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“One side will make you grow taller, and the other side will make
you grow shorter.” — The Caterpillar, Alice in Wonderland

Abstract—We introduce a novel null model for assessing the
results obtained by analyzing an observed transactional dataset
(e.g., significant frequent itemsets) using statistical hypothesis
testing. Our null model maintains more properties of the observed
dataset than existing models. Specifically, we preserve the Bipar-
tite Joint Degree Matrix of the bipartite graph corresponding
to the dataset, which ensures that the number of caterpillars,
i.e., paths of length three, is preserved, in addition to the item
supports and the transaction lengths, which are the properties
considered by previous works. We describe ALICE, a suite of two
Markov-Chain Monte-Carlo algorithms for sampling datasets
from our null model, based on a carefully defined set of states
and efficient operations to move between them. The results of our
experimental evaluation show that ALICE mixes fast and scales
well, and that our null model finds different significant results
than ones previously considered in the literature.

Index Terms—Significant Pattern Mining, Swap Randomiza-
tion, Hypothesis Testing, Markov Chain Monte Carlo Methods

I. INTRODUCTION

Binary transactional datasets are the object of study in sev-
eral areas, from marketing to network analysis, to genomics,
where, for example, transactions represent individuals and the
items in a transaction represent their gene mutations. Many
fundamental data mining tasks can be defined on them, such
as frequent itemset mining, clustering, and anomaly detection.

The goal of knowledge discovery from a dataset is not
simply to analyze the dataset, but to obtain new understanding
of the stochastic, often noisy, process that generated the
dataset. Such novel insights can only be obtained by subjecting
the results of the analysis to a rigorous validation, which
allows to separate those results that give new information about
the process from those that are due to the randomness of the
process itself. This kind of validation is actually necessary
in many scientific fields, for example in microbiology and
genomics, when the observed dataset represents individuals
with their gene mutations, or protein interactions [1, 2, 3].

The statistical hypothesis testing framework [4, Ch. 10] is
a most rigorous validation process for the results obtained
from an observed dataset. Hypotheses about the results are
formulated, and then tested by comparing them (or appropriate
statistics about them) to the distribution of the same results

over the null model, i.e., a set of datasets enriched with a user-
specified probability distribution (see Sect. III-A), that contains
all and only the datasets that preserve a user-specified subset of
the properties of the observed dataset (e.g., the size, or some
cumulative statistics). The testing of hypotheses requires, in
resampling-based methods [5], to be able to efficiently draw
multiple datasets from the null model. These samples are then
used to obtain an approximation of the distribution of results
from the null model, to which the actually observed results
are compared. When the probability of obtaining results as or
more extreme than those observed is low, the observed results
are deemed statistically significant, i.e., they give previously
unknown information about the data generating process.

Informally, the properties preserved by the null model, and
the sampling distribution, capture the existing or assumed
knowledge about the process that generated the observed
dataset. Testing the hypothesis can be understood as trying
to ascertain whether the observed results can be explained by
the existing knowledge. The choice of the null model must
be made by the user, based on their domain knowledge, and
should be deliberate. Null models that capture more properties
of the observed dataset are usually more descriptive and
therefore to be preferred. The challenge in using such models
is the need for efficient computational procedures to draw
datasets from the null model according to the user-specified
distribution, as many such sampled datasets are necessary to
test complex or multiple hypotheses.

Contributions

We study the problem of assessing results obtained from
an observed transactional dataset (e.g., frequent itemsets and
itemset distributions) by performing statistical hypothesis tests
via resampling methods from a descriptive null model. Specif-
ically, our contributions are the following.

« We introduce a novel null model (Sect. IV) that preserves
additional properties of the observed dataset than those
preserved by existing null models [6]. Specifically, all
datasets in our null model have the same Bipartite Joint
Degree Matrix (BJDM) of the bipartite graph corre-
sponding to the observed dataset (Sect. IV-A and IV-B).
Maintaining the BJDM ensures that, in addition to dataset
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size, transaction lengths, and item supports, also the num-
ber of caterpillars in the observed dataset is preserved
(Lemma 1), which captures additional “structure” of the
dataset. We also explain why more natural properties,
such as the supports of itemsets of length two, are not
as informative as one may think.

« We present ALICE,! a suite of two Markov-Chain-Monte-
Carlo algorithms for sampling datasets from our null
model according to a user-specified distribution. ALICE-
A (Sect. V-A) is based on Restricted Swap Operations
(RSOs) on biadjacency matrices, which preserve the
BJDM. Our contributions include a sampling algorithm
to draw such RSOs much more efficiently than with
the natural rejection sampling approach. Our second
algorithm, ALICE-B, (Sect. V-B) adapts the CURVEBALL
approach [7] to RSOs, to essentially perform multiple
RSOs at every step, thus leading to faster mixing.

o The results of our experimental evaluation show that
ALICE mixes fast, it is scalable as the dataset grows, and
that our new null model differs from previous ones, as it
marks different results as significant.

