
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Springer Nature 2021 LATEX template

ROhAN: Row-Order Agnostic Null Models

for Statistically-sound Knowledge Discovery

Maryam Abuissa1, Alexander Lee1 and Matteo Riondato1*

1*Department of Computer Science, Amherst College, Box
#2232, Amherst College, Amherst, MA, 01002,USA.

*Corresponding author(s). E-mail(s): mriondato@amherst.edu;
Contributing authors: mabuissa24@amherst.edu;

alexanderwlee@proton.me;

Abstract

We introduce a novel class of null models for the statistical validation of
results obtained from binary transactional and sequence datasets. Our
null models are Row-Order Agnostic (ROA), i.e., do not consider the
order of rows in the observed dataset to be fixed, in stark contrast with
previous null models, which are Row-Order Enforcing (ROE). We present
ROhAN, an algorithmic framework for efficiently sampling datasets from
ROA models according to user-specified distributions, which is a neces-
sary step for the resampling-based statistical hypothesis tests employed
to validate the results. ROhAN uses Metropolis-Hastings or rejection
sampling to build on top of existing or future ROE sampling proce-
dures. Our experimental evaluation shows that ROA models are very
different from ROE ones, impacting the statistical validation, and that
ROhAN is efficient, mixes fast, and scales well as the dataset grows.

Keywords: Hypothesis Testing, Pattern Mining, Sequences, Transactions

“Forth Eorlingas!” — King Théoden of Rohan

1 Introduction

Results obtained from a dataset through the Knowledge Discovery from Data
(KDD) process should be statistically validated to ensure that they are not just

1
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2 ROhAN: Row-Order Agnostic Null Models

due to the randomness in the Data-Generating Process (DGP) (Hämäläinen
and Webb, 2019; Pellegrina et al, 2019; Zimmermann, 2014): the goal of the
analysis is to gain new knowledge about the DGP through the observed dataset,
rather than knowledge about the dataset itself.

A rigorous validation approach subjects the results to statistical hypothesis
tests (Lehmann and Romano, 2022): results that pass the tests are deemed
statistically significant,1 as they appear to give new information on the DGP.

The significance of the results is assessed against a null model (𝒵, 𝜋), where
the null set 𝒵 is the collection of datasets that the DGP may generate, which
are assumed to share some characteristics with the observed dataset (e.g.,
size, frequency of items, number of simple patterns, . . . ), and 𝜋 is a user-
specified probability distribution over 𝒵. The null model captures assumed or
existing knowledge about the DGP. Results that are deemed significant under
an appropriate null model constitute new knowledge about the DGP.

A null model is partially independent from the task whose results one wants
to validate, as it models the generation of datasets, not directly of results, but
on the other hand, it is used to evaluate the results of the task, so it needs to
be representative of the task. The choice of the null model by the user must
therefore be deliberate and informed, as the meaning of “significant” depends
on it: results deemed significant under one null model cannot in general be
compared to those deemed significant under a different null model. “All models
are wrong, but some are useful” (George E. P. Box), and some null models
may be more appropriate for testing the significance of the results of a task
than others, because they more closely represent the settings of the task. Many
null models should be available, capturing different properties of the observed
dataset, and users must be informed of their differences, so they can choose
the one most appropriate for their needs (Ferkingstad et al, 2015). In this
work, we present null models that, we argue, are more appropriate for many
data mining tasks from transactional datasets, thus expanding the “library”
of models available to practitioners.

Many hypothesis tests are based on resampling (Westfall and Young, 1993;
Lehmann and Romano, 2022): they analyze multiple datasets drawn from
the null model in order to approximate the distribution of the test statistic,
and then compare the observed value of the statistic against such distribu-
tion. Thus, computationally-efficient procedures to sample from the null model
distribution are necessary for statistically validating KDD results.

Contributions

We study the problem of evaluating the significance of results from binary
transactional2 and sequence datasets, using resampling-based hypothesis tests.

• We introduce a novel class of null models for these datasets. Our models are
Row-Order Agnostic (ROA), i.e., do not consider the order of the rows (i.e.,
transactions or sequences) in the observed dataset to be fixed. Previous null

1Throughout this work, we use “significant” to mean “statistically significant”.
2We drop “binary” and just use “transactional” in the rest of this work.
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models were instead Row-Order Enforcing (ROE). We argue that the order
of the rows is not meaningful for many KDD tasks on such datasets (e.g.,
frequent pattern mining, large tile identification), thus ROA null models
more closely represent the settings of such tasks. Apart from this difference,
ROA models can preserve the same properties (e.g., number of rows, lengths
of the rows, item/itemset frequencies, . . . ) as ROE models.

• We present ROhAN, a general algorithmic approach for the efficient sam-
pling of datasets from ROA models. Our methods can use existing or future
approaches for sampling from ROE models as subroutines (thus building on
top of a vast literature), and rely on the Metropolis-Hastings (MH) algo-
rithm when these are based on the Markov-Chain-Monte-Carlo (MCMC)
method, and on rejection sampling otherwise. Our procedures can be used
in resampling-based hypothesis testing for the validation of KDD results.

• The results of our experimental evaluation show that ROE and ROA null
models are not equivalent, and this difference affects the validation of results.
We evaluated ROhAN on real datasets: it is fast, (empirically) rapidly-
mixing, and scalable as the dataset grows.

2 Related work

Transactional and sequence datasets are a natural representation of data from
many areas, from logs, to gene mutations, to temporal events, to athletes’
vitals (Hrovat et al, 2015), to satellite images (Méger et al, 2015). They are
extremely common, and many KDD methods for them are available. We focus
here on works related to the validation of results from such datasets.

Null models for transactional datasets

The need to evaluate the statistical significance of results obtained from
transactional datasets has long been noted (Megiddo and Srikant, 1998) and
remarked by the KDD community (Zimmermann, 2014). A long line of research
studied how to discard non-interesting patterns from mined collections, or
directly mine patterns w.r.t. different interestingness measures (Vreeken and
Tatti, 2014). This direction is orthogonal to assessing the statistical significance
of the results, but they may be combined (Dalleiger and Vreeken, 2022).

Many works focused on finding significant patterns, where the meaning
of “significance” is varied. Hämäläinen and Webb (2019) and Pellegrina et al
(2019) survey this area, so we focus on the contributions most relevant to ours.

Gionis et al (2007) study a ROE null model (𝒵M, 𝜋) for transactional
datasets, where 𝒵M is the set of all 𝐼 × 𝐽 binary matrices with the same row
and column sums (a.k.a., margins) as the observed dataset.3 The problem of
how to generate such matrices has been studied in mathematics (Ryser, 1963,
Ch. 6) (e.g., as the problem of generating bipartite graphs with fixed degree
sequences) and statistics (e.g., to sample 2-way 𝐼×𝐽 binary contingency tables)

3When considering the order of transactions as fixed, as ROE models do, there is a 1:1 corre-
spondence between transactional datasets and binary matrices. The row sums correspond to the
transaction lengths, and the column sum to the supports of single items.
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4 ROhAN: Row-Order Agnostic Null Models

for a long time (Besag and Clifford, 1989, Sect. 3), as it has applications to,
e.g., ecology (Connor and Simberloff, 1979). Gionis et al (2007) use MCMC
approaches to sample from (𝒵M, 𝜋), to assess KDD results. We argue that the
output of many KDD tasks (e.g., frequent itemset mining) from transactional
datasets is not dependent on the order of the transactions, and null models
that do not consider this order fixed, i.e., the ROA models that we introduce,
are more representative of the settings of such tasks. Our algorithmic frame-
work ROhAN can use existing and future methods to sample from (𝒵M, 𝜋)
as subroutines to sample from ROA models, thus allowing us to build on top
of an extensive literature, discussed in depth by Fout (2022). Recently, Preti
et al (2022) presented a ROA model for transactional datasets preserving the
number of caterpillars in the graph corresponding to a transactional dataset.
They leverage our Lemma 3.

De Bie (2010) proposes null models (𝒵E, 𝜋MaxEnt) that preserve proper-
ties of the observed transactional dataset in expectation w.r.t. 𝜋MaxEnt, rather
than exactly, as our ROA models and the ROE model studied by Gionis et al
(2007). The distribution 𝜋MaxEnt over 𝒵E is the one with the maximum entropy
among with the required expectations.4 These models are ROE in expectation,
thus less appropriate, as argued, for many tasks from transactional datasets,
than the ROA models we propose. While requiring the distribution to have
maximum entropy may be appropriate in some cases, a user-specified 𝜋 can
incorporate additional existing or assumed knowledge about the DGP in the
null model. We therefore do not consider preserving properties in expecta-
tion in this work, but developing “in-expectation ROA models”, and efficient
procedures to sample from them, is a possible direction for future work.

