutation𝑔 of three elements, consider the permutation𝑔′ of the pattern vertices
obtained by applying 𝑔 to the white vertices (the others are fixed). It holds c(𝑔′ ) = c(𝑔) + 2.

24 (𝑚5 +𝑚3 )/2 The identity has five cycles, the reflection around the v-axis has three.

25 (𝑚5 + 2𝑚4 +𝑚3 )/4
The identity has five cycles, the two permutations that only permute the white vertices or
only the grey vertices have four each, the permutation that permutes both white and grey
vertices (in pairs) has three.

26 (𝑚5 + 2𝑚4 +𝑚3 )/4 Same as #25.

27 (𝑚5 + 2𝑚4 + 3𝑚3 + 2𝑚2 )/8 Similar to #5, but each permutation has an additional cycle for the white vertex.

28 (𝑚5 + 4𝑚4 + 5𝑚3 + 2𝑚2 )/12 Same as #20.

29
(︁𝑚+4

5
)︁

The pattern is a clique, so we use eq. (10).
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Once we have the necessary information about Aut(𝑝𝑖,𝑘 ) and its elements, we can use eq. (9) to
compute the number of distinct labeled patterns that can be generated by assigning one of the𝑚
labels to each vertex of 𝑝𝑖,𝑘 , which we denote with patterns(𝑖, 𝑘,𝑚). Table 2 reports the equations
to compute the number of labeled patterns with𝑚 labels for 𝑘 ∈ {3, 4, 5}, for each unlabeled (i.e.,
single-labeled) pattern numbered as in Fig. 7. The ‘Explanation’ column of Table 2 comments on
how we obtain the formula on the second column. We use ‘h-axis’ and ‘v-axis’ to refer to themiddle

(i.e., center) horizontal and vertical axis of the graphical representation of the pattern. Formulas
similar to the ones in Table 2 can be derived for higher values of 𝑘 , with a careful analysis of each
unlabeled pattern and its orbits.
By combining these quantities with eq. (10), we get the number of distinct labeled patterns of

size 𝑘 using𝑚 labels as

patterns(𝑘,𝑚) =
𝑢𝑘∑︂
𝑖=1

patterns(𝑖, 𝑘,𝑚) .

We can use the formulas in Table 2 to explicitly obtain the total number of labeled patterns of size
𝑘 with𝑚 labels. For example, for 𝑘 = 3, the number of labeled patterns is

patterns(3,𝑚) = 2𝑚3 + 3𝑚2 +𝑚
3

.

For 𝑘 = 4, it is

patterns(4,𝑚) = 19𝑚4 + 24𝑚3 + 23𝑚2 + 6𝑚
12

,

and for 𝑘 = 5, it is

patterns(5,𝑚) = 91𝑚5 + 95𝑚4 + 95𝑚3 + 25𝑚2 + 9𝑚
15

.

Studying properties of the labeled pattern search space beyond its size, and any property of the
labeled orbit search space, could lead to interesting algorithmic developments, and it is a promising
direction for future theoretical research.

4.3 The frequent patterns range spaces
We now define an appropriate set of range spaces and show how to compute bounds to their
eVC-dimensions. Given 𝜏 ∈ (0, 1], let F𝑖 for 𝑖 = 1, . . . , 𝑘 be the set of patterns with 𝑖 vertices that
belong to FP𝑉 (𝜏).10 Let R𝑖 be the set whose elements are the image sets on 𝑉 of all the orbits of all
the patterns in F𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , i.e.,

R𝑖 � {Z𝑉 (𝐴) : 𝐴 is an orbit of 𝑃 ∈ F𝑖 } .

Henceforth, we use the range spaces (𝑉 ,R𝑖 ), 1 ≤ 𝑖 ≤ 𝑘 . The relevance of these range spaces is clear
when looking at Equation (3). We now show novel results to upper bound the eVC-dimension of
(𝑉 ,R𝑖 ) on any 𝑆 ⊆ 𝑉 . MaNIACS computes such bounds to derive the approximation guarantees
and to prune the search space.
The following two results are presented in the most general form because they hold for any

range space. We later tailor them for our case, and discuss how to compute the presented bounds
efficiently.

Lemma 4.3. Let (D,R) be a range space, and let T ⊆ D. Consider the set RT � {T ∩𝑅 : 𝑅 ∈ R}.
Let 𝑔∗ be the maximum 𝑔 such that T contains at least 𝑔 points each appearing in at least 2𝑔−1 sets
from RT . If, for at least one set 𝐵 of such 𝑔∗ points, there exists a set 𝑍𝐵 ∈ RT such that 𝑍𝐵 ⊇ 𝐵, then

ET (R) is at most 𝑔∗, otherwise it is at most 𝑔∗ − 1.
10The sets F𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , depend on𝐺 and on 𝜏 , but the notation does not reflect these dependencies to keep it light.
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Proof. For a set 𝐴 of |𝐴| = 𝑔 to be shattered, it is necessary that each 𝑎 ∈ 𝐴 belongs to at least
2𝑔−1 distinct sets in RT , as 𝑎 belongs to these many non-empty subsets of 𝐴. Additionally, there
must be a set 𝑍𝐴 ∈ RT that contains the whole 𝐴, i.e., such that 𝑍𝐴 ⊇ 𝐴. The quantity 𝑔∗ is the
maximum for which both these two conditions hold. If only the first one holds, then there is no set
of size 𝑔∗ that can be shattered, thus the eVC-dimension is at most 𝑔∗ − 1. □

Lemma 4.4. Let (D,R) and T as in Lemma 4.3. Let 𝑅1, . . . , 𝑅 | R | be a labeling of the ranges in R
such that |𝑅𝑤 ∩ T | ≥ |𝑅𝑢 ∩ T | for 1 ≤ 𝑤 < 𝑢 ≤ |R|. Let (𝑎 𝑗 )ℓ𝑗=1 be a non-increasing sequence of

ℓ ≥ |R| naturals such that 𝑎 𝑗 ≥
��𝑅 𝑗 ∩ T

��
for 1 ≤ 𝑗 < |R | and 𝑎 𝑗 ≥

��𝑅 | R | ∩ T �� for |R | ≤ 𝑗 ≤ ℓ .

Let ℎ∗ be the maximum natural ℎ such that, for every 0 ≤ 𝑗 < ℎ, if we let 𝑐 𝑗 =
∑︁𝑗

𝑦=0
(︁
ℎ
𝑦

)︁
,
11
it holds

𝑎𝑐 𝑗 ≥ ℎ − 𝑗 . Then, ET (R) ≤ ℎ∗.