II. RELATED WORK

The need for statistically validating results from transac-
tional datasets was understood immediately after the first
efficient algorithm for obtaining these results was introduced
[8, 9]. A long line of works also studies how to filter out
uninteresting patterns, or directly mine inferesting ones [10].
This direction is orthogonal to the study of the statistical
validity of the results, which is our focus.

Most work has been on mining significant frequent item-
sets, tiles, or association rules [11, 12, 13]. The survey by
Himaildinen and Webb [14] presents many of these works in
depth. The most relevant to ours are those by Gionis et al.
[6] and Hanhijarvi [15], who present resampling methods
for drawing transactional datasets from a null model which
preserves the number of transactions, the transaction lengths,
and the item supports as in an observed dataset. These ap-
proaches, like ours, can be used for testing any result from
transactional datasets, not just for significant pattern mining.
We present a null model that is more descriptive than the
ones studied in these works, because it preserves additional
properties of the observed dataset. Bie [16] proposes a method
to uniformly sample datasets from a null model that preserves,
in expectation, the same constraints. While it can partially be
extended to preserve the constraints exactly, it cannot be used
to sample according to any user-specified distribution, which
we believe to be a fundamental ingredient of the null model, as
it includes already available knowledge of the data generating
process in addition to the constraints.

Beyond binary transactional datasets, resampling methods
for assessing data mining results have been proposed for
sequence datasets [17, 18, 19] graphs [20, 21, 22, 23], real-
valued and mixed-valued matrices [24], and database tables

ILike the eponymous character of Alice in Wonderland, our algorithms
explore a large strange world, and interact with caterpillars.

[25]. None of these works proposes a null model similar to the
one we introduce, nor presents similar sampling algorithms.
Our approach can be a starting point to develop more descrip-
tive null models for these richer types of data.

ALICE, our algorithm for sampling from a null model
of datasets, can also be seen as sampling from the set of
bipartite graphs with a prescribed BJDM, according to a
desired sampling distribution. In this sense, our contributions
belong to a long line of works that studies how to generate
(bipartite) graphs with prescribed properties and according
to a desired probability distribution. The surveys by Cimini
et al. [26] and Greenhill [27] give a complete coverage of this
field. These approaches have been studied in the context of
complex networks, while we use bipartite graphs to represent
transactional datasets, and our main goal is to statistically
assess results obtained from such datasets, not to study the
properties of the graphs.

No previous work on sampling bipartite graphs deals with
the question we study. Saracco et al. [28] presents a configu-
ration model to sample bipartite networks that, in expectation,
have the same degree sequences as a prescribed one. ALICE
exactly maintains the BJDM, which preserves the exact degree
sequences, and also other additional properties (see Sect. IV);
thus our null model preserves more characteristics of the
observed dataset. Aksoy et al. [29] proposes a method to
generate bipartite networks that preserve also the clustering
coefficient, which is not related to the BJDM. Amanatidis et al.
[30] gives necessary and sufficient conditions for a matrix to
be the BJDM of a bipartite graph. We always start from such
a matrix, so we do not have to address its realizability. The
concept of Restricted Swap Operation (RSO) was introduced
by Czabarka et al. [31], but not for the purpose used in
ALICE. Boroojeni et al. [32] presents randomized algorithms
to generate a bipartite graph from a BJDM, but there is no
proof that their approaches can generate all possible graphs
with that BIDM nor there is an analysis on the probability
that such a graph is generated. Both aspects are important in
order to use the samples for statistical hypothesis testing (see
Sect. III-A), and ALICE achieves these goals.

III. PRELIMINARIES

Let Z = {a1,...,az} be a finite alphabet of items. W.l.o.g.,
we can assume Z = {1,...,|Z]}. Any A €T is an itemset. A
dataset D is a finite bag of itemsets, which are known also
as transactions when considered as the elements of a dataset.
The size |D| of the dataset is the number of transactions it
contains. The length |t| of a transaction ¢ € D is the number
of items in it. For any itemset A € Z, the support op(A) of
A in D is the number of transactions of D which contain A:

op(A)={teD:Act} .

The support is a natural (albeit not without drawbacks) mea-
sure of interestingness. A foundational knowledge discovery
task requires to find, given a minimum support threshold
6 € [0,|D]], the collection Flg(D) of Frequent Itemsets (FIs)
in Dw.rt. 0: Flg(D) = {AcZT:0p(A) >0} [33].



A. Null Models and Hypothesis testing

The statistical hypothesis testing framework [4, Ch. 10]
allows to rigorously understand whether the results obtained
from an observed dataset D (e.g., the collection of frequent
itemsets, or its size, among many others) are actually interest-
ing or are just due to randomness in the (unknown, at least
partially) data generation process. Informally, the observed
results are compared to the distribution of results that would
be obtained from a null model (see below); if results as or
more extreme than the observed ones are sufficiently unlikely,
the observed results are deemed statistically significant.