Null models for sequence datasets

Jenkins et al (2022, Sect. 2) discuss previous work on assessing results from
sequence datasets in depth, so here we only comment on the most relevant.

Tonon and Vandin (2019) introduce two null models for sequence datasets:
one that preserves the number of sequences, the number of itemsets participat-
ing in each sequence (i.e., the length of the sequence), and the number of times
an itemset participates in the sequences (i.e., the multi-support of the item-
set), and a more restrictive null model preserving all structure of the observed
dataset, except the order of the itemsets participating in each sequence. A
more restrictive model is studied by Pinxteren and Calders (2021). All these
models are ROE, as is the null model introduced by Jenkins et al (2022, Sect.
4.2.2.), which preserves the item-lengths of the sequences (i.e., the sums of the
lengths of the itemsets participating in them), rather than the lengths. As in
the case of transactional datasets, we argue that the order of the sequences in
the dataset is not relevant for many KDD tasks, thus motivating our work on

4Preserving properties exactly can partially be incorporated in these null models, but they
usually make it impossible to derive a closed form for 𝜋, with relevant computational consequences.
The same is also true for many complex in-expectation constraints (Cimini et al, 2019).
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ROAmodels for sequence datasets. When sampling from ROAmodels that pre-
serve the same properties as these ROE models, ROhAN employs the efficient
methods by Jenkins et al (2022) in combination with rejection sampling.

Gwadera and Crestani (2010) and Low-Kam et al (2013) present maximum
entropy ROE null models for sequence datasets. The comments above about
the maximum entropy model by De Bie (2010) apply to these models as well.

Null models for other data

ROE null models have been proposed for database tables (Ojala et al, 2010),
and real-valued and mixed-value matrices (Ojala et al, 2008; Ojala, 2010).
Developing ROA null models, and efficient algorithms to sample from them,
is an interesting direction for future work.

3 Preliminaries

We now first define the types of datasets we study, and then discuss the
fundamentals of resampling-based statistical hypothesis testing.

3.1 Transactional and sequence datasets

Let ℐ .
= {𝑎1, . . . , 𝑎𝑛} be a finite alphabet of 𝑛

.
= |ℐ| items. W.l.o.g., ℐ .

=
{1, . . . , 𝑛}. An itemset 𝐴 ⊆ ℐ is any non-empty subset of ℐ.

A transactional dataset 𝒟 .
= {𝑡1, . . . , 𝑡𝑚} is a finite bag of𝑚

.
= |𝒟| itemsets,

which, as elements of 𝒟, are known as transactions. An itemset 𝐴 appears in
transaction 𝑡 when 𝐴 ⊆ 𝑡. The support 𝜎𝒟(𝐴) of itemset 𝐴 in the transactional
dataset 𝒟 is the number of transactions of 𝒟 in which 𝐴 appears, i.e.,

𝜎𝒟(𝐴)
.
= |{𝑡 ∈ 𝒟 : 𝐴 ⊆ 𝑡}| .

For example, if we let 𝒟 = {{1, 2, 4}, {2, 4}}, then 𝜎𝒟({2, 4}) = 2 since the
itemset {2, 4} appears in both transactions in 𝒟, while, e.g., 𝜎𝒟({1, 2}) = 1.

A sequence is a finite ordered list (or a vector) of not-necessarily-distinct
itemsets, i.e., 𝑆 = ⟨𝐴1, . . . , 𝐴ℓ⟩ for some ℓ ≥ 1, with 𝐴𝑖 ⊆ ℐ, 1 ≤ 𝑖 ≤ ℓ.
Itemsets 𝐴𝑖 participate in 𝑆, and we denote this fact with 𝐴𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ ℓ.
The length |𝑆| of a sequence is the number of itemsets participating in it. The
itemlength ‖𝑆‖ .

=
∑︀

𝐴𝑖∈𝑆 |𝐴𝑖| is the total number of items in 𝑆. A sequence
𝑆 = ⟨𝐴1, . . . , 𝐴|𝑆|⟩ is a subsequence of a sequence 𝑇 = ⟨𝐵1, . . . , 𝐵|𝑇 |⟩, or
𝑆 ⊑ 𝑇 , if there exists ordered integers 𝑖1 < 𝑖2 < · · · < 𝑖|𝑆| such that 𝐴1 ⊆
𝐵𝑖1 , 𝐴2 ⊆ 𝐵𝑖2 , . . . , 𝐴|𝑆| ⊆ 𝐵𝑖|𝑆| . Suppose that 𝐴 = {1, 2, 4} and 𝐵 = {2, 4},
and let 𝑆 = ⟨𝐴,𝐵,𝐵⟩. Then 𝐴,𝐵 ∈ 𝑆, |𝑆| = 3, and ‖𝑆‖ = 7. In addition,
if 𝑇 = ⟨𝐴,𝐴,𝐵,𝐶,𝐵⟩, for any itemset 𝐶, then 𝑆 ⊑ 𝑇 : a possible choice of
indices is 𝑖1 = 1, 𝑖2 = 2, 𝑖3 = 5 (or 𝑖3 = 3), as 𝐵 ⊂ 𝐴, but other choices are
also possible.

A sequence dataset 𝒟 is a finite bag of sequences, which, as elements of
𝒟, are known as seq-transactions. The support 𝜎𝒟(𝑆) of a sequence 𝑆 in 𝒟 is
the number of seq-transactions in 𝒟 of which 𝑆 is a subsequence. The support
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6 ROhAN: Row-Order Agnostic Null Models

𝜎𝒟(𝐴) of an itemset 𝐴 in 𝒟 is the number of seq-transactions of 𝒟 in which
𝐴 participates. The multi-support 𝜌𝒟(𝐴) of 𝐴 in 𝒟 is the number of times
that 𝐴 participates in total in the seq-transactions of 𝒟. For example, if 𝒟 =
{⟨𝐴,𝐵⟩, ⟨𝐴,𝐶,𝐴⟩, ⟨𝐵,𝐶⟩}, then 𝜎𝒟(𝐴) = 2 and 𝜌𝒟(𝐴) = 3.

In the rest of the work, we use the term “row” to refer to a transaction
for transactional datasets, or to a sequence for sequence datasets. We also use
the term pattern to refer to an itemset or a sequence respectively, and we
denote with ℒ the set of all possible patterns. Doing this allows us to define
the generic task of frequent pattern mining : given a minimum support threshold
𝜃 ∈ [1, |𝒟|], the set FP𝒟(𝜃) of frequent patterns in 𝒟 w.r.t. 𝜃 is the set of
patterns that have support at least 𝜃 in 𝒟, i.e.,

FP𝒟(𝜃)
.
= {𝑃 ∈ ℒ : 𝜎𝒟(𝑃 ) ≥ 𝜃} . (1)

Efficient algorithms for finding the frequent patterns exist for both transac-
tional and sequence datasets (Agrawal and Srikant, 1994; Pei et al, 2004).

We define transactional and sequence datasets as bags, so the rows in them
have no fixed order. Later we discuss ROE models for which the order of the
rows in a dataset is considered fixed. In this case, datasets are ordered lists or
vectors of rows, and we refer to them as ordered datasets.

3.2 Null models and hypothesis testing

We tailor the presentation of hypothesis testing to the task of evaluating
the significance of the size |FP𝒟(𝜃)| of the collection of frequent patterns.
We choose this simple statistically-sound KDD task because it allows for
a self-contained presentation that is also accessible to non-experts, rather
than describing an arguably more interesting, but certainly more convo-
luted task such as mining statistically-significant frequent patterns. Both the
ROE and the ROA models we discuss can be used to validate any kind of
results obtained from transactional and sequence datasets, including mining
statistically-significant frequent patterns, evaluating the correlations between
different items, and more.

Statistical significance is assessed w.r.t. a user-specified null model, defined
on the basis of an observed dataset 𝒟, given by the user. A null model is a
pair Π

.
= (𝒵, 𝜋), where 𝒵 is a set of datasets, known as the null set, and 𝜋

is a user-specified probability distribution over 𝒵. The null set 𝒵 is such that
𝒟 ∈ 𝒵 and 𝒵 contains all and only datasets that share some user-specified
characteristic properties with 𝒟, i.e., the null model depends on the observed
dataset 𝒟.5 For example, the user may want to preserve the number |𝒟| of
rows, and/or the support of single items in 𝒟, and much more. The user may
specify any distribution 𝜋 over 𝒵. Choosing which properties of 𝒟 to preserve,
and which distribution to sample from, allows the user to incorporate in the
null model existing or assumed knowledge about the DGP, as 𝒵 is the set of all

5We do not indicate this fact in the notation, to keep it light.
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the datasets that the DGP may generate, and 𝜋 is the distribution according
to which the DGP generates datasets.