Proof. Let 𝑧 = ET (R). Then there is a set 𝐴 ⊆ T with |𝐴| = 𝑧 that is shattered by R. For a
set 𝐴 with |𝐴| = 𝑧 to be shattered by R, there must be, for every 0 ≤ 𝑖 < 𝑧,

(︁
𝑧
𝑖

)︁
distinct ranges

𝐻𝑖,1, . . . , 𝐻𝑖,(𝑧𝑖) ∈ R such that
��𝐻𝑖, 𝑗 ∩𝐴

�� = 𝑧 − 𝑖 , as 𝐴 has
(︁
𝑧
𝑖

)︁
subsets of size 𝑧 − 𝑖 . It must then also

hold that
��𝐻𝑖, 𝑗 ∩ T

�� ≥ 𝑧 − 𝑖 .
If ℓ = |R | and 𝑎 𝑗 =

��𝑅 𝑗 ∩ T
�� for every 1 ≤ 𝑗 ≤ |R|, it follows from the definition of ℎ∗ that it

must be 𝑧 ≤ ℎ∗. For a generic sequence (𝑎 𝑗 )ℓ𝑗=1, the thesis follows from the fact that the value ℎ∗

computed on this generic sequence cannot be smaller than the value ℎ∗ computed on the specific
sequence for which ℓ = |R | and 𝑎 𝑗 =

��𝑅 𝑗 ∩ T
�� for every 1 ≤ 𝑗 ≤ |R|. □

While the lemma above may seem complex at first, its proof is essentially an application of the
pigeonhole principle, and the procedure to compute the bound ℎ∗ from the sequence (𝑎𝑖 )ℓ𝑖=1 is
straightforward, as we discuss in Sect. 4.4.
For 𝜆 ∈ 𝐿, let R𝑖,𝜆 be the subset of R𝑖 containing all and only the image sets of the orbits

whose vertices have all label 𝜆. Clearly each (𝑉 ,R𝑖,𝜆) is a range space. The following result ties the
empirical VC-dimension of these range spaces to that of (𝑉 ,R𝑖 ).
Lemma 4.5. For any 𝑆 ⊆ 𝑉 , it holds E𝑆 (R𝑖 ) = max𝜆∈𝐿 E𝑆 (R𝑖,𝜆).
Lemma 4.5 is an immediate corollary of the following result.

Lemma 4.6. No 𝑆 ⊆ 𝑉 containing vertices with different labels can be shattered by R𝑖 .
Proof. The statement is immediate from the definition of image set (see Equation (2)). For any

orbit 𝐴, its image set Z𝑉 (𝐴) on 𝑉 only contains vertices with the same label, thus there would be
no range in R𝑖 that would contain, for example, the whole 𝑆 , thus 𝑆 ∉ PR𝑖 (𝑆), which implies that 𝑆
cannot be shattered by R𝑖 . □

Lemma 4.5 says that E𝑆 (R𝑖 ) is, in some sense, independent from the number |𝐿 | of labels, which is
surprising, from a theoretical point of view. MaNIACS computes upper bounds to E𝑆 (R𝑖,𝜆), 𝜆 ∈ 𝐿,
using Lemmas 4.3 and 4.4, and then leverages Lemma 4.5 to derive an upper bound to E𝑆 (R𝑖 ).

4.4 MaNIACS, the algorithm
The intuition behind MaNIACS is the following. It creates a sample 𝑆 by drawing vertices indepen-
dently and uniformly at random without replacement from 𝑉 . Then it computes from 𝑆 a value
𝜀𝑖 such that 𝑆 is an 𝜀𝑖-sample for the range space (𝑉 ,R𝑖 ), for 1 ≤ 𝑖 ≤ 𝑘 . For such an 𝜀𝑖 , thanks
to eq. (7) and eq. (3), it holds, for any 𝑃 ∈ F𝑖 , that

c𝑆 (𝐴) ≥ c𝑉 (𝐴) − 𝜀𝑖 ≥ 𝜏 − 𝜀𝑖 for any orbit 𝐴 of 𝑃,
11We define

(︁𝑞
0
)︁
= 1 for any 𝑞.
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which implies that f𝑆 (𝑃) ≥ 𝜏 − 𝜀𝑖 . This lower bound to the possible frequency of 𝑃 ∈ F𝑖 ⊆ FP𝑉 (𝜏)
on 𝑆 allows us to determine which patterns may actually belong to FP𝑉 (𝜏) and which ones cannot.
Unfortunately, the sets F𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , are not known a priori, as if they were, we could use

them to exactly obtain FP𝑉 (𝜏). MaNIACS therefore computes a superset H𝑖 of each set. It uses the
sizes of the image sets on 𝑆 of the orbits of the patterns inH𝑖 to compute an upper bound to the
eVC-dimension of (𝑉 ,R𝑖 ), thanks to Lemmas 4.3 to 4.5. By plugging this upper bound in eq. (7), it
gets a value 𝜀𝑖 such that 𝑆 is (probabilistically) an 𝜀𝑖 -sample for F𝑖 .

Algorithm 1:MaNIACS
Input: Graph 𝐺 = (𝑉 , 𝐸), maximum pattern size 𝑘 , frequency threshold 𝜏 , sample size 𝑠 , failure

probability 𝛿
Output: A set Q with the properties from Thm. 4.7

1 𝑆 ← drawSample(𝑉 , 𝑠)

2 Q ← ∅; 𝑖 ← 1
3 H1 ← {𝑃 ∈ P : 𝑃 has a single vertex}
4 while 𝑖 ≤ 𝑘 andH𝑖 ≠ ∅ do
5 Z𝑖 ← getImageSets(H𝑖 , 𝑆 , 𝜏)

6 do
7 𝑏∗

𝑖
← getEVCBound(Z𝑖)

8 𝜀𝑖 ← getEpsilon(𝑏∗
𝑖
, 𝛿/𝑘)

9 H ′
𝑖
←H𝑖

10 H𝑖 ← {𝑃 ∈ H𝑖 : f𝑆 (𝑃) ≥ 𝜏 − 𝜀𝑖 }
11 whileH ′

𝑖
≠ H𝑖 andH𝑖 ≠ ∅

12 Q ← Q ∪ {(𝑃, f𝑆 (𝑃), 𝜀𝑖 ) : 𝑃 ∈ H𝑖 }
13 if 𝑖 < 𝑘 thenH𝑖+1 ← createChildren(H𝑖 ,Z𝑖)

14 𝑖 ← 𝑖 + 1
15 return Q

We first present a simplified version of MaNIACS (pseudocode in Alg. 1), and discuss more
details in Sect. 4.4.2. MaNIACS takes as input a graph 𝐺 = (𝑉 , 𝐸), a maximum pattern size 𝑘 , a
minimum frequency threshold 𝜏 , a sample size 𝑠 , and an acceptable failure probability 𝛿 . It outputs
a set Q with the following properties.