A null model T1 = (Z,m) is a pair where Z is a set of
datasets, and 7 is a (user-specified) probability distribution
over Z. The datasets in Z are all and only those that share
some descriptive characteristics with an observed dataset D
which also belongs to Z.> Null models in previous works [6,
16] preserve the following two fundamental properties:

o the distribution of the transaction lengths, i.e., for any
possible transaction length ¢ € [1,|Z|], D € Z contains
the same number of transactions of length ¢ as 109;3 and

o the support of the items, i.e., for any ¢ € Z and D ¢ Z,
op(i) = op(i).

The intuition behind wanting to preserve some properties
of D is that these properties, together with 7, capture what is
known or assumed about the process that generated the data,
and the goal is to understand whether the results obtained from
D are, informally, “typical” for datasets with these character-
istics. Formally, given D and a null model II = (Z,7), one
formulates a null hypothesis H involving II and a result Rp
obtained from D. For example, let Rp = |Flg(D)], and

Ho =" E [[Flo(D)]] = Rp”* (1)

The hypothesis is then tested by computing the p-value pp g,
of Hy, defined as the probability that, in a dataset D’ sampled

from Z according to m, the results Rp/ (e.g., |Flo(D')|) are
more extreme (e.g., larger) than Rp, ie.,
PD.H, = Dlirﬂ(RD' more extreme than Rp) . 2)

The notion of “more extreme” depends on the nature of Rp.
When pp g, is not larger than a user-specified critical value
a, then the observed results Rp are deemed to be statistically
significant, i.e., unlikely to be due to random chance (in other
words, the null hypothesis Hy is rejected as not sufficiently
supported by the available data).

Computing the p-value pp g, from (2) exactly is often
impossible, thus an empirical estimate pp p, is obtained as
follows and used in place of pp when testing the hypothe-
sis [5]. Let Dq,...,Dp be T datasets independently sampled

2Thus, II depends on D, but we hide it in the notation to keep it light.

3Thisﬂ property implies that the size of the dataset is preserved as well, i.e.,
|D| = |D| for any D € Z.

4This hypothesis is just one simple example of many possible different
hypotheses that could be tested.

from Z according to m, then

- 1+|{D; : Rp, is more extreme than Rz }|
PD,H, = .

3
1+T )

Thus, efficiently drawing random datasets from Z according
to 7 plays a key role in statistical hypothesis testing.

B. Markov Chain Monte Carlo Methods

ALICE follows the Markov chain Monte Carlo (MCMC)
method, and uses the Metropolis-Hastings (MH) algorithm [34,
Ch. 7 and 10]. Next is an introduction tailored to our work.

Let G = (V, F) be a directed, weighted, strongly connected,
aperiodic graph, potentially with self-loops. The Metropolis-
Hastings (MH) algorithm gives a way to sample an element
of V according to a user-specified probability distribution ¢.
Let v € V be any state, chosen arbitrarily. We first draw a
neighbor u € I' (v) of v according to the distribution &,. Then
we “move” from v to u with probability

. {1 ¢<u>gu<v>}
RO

otherwise we stay in v. After a sufficiently large number
of steps t, the state v; is (either approximately or exactly)
distributed according to ¢ and can be taken as a sample.

In summary, to be able to use MH, one must define the
graph G = (V, F), the neighbor-sampling probability &, for
every v € V, a procedure to sample a neighbor of v according
to &,, and the desired sampling distribution ¢ over V.

“4)

IV. A MORE DESCRIPTIVE NULL MODEL

As discussed in Sect. III-A, a good null model should
preserve important characteristics of the observed dataset
D, and we mentioned the two fundamental properties that
previous works have focused on [6, 16]. We now introduce
a null model that preserves an additional property, and then
show efficient methods to sample datasets from it.

A. Datasets, Matrices, and Bipartite Graphs

Before defining the additional characteristic quantity of D
that we want to preserve, we must describe “alternative”
representations of a dataset D. The most natural one is a
binary matrix Mp with |D| rows and |Z| columns, where the
(i,7) entry is 1 iff transaction 7 € D contains item j € Z,
and where the order of the transactions (i.e., of the rows) is
arbitrary [6, Sect. 4.1]. Since the order is arbitrary, there are
multiple matrices that correspond to the same dataset, differing
by the ordering of the rows. This fact is of key importance
for the correctness of methods that sample datasets (and not
matrices) from a null model.