The null model is used to understand whether the observed results repre-
sent new knowledge about the DGP. Specifically, the goal is understanding
how “typical” the results from 𝒟 are w.r.t. the distribution of the results from
datasets sampled from the null model Π: if they are not “typical”, the results
are considered significant (under Π), i.e., expressing new knowledge about
the DGP. For example, if we want to assess whether the number |FP𝒟(𝜃)| of
frequent patterns w.r.t. 𝜃 in 𝒟 is significant, we could make the null hypothesis

𝐻0
.
= “|FP𝒟(𝜃)| = E𝒟∼𝜋[|FP𝒟(𝜃)|]”, (2)

and then perform a statistical hypothesis test to assess whether there is suffi-
cient evidence that this null hypothesis may be false. If so, we reject the null
hypothesis and say that the value |FP𝒟(𝜃)| appears significant.

One way to perform such a test is to approximate the distribution of the
statistic of interest (in this case, the number of frequent patterns) by sampling
datasets from the null model (Lehmann and Romano, 2022, Ch. 17), and then
compare the observed statistic |FP𝒟(𝜃)| to the obtained empirical distribution,
as follows. Assume to sample a collection 𝒯 .

= {𝒟1, . . . ,𝒟ℓ} of ℓ datasets inde-
pendently from 𝒵 according to 𝜋. The (empirical) 𝑝-value p̃(𝒟, 𝒯 ) is defined
as the fraction of datasets in 𝒯 ∪{𝒟} with a number of frequent itemsets w.r.t.
𝜃 that is not smaller than the one observed in 𝒟, i.e.,

p̃(𝒟, 𝒯 ) .
=

1 + |{1 ≤ 𝑖 ≤ ℓ : |FP𝒟𝑖(𝜃)| ≥ |FP𝒟(𝜃)|}|
1 + ℓ

.

Now let 𝛼 ∈ (0, 1) be a user-specified acceptable probability of error. If
p̃(𝒟, 𝒯 ) ≤ 𝛼, then we say |FP𝒟(𝜃)| is significant at level 𝛼, which can be
interpreted as meaning there is evidence that the null hypothesis from (2) is
false and should be rejected. The value 𝛼 is the probability of getting a false
discovery, i.e., of wrongly declaring the observed results significant.

In most statistically-sound KDD tasks, multiple hypotheses must be tested.
For example, in significant pattern mining (Hämäläinen and Webb, 2019; Pel-
legrina et al, 2019), there is one hypothesis per pattern. One then wants
guarantees, e.g., on the Family-Wise Error Rate (FWER), i.e., on the prob-
ability of making any false discovery. To ensure that the FWER is bounded
by an user-specified threshold 𝛿 ∈ (0, 1), the 𝑝-value of each hypothesis to be
tested is compared to an adjusted critical value 𝛼(Π,ℋ, 𝛿), where ℋ is the set
of the null hypotheses of interest. Resampling approaches for multiple hypoth-
esis testing (Westfall and Young, 1993) compute adjusted critical values using
datasets sampled according to 𝜋, and they have been used with success in
significant itemset mining (Pellegrina et al, 2019).

This discussion highlights how efficient procedures to draw datasets from
𝒵 independently according to 𝜋 are needed for assessing the statistical validity
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of results obtained from these datasets. Our algorithmic framework ROhAN
achieves this goal for ROA models.

4 Row-Order-Enforcing null models

We now describe ROE null models, i.e., models that consider the order of rows
in a dataset to be fixed, thus permuting the order of the rows results, in general,
in a different dataset, and we briefly describe the algorithms to sample from
them, using existing examples.

4.1 ROE models for transactional datasets

Gionis et al (2007) define a ROEmodel (𝒵, 𝜋) where, given an observed ordered
dataset 𝒟, |𝒟| = 𝑚, 𝒵 contains all and only the ordered datasets such that:

1. |𝒟| = |𝒟| = 𝑚, i.e., 𝒟 has the same size, i.e., number 𝑚 of transactions, as
𝒟; and

2. 𝜎𝒟({𝑎}) = 𝜎𝒟({𝑎}), for every item 𝑎 ∈ ℐ, i.e., each item has the same
support in 𝒟 and 𝒟; and

3. for 𝑖 = 1, . . . ,𝑚, |𝒟[𝑖]| = |𝒟[𝑖]|, i.e., the transaction at index 𝑖 of 𝒟 has the
same length as the transaction at index 𝑖 of 𝒟, for every 𝑖.

The distribution 𝜋 can be any distribution over 𝒵.6 We call ROE models
that maintain the three constraints above “Size, Item-Supports, and Length
Preserving” (SISLP). All SISLP null models for a given 𝒟 have the same null
set 𝒵, i.e., they differ only in 𝜋. De Bie (2010) considers a null model where
the SISLP constraints are preserved only in expectation.

The SISLP models are just one example of ROE models for transactional
datasets. One can devise others that preserve additional properties of the
observed dataset. We take the SISLP models as an example for the whole class,
and most of what we say for them can be applied to other ROE models.

Binary matrices and sampling algorithms

ROE models for transactional datasets effectively equate ordered datasets to
binary matrices: the (𝑖, 𝑗) entry of the matrix𝑀𝒟 corresponding to the ordered
dataset 𝒟 = [𝑡1, . . . , 𝑡|𝒟|] is 1 iff item 𝑗 ∈ 𝑡𝑖. Thus, the null set 𝒵 of SISLP
ROE models corresponds to the set ℳ of 𝑚 × 𝑛 binary matrices with fixed
column sums and fixed rows sums, which is a classical object of study in
mathematics (Ryser, 1963, Ch. 6) and statistics (Fout, 2022). This identity is
extremely convenient, as it allows to reuse existing algorithms that sample from
ℳ to sample from 𝒵. Indeed Gionis et al (2007) describe, among others, also an
MCMC algorithm introduced by Besag and Clifford (1989, Sect. 3),7 but any
algorithm to sample fromℳ can be used, and the literature is extensive (Fout,

6Gionis et al (2007) focus on the case where 𝜋 is the uniform distribution, but extending their
discussion to a generic 𝜋 is straightforward.

7If not even earlier.
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2022), including importance sampling algorithms (Chen et al, 2005) and recent
MCMC algorithms (Wang, 2020).

We now briefly describe one of the MCMC algorithms by Gionis et al
(2007). For ease of presentation, we assume here that 𝜋 is the uniform over 𝒵,
i.e., over ℳ. In Sect. 5.3 we show how ROhAN can use this algorithm as a
subroutine to sample from SISLP-like ROA models. The algorithm, which we
call SwapRand (for “Swap Randomization”), runs a Markov chain as follows.
The state space isℳ, and there is an edge from matrix 𝑀 ′ to matrix 𝑀 ′′ if
there are two row indices 1 ≤ 𝑟1, 𝑟2 ≤ 𝑚 and two column indices 1 ≤ 𝑐1, 𝑐2 ≤ 𝑛
such that 𝑀 ′(𝑟1, 𝑐1) = 1, 𝑀 ′(𝑟1, 𝑐2) = 0, 𝑀 ′(𝑟2, 𝑐1) = 0, 𝑀 ′(𝑟2, 𝑐2) = 1,
and 𝑀 ′′ can be obtained from 𝑀 ′ by setting 𝑀 ′(𝑟1, 𝑐1) = 0, 𝑀 ′(𝑟1, 𝑐2) = 1,
𝑀 ′(𝑟2, 𝑐1) = 1, and 𝑀 ′(𝑟2, 𝑐2) = 0, i.e., by performing a single swap. When
running the Markov Chain, the algorithm chooses a neighbor𝑀 ′′ of the current
state 𝑀 ′ uniformly at random from the nei(𝑀 ′) neighbors of 𝑀 ′, and moves
to it with probability min{1, nei(𝑀 ′)/nei(𝑀 ′′)}, otherwise it stays in 𝑀 ′ (i.e.,
it follows a self-loop). Gionis et al (2007, Alg. 2, Thm. 4.3) give procedures
to compute nei(𝑀) for any matrix, and for drawing a neighbor uniformly at
random. It is easy to show that the stationary distribution of this Markov chain
is uniform overℳ. Thus, the algorithm runs the chain for a sufficient number
𝜏 of steps to ensure that the distribution of the current state is (approximately)
the stationary one, and returns the state at time 𝜏 as a sample. This algorithm
is just one example of MCMC methods to sample from ℳ, and ROhAN is
able to use any such algorithm as a subroutine, as we show in Sect. 5.3.