Theorem 4.7. With probability at least 1−𝛿 over the choice of 𝑆 , the output Q of MaNIACS contains

a triplet (𝑃, f𝑆 (𝑃), 𝜀𝑃 ) for every 𝑃 ∈ FP𝑉 (𝜏) such that |f𝑆 (𝑃) − f𝑉 (𝑃) | ≤ 𝜀𝑃 .

Proof. For 1 ≤ 𝑖 ≤ 𝑘 , let 𝜂𝑖 be the value 𝜂 computed as in Thm. 3.1 for 𝜙 = 𝛿/𝑘, (D,R) = (𝑉 ,R𝑖 ),
T chosen as 𝑆 on line 1, and 𝑑 being the eVC-dimension of (𝑉 ,R𝑖 ) on 𝑆 . It follows from Thm. 3.1
and an application of the union bound over the 𝑘 sets (hence the use of 𝛿/𝑘), that, with probability
at least 1−𝛿 , it holds that 𝑆 is, simultaneously, an 𝜂𝑖 -sample for (𝑉 ,R𝑖 ) for every 1 ≤ 𝑖 ≤ 𝑘 . Assume
for the rest of the proof that that is the case.
We show inductively that, at the end of every iteration of the “main” loop of MaNIACS (lines 4–

14), it holds that
(1) Q contains a triplet (𝑃, f𝑆 (𝑃), 𝜀𝑖 ) for each 𝑃 ∈ F𝑖 , and the triplet is such that

|f𝑉 (𝑃) − f𝑆 (𝑃) | ≤ 𝜀𝑖 ;

(2) F𝑖 ⊆ H𝑖 , for 𝑖 ≤ 𝑘 .
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At the beginning of the first iteration, i.e., for 𝑖 = 1, it obviously holds F1 ⊆ H1 from the definition
ofH1 (line 3). Thus, at the first iteration of the do-while loop on lines 6–11, the value 𝜀1 computed
on line 8 using Thm. 3.1 is not smaller than 𝜂1, because 𝑏∗1 is an upper bound to the eVC-dimension
of (𝑉 ,R1) on 𝑆 , thanks to Lemmas 4.3 to 4.5, and the value 𝜂 on the l.h.s. of eq. (7) is monotonically
increasing with the value 𝑑 used on the r.h.s. of the same equation. It then follows, from this fact
and from Corol. 4.1, that no pattern 𝑃 ∈ FP𝜏 (𝑉 ) may have f𝑆 (𝑃) < 𝜏 − 𝜀1, therefore the refinement
ofH1 on line 10 is such that it still holds F1 ⊆ H1 at the end of the first iteration of the do-while
loop. Following the same reasoning, one can show that both this condition and the fact that 𝜀1 ≥ 𝜂1
hold throughout every iteration of the do-while loop.
The solution set Q, updated on line 12, therefore contains, among others, a triplet for every

pattern 𝑃 ∈ FP𝜏 (𝑉 ). The properties from the thesis hold because of this fact, and because 𝜀1 ≥ 𝜂1,
thus completing the base case for point (1) in the list above. Point (2), i.e., that F2 ⊆ H2, then
follows from the anti-monotone property of the MNI-frequency (Fact 2).

Assume now that points (1) and (2) hold at every iteration of the while loop from 𝑖 = 1, . . . , 𝑖∗ < 𝑘 .
The proof that they hold at the end of iteration 𝑖∗ + 1 follows the same reasoning as above. □

The algorithm starts by initializing the empty set Q, which will contain the output (line 2) and
by creating the sample 𝑆 = {𝑣1, . . . , 𝑣𝑠 } of 𝑠 vertices by drawing them independently and uniformly
at random from 𝑉 (line 1).

Algorithm 2: getImageSets
Input: Set of patternsH𝑖 , sample 𝑆 , frequency threshold 𝜏
Output: The image setsZ𝑖 of the patterns inH𝑖

1 Z𝑖 ← ∅
2 foreach 𝑃 ∈ H𝑖 do
3 foreach orbit 𝐴 of 𝑃 do
4 𝑛 ← a vertex of 𝑃 in 𝐴

5 𝑆𝐴 ← vertices in 𝑆 with the label of 𝐴
6 Z𝑆 (𝐴) ← ∅, 𝑟𝑒𝑚𝑎𝑖𝑛 ← |𝑆𝐴 |
7 foreach 𝑣 ∈ 𝑆𝐴 do
8 𝑀 ← ∅;𝑀 [𝑛] ← 𝑣

9 if existsIsomorphism(𝑃 , M) then
10 Z𝑆 (𝐴) ← Z𝑆 (𝐴) ∪ {𝑣}
11 𝑟𝑒𝑚𝑎𝑖𝑛 ← 𝑟𝑒𝑚𝑎𝑖𝑛 − 1
12 if (𝑟𝑒𝑚𝑎𝑖𝑛 + |Z𝑆 (𝐴) |)/|𝑆 | < 𝜏 − 𝜀𝑖 then
13 prune 𝑃 and go to next pattern

14 Z𝑖 ←Z𝑖 ∪ {Z𝑆 (𝐴)}

15 returnZ𝑖

MaNIACS keeps, for every 1 ≤ 𝑖 ≤ 𝑘 , a supersetH𝑖 of the set F𝑖 . The first such supersetH1 is
initialized to contain every pattern of a single vertex (line 3). The algorithm then enters a loop
(lines 4–14) which is repeated until 𝑖 is greater than 𝑘 or until H𝑖 is empty. At every iteration,
MaNIACS first calls getImageSets to obtain the collection Z𝑖 of the image sets Z𝑆 (𝐴) on 𝑆 of
every orbit𝐴 of every pattern 𝑃 ∈ H𝑖 (pseudocode in Alg. 2). Each set Z𝑆 (𝐴) is obtained by running
an existence query (pseudocode in Alg. 4 in App. A.2) for each vertex 𝑣 in the sub-sample 𝑆𝐴, to
determine whether 𝑣 belongs to at least one subgraph isomorphic to 𝑃 . The existence query is a
recursive function that incrementally builds a dictionary𝑀 , by inserting, at each iteration, a new
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candidate match from a pattern vertex to a graph vertex. If a match can be found for each vertex of
the pattern, the query returns true, and 𝑣 is inserted into Z𝑆 (𝐴). A match 𝑧 for a pattern vertex
𝑢 is added to𝑀 only if it is consistent with the matches already in𝑀 , i.e., if the pattern vertices
already matched and 𝑢 are connected in the same way as the graph vertices mapped to them. If
we wish instead to find the edge-induced subgraph isomorphic to 𝑃 , we just need to modify this
consistency check.