Any matrix Mp corresponding to D can be seen as the
biadjacency matrix of an undirected bipartite graph Gp =
(D UZ,E) corresponding to D, where there is an edge’
(t,i) € F iff transaction ¢ contains the item 4. Different
matrices M’ and M"" corresponding to D are the biadjacency

SWe always denote an edge of a bipartite graph corresponding to a dataset
as (a,b) with a € D and b€ Z, i.e., as an element of D x Z, to make it clear
which endpoint is a transaction and which is an item.



matrices of bipartite graphs that are structurally equivalent,
up to the labeling of the transactions in D. In other words, all
graphs corresponding to a dataset share the same structural
properties, no matter their biadjacency matrices. To define our
new null model we use the graph G5.

B. Preserving the BIDM

One of our goals is to define a null model 1T = (£, 7) such
that the datasets in Z preserve not only the two fundamental
properties, but also an additional descriptive property of D:
the Bipartite Joint Degree Matrix (BJDM) Jg 5 of its bipartite
graph representation Gp.

Definition 1 (BIDM). Let G = (L U R, E) be a bipartite
graph, ky, and ki be the largest degree of a node in L and
R, respectively. The Bipartite Joint Degree Matrix (BJDM)
Jo of G, is a ki, x kr matrix whose (i,7)-th entry Jg[i,]]
is the number of edges connecting a node u € L with degree
deg(u) =i to a node v € R with degree deg(v) = j, i.e.,

Jali, j]= {(u,v) € E': deg(u) = i A deg(v) =j}| -

We define Z as the set of all datasets D whose transactions
are built on Z and whose corresponding bipartite graph Gp has
the same BJDM Jg,,. We justify this choice by first showing
that preserving the BJDM also preserves the two fundamental
properties, and then that it preserves additional ones.

Fact 1. For every 1< j < kp, it holds

1k
|{U6R:deg(v):j}|=EZJGUJ], &)
i=1

i.e., the BIDM Jg determines, for every 1 < j < kg, the
number of vertices v € R of degree deg(v) = j.
Similarly, for every 1 <i<ky, it holds

188
[{ueL:deg(u) =i}l = = Jalij] (6)
j=1

i.e., the BIDM Jg determines, for every 1 <i < ky, the number
of vertices u € L with degree deg(u) = i.

Corollary 1. For any dataset D, the BIDM Jq,, determines,
Sor every 1 < j < |Z|, the number of transactions in D with
length j. Also, it determines, for every 1 <i < |D|, the number
of items with support i in D.

Corollary 1 states that preserving the BJDM also preserves
the two fundamental properties. We now show an additional
property that is preserved, among others.

Let z(Gp) be the number of simple paths of length three in
Gp, which, since Gp is bipartite, is also known as the number
of caterpillars of Gp [29]. Corollary 2 shows that preserving
the BJDM of Gp preserves the number of caterpillars. The
numbers of simple paths of length one and two are already
preserved by preserving the two fundamental properties, thus
preserving also the number of simple paths of length three is
a natural step. Our desired result is a corollary of Lemma 1,
which shows that z(G) can be expressed through the BJDM.

Lemma 1. It holds

ki kr
2(G) =3 > Jali,jli-1)(j - 1) .
i=2j=2
Proof: Each edge (u,v) € E is the middle edge of
(deg(u) — 1)(deg(v) — 1) caterpillars, so

2(G)= Y (deg(u)-1)(deg(v)-1) . (D

(u,v)eE

From here, we can conclude that

kr kg
> (deg(u)~1)(deg(v) ~1)= 3 3 Ja[i,j1G-1)(G 1)

(u,0)eE =2 j=2

because each edge (u,v) € E that connects a node u € L

with degree deg(u) = 4 to a node v € R with degree

deg(v) = j contributes (¢ — 1)(j — 1) caterpillars to the

summation in Eq. (7), and there are J[4, ] such edges. W

Corollary 2. For any D, the BIDM J¢,, determines z(Gp).

We remark that preserving the two fundamental properties
and the number of caterpillars does not imply that the BIDM
is preserved: it is easy to construct datasets that have the same
transaction lengths, same item supports, and same number of
caterpillars as an observed dataset D but whose BIDM is
different than Jg 5. We show an example in App. A.

We considered preserving more “natural” characteristics
than the BJDM, such as the support of each itemset of length
two. However, doing so would lead to null sets Z that contain
very few datasets in most cases, and are therefore not very
informative about the data generation process, as they are
likely overly constrained. Informally, the reason is that the
biadjacency matrix Mp of the graph G'p corresponding to any
dataset D in such a Z must satisfy MpM], = MpMp and
have the same row and column sums as Mp. There are very
few such matrices and the relative size of their set decreases
as the number of transactions in D and/or the number of items
in Z grow [35]. We defer an in-depth discussion of this case
to the extended version of this work.

V. SAMPLING FROM THE NULL MODEL

We now present ALICE, a suite of two algorithms for
sampling datasets from the null model IT = (Z, 7).

ALICE takes the MCMC approach with MH (see
Sect. III-B). Its set of states is the set M of matrices defined
as follows. Fix Mp to be any of the biadjacency matrices of
a bipartite graph corresponding to the observed dataset D. M
contains all and only the matrices M of size |D|x|Z| such that,
when considering M as the biadjacency matrix of a bipartite
graph Gy, it holds Jg,, = Jg 5.