4.2 ROE models for sequence datasets

Sequence data is more complex or richer than transactional data, which makes
it possible to define many null models on it, by preserving different properties
of the observed dataset 𝒟. Tonon and Vandin (2019), Pinxteren and Calders
(2021), and Jenkins et al (2022) give ROE models for sequence datasets, and
we now describe two of them as examples, but what we say can be applied to
others. The first null model (𝒵(1), 𝜋(1)) is essentially a SISLP model adapted
to sequence datasets. 𝒵(1) is the set of all and only the ordered datasets 𝒟
such that

1. |𝒟| = |𝒟| = 𝑚, i.e., 𝒟 has the same size, i.e., number 𝑚 of seq-transactions,
as 𝒟; and

2. for every itemset 𝐴 participating in at least one seq-transaction of 𝒟, it
holds 𝜌𝒟(𝐴) = 𝜌𝒟(𝐴), i.e., the multi-supports of itemsets participating in
the seq-transactions are preserved; and

3. for 𝑖 = 1, . . . ,𝑚, |𝒟[𝑖]| = |𝒟[𝑖]|, i.e., the seq-transaction at index 𝑖 of 𝒟 has
the same length as the seq-transaction at index 𝑖 of 𝒟, for every 𝑖.

The second null model (𝒵(2), 𝜋(2)) preserves the same properties as the first,
and also the additional property that, for 𝑖 = 1, . . . ,𝑚, ‖𝒟[𝑖]‖ = ‖𝒟[𝑖]‖, i.e., the
seq-transaction at index 𝑖 of 𝒟 has the same itemlength as the seq-transaction
at index 𝑖 of 𝒟, for every 𝑖.
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Jenkins et al (2022) give efficient, exact algorithms for sampling from these
and other ROE models for sequence datasets when 𝜋 is the uniform distribu-
tion. Tonon and Vandin (2019) give an MCMC algorithm (a variant of the one
described for the SISLP model for transactional datasets in Sect. 4.1) for the
first null model, which can be modified to handle non-uniform distributions,
and a similar one can also be devised for the second null model.

5 Row-Order-Agnostic null models and ROhAN

Here we introduce ROA null models, which consider datasets as bags of rows,
i.e., do not fix the order of the rows. We also describe ROhAN, our algorithmic
framework for sampling from ROA null models.

5.1 ROA models for transactional datasets

In ROA models for transactional datasets, the 1:1 mapping between datasets
and binary matrices is lost, since this equivalence only holds between ordered
datasets and binary matrices. We argue that the loss of this elegant identity
is completely offset by the advantage of having null models that are more
representative of the settings of KDD tasks on these datasets. Consider, for
example, the task of mining the frequent patterns FP𝒟(𝜃) from (1): the defini-
tion of this collection does not depend on the order of the transactions in the
dataset, and algorithms for finding this collection (e.g., A-Priori, FP-Growth,
Eclat) do not rely on the order of the transactions being fixed or being any-
thing but an arbitrary order that the algorithm can choose itself.8 In general,
whenever the KDD task to be performed is insensitive to the order of the
rows in the dataset, in the sense that the output of the task is the same for
any permutation of the rows, a ROA model is likely more appropriate than a
ROE one. The latter could instead be a better choice when the task output
includes, even in a potentially implicit way, the identifiers of the rows. The
difference could, at times, be subtle: consider for example the task of finding
cluster centers for the rows (i.e., finding points in a space), and evaluating the
significance of these centers, versus the task of finding a clustering of the rows
(i.e., finding a partitioning of the rows) and evaluating the significance of such
clustering or, e.g., the significance of groups of rows being in the same cluster.
In the first case, a ROA model seems more appropriate than a ROE model. In
the second case, it is necessary to know what rows belong to what cluster in
order to perform statistical validation, and to analyze how the clusters, which
are subsets of rows, differ across different datasets in the null set, thus making
a ROE model more appropriate. We stress again that the choice of the null
model is crucial, and the user needs to exercise extreme care in this regard.
It is therefore hard to give generic advice about which between a ROE and a
ROA model is to be preferred.

8Some presentations of the algorithms mention a “transaction identifier” associated to each
transaction, but this identifier is used only to uniquely label transactions, not for the purpose of
ordering the rows, and it is in part a leftover of the idea that a transactional dataset is stored in
a table in a relational database.
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Properties of the observed dataset 𝒟 that can be preserved by ROE models,
can also be preserved, with minor modifications in some cases, by ROA models.
As an example, we define a ROA SISLP model (𝒵, 𝜋) for 𝒟, where 𝒵 contains
all and only the unordered datasets such that:

1. |𝒟| = |𝒟| = 𝑚, i.e., 𝒟 has the same size, i.e., number 𝑚 of transactions, as
𝒟; and

2. 𝜎𝒟({𝑎}) = 𝜎𝒟({𝑎}), for every item 𝑎 ∈ ℐ, i.e., each item has the same
support in 𝒟 and 𝒟; and

3. if we let 𝒟 = {𝑡1, . . . , 𝑡𝑚} and 𝒟 = {̊𝑡1, . . . , 𝑡̊𝑚}, there is a 1:1 mapping 𝜑
from 𝒟 to 𝒟 such that |𝜑(𝑡)| = |𝑡| for every transaction 𝑡 ∈ 𝒟, i.e., 𝒟 has
the same distribution of transaction lengths as 𝒟;

The first two properties are the same as the first two in the ROE SISLP model
from Sect. 4.1, and the third is a straightforward adaptation of the third one.
The distribution 𝜋 can be any distribution over 𝒵. In Sect. 5.3 we show how
to use ROhAN to sample from this model.

We now comment on the differences between ROE and ROA SISLP models.
Let 𝒟 be an observed dataset, and let ord(𝒟) be an ordered dataset obtained
by fixing an arbitrary order of the transactions of 𝒟. Consider the null set 𝒵A

of a ROA SISLP model for 𝒟 and the null set 𝒵E of a ROE SISLP model
for ord(𝒟). There is a surjective function un() from 𝒵E to 𝒵A which maps an
ordered dataset to the corresponding unordered one (e.g., un(ord(𝒟)) = 𝒟).
For any 𝒟 ∈ 𝒵A let c(𝒟) be the number of ordered datasets in 𝒵E that un()
maps to 𝒟 (it holds c(𝒟) ≥ 1). The following lemma shows that the ROE
SISLP model (𝒵E, 𝜋) and the ROA SISLP model (𝒵A, 𝜋) are not equivalent,
in the sense that one cannot sample an ordered dataset 𝒟 from 𝒵E w.r.t. 𝜋,
and consider the unordered dataset un(𝒟) as a sample from 𝒵A w.r.t. 𝜋.

Lemma 1 There exists an observed dataset 𝒟 such that, if we let 𝒟 be an ordered
dataset drawn uniformly at random from 𝒵E, then un(𝒟) is not chosen uniformly at
random from 𝒵A.

Proof Let 𝒟 = {{1, 2}, {1, 3}, {3}}, and assume, w.l.o.g., that ord(𝒟) =
[{1, 2}, {1, 3}, {3}], to which corresponds the binary matrix

𝑀 =

⎡⎣ 1 1 0
1 0 1
0 0 1

⎤⎦ .

The matrix

𝑀 ′ =

⎡⎣ 1 0 1
1 1 0
0 0 1

⎤⎦
can be obtained from 𝑀 with a single swap, and it corresponds to the ordered
dataset 𝒟′ = [{1, 3}, {1, 2}, {3}], which, being ordered, is different from ord(𝒟),
but it holds un(𝒟′) = 𝒟 = un(ord(𝒟)). 𝒵E thus contains at least two ordered
datasets corresponding to the unordered dataset 𝒟. From the definition of 𝒵E,
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it holds that it also contains the ordered dataset 𝒟′′ = [{1, 3}, {1, 3}, {2}], with
un(𝒟′′) = {{1, 3}, {1, 3}, {2}}. It is easy to see that there is no other ordered dataset
𝒟′′′ ∈ 𝒵E such that un(𝒟′′′) = un(𝒟′′). Thus, if we sample an ordered dataset 𝒟
uniformly at random from 𝒵E, then there is a higher probability that un(𝒟) = 𝒟
than un(𝒟) = un(𝒟′′), and our proof is complete. □

Our algorithmic framework ROhAN (Sect. 5.3) returns samples from 𝒵A

according to 𝜋A.

5.2 ROA models for sequence datasets

The reasons for considering ROA models for sequence datasets are similar
to those we discussed for transactional datasets, i.e., the order of the seq-
transactions is not relevant for many KDD tasks on such data. Results similar
to Lemma 1 can be obtained for sequential datasets.

The ROE models from Sect. 4.2 can be “converted” in ROA models in a
way similar to what we discussed above for SISLP models for transactional
datasets. The consequence of this “conversion” is deep: the correctness of the
exact sampling algorithms by Jenkins et al (2022) for these null models depend
on their ROE nature, thus they cannot be easily adapted to the ROA models.
For example, the algorithm for the first null model considers the observed
sequence dataset as a single long vector of itemsets, and samples from the null
model by applying to this vector a permutation chosen uniformly at random
using the Fisher-Yates algorithm. The key ingredient for the correctness is that
the number of permutations resulting in an ordered dataset𝒟 ∈ 𝒵 is a constant
for all datasets. This property is lost in ROA models, thus new algorithms are
needed. In Sect. 5.3 we show that ROhAN is able to build on top of efficient
algorithms for ROE models, such as those by Jenkins et al (2022).