MaNIACS then enters a do-while loop (lines 6–11), whose dual purpose is to compute an 𝜀𝑖 such
that 𝑆 is a 𝜀𝑖 -sample for (𝑉 ,R𝑖 ), and to iteratively refineH𝑖 as a superset of F𝑖 . To compute 𝜀𝑖 , we
first need an upper bound to the eVC-dimension of (𝑉 ,R𝑖 ) on 𝑆 (line 7). This bound is computed
by the getEVCBound function (pseudocode in Alg. 3). For each label 𝜆 ∈ 𝐿, let 𝐷𝜆 be the subset of
Z𝑖 containing the distinct sets associated to orbits of vertices with label 𝜆 (line 2 of Alg. 3). First, it
computes 𝑔∗

𝜆
from Lemma 4.3 (lines 3–7), by taking into account the number of image sets in 𝐷𝜆 in

which each vertex 𝑣 ∈ 𝑆 appears. Then, it computes the value ℎ∗
𝜆
from Lemma 4.4 (lines 8–14). The

value 𝑏∗𝑖 returned by getEVCBound is the maximum, over 𝜆 ∈ 𝐿, of min{ℎ∗
𝜆
, 𝑔∗

𝜆
}.

Algorithm 3: getEVCBound
Input: BagZ𝑖 of image sets Z𝐴 (𝑆), ∀ orbit 𝐴 of each pattern inH𝑖

Output: A value 𝑏∗
𝑖
≥ E𝑆 (R𝑖 )

1 foreach 𝜆 ∈ 𝐿 do
2 𝐷𝜆 ← set of image sets inZ𝑖 of orbits of vertices with label 𝜆
3 𝑀 ← |𝑆 |-vector with element (𝑣, |{𝑍 ∈ 𝐷𝜆 : 𝑣 ∈ 𝑍 }|), ∀𝑣 ∈ 𝑆
4 sort𝑀 in decreasing order of the 2nd component

// Denote with (𝑣𝑖 , 𝑞𝑖 ) the 𝑖-th element of 𝑀

5 𝑔∗
𝜆
← max{𝑔 : 𝑣𝑔 ≥ 2𝑔−1}

6 𝛾 ← max{𝑖 : 𝑣𝑖 > 2𝑔
∗
𝜆
−1}

7 if �𝑄 ⊆ {𝑣1, . . . , 𝑣𝛾 }, |𝑄 | = 𝑔∗
𝜆
, s.t. ∃𝑍 ∈ 𝐷𝜆 s.t. 𝑄 ⊆ 𝑍 then 𝑔∗

𝜆
← 𝑔∗

𝜆
− 1

8 𝑁 ← |𝐷𝜆 |-vector with element |𝑍 |, ∀𝑍 ∈ 𝐷𝜆

9 sort 𝑁 in decreasing order
// Denote with 𝑎𝑖 the 𝑖-th element of 𝑁

10 ℎ∗
𝜆
← min{𝑎1, ⌊log2 ( |𝐷𝜆 | + 1)⌋}

11 while ℎ∗
𝜆
> 1 do

12 foreach 𝑗 ∈ {0, . . . , ℎ∗
𝜆
− 1} do 𝑐 𝑗 ←

∑︁𝑗

𝑧=0
(︁ℎ∗

𝜆
𝑧

)︁
13 if � 𝑗 ∈ {0, . . . , ℎ∗

𝜆
− 1} s.t. 𝑎𝑐 𝑗 < ℎ∗

𝜆
− 𝑗 then break

14 else ℎ∗
𝜆
← ℎ∗

𝜆
− 1

15 return max𝜆∈𝐿 min{𝑔∗
𝜆
, ℎ∗

𝜆
}

MaNIACS uses 𝑏∗𝑖 in eq. (7) together with 𝜂 = 𝛿/𝑘 to obtain 𝜀𝑖 (line 8 of Alg. 1). The value 𝜀𝑖 is
used to refineH𝑖 by removing from it any pattern whose frequency in 𝑆 is lower than 𝜏 −𝜀𝑖 (line 10),
as they cannot belong to FP𝑉 (𝜏) (see proof of Thm. 4.7). The frequencies can be obtained from
Z𝑖 . This refinement process is iterated until no more patterns can be pruned, i.e.,H ′𝑖 = H𝑖 , orH𝑖

becomes empty (line 11). At this point, the patterns still inH𝑖 are added to the output set Q, together
with their frequencies on 𝑆 and 𝜀𝑖 (line 12). If 𝑖 < 𝑘 , MaNIACS creates the setH𝑖+1 to contain the
patterns on 𝑖 + 1 vertices whose parents are all in H𝑖 , by calling the function createChildren
(line 13). Thanks to Fact 2, this requirement ensures thatH𝑖 is the smallest superset of F𝑖 that can
be obtained on the basis of the currently available information. At this point, the current iteration

ACM Trans. Intell. Syst. Technol., Vol. 14, No. 3, Article 54. Publication date: September 2023.



MaNIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling 54:17

of the while loop is completed. When the loop condition (line 4) is no longer satisfied, the algorithm
returns the set Q (line 15).

4.4.1 Generating the next set of patterns. MaNIACS takes an apriori-like, level-wise approach that
explores a subset of the “level” 𝑖 of the pattern search space containing the patterns on 𝑖 vertices,
after having explored and pruned the level 𝑖 − 1. This subset is generated by the createChildren
function on the basis of the non-pruned patterns at level 𝑖−1. In particular, this function extends each
non-pruned pattern in the level 𝑖−1, by adding an edge in every possible position. As this procedure
may generate the same pattern multiple times (a pattern can have multiple parents), we identify
the canonical form of each pattern generated [30] and prune duplicate patterns. For each distinct
extension, we need to compute its orbits, in order to compute their image sets (getImageSets
function from Alg. 1). The generation of the orbits and patterns in MaNIACS follows steps similar
to the procedure by Melckenbeeck et al. [37], adapted to take into consideration the fact that we
are working with labeled graphs.

4.4.2 Additional pruning. An efficient pattern mining algorithm must take any chance for pruning
the search space. This requirement is particularly important when dealing with subgraphs, because
computing the collectionZ𝑖 (line 5) of image sets of the orbits of a pattern 𝑃 ∈ H𝑖 is particularly
expensive. We now describe how MaNIACS can prune as much as possible, as early as possible,
without any effect on its quality guarantees.

Before delving into pruning, we comment on the computation of the set Z𝑆 (𝐴) for an orbit 𝐴 of
a pattern 𝑃 ∈ H𝑖 . Computing Z𝑆 (𝐴) does not require to explicitly verify whether 𝑣 ∈ Z𝑆 (𝐴) for
every 𝑣 ∈ 𝑆 . Rather, the algorithm can create, when initializingH𝑖 , a subset 𝑆𝐴 ⊆ 𝑆 for every orbit
as above such that it holds

Z𝑆 (𝐴) ⊆ 𝑆𝐴 . (11)

For 𝑖 = 1, this set contains all and only the vertices in 𝑆 whose label is the same as the label of the
single vertex of the patterns. For 1 < 𝑖 ≤ 𝑘 , we can use Fact 3: when creatingH𝑖 on line 13, the
algorithm can associate to each orbit 𝐴 of a pattern in the setH𝑖 returned by createChildren, a
set 𝑆𝐴 obtained by taking the intersections of the image sets Z𝑆 (𝐵) on 𝑆 of every parent 𝐵 of the
orbit 𝐴, which are available fromZ𝑖 , i.e.,

𝑆𝐴 �
⋂︂

𝐵 parent of 𝐴
Z𝑆 (𝐵) .