M may contain multiple matrices associated to the same
dataset (see Sect. IV-A), and different datasets may have a
different number of matrices in M associated to them. ALICE
takes this fact into account to ensure that the sampling of
datasets from Z is done according to 7. For M € M, we use
dat(M) to denote the unique dataset corresponding to M,
and for a dataset D € Z, we use mat(D) to denote the set



of matrices in M corresponding to D. The following result,
whose combinatorial proof we omit due to space limitations,
gives an expression for the size c(D) = |mat(D)].

Lemma 2. For any dataset D € Z, let {(1,...,{.,} be the
set of the zp distinct lengths of the transactions in D. For
each 1 < i < zp, let T; be the bag of transactions of length
C;inD. Let T; = {7;1,...,Tir, | be the set of transactions of
length 0; in D, i.e., without duplicates. For each 1 < j < r;,
let Qi ={t' €T;:t' =7;;} be the bag of transactions in T;
equal to 7; ; (including 7; ;). Then, the number of matrices M
in M such that dat(M) =D is

H( T3 ) _5_ 1%
i1 M@Qials- Qi) i1 TIHL Q!

multinomial coefficient

2D

(D) = (8)

ALICE takes as inputs 7 and the observed dataset D. It uses
MH (see Sect. III-B) to sample a matrix M € M according to
a distribution ¢ (defined below), and returns D = dat(M) € Z
distributed according to 7. Both algorithms we present share
the same set M of states, but they have different neighborhood
structures (i.e., the graphs used by MH for the two algorithms
have different sets of edges), different neighbor distributions
Enr, M e M, and different neighbor sampling procedures.

A. ALICE-A: RSO-based Algorithm

In our first algorithm, ALICE-A, the neighborhood structure
over M is defined by using Restricted Swap Operations
(RSOs) [31, Sect. 2].

Definition 2 (RSO). Let M be the |L|x|R| bi-adjacency matrix
of a bipartite graph G = (LUR,E). Let 1 <a # b < |L| and
1 <c#d<|R)| be the indices of two rows and columns of M,
respectively, such that

Mla,c] = M[b,d] A M[a,d] = M[b,c] A M[a,c] + M[a,d]
and such that at least one of the following conditions holds
|R| PR .
Cab = Z M[Cb,j] = Z M[baj]”
j=1 j=1
IZ| |L|

Cea="Y, M[i,c] =) Ml[i,d]”

i=1 i=1
The Restricted Swap Operation (RSO) (a,c),(b,d) —
(a,d), (b,c) on M is the operation that obtains the matrix M’
which is the same as M but M'[a,c] = M[a,d], M'[a,d] =
MTJa,c], M'[b,c] = M[b,d], and M'[b,d] = M[b,c].

Any RSO on M € M results in a matrix M that belongs to
M as well. In the graph G = (M, E) needed for MH, there
is an edge from M to M’ if there is an RSO from M to M’.
Additionally, there are self-loops from any M € M to itself.
These self-loops do not correspond to RSOs, but they simplify
the neighbor sampling procedure (described next). There are
zero or one RSOs between any pair of matrices in M, but M
is strongly connected by RSOs [31, Thm. 8].5

5The proof of [31, Thm. 8] must be adapted, in a straightforward way, to
account for the fact that M contains biadjacency matrices of bipartite graphs.

RSOs are just one of the many possible operations that make
Z strongly connected. We discuss one such different operation
in Sect. V-B. Finding other operations to replace RSOs or to
use in addition to RSOs is a interesting research direction.

We now discuss the second ingredient needed to use MH:
the distribution 5, over the set of neighbors I' (M) of any
M e M. At first, using a distribution £, of the form

2 ’
Ev(M') = {1I|2 J|2F(M)|—1) g,il;\;M)\{M}
G -

may seem an appealing option, because it could be realized by
first drawing a 4-tuple (a,b,c,d) uniformly at random from
D xD x T xZ, and then verifying whether (a,c),(b,d) —
(a,d), (b,c) is an RSO: if it is, one would set M’ to be
the matrix resulting from applying the RSO to M, other-
wise M’ = M. The major issue with this approach is that,
depending on M, the number of tuples that must be drawn
before finding one that is an RSO may be very large, thus
slowing down the process of moving on the graph. Conversely,
more complex probability distributions that ensure drawing
a neighbor different than M are quite easy to define, but
come with the serious drawback that they need expensive
computation and bookkeeping of quantities such as [T (M)
and [T (M")| for M" e T (M) (due to Eq. (4)), or the number
of pairs of different rows/columns of the same lengths in M
and M’ €' (M). The process of sampling a neighbor would
then be much more expensive, thus again slowing down the
walk on the graph. We propose a distribution over I" (M) and
a procedure to sample from it that strikes a balance between
statistical and computational “efficiency”, i.e., the probability
of sampling M is smaller than in the naive case described
above, and sampling a neighbor is still quite efficient.