5.3 ROhAN: sampling from ROA models

We now describe ROhAN, our algorithmic framework for sampling from ROA
models. ROhAN uses, as subroutines, algorithms to sample from ROE models,
thus allowing us not only to to build on the extensive library of such methods,
but also to show that it will be possible to adapt to ROA models any algorithm
that may be developed in the future for (possibly not-yet-defined) ROEmodels.

5.3.1 ROhAN-m: using MCMC algorithms for ROE models

We first show ROhAN-m, which essentially “converts” an MCMC algorithm
𝒜E for a ROE model (𝒵E, 𝜋E) to an MCMC algorithm 𝒜A for a ROA model
(𝒵A, 𝜋A) which preserve the same properties, up to the distinction about the
sequence of row lengths vs. the distribution of row lengths, as in the ROE
vs. ROA SISLP models from Sect. 4.1 and 5.1 respectively, or similarly for
the ROA versions of the null models for sequence datasets from Sect. 4.2. We
impose no assumption on the distributions 𝜋E and 𝜋A nor on their relationship
(e.g., they do not need to be both uniform).
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The intuition behind ROhAN-m is that given a Markov chain on 𝒵E with
stationary distribution 𝜋E, we can use the Metropolis-Hasting (MH) approach
(Mitzenmacher and Upfal, 2005, Ch. 10) to convert it to a Markov chain still
defined on 𝒵E but with stationary distribution 𝜁 = 𝜁(𝜋A) so that, if we sample
an ordered dataset 𝒟 from 𝒵E w.r.t. 𝜁, then un(𝒟) is a sample from 𝒵A w.r.t.
𝜋A. We later derive the appropriate 𝜁 to use.

ROhAN-m uses𝒜E as a subroutine as follows. Let𝒟 be the ordered dataset
that is the current state of the Markov chain on 𝒵E used by algorithm 𝒜E,
and let 𝒟′ be an ordered dataset obtained by simulating a step of the Markov
chain of 𝒜E and 𝜂𝒟(𝒟′) be the transition probability from 𝒟 to 𝒟′. The chain
used by ROhAN-m will then move to 𝒟′ with probability

min

(︂
𝜁(𝒟′)𝜂𝒟′(𝒟)
𝜁(𝒟)𝜂𝒟(𝒟′)

, 1

)︂
, (3)

and otherwise stays in 𝒟 (i.e., follows a self-loop). The resulting Markov chain
has stationary distribution 𝜁 (Mitzenmacher and Upfal, 2005, Ex. 10.12).
ROhAN-m runs this Markov chain starting from ord(𝒟). Once the chain has
mixed, the algorithm returns un(𝒟), where 𝒟 is the ordered dataset corre-
sponding to the final state of the chain. We remark that the Markov chain run
by ROhAN-m is still defined on 𝒵E, not on 𝒵A.

We now move to derive 𝜁, and then show the correctness of ROhAN-m.
The intuition is that the desired probability 𝜋A to sample 𝒟 from 𝒵A should
be “spread” among the c(𝒟) ordered datasets in 𝒵E that un() maps to 𝒟. The
stationary distribution used by ROhAN-m is then

𝜁(𝒟) .
=

𝜋A(un(𝒟))
c(un(𝒟))

, for 𝒟 ∈ 𝒵E . (4)

Theorem 2 ROhAN-m outputs a sample from 𝒵A with distribution 𝜋A.

Proof A unordered dataset 𝒟′ ∈ 𝒵A is output by ROhAN-m iff the algorithm sam-
ples an ordered dataset 𝒟 such that un(𝒟) = 𝒟′. There are c(𝒟′) such ordered
datasets in 𝒵E, each sampled with probability 𝜁(𝒟) as in (4). Thus, the probability
of returning 𝒟′ is exactly 𝜋A(𝒟′). □

The only missing ingredient is an expression for c(𝒟), which will depend on
the type of the data (sequence vs. transactional), and on the null model, but
it does not depend on the fact that we are considering MCMC algorithms in
this section: the same expressions we present in this section, can be used also
when using rejection sampling, as we discuss in Sect. 5.3.2. For transactional
datasets, we give an expression valid for essentially any null model, under a
weak general assumption. For sequence datasets, the richer nature of the data,
and therefore of the null models, makes deriving such a generic expression
impossible, so we show it for the two null models from Sect. 4.2. Obtaining
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such an expression is really the only necessary additional step needed to use
ROhAN-m for other null models.

c(𝒟) for transactional datasets

We now discuss the computation of c(𝒟) for transactional datasets. The fol-
lowing result gives an expression for this quantity. It is valid as long as the
ROE null set 𝒵E contains all possible ordered datasets corresponding to an
unordered dataset 𝒟 ∈ 𝒵A, which is a very weak assumption, as if that was
not the case, it would mean that preserving the ordering of the transactions is
important, i.e., a ROE model is appropriate, and a corresponding ROA model
would likely not be. The following result has recently been used by Preti et al
(2022) for the same purpose.

Lemma 3 For any dataset 𝒟 ∈ 𝒵A, let 𝑧𝒟 be the maximum length of any transaction
in 𝒟. For each 1 ≤ 𝑖 ≤ 𝑧𝒟, let 𝑇𝑖 be the bag of transactions of length 𝑖 in 𝒟.
Let 𝑇𝑖 = {𝜏𝑖,1, . . . , 𝜏𝑖,ℎ𝑖

} be the set of transactions of length 𝑖 in 𝒟, i.e., without
duplicates. For each 1 ≤ 𝑗 ≤ ℎ𝑖, let 𝑊𝑖,𝑗

.
= {𝑡′ ∈ 𝑇𝑖 : 𝑡′ = 𝜏𝑖,𝑗} be the bag of

transactions in 𝑇𝑖 (including 𝜏𝑖,𝑗) identical to 𝜏𝑖,𝑗 ∈ 𝑇𝑖. Then, the number of ordered
datasets in 𝒵E that are mapped to 𝒟 by un() is

c(𝒟)
.
=

𝑧𝒟∏︁
𝑖=1

(︃
|𝑇𝑖|⃒⃒

𝑊𝑖,1

⃒⃒
, . . . ,

⃒⃒
𝑊𝑖,ℎ𝑖

⃒⃒)︃
multinomial coefficient

=

𝑧𝒟∏︁
𝑖=1

|𝑇𝑖|!∏︀ℎ𝑖
𝑗=1

⃒⃒
𝑊𝑖,𝑗

⃒⃒
!
. (5)

Proof Recall that 𝒵E depends on the observed dataset 𝒟 and on the arbitrary order-
ing of its transactions in ord(𝒟), as the ordering fixes the row-sums 𝑟𝑥, 1 ≤ 𝑥 ≤ 𝑚. In
other words, it fixes the row indices of rows corresponding to transactions of length 𝑖,
1 ≤ 𝑖 ≤ 𝑧𝒟, of 𝒟. Thus, the number of different ways in which the transactions of 𝒟
can be assigned as the transactions of an ordered dataset in 𝒵E is the product, over
the transaction lengths, of the number 𝑞𝑖 of different ways in which the transactions
in 𝑇𝑖 can be assigned, i.e.,

c(𝒟) =

𝑧𝒟∏︁
𝑖=1

𝑞𝑖 .

Thus, we only have to argue that

𝑞𝑖 =

(︃
|𝑇𝑖|⃒⃒

𝑊𝑖,1

⃒⃒
, . . . ,

⃒⃒
𝑊𝑖,ℎ𝑖

⃒⃒)︃,
which is true because the multinomial coefficient

(︀ 𝑛
𝑘1,...,𝑘ℎ

)︀
is the number of different

permutations of a bag containing 𝑛 objects such that 𝑘1 objects are indistinguishable
among themselves and of type 1, 𝑘2 objects are indistinguishable among themselves
and of type 2, and so on (Stanley, 2011, Eq. 1.22).9 □

Assume now that ROhAN-m is in state 𝒟, and that 𝒟′ is the proposed
state, which is a neighbor of 𝒟. The only use of c(un(𝒟)) and c(un(𝒟′)) by

9We assume
(︀ 0
0,...,0

)︀
= 1.
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ROhAN-m is in the computation of the acceptance probability from (3), as
c(un(·)) appears in the definition of 𝜁 from (4). Plugging the r.h.s. of (4)
into (3), we obtain

min

(︂
c(un(𝒟))
c(un(𝒟′))

𝜋A(un(𝒟′))

𝜋A(un(𝒟))
𝜂𝒟′(𝒟)
𝜂𝒟(𝒟′)

, 1

)︂
.