The computation of these sets can be done in the call to the createChildren function on line 13
of Alg. 1, for 1 < 𝑖 ≤ 𝑘 , and just before the starting of the loop on line 4 for 𝑖 = 1. The properties
of the orbit child-parent relation (Fact 3) therefore enable a faster computation of the collection
Z𝑖 because Z𝑆 (𝐴) = Z𝑆𝐴 (𝐴), and we only need to check for subgraph isomorphisms involving 𝑆𝐴,
which may be much smaller than 𝑆 . We remark that, thanks to eq. (2), we need to find only one
subgraph isomorphism for each vertex in 𝑆𝐴, rather than enumerating all of them.

Maintaining the sets 𝑆𝐴 for every orbit 𝐴 of a pattern 𝑃 ∈ H𝑖 allows for pruningH𝑖 before even
computing the collectionZ𝑖 of the image sets. The idea is that the sets 𝑆𝐴 can be used in place of
the exact image set Z𝑆 (𝐴) to compute an upper bound to the eVC-dimension of (𝑉 ,R𝑖 ) on 𝑆 . It
holds by definition that 𝑆𝐴 ⊇ Z𝑆 (𝐴) for every orbit 𝐴, so a call to getEVCBound (with the minor
tweak of not getting rid of duplicated sets on line 2 of Alg. 3) that uses the collection of these
supersets would return a valid upper bound 𝑏∗𝑖 to the eVC-dimension of (𝑉 ,R𝑖 ) on 𝑆 . Thus, a call
to getEpsilon with parameters 𝑏∗𝑖 and 𝛿/𝑘, would return a value 𝜀𝑖 that is not smaller than the
value 𝜀𝑖 that would be returned if we used 𝑏∗𝑖 . We can then further improve MaNIACS by adding
a do-while loop as the first step of every iteration of the loop on lines 4–14. This inner loop is
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exactly the same as the do-while loop on lines 6–11, but with 𝑏∗𝑖 being used in place of 𝑏∗𝑖 . At each
iteration of this loop, some orbits and therefore some patterns may be pruned fromH𝑖 because not
frequent enough, resulting potentially in a lower bound to the eVC-dimension, thus in a lower 𝜀𝑖 ,
thus creating a positive feedback loop. The improved algorithm has exactly the same properties as
the vanilla MaNIACS, i.e., Thm. 4.7 holds.
The pruning strategies above can be incorporated in the call to the createChildren function.

The call to getImageSets on line 5 also offers opportunities for pruning. MaNIACS computes
one image set Z𝑆 (𝐴) = Z𝑆𝐴 (𝐴) at a time, and it evaluates whether 𝑣 ∈ 𝑆𝐴 belongs to the image
set, one vertex 𝑣 at a time. With the goal of maximizing pruning, we can first sort the orbits of a
pattern by increasing size of their sets, and then compute the image sets of the orbits according to
the obtained order. We can stop early the identification of the image set of an orbit 𝐴, if the sum
between the number of vertices in 𝑆𝐴 that are left to be examined, and the number of vertices in 𝑆𝐴
that we found to belong to Z𝑆𝐴 (𝐴), divided by the size of 𝑆 , is less than 𝜏 − 𝜀𝑖 . Thus, we can also
skip computing the image sets of the remaining orbits of the same pattern, and we can remove the
pattern fromH𝑖 .
Pruning is extremely important for MaNIACS, not only for computational efficiency reasons,

but also for statistical efficiency reasons, as aggressive pruning leads to better bounds to the eVC-
dimension, and therefore to a smaller bound to the maximum estimation error, i.e., to a better
approximation quality guarantee.

4.5 Varying the sample size
Aggressive pruning at the early levels (i.e., when 𝑖 is small) is particularly important to obtain an
efficient approximation algorithm for FSPM, for the reasons mentioned at the end of the previous
section. The value 𝜀𝑖 effectively controls how aggressive the pruning is: the smaller this value, the
more patterns we may be able to prune, because they have an MNI-frequency smaller than 𝜏 − 𝜀𝑖 .
There are three “tunable knobs” to obtain a lower 𝜀𝑖 , given how this quantity is computed (see
Thm. 3.1): obtaining a better (i.e., smaller) bound to the eVC-dimension, acting on the “allocation”
of 𝛿 to the levels, or using a larger sample size 𝑠 . The first is certainly a great direction for future
work, although not an easy one: in our preliminary investigations we have found it extremely hard
to derive smaller bounds to the eVC-dimension that are also efficient to compute (inefficient-to-
compute bounds are easy to obtain, but useless for practical purposes). Tuning the allocation of 𝛿 to
the different levels, e.g., allocating a larger fraction of 𝛿 to the first level, and decreasingly smaller
to lower levels (higher 𝑖) would be straightforward to do, but has very limited impact, due to the
fact that the failure probability appears only as the argument of a logarithm in the computation of
𝜀𝑖 (see eq. (7), where 𝜙 is the failure probability).

Thus, the only available direction of attack is to use different sample sizes (𝑠𝑖 )𝑘𝑖=1, at different levels,
and specifically larger sample sizes for lower values of 𝑖 , i.e., 𝑠1 > 𝑠2 > · · · > 𝑠𝑘 . The sample schedule

(𝑠𝑖 )𝑘𝑖=1 becomes an input parameter of this variant of the algorithm. In our experimental evaluation
we used a geometric decaying factor 𝛼 so that 𝑠𝑖 = 𝛼𝑖−1𝑠1, but in general one can use any sample
schedule. Having multiple sample sizes does not mean that at each level the algorithm must create
a new sample 𝑆𝑖 from scratch. Doing so would actually be extremely inefficient, as it would require
to essentially re-mine each new sample 𝑆𝑖 from level 1 to level 𝑖 , and thus being unable to use the
optimizations described in the previous section. Since we draw vertices uniformly at random from
𝑉 to create the sample 𝑆 , we can set 𝑆1 = 𝑆 , and create 𝑆𝑖 , 1 < 𝑖 ≤ 𝑘 , by subsampling 𝑆𝑖−1, i.e., by
drawing 𝑠𝑖 vertices from it. This approach guarantees that 𝑆𝑖 is a uniform random sample of 𝑉
of size 𝑠𝑖 , because “a uniform random sample of a uniform random sample is a uniform random
sample”. We remark that the vertices included in 𝑆𝑖 are chosen without using any information
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obtained from 𝑆1, . . . , 𝑆𝑖−1. This way, we avoid introducing dependencies between the samples,
which would make it harder to prove the correctness of this variant of our algorithm. Thus, by
creating “concentric” samples 𝑆1 ⊃ 𝑆2 ⊃ · · · ⊃ 𝑆𝑘 , we maintain the efficiency of the algorithm and
avoid having to modify the proof of correctness.