Let M € M be the current state. For any 1 < m < |Z|

whose rows have sum m (resp. let C, be set of column indices
in M whose columns have sum n). To sample a neighbor M’
of M, we start by flipping a fair coin. If the outcome is heads,
we first draw a row sum 1 <m < |Z| with probability

- U2 )5,

and then we draw a pair (a,b) of different row indices in R,,
uniformly at random between such pairs. If the row of index
a and the row of index b in M are identical, then we set
M’ = M. Otherwise, consider the set H,; of column index
pairs (p,q) such that M{[a,p] = M[b,q], M[a,q] = M[b,p],
and Mla,p] # M[a,q]. We draw a pair (c¢,d) from H,
uniformly at random. Clearly (a,c),(b,d) - (a,d),(b,c) is
an RSO by construction, and we set M’ to be the matrix
obtained by performing this RSO on M. If the outcome of
the coin flip is tails, we first draw a column sum 1 < n < |D|

€))



with probability

D]

(ICn\) .
=\ 25 ().
j=1
and then we draw a pair (¢, d) of different column indices in
C,, uniformly at random between such pairs. If the column of
index ¢ and the column of index d in M are identical, then we
set M’ = M. Otherwise, consider the set K. 4 of row index
pairs (p,q) such that M[p,c] = M[q,d], M[p,d] = M[q,c],
and M[p,c] #+ M[p,d]. We draw a pair (a,b) from K4
uniformly at random. Clearly (a,c),(b,d) - (a,d),(b,c) is
also an RSO by construction, and we set M’ to be the matrix
obtained by performing this RSO on M.

This procedure induces a probability distribution &js
over I'(M). Let us analyze &pp(M') for M’ # M. Let
(a,c),(b,d) - (a,d), (b,c) be the sampled RSO, and let M’
be the neighbor of M obtained by performing such RSO on
M. Recall that the sampled RSO is the only RSO from M to
M'. Consider the following events:

(10)

FErow = “rows a and b of M have the same row sum m”;
FEo = “columns ¢ and d of M have the same column sum n”.
There are three possible cases for the probability &y (M') of
sampling M':

o if only F,.y holds, then

1 1 1
En(M') = - (11)
2 515, () e
« if only E, holds, then
1 1 1
Em (M) (12)

" 25 PH(G) Kol

o if both F,., and FE., hold, then M’ (i.e., the RSO)
may be sampled regardless of the outcome of the coin
flip. Thus, &3/ (M') is the sum of rh.s’s of Eq. (11)
and Eq. (12).
We do not need to analyze £y (M) because if M is drawn as
the “neighbor”, then MH will definitively select M as the next
state, thus we do not need to explicitly compute its probability.
It holds that &5 (M) = Epp (M), which greatly simplifies
the use of MH: from Eq. (4), we see that, thanks to the
construction of the graph and the definition of the neighbor
sampling distribution, we really only need the distribution ¢
over M. We define it as
(M) = w(dat(M)),
c(dat(M))

where c(dat(M)) is from Eq. (8). The following lemma shows
that ALICE-A samples a dataset D from Z according to ,
i.e., it samples from the null model.

13)

Lemma 3. Ler D € Z. ALICE-A outputs D with prob. 7(D).

Proof: Let M € M. From the correctness of MH we have
that ALICE-A samples M according to ¢ from Eq. (13). The
thesis then follows from noticing that D is returned in output

whenever ALICE-A samples one of the ¢(D) matrices in M
corresponding to D. [ ]

B. ALICE-B: Adapting Curveball

We now introduce a second algorithm, ALICE-B, that can
essentially perform multiple RSOs at each step of the Markov
chain, thus leading to a faster mixing of the chain, i.e., to
fewer steps needed to sample a dataset from II. Our approach
adapts the CURVEBALL algorithm [7] to use RSOs. Due to
space limitations, we do not discuss the original CURVEBALL
algorithm, introduced for sampling a matrix from the space of
binary matrices with fixed row and column sums. ALICE-B
is also an MCMC algorithm that uses MH. The vertex set of
the graph G = (M, E) is still the set M previously defined,
but ALICE-B uses a different set of edges than ALICE-A:
there is an edge (M,M') € E from a matrix M ¢ M to
M' e M iff M' = M or there is a Restricted Binomial
Swap Operation (RBSO) on M that results in M'. RBSOs
are defined as follows.