The distribution 𝜋A is given in input, and both 𝜂𝒟′(𝒟) and 𝜂𝒟(𝒟′) can be
obtained from the 𝒜E MCMC algorithm used to simulate a step of the under-
lying Markov chain, so we only need to discuss the computation of the ratio
c(un(𝒟))/c(un(𝒟′)). We now show that obtaining this ratio can be done without
having access to either quantity, not even for the first state 𝒟 = ord(𝒟).

Using the notation from the statement of Lemma 3, given a transaction 𝑡 ∈
un(𝒟), suppose 𝑡 ∈ 𝑇𝑖 for length 1 ≤ 𝑖 ≤ 𝑧un(𝒟). Further suppose 𝑡 = 𝜏𝑖,𝑗 ∈ 𝑇𝑖,
where 1 ≤ 𝑗 ≤ ℎ𝑖. Let net be a dictionary that maps each different transaction
𝑡 ∈ un(𝒟) to |𝑊𝑖,𝑗 |, i.e., the size of the bag of transactions equal to 𝑡 (including
𝑡). This data structure is easy to initialize at the start of ROhAN-m and
to keep up to date as the chain evolves. We can then obtain c(un(𝒟))/c(un(𝒟′))

as shown in Alg. 1, which leverages the fact that c(un(𝒟)) = c(un(𝒟′)) if
un(𝒟) = un(𝒟′) (line 1), and the definition of the multinomial coefficient, to
greatly simplify the computation (lines 4–7).

Algorithm 1 Computing c(un(𝒟))/c(un(𝒟′))

Input: ordered dataset 𝒟, ordered dataset 𝒟′ dictionary net

Output: c(un(𝒟))
c(un(𝒟′))

1: if un(𝒟) = un(𝒟′) then return 1

2: {𝑡𝑎, 𝑡𝑏} ← un(𝒟) ∖ un(𝒟′)
3: {𝑡𝑎, 𝑡𝑏} ← un(𝒟′) ∖ un(𝒟), s.t. ∃{𝑎, 𝑏} ⊆ ℐ s.t. 𝑡𝑎 = (𝑡𝑎 ∖ {𝑎}) ∪ {𝑏} and

𝑡𝑏 = (𝑡𝑏 ∖ {𝑏}) ∪ {𝑎}
4: for each 𝑖 ∈ {𝑎, 𝑏} do
5: if net has key 𝑡𝑖 then 𝛽𝑖 ← net[𝑡𝑖]
6: else 𝛽𝑖 ← 0

7: return (𝛽𝑎+1)(𝛽𝑏+1)
net[𝑡𝑎]net[𝑡𝑏]

c(𝒟) for sequence datasets

We now show two results on c(𝒟) for the two null models for sequence datasets
from Sect. 5.2: Lemma 4 for the first null model, and Lemma 5 for the second.
Algorithms similar to Alg. 1 can be devised for these cases. The ideas presented
here should be useful to derive similar ones for other null models (Tonon and
Vandin, 2019; Pinxteren and Calders, 2021; Jenkins et al, 2022).
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Lemma 4 For any sequence dataset 𝒟 ∈ 𝒵A, let 𝑧𝒟, 𝑇𝑖, 𝑇𝑖, and 𝑊𝑖,𝑗 be defined as
in Lemma 3 (with “seq-transaction” in place of “transaction”). Then,

c(𝒟) =

𝑧𝒟∏︁
𝑖=1

(︃
|𝑇𝑖|⃒⃒

𝑊𝑖,1

⃒⃒
, . . . ,

⃒⃒
𝑊𝑖,ℎ𝑖

⃒⃒)︃ =

𝑧𝒟∏︁
𝑖=1

|𝑇𝑖|!∏︀ℎ𝑖
𝑗=1

⃒⃒
𝑊𝑖,𝑗

⃒⃒
!
. (6)

The fact that the expression is the same as the one in (5) should not be
surprising, as the first null model is essentially a SILSP null model for sequence
datasets. The proof is the same as Lemma 3, so we do not repeat it.

For the second null model, the following result holds.

Lemma 5 For any dataset 𝒟 ∈ 𝒵A, let 𝑧𝒟 be as in Lemma 4, and let 𝑦𝒟 be the
maximum itemlength of any seq-transaction in 𝒟. For each 1 ≤ 𝑖 ≤ 𝑧𝒟, 1 ≤ 𝑗 ≤ 𝑦𝒟
let 𝑇𝑖,𝑗 be the bag of seq transactions of length 𝑖 and itemlength 𝑗 in 𝒟. Let 𝑇𝑖,𝑗 =
{𝜏𝑖,𝑗,1, . . . , 𝜏𝑖,𝑗,ℎ𝑖,𝑗

} be the set of seq-transactions of length 𝑖 and itemlength 𝑗 in 𝒟,

i.e., without duplicates. For each 1 ≤ 𝑘 ≤ ℎ𝑖,𝑗 , let 𝑊𝑖,𝑗,𝑘
.
= {𝑡′ ∈ 𝑇𝑖,𝑗 : 𝑡′ = 𝜏𝑖,𝑗,𝑘} be

the bag of transactions in 𝑇𝑖,𝑗 (including 𝜏𝑖,𝑗,𝑘) identical to 𝜏𝑖,𝑗,𝑘 ∈ 𝑇𝑖,𝑗 . Then,

c(𝒟) =

𝑧𝒟∏︁
𝑖=1

𝑦𝒟∏︁
𝑗=1

⃒⃒
𝑇𝑖,𝑗

⃒⃒
!∏︀ℎ𝑖,𝑗

𝑘=1

⃒⃒
𝑊𝑖,𝑗,𝑘

⃒⃒
!

The proof is similar to those for Lemmas 3 and 4, with the necessary
adaptation for the fact that we are considering sets/bags of seq-transactions
that depend on both length and itemlength.

5.3.2 ROhAN-r: using rejection sampling

Not all algorithms for sampling from a ROE null model (𝒵E, 𝜋E) are based
on MCMC. E.g., Jenkins et al (2022) show non-MCMC algorithms to sample
from the first and the second null models for sequence datasets from Sect. 4.2
when 𝜋E is uniform. We now describe ROhAN-r, which uses rejection sam-
pling (Casella et al, 2004) and such an algorithm 𝒜, to sample from a ROA null
model (𝒵A, 𝜋A) which preserves the same properties of the observed dataset as
(𝒵E, 𝜋E), up to the difference between preserving the sequence of row lengths
vs. the distribution of row lengths. 𝒜 could even be an MCMC algorithm, but
we saw in Sect. 5.3.1 how to directly “upcycle” such methods with ROhAN-m.

For any unordered dataset 𝒟 ∈ 𝒵A, let

𝜌(𝒟) .
=

∑︁
𝒟′∈𝒵E s.t.
un(𝒟′)=𝒟

𝜋E(𝒟′) (7)

be the probability that 𝒜 returns an ordered dataset 𝒟′ such that un(𝒟′) = 𝒟.
Let 𝑄 ∈ R be a constant such that

𝑄𝜌(𝒟) ≥ 𝜋A(𝒟), for any 𝒟 ∈ 𝒵A . (8)
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ROhAN-r applies rejection sampling by first generating an ordered 𝒟′ ∈ 𝒵E

using 𝒜, and then generating 𝑢 ∼ 𝒰(0, 1). If

𝑢 ≤ 𝜋A(un(𝒟′))

𝑄𝜌(un(𝒟′))
(9)

then un(𝒟′) is returned as a sample from 𝒵A distributed according to 𝜋A.
Otherwise, a new 𝒟′ ∈ 𝒵E is generated using 𝒜, and the process continues.
The correctness of ROhAN-r follows from the properties of rejection sampling
and of the algorithm 𝒜.

The derivation of an expression for the constant 𝑄, which depends on the
ROA and ROE null models, but not on the algorithm 𝒜, is the only missing
ingredient needed to apply ROhAN-r, thus it is left to the user or to the
ROE/ROA algorithm designer.

There are even cases when the actual value of𝑄 is not needed, as it partially
cancels out in the ratio on the r.h.s. of (9). We now show how that is the
case for the two null models for sequence datasets from Sect. 4.2 when 𝜋E and
𝜋A are the uniform distribution and the algorithms to sample from the ROE
models are those by Jenkins et al (2022).

Indeed, in these cases we have that 𝜌(𝒟) = c(𝒟)/|𝒵E|, where c(𝒟) is either
from Lemma 4 or Lemma 5 depending on the null model we are considering. It
also holds 𝜋A = 1/|𝒵A|. We define 𝑄

.
= |𝒵E|/|𝒵A|,10 which clearly is such that the

requirement from (8) is satisfied. Then, we have that the condition from (9)
can be rewritten as

𝑢 ≤ 1

c(un(𝒟′))
,

which is readily computable from Lemma 4 or Lemma 5.