The modifications to the implementation of MaNIACS required by this variant are minimal. We
need to call getImageSets with 𝑆𝑖 as argument on line 5 of Alg. 1; we must use f𝑆𝑖 (𝑃) on line 10
and line 12; and we must create the sample 𝑆𝑖+1 by subsampling 𝑆𝑖 (keeping 𝑠𝑖+1 vertices at random)
after computing the children on line 13.

This variant of the algorithm offers exactly the same guarantees as MaNIACS, i.e., Thm. 4.7 holds
for this variant as well. The proof follows the same line as the proof for Thm. 4.7, with the only
difference that the union bound is now applied to the events “𝑆𝑖 is a 𝜂𝑖 -sample for (𝑉 ,R𝑖 )”.
In addition to being essentially the only available option, using larger sample sizes at the early

levels (lower 𝑖) is also ingenious because it opportunistically leverages the computational properties
of the task at hand: the patterns considered at the early levels (e.g., edges, wedges, triangles) are
“simple”, in the sense that it is very easy to check, given a vertex, whether it partakes in a subgraph
isomorphism of the pattern. Thus, even if we have to perform such a check for more vertices (due
to the larger sample size), the additional cost is minimal, and actually could be “time well spent” if
it leads (as it does, see Sect. 5) to additional pruning at the lower levels thanks to the smaller value
𝜀𝑖 obtained via the larger sample size. We believe this insight to be of key importance, and to be an
example of the kind of study of the task at hand that needs to be conducted in order to develop
efficient algorithms for data analysis.

5 EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental evaluation of MaNIACS on real datasets,
comparing it to exact algorithms. The goals of the evaluation are to
• study the trade-off between the sample size and the Maximum Absolute Error (MaxAE) in the
estimation of the frequencies of the patterns, and compare the observed MaxAE with the
upper bounds 𝜀𝑖 to it that are output by the algorithm;
• evaluate the accuracy of MaNIACS in terms of the quality of the collection of patterns
returned in output, compared to the exact collection;
• assess the running time of MaNIACS, and compare it with that of exact algorithms;
• understand the impact of the 𝛼 parameter on the behavior of the algorithm.

Evaluation Metrics. We evaluate the output quality in terms of:
• Maximum Absolute Error (MaxAE) in the frequency estimations of the patterns (i.e., what MaNI-
ACS guarantees (Thm. 4.7));
• Precision, i.e., the fraction of returned patterns that are actually frequent; and
• Kendall’s rank correlation coefficient, i.e., the correlation between the ordered vectors of frequency
estimates and actual frequencies. Values close to 1 indicate strong agreement between the two
rankings, while values close to −1 indicate disagreement. When FP𝑉 (𝜏) = ∅, we set it to 0.

We do not report the recall, i.e., the fraction of real frequent patterns returned by MaNIACS, because
Thm. 4.7 (probabilistically) guarantees a perfect recall, and that was indeed the case in all the runs
of our experiments. Thus, an important result of our experimental evaluation is that, in terms of
recall, MaNIACS behaves in practice even better than what is guaranteed by the theory.

Baselines. We compare the performance of MaNIACS to that of a naïve exact algorithm that
searches for the frequent patterns in the whole graph (i.e., as if using a sample containing all the
vertices in the graph), without the need to compute any 𝜀𝑖 . The naïve exact algorithm returns the
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Fig. 4. Empirical Maximum Absolute Error (MaxAE) and error bounds 𝜀𝑖 for each level 𝑖 , at fixed minimum

frequency threshold 𝜏 , for MiCo (left, 𝜏 = 0.09), Patents (middle, 𝜏 = 0.17), and YouTube (right, 𝜏 = 0.08).
Upper plots: varying sample sizes, fixed 𝛼 = 1; lower plots: fixed (initial) sample size, varying 𝛼 .

complete collection of frequent patterns, together with their frequencies, and allows to compute the
error in the estimations of the frequencies made by MaNIACS, for any pattern. We also compare
MaNIACS with a recent exact pattern mining approach, Peregrine [29], which is a parallel algorithm
written in C++. Peregrine is a pattern-aware graph mining system able to explore the subgraphs of
interest directly, hence bypassing unnecessary isomorphism and canonicality checks. Peregrine
generates an exploration plan by means of two abstractions, the anti-edge and the anti-vertex, which
express structural constraints on patterns. Frequent labeled patterns are found by considering
unlabeled (or partially labeled) patterns, and returning labeled matches. Frequent labeled patterns
are extended with unlabeled vertices to discover larger frequent labeled patterns. The difference in
the languages used for the implementation makes direct comparison of absolute running time not
entirely informative, but we use this information to discuss the scalability of the algorithms. We do
not compare with other exact Java implementations such as GraMi [19] because they search for
edge-induced patterns, and do not compute the pattern exact frequencies. We also do not compare
MaNIACS with any of the other approximate methods described in Sect. 2 because they either
suffer from similar issues or they offer no guarantees on the quality of the approximation.

Implementation and Environment. We implemented MaNIACS and the naïve exact algorithm in
Java 1.8, while we used the original C++ implementation of Peregrine. The code of the algorithms is
publicly available at https://github.com/lady-bluecopper/MaNIACS, complete with instructions on
how to run all the experiments, and two Jupyter Notebooks with the full results of our experimental
evaluation, which are qualitatively similar to the ones we report here. The first notebook, re-
sults.ipynb, includes the analysis on the impact of the sample size on the performance of MaNIACS,
while the second notebook, results_tist.ipynb, includes the results on the concentric-sample-based
version of MaNIACS and its performance level by level. We run our experiments on a 32-Core (2.54
GHz) AMD EPYC 7571 Amazon AWS instance, with 250GB of RAM, and running Amazon Linux 2.
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Parameter Configuration. We run MaNIACS using several sample sizes, frequency thresholds,
and values for 𝛼 , while the parameters 𝑘 , 𝑐 ,and 𝛿 were always set to 5, 0.5, and 0.1, respectively.
The last two have minimal impact on the performance (see eq. (7)). Given that the sample extracted
from the graph highly affects the quality of the results, we perform each test five times and report
the averages. The variances among runs are always small, except in a few cases that we report. The
exact baselines only use 𝑘 and the minimum frequency threshold 𝜏 .