Definition 3 (Restricted Binomial Swap Operation (RBSO)).
Given a matrix M € M, let a and b be the indices of two
distinct and different rows of M with the same row sum. Let
Zo(M,b) be the set of column-indices q such that M|a,q] =
1 and M[b,q] = 0, and define Z,(M,a) similarly (it holds
Zo(M,0)NZy(M,a) =@ and | Z,(M,b)| = |Z,(M, a)|). Let S
be any subset of Z,(M,b)u Zy,(M,a) of size | Z,(M,b)|. The
row Restricted Binomial Swap Operation (rRBSO) (a,b,S)
on M is the operation that obtains a matrix M’ such that
M'[i,7] = M[i,j] except for i € {a,b}, and such that the
rows of index a and b of M’ are

Mla,q] q¢ Zo(M,b)u Zy(M,a)
M'[a,q] =41 gesS
0 qe(Za(M7b)UZb(Maa))\S
and
Ml[b,q] q¢Z,(M,b)u Zy(M,a)
M'[b,q] =40 gesS
1 q € (Za(M,b)u Zy(M,a)) N S

A corresponding definition for a column RBSO (cRBSO) can
be given for a and b being the indices of two distinct and
different columns with the same column sum.

We use “RBSO” to refer to either a rRBSO or a ¢cRBSO,
and the set of RBSOs is composed by all rRBSOs and cRBSOs.

Any RBSO on a matrix M preserves Jy;. Any RBSO
can be seen as a sequence of RSOs. For any RSO
(a,c),(b,d) - (a,d),(b,c) on M there is an equivalent
RBSO (a,b, (Z,(M,b) ~ {c}) u{d}) from M, and thus the
graph G = (M, E) is also strongly connected, as it has all the
edges which are created by RSOs, plus potentially others.

Fact 2. Let (a,b,S) be a ¢cRBSO (resp. rRBSO) from M to

M'eT' (M) with M' + M. Then (a,b, Z,(M,b)) is a cRBSO
(resp. rRBSO) from M’ to M.



Lemma 4. There are either one or two RBSOs from M € M
to M' e T'(M) with M' # M. When there are two RBSOs,
one is a cRBSO and the other is a rRBSO.

Proof: Let us start from the second part of the thesis. If
(a,b,{c}) is a cRBSO (resp. rRBSO) from M to M’, then

(¢, (Za(M,b) U Zy(M,a)) ~{c},{a})

is a rRBSO (resp. cRBSO) from M to M'.
The fact that there can only be one or two RBSOs is a
consequence of Fact 2. ]
In order for two RBSOs from M to M’ to exist, it is
necessary that |Z,(M,b)| = |Z,(M,a)| = 1, the columns at
indices a and b have the same sum, and the rows at indices ¢
and (Z,(M,b)u Z,(M,a)) ~ {c} have the same sum.

Corollary 3. For any two M and M', there is the same
number of RBSOs from M to M' as from M’ to M.

Let us now give the procedure to sample a neighbor M’ €
T'(M) of M. The procedure is similar to the one for ALICE-
A. First, we flip a fair coin. If the outcome is heads, we draw a
row sum 1 < m < |Z| with probability as per Eq. (9), and then
we draw a pair (a,b) of different row indices in R, uniformly
at random between such pairs. If the row of index a and the
row of index b in M are identical, then we set M’ = M.
Otherwise, we compute the set Z,(M,b) u Z,(M,a) defined
in Def. 3 and the cardinality |Z, (M, b)| with a linear scan of
the rows a and b. By using reservoir sampling, we obtain .S
through a linear scan of Z,(M,b)u Z,(M, a). If the outcome
of the coin flip is tails, we first draw a column sum 1 < n < |D|
with probability as per Eq. (10), then we draw a pair (a,b) of
different column indices in C, uniformly at random between
such pairs. We then proceed in a fashion similar as for the
row case. The purpose of flipping the coin at the start is to
ensure that we can sample both rRBSOs (when the outcome
is heads), and cRBSOs (otherwise).

The probability £x7(M') of sampling a RBSO (a,b,S) on
M that results in M’, is not uniform. Rather than giving the
expression for it, we use the fact that, in order to use MH,
we really only need the distribution ¢ over M, and the ratio
Enr (M) e, (M") (see Eq. (4)), and we now show that &5, (M) =
Enr (M), ie., the ratio is always 1.

Lemma 5. Let M € M and M' € T'(M). Then &y (M
Enr (M).

Proof: We assume that M’ # M, otherwise the thesis is
obviously true. For ease of presentation, we focus on the case
where there is only a cRBSO (a,b,S) from M to M'. The
analysis for the case when there is only a rRBSO follows the
same steps, and the one for the case when there is both a
cRBSO and a rRBSO follows by combining the two cases.

From Fact 2, the cRBSO (a,b, (Z,(M,b)) goes from M’
to M. The probability that the coin flip is tails is the same
no matter whether the current state is M or if it is M, as is
the probability, given that the outcome was tails, of sampling
the columns indices a and b. By definition, it holds that |S| =

/):

TABLE I
DATASETS STATISTICS: NUM. OF TRANSACTIONS, NUM. OF ITEMS, SUM OF
TRANSACTION LENGTHS, AVG. TRANSACTION LENGTH, AND DENSITY.