5.4 Discussion

One may wonder whether “wrapping” existing algorithms for ROE models
(whether MCMC or not) to obtain algorithms for ROA models, like ROhAN
does, is the correct approach, versus creating methods that directly sample
from a set of unordered datasets. We already argued that one of the advantages,
and not a small one, of taking the approach we followed, is that one can reuse
the large variety of algorithms available (e.g., for ROE SISLP models, i.e., for
sampling binary matrices with fixed row- and column-sums, the literature is
extensive (Fout, 2022)), and even ones that will be developed in the future.
Here we want to briefly discuss, through an example, a non-immediately-
apparent drawback of “direct sampling” methods for ROA models. Suppose
that we want to develop an MCMC algorithm DirectROA for ROA SISLP
models, using a Markov chain whose states are the unordered datasets in 𝒵A

(and not the ordered datasets in 𝒵E, as in ROhAN-m). We can define the
neighborhood structure of the Markov chain by introducing a ROA variant

10Other definitions of 𝑄 are possible. Deriving, for example, a tight lower bound 𝑏 ≤
min𝒟∈𝒵A

c(𝒟) can be used to define 𝑄
.
=

⃒⃒
𝒵E

⃒⃒
/(

⃒⃒
𝒵A

⃒⃒
𝑏), which would lead to more samples being

accepted. We leave this derivation to future work.
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of the swap operation used by the MCMC algorithm for sampling from ROE
SISLP models (described in Sect. 4.1): there is an edge from 𝒟′ to 𝒟′′ if the lat-
ter can be obtained from the former by swapping a pair of items between two
transactions that are not one a subset (proper or improper) of the other, and
each of which contains only one of the two items. The fact that such operation
can be easily defined and implemented, and that it should be easy to draw one
such swap uniformly at random to choose a neighbor of the current state to
propose as the next step, may lead us to believe that we are on the right track.
Additionally, it would seem that a smaller, well-connected, state space could
lead to a faster mixing time of the chain. The issue is that, differently from
what happens for ROE swaps, there may be multiple ROA swaps from 𝒟′ to
𝒟′′, and that the number of ROA swaps from a dataset to any different dataset
(i.e., the ROA swaps that would lead from 𝒟′ to a 𝒟′′ ̸= 𝒟′) may also be dif-
ferent for different unordered datasets, as it depends on quantities such as the
number of identical transactions in 𝒟′. The algorithm would need to compute
these two quantities at every step, for both the current state and the proposed
next state, as their ratio is the neighbor sampling probability 𝜂𝒟′(𝒟′′), which
is needed to obtain the acceptance probability as in (3). While computing
these quantities is possible, it requires maintaining additional data structures
and additional computational time at every step, for no clear advantage. We
implemented such algorithm DirectROA, and we compare ROhAN-m to it
in Sect. 6, showing how ROhAN-m performs better in practice.

Extending our approach to null models that preserve constraints (including
the row order) in expectation (De Bie, 2010), whether using maximum entropy
or not, seems challenging, as it requires to derive the probability from (7),
which does not seem straightforward in many cases. This is a very interesting
direction for future work.

One limitation of this work is that we do not show an upper bound to
the mixing time of the Markov chain run by ROhAN-m, i.e., the number of
steps needed for the distribution of the current state to be (approximately) the
stationary distribution (Mitzenmacher and Upfal, 2005, Ch. 10). Using the MH
approach makes such a derivation particularly challenging (e.g., is not available
for SwapRand either), and in any case it would depend on the nature of the
Markov chain used by the ROE sampling algorithm that ROhAN-m uses as
a subroutine. We measure the mixing time empirically in Sect. 6.

6 Experimental evaluation

Our experimental evaluation focuses on three aspects. First, assessing the dif-
ference between ROE and ROA models, showing also how it can impact the
validation of results from datasets. Second, measuring the speed and scalability
of ROhAN-m by measuring its step time, i.e., the time to take a step on the
Markov chain, and how it changes as the number |𝒟| of transactions in the
datasets grows. Third, empirically estimating the mixing time of ROhAN-m,
i.e., the number of swaps for the distribution of the chain state to be close to
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Table 1 Dataset statistics: number of transactions |𝒟|, number of items |ℐ|, den-
sity avg|𝑡|/|ℐ|, where avg|𝑡| is the average transaction length, sum 𝑤

.
=
∑︀𝑚

𝑖=1|𝑡𝑖| of
transaction lengths, support threshold 𝜃 used in some experiments, and number of
frequent itemsets w.r.t. 𝜃.

Dataset 𝒟 |𝒟| |ℐ| avg|𝑡|
|ℐ| 𝑤 𝜃 |FP𝒟(𝜃)|

Foodmart 4,141 1,559 0.0028 18,319 2 4,247
Chess 3,196 75 0.4933 118,252 2,557 8,227
Mushroom 8,416 119 0.1933 193,568 2,525 2,587
BMS 1 59,602 497 0.0051 149,639 60 3,991
BMS 2 77,512 3,340 0.0014 358,278 156 3,683

the stationary distribution. We do not report on the empirical performance of
ROhAN-r because it would mostly be an assessment of that of the underlying
algorithm used before the rejection sampling step.

Implementation, environment, datasets

All the algorithms and experiments are implemented in Java 8, and available
from https://github.com/acdmammoths/ROhAN-code, together with instruc-
tions and a script to reproduce all our results and figures. We run our
experiments on an x86–64 AWS EC2 instance with the Amazon Linux 2 OS,
128GB of RAM, and 32 vCPUs. We use the following five publicly available11

binary transactional datasets, whose relevant statistics are in Table 1:

• Foodmart: customer transactions from a retail store.
• Chess: a conversion of the UCI chess (King-Rook vs. King-Pawn) dataset,
whose transactions represent chess board configurations.

• Mushroom: a conversion of the UCI mushroom dataset, whose transactions
describe different mushrooms using binary features.

• BMS WebView 1 (BMS 1): click-stream data from a webstore used in
KDD-Cup 2000, which has been prepared for itemset mining.

• BMS WebView 2 (BMS 2): click-stream data from a webstore used in
KDD-Cup 2000, which has been prepared for itemset mining.

Difference between ROE and ROA null models

Consider the ROE SISLP null model (𝒵E, 𝜋E) for transactional datasets from
Sect. 4.1, with 𝜋E being the uniform distribution over 𝒵E, and consider the
ROA SISLP model (𝒵A, 𝜋A) from Sect. 5.1, with 𝜋A being the uniform over
𝒵A. In Lemma 1 we showed an example of an observed dataset 𝒟 for which
sampling a dataset 𝒟 from 𝒵E uniformly at random does not imply that un(𝒟)
is a uniform sample from 𝒵A. The example was artificial, so we want to eval-
uate the situation on real datasets. Indeed, if there was a constant 𝐶 such
that c(un(𝒟)) = 𝐶 for every 𝒟 ∈ 𝒵E, then sampling 𝒟 from (𝒵E, 𝜋E) and
then considering the unordered dataset un(𝒟) would be equivalent to sampling

11https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

https://github.com/acdmammoths/ROhAN-code
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Table 2 Difference between models: Minimum, 1st quartile, median, 3rd quartile,
and maximum of ln(c(un(𝒟))) across 10,000 states 𝒟 ∈ 𝒵E.

Distribution of ln(c(un(𝒟)))

Dataset min. Q1 med. Q3 max.

Foodmart 21,848.016 21,851.48 21,852.99 21,855.47 21,861.94
Chess 22,589.17 22,596.11 22,598.19 22,598.88 22,599.57
Mushroom 67,449.92 67,580.11 67,628.06 67,639.15 67,649.55
BMS 1 343,570.54 345,695.65 347,551.60 349,260.07 350,721.50
BMS 2 541,598.73 542,301.19 542,926.81 543,515.51 544,058.76

from (𝒵A, 𝜋), implying that the two null models are effectively the same, and
perhaps suggesting that the definition of ROA models is not very interesting.
The results of our experimental evaluation show instead that, even in this very
simple case, ROE and ROA models are very different.