Datasets. We consider three real world networks, whose characteristics are summarized in
Table 4 in App. A.2. All datasets are publicly available. MiCo [19] is a co-authorship network:
nodes represent authors and edges collaborations between them. Node labels indicate each author’s
research field. Patents[33] is a network of all the citations in utility patents granted between 1975
and 1999. Each node label indicates the year the patent was granted. YouTube [14] is a network
with nodes representing videos. Two videos are connected if they are related. The vertex label is a
combination of a video’s rating and length.

MaxAE: empirical values and error bounds. Figure 4 (upper) shows the empirical MaxAE in
the output collection of MaNIACS,12 together with its theoretical upper bounds 𝜀𝑖 computed by
MaNIACS, at various sample sizes, with fixed min. frequency threshold and 𝛼 = 1. As expected,
the upper bounds 𝜀𝑖 and the observed MaxAE decrease very fast as the sample size increases. The
empirical MaxAE is at least 2.5 times lower than the upper bounds, and in some cases almost five
times lower: MaNIACS works even better in practice than what is guaranteed by the theory. This
fact is not surprising as some of the bounds used in the analysis are known to be loose because
they consider the worst case for the sample and for the distribution of frequencies, and improving
them is an important direction for future work.

Figure 4 (lower) presents the MaxAE bounds 𝜀𝑖 as 𝛼 varies, for a fixed sample size 𝑠 (48k for Mico,
24k for Patents, 600k for YouTube). We recall that the parameter 𝛼 controls the sample schedule,
i.e., how the sample size changes when the algorithm explores the various levels the of the orbit
search space (see Sect. 4.5). Lower values of 𝛼 lead to smaller sample sizes at the deeper levels
(higher 𝑖), which then result in larger values of 𝜀𝑖 , but has an almost mirrored beneficial impact on
the running time (discussed below).

Quality of the output collection. We evaluate the quality of the collection of patterns thatMaNIACS
outputs by measuring the precision w.r.t. the exact collection and the Kendall rank correlation.
Table 3 shows the results. We remark once again that recall was always one in all runs of the
algorithm: the collection output by MaNIACS is always a superset of the exact collection of frequent
patterns, as probabilistically guaranteed by the analysis. It is also important to realize that MaNIACS
does not and cannot offer guarantees on the precision (in some sense, one has to choose between
guarantees on the recall or guarantees on the precision), because the precision depends on the
distribution of the pattern frequencies around the threshold 𝜏 , which is unknown to the algorithm: if
there are many patterns with an exact frequency slightly below 𝜏 (i.e., “almost-frequent”), MaNIACS
is “forced” to include them in the output because it cannot distinguish between them and the actually
frequent ones. This inclusion lowers the precision, which is the price to pay in order to obtain an
approximate collection with a recall of 1 much faster than by performing the exact computation.
Despite this lack of guarantees on the precision, MaNIACS obtains very good results given

the small sample sizes that it uses (see Table 3a): on Patents with 𝜏 = 0.23, MaNIACS achieves
a precision of 0.52 with a sample size of 9k, which is roughly 0.3% of the graph size, i.e., a very

12As the baselines are exact, we do not report this information for them, because it would be zero. The same holds for the
later analysis of precision and Kendall’s rank correlation.
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Table 3. Quality of the output collection: precision and Kendall’s rank correlation.

Dataset 𝜏 𝑠 Precision Kendall

MiCo

0.14
9k 0.690 1.00000
18k 0.920 1.00000
48k 1.000 1.00000

0.09
9k 0.518 0.93802
18k 0.612 0.97333
48k 0.667 1.00000

Patents

0.23
9k 0.521 0.34947
18k 0.589 0.34947
30k 0.517 0.73094

0.17
9k 0.439 0.69916
18k 0.488 0.72166
30k 0.517 0.73094

YouTube

0.10
120k 0.900 0.97778
240k 0.900 0.96667
600k 0.900 1.00000

0.08
120k 0.653 0.97524
240k 0.750 0.98667
600k 0.769 0.99121

(a) Varying sample size, fixed 𝛼 = 1
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(b) Fixed (initial) sample size, varying 𝛼

small sample. For YouTube, MaNIACS gets very high precision and Kendall’s rank correlation by
sampling less than 2% of the vertices.
As expected, the precision and the Kendall correlation increase with the sample size, with the

Kendall reaching very high values in most cases. The reason for this phenomenon is that, the
upper bounds 𝜀𝑖 decrease as the sample size grows (see eq. (7)), and so do the frequency estimation
errors (as shown and discussed for the MaxAE previously). With larger samples, MaNIACS obtains
lower upper bounds, thus it can perform a better pruning of superfluous patterns, leading to better
precision and Kendall correlation, as shown in Table 3. Figure 8 (in App. A.3) shows how the size
of the output collection changes as the sample size grows.
The plots in Table 3b show the impact of 𝛼 on precision and Kendall’s correlation, and the

advantages of having this parameter: for𝛼 = .9 the precision and Kendall’s correlation are essentially
the same as for 𝛼 = 1, while, as we discuss in the next paragraph, leading to a much smaller runtime.
For lower values of 𝛼 , we see that there is a drop in precision (due to the smaller sample sizes, thus
larger MaxAE error bounds 𝜀𝑖 ), but a very minor drop in correlation: even if more false positives are
included in the output, the low empirical error in the estimation of the frequencies of all patterns
included in the output results in a very accurate ranking of the patterns.

Running time. The motivation behind the development of sampling-based approximation al-
gorithms is that they allow to obtain approximate results of (probabilistically) guaranteed quality
much faster than exact algorithms.

Figure 5 (upper) shows the running time of MaNIACS at different sample sizes (𝑥-axis), fixed 𝜏
and 𝛼 = 1, compared to the running times of the naïve exact algorithm and Peregrine (which, we
recall, is implemented in C++, while the other algorithms are implemented in Java). The shaded
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Fig. 5. Running times of MaNIACS and the exact algorithm, at fixed minimum frequency threshold 𝜏 , for

MiCo (left, 𝜏 = 0.09), Patents (middle, 𝜏 = 0.17), and YouTube (right, 𝜏 = 0.08). Upper plots: varying sample

size, fixed 𝛼 = 1; lower plots: fixed (initial) sample size, varying 𝛼 .

area indicates the standard deviation. This area is evident only in MiCo, as the running times for
the other datasets across the runs are very similar.

MaNIACS is much faster than both exact algorithms (the y-axis has logarithmic scale), sometimes
by orders of magnitude. It is not surprising that on smaller graphs, such MiCo, at larger sample sizes,
there is little or no advantage in using an approximate method such as MaNIACS: the speedup that
could be obtained by examining a smaller number of vertices is counterbalanced by the less effective
pruning of the pattern search space, due to the large values of 𝜀𝑖 (and thus small values 𝜏 − 𝜀𝑖 ) at
small sample sizes (see Fig. 9 in App. A.3). The lack of pruning forces MaNIACS to compute the
frequencies of a larger number of candidate patterns, which obviously takes a significant amount of
time. But sampling-based approximation algorithms, like MaNIACS, shine on larger graphs, such
as Patents and YouTube, which are really the interesting case in practice, where our approximate
algorithm is orders of magnitude faster than the exact ones.

Figure 5 (lower) reports the running times for different values of 𝛼 and fixed initial sample size 𝑠 .
Lower running times are in general achieved with lower value of 𝛼 , as a smaller sample is used at
deeper levels. However, smaller sample sizes may lead to more superfluous patterns retained and
extended. In some cases, the number of such superfluous patterns leads to a larger running time
than if a larger value of 𝛼 was used, or even, for that specific level, than the naïve exact algorithm
(see, for example, level 𝑖 = 4 for YouTube, or 𝛼 = 0.9 vs. 𝛼 = 0.8 for 𝑖 = 5 on MiCo). The relationship
between running time and 𝛼 is complex due to the distribution of frequencies around 𝜏 − 𝜀𝑖 , which
determines the number of superfluous patterns.
Figure 6 presents the running times of MaNIACS, Peregrine, and the naïve exact algorithm

at fixed sample sizes and 𝛼 = 1, while changing 𝜏 . We recall that Peregrine is implemented in
C++, while the other algorithms are implemented in Java. This makes the comparison of absolute
running times not entirely appropriate, but we can still draw some conclusions.
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MiCo (left, 𝑠 = 18k), Patents (middle, 𝑠 = 18k), and YouTube (right, 𝑠 = 240k).

In particular, it seems that Peregrine does not scale as well as the other algorithms at 𝜏 decreases
(which is the interesting case), to the point of becoming even slower (in absolute runtimes terms)
than the naïve exact algorithm in some cases. For larger values of 𝜏 , and on small graphs (like MiCO
for 𝜏 = 0.2), the task of frequent pattern mining is so “easy” that it does not really matter which
algorithm one uses. When the task gets harder, due to the larger number of potential patterns at
lower values of 𝜏 , the approach taken by MaNIACS shows its advantages.

6 CONCLUSIONS
We presented MaNIACS, a sampling-based algorithm that outputs high-quality approximations
of the collection of frequent subgraph patterns in a large graph according to the MNI frequency.
To compute the quality of the approximation, MaNIACS relies on the empirical VC-dimension,
a concept from statistical learning theory that ties the maximum frequency estimation error to
sample-dependent properties. We showed how to compute an upper bound on the eVC-dimension
and how to use the resulting bound on the estimation error to prune the pattern search space to
avoid expensive-but-worthless computations. The results of our experimental evaluation showed
that MaNIACS achieves high-precision results while being up to two orders of magnitude faster
than exact algorithms, and that concentric samples reduce the running time significantly, with
only a little reduction in accuracy. Interesting directions for future work include: the design of
sampling-based algorithms for measures other than MNI which use the concept of overlap graph,
the derivation of better upper bounds to the empirical VC-dimension of the range spaces, the
derivation of formulas for the number of labeled patterns with 𝑚 labels for 𝑘 > 5, finding an
optimal sample schedule for the concentric-samples variant of our algorithm, and an extension of
our approach that uses parallelization to speed up the algorithm.
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A SUPPLEMENTARY MATERIAL
A.1 Orbits of unlabeled patterns

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28 29

Fig. 7. Unlabeled patterns for 𝑘 ∈ {3, 4, 5} and their orbits indicated with different shades of grey (vertices

with the same shade of grey belong to the same orbit).

A.2 Reproducibility
Alg. 4 looks for a vertex-induced occurrence of 𝑃 , given the partial vertex assignment 𝑀 , and
returns true or false depending on whether such an occurence exists.

Algorithm 4: existsIsomorphism
Input: Pattern 𝑃 , Partial match𝑀

Output: true iff𝑀 contains a match for each vertex of 𝑃
1 if |𝑀 | = |𝑉𝑃 | then return true
2 𝑢 ← vertex of 𝑃 not already in𝑀

3 𝑐𝑎𝑛𝑑𝑠 ← ⋂︁
𝑤∈𝑢.Γ∩𝑀 𝑀 [𝑤] .Γ

4 foreach 𝑧 ∈ 𝑐𝑎𝑛𝑑𝑠 with the same label as 𝑢 do
5 𝑖𝑠𝑀𝑎𝑡𝑐ℎ ← true
6 foreach𝑤 ∈ 𝑀 do
7 if 𝑤 ∉ 𝑢.Γ and𝑀 [𝑤] ∈ 𝑧.Γ then
8 𝑖𝑠𝑀𝑎𝑡𝑐ℎ ← false; break

9 if 𝑖𝑠𝑀𝑎𝑡𝑐ℎ then
10 𝑀 [𝑢] ← 𝑧

11 if existsIsomorphism(𝑃 , M) then return true

12 return false
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Table 4. Characteristics of the datasets.

Phy-Cit MiCo Patents YouTube

Vertices 30k 100k 2.7M 4.5M
Edges 347k 1M 13M 43M
Labels 6 29 4 12
Density 7.46 × 10−4 2.16 × 10−4 3.67 × 10−6 4.17 × 10−6
Avg Label Freq 5k 3.4k 689k 382k
Med Label Freq 5.9k 2.1k 672k 472k
Avg Edge Freq 16k 2.4k 1.5M 563k
Med Edge Freq 12k 1.0k 1.2M 535k

Table 4 reports the main characteristics of the datasets considered in the experimental evaluation.

A.3 Additional results
Figure 8 displays the average number of frequent patterns (i.e., the size of the output collection)
at different values of 𝜏 , as the sample size increases. Since the recall of the output collection was
always one, then the difference from the exact values, for fixed 𝜏 , corresponds to the number of
false positives. The number of false positives decreases as the sample size increases, thanks to
the better pruning, but as discussed in the main body, a larger sample requires more time to be
analyzed, thus one must accept a trade-off between precision and runtime.
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Fig. 8. Average number of patterns found by MaNIACS, together with the exact number of frequent patterns,

varying minimum frequency threshold 𝜏 .

Figure 9 shows the number of candidate frequent patterns examined at each level of the search
space. The impact of 𝛼 is more noticeable at deeper levels, because for each pattern retained at
level 𝑖 , MaNIACS generates a number of extensions of size 𝑖 + 1 proportional to𝑚.
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Fig. 9. Number of candidate frequent patterns at each layer for various 𝛼 , at fixed minimum frequency

threshold 𝜏 , for MiCo (left, 𝜏 = 0.09), Patents (middle, 𝜏 = 0.17), and YouTube (right, 𝜏 = 0.08).
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