Our experiment performs a (non-covering) random walk over 𝒵E, and com-
putes the value c(un(𝒟)) for each visited state 𝒟. While a random walk may
visit a state more than once, it never happened in our experiments. The ran-
dom walk bias towards higher-degree states has no impact on whether c(un(𝒟))
is a constant. We report in Table 2 the distribution over 10,000 steps of
ln(c(un(𝒟))) (we report the logarithms because the raw quantities are truly
“astronomical”). Clearly, c(un(𝒟)) is all but a constant: there are datasets in
𝒵A which have ≈ 𝑒5000 ≈ 102470 times more equivalent ordered datasets in
𝒵E than other datasets in 𝒵A, as can be seen by considering the difference
between the maximum and minimum entries for BMS 1 or BMS2, and noting
that this difference is the natural logarithm of the ratio between the minimum
and maximum raw values. Even in the smallest case (Chess), the raw ratio
between the minimum and maximum is more than 𝑒10. Thus ROE and ROA
null models are quite different, i.e., ROA models are a new addition to the
library of available null models for statistically-sound KDD.

Impact of null model choice on statistical validation of results

Using a ROA vs. a ROE model may lead to different outcomes in the vali-
dation of results obtained from a transactional dataset. We used ROhAN-m
(with SwapRand as subroutine) and SwapRand to respectively compute the
significant frequent itemsets (Hämäläinen and Webb, 2019; Pellegrina et al,
2019) under a ROA and a ROE model. The two returned sets of significant
patterns in Chess, with FWER 𝛿 = 0.05, were extremely different, with a Jac-
card index of 0.12. This fact should not be surprising, as from the difference
highlighted in the previous experiment, one should expect that the (empirical)
distributions of the test statistics under the two null models would be very dif-
ferent, and therefore so would be the empirical 𝑝-values which are used for the
tests. Once more, this result is evidence that the user must be extremely cau-
tious in choosing the assumed null model: the meaning of significance depends
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on the null model, and it is not meaningful to compare results obtained under
different null models (e.g., to compare the statistical power of two procedures).

Table 3 Step time (in ms): minimum, 1st quartile, median, 3rd quartile, and maxi-
mum over 10,000 steps.

step time (ms)

Dataset algorithm min. Q1 med. Q3 max.

Foodmart
ROhAN-m < 1 1 2 2 16
DirectROA 1 2 2 2 32
SwapRand 1 1 2 2 24

Chess
ROhAN-m 4 5 5 5 24
DirectROA 11 13 14 14 49
SwapRand 3 5 5 5 16

Mushroom
ROhAN-m 8 12 13 13 56
DirectROA 22 28 30 33 82
SwapRand 7 9 9 10 47

BMS 1
ROhAN-m 19 25 27 29 63
DirectROA 27 31 32 38 73
SwapRand 19 24 25 27 63

BMS 2
ROhAN-m 33 44 47 50 98
DirectROA 50 55 56 57 103
SwapRand 38 47 49 51 97

Step times

The step time is the time needed to obtain a valid swap, compute the MH
acceptance probability, and transition to the next state if it is accepted. In
Table 3 we report the distribution, over 10,000 steps, of this quantity for three
algorithms: ROhAN-m, SwapRand, and the “direct” sampling algorithm
DirectROA described in Sect. 5.4. We show the results for SwapRand only
for comparison purposes: SwapRand is not to be preferred just because it
appears faster, as it samples from a ROE model while the other two algorithms
sample from a ROA model.

The distribution for ROhAN-m is comparable to that of SwapRand,
while DirectROA is slightly slower. This is expected since the execution of
SwapRand and ROhAN-m are very similar, where the only additional work
for ROhAN-m is to compute the ratio of c(un(𝒟)) to c(un(𝒟′)) using Alg. 1.
DirectROA is slower, which may seem a bit surprising because one may think
that sampling “directly” from the desired space of non-ordered datasets may
be more efficient. On the contrary, as discussed in Sect. 5.4, “moving” over
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Fig. 1 Scalability results: The step time distribution (in milliseconds) over 10,000
swaps for increasing values of |𝒟|. The line in each box corresponds to the median,
the bottom and top of each box correspond to the first and third quartiles, and the
lower and upper whiskers correspond to the minimum and maximum.

this space, as the Markov chain of DirectROA does, requires additional com-
putation, which becomes relatively expensive when many transactions have
the same length, as in Chess and Mushroom. We find this fact to be an
non-intuitive algorithmic observation, which reinforces the appropriateness of
the approach taken by ROhAN-m, i.e., reusing existing algorithms for ROE
models.

Scalability

We use the IBM Quest generator to create synthetic datasets with |𝒟| ∈
{5,000, 10,000, 15,000, 20,000}, on |ℐ| = 100 and average transaction length
|𝑡| = 25.12 We run all algorithms for 10,000 swaps on each dataset, and report
the results in Fig. 1. There is a linear relationship between the distribution of
step times and the number of transactions, as all algorithms need to compute
the number of neighbors for the proposed next state, which takes time linear
in |𝒟|. The interquartile range (𝑄3−𝑄1) grows in absolute terms because the
individual step times grow, but it is essentially constant in relative terms.

Convergence to the stationary distribution

Since we cannot prove an upper bound to the mixing time of the Markov
chain used by ROhAN-m (see Sect. 5.4), we empirically estimate it. Following
other works (Tonon and Vandin, 2019), we track the Average Relative Support
Difference (ARSD), defined as follows, as a proxy for the mixing time: it is
assumed that when this quantity stabilizes, the chain has mixed. Given the
observed dataset 𝒟, let 𝜃 ∈ [1, |𝒟|] be a minimum support threshold, and 𝒟𝑠

be the dataset corresponding to the state of the chain after 𝑠 ∈ N swaps. Then,

ARSD(𝒟𝑠)
.
=

1

|FP𝒟(𝜃)|
∑︁

𝐴∈FP𝒟(𝜃)

|𝜎𝒟(𝐴)− 𝜎𝒟𝑠(𝐴)|
𝜎𝒟(𝐴)

.

12The other parameters of the generator were left to their default values.
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Fig. 2 Convergence results: ARSD(𝒟) as the swap number multiplier 𝑘 grows, where
𝑘 is s.t. the number of swaps is 𝑠

.
= ⌊𝑘

∑︀𝑚
𝑖=1|𝑡𝑖|⌋.

Figure 2 shows ARSD(𝒟𝑠) for 𝑠
.
= ⌊𝑘𝑤⌋ swaps, where 𝑘 ∈

{0, 0.25, 0.50, . . . , 2, 3, 4, 5} and 𝑤
.
=

∑︀𝑚
𝑖=1|𝑡𝑖|, for 𝑡𝑖 ∈ 𝒟. We use the values of

𝜃 from Table 1: the qualitative results do not change with other values.
We remark that comparing the mixing times of Markov chains with differ-

ent stationary distributions (as SwapRand and ROhAN-m) is meaningless,
as they allow to sample different objects from different sets according to dif-
ferent distributions. Neither are the values of the ARSD comparable, as only
the stabilization of the ARSD is a proxy for the mixing time, but its value
is not a proxy for the distance between the state distribution and the sta-
tionary distribution. Therefore, we do not make such comparisons and only
include the results from SwapRand for completeness (the mixing time for
SwapRand is the same observed by Gionis et al (2007, Sect. 5.1)). On BMS
1, the ARSD converges to a different value for SwapRand, which we take as
another indication that ROE and ROA models are different.

Figure 2 shows that in all cases, the ARSD stabilizes by 𝑠 = 2𝑤 swaps or
earlier (by 𝑠 = 𝑤), i.e., the mixing time appears to be linear in 𝑤. For Chess,
the fluctuations in the ARSD may seem large due to the scale of the y-axis,
which is much smaller in Fig. 2b than in the other subfigures. The fact that
DirectROA requires approximately the same number of steps as ROhAN-
m to converge, combined with the fact that each step of DirectROA takes
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longer (Table 3 and Fig. 1), support the design decisions behind ROhAN-m,
as we argued in Sect. 5.4.

7 Conclusion

We introduce a novel type of null models for transactional and sequence
datasets, which is Row-order Agnostic (ROA), i.e., does not consider the order
of the rows as fixed in the original dataset. These null models expand the
collection of null models available to the users to test the significance of
results obtained from the datasets, i.e., to perform statistically-sound KDD. We
present ROhAN, an algorithmic framework for drawing samples from ROA
models according to a user-specified distribution, which is a necessary step
to assess the significance using resampling-based statistical hypothesis tests.
ROhAN employs algorithms for sampling from Row-Order Enforcing (ROE)
null models as subroutines: it uses the Metropolis-Hastings approach to adapt
Markov-Chain-Monte-Carlo algorithms, and rejection sampling for the others.
ROhAN is “future-proof” in the sense that even future algorithms for future
ROE models can be easily adapted to be used by ROhAN.

Our experimental evaluation shows that ROA and ROE models are quite
different, and this difference impacts the outcomes of the statistical validation
of results. We also show that ROhAN is fast, and scales well.

Interesting directions for future work include the definition of ROA null
models for other kind of data (e.g., real-valued datasets) and of maximum-
entropy ROA models, and efficient algorithms to sample from these null
models.
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