Dataset Trans. Item  Sum Trans. AVG Trans.  Density
Num Num Lengths Length
iewiki 137 558 651 4.752 0.0085
kosarak 3000 5767 23664 7.888 0.0014
chess 3196 75 118252 37.000 0.4933
foodmart 4141 1559 18319 4.424 0.0028
db-occ 10000 8984 19729 1.973 0.0002
BMSI 59602 497 149639 2.511 0.0051
BMS2 77512 3340 358278 4.622 0.0014
retail 88162 16470 908576 10.306 0.0006

|Zo(M,b)], and it is easy to see that Z,(M,b) v Zy(M,a) =
Za(M',b) U Zy(M',a), thus the probability of sampling S
when the current state is M and we have sampled a and b,
and the probability of sampling Z,(M,b) when the current
state is M’ and we have sampled @ and b are the same. Thus,
the probability of sampling (a, b, S) when the current state is
M is the same as the probability of sampling (a,b, Z,(M,b))
when the current state is M’, and the proof is complete. H

Thus, to use MH, we really only need the distribution ¢
over M. As in Sect. V-A, in order to sample a dataset D € Z
according to 7, we want to sample a matrix M € M with the
probability given in Eq. (13). We thus have all the ingredients
to use MH, and our description of ALICE-B is complete.

VI. EXPERIMENTAL EVALUATION

Our evaluation pursues three goals: empirically study the
mixing time of the sampling algorithms, evaluate their scala-
bility as the number of transactions increases, and show that
the null model we introduce differs from that which only
preserves the two fundamental properties, by showing that it
leads to marking different hypotheses as significant.

Datasets. We use eight real-world datasets,’ listed in Table 1.
Density is the ratio between the average transaction length
and the number of items. iewiki is a user-edit dataset, where
each transaction is a set of Wikibooks pages edited by the
same user; kosarak, BMS1, and BMS2 are click-stream
datasets; chess is a board-description datasets adapted from
the UCI Chess (King-Rook vs King-Pawn) dataset; foodmart
and retail are retail transaction datasets; and db-occ includes
user occupations taken from dbpedia.

Experimental Environment. We run our experiments on a
40-Core (2.40 GHz) Intel® Xeon® Silver 4210R machine,
with 384GB of RAM, and running FreeBSD 14.0. Results
are compared against GMMT [6], which is a swap random-
ization algorithm that samples from the null model that only
maintains the two fundamental properties. All the samplers
are implemented in Java 1.8, and the code is available at
https://github.com/acdmammoths/alice.

Convergence. To study the convergence of our samplers, we
follow a procedure similar to the one proposed by Gionis et al.
[6]. The mixing time, i.e., the number of steps needed for the

7From www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
and http://konect.cc/networks.
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state of the chain to be distributed according to 7, is estimated
by looking at the convergence of the Average Relative Support
Difference (ARSD), defined as

1 lop(A) - op: (A)]
IFlo (D) acriy (1) lon (A)] 7

where D° is the dataset obtained by the sampler after s
steps. Figure 1 reports this quantity for foodmart (left),
BMS2 (middle), and retail (right), for s = |k - w]| with
k€{0,0.15,0.3,...,2,3,...,6} and w = ¥,.p|t|- Results for
other datasets were qualitatively similar. ALICE-B needs 1/3
or even fewer steps than ALICE-A, thanks to to the fact that
it essentially performs multiple RSOs at each step (as each
RBSO corresponds to one or more RSOs).

Despite the fewer number of steps needed, the (wall clock)
time to convergence of ALICE-B (not reported in figures),
however, is higher than that of ALICE-A. This difference is
due to the fact that performing an RBSO, which is a more
complex operation than an RSO, requires additional bookkeep-
ing for each element in the set S (see Def. 3). In the worst
cases (BMS1, and chess), ALICE-B takes almost 10x the time
of ALICE-A to reach convergence. An interesting direction
for future work is to study how to avoid this additional
bookkeeping in ALICE-B to obtain the same advantage over
ALICE-A observed for the number of steps to convergence
also for the wall clock time.

ARSD(D*) =

Scalability. To study the scalability of ALICE, we create
four synthetic datasets with increasing number of transac-
tions ({5k, 10k, 15k,20k}), 100 items, and average transaction
length 25, by using the IBM Quest generator [33]. For each

TABLE II
STEP TIME (MS): MINIMUM, 1ST QUARTILE, MEDIAN, 3RD QUARTILE,
AND MAXIMUM OVER 10K STEPS.

Dataset Sampler min Q1 med. Q3 max
ALICE-A <1 <1 <1 <1 3
iewiki ALICE-B <1 <1 <1 <1 7
GMMT <1 <1 <1 <1 1
ALICE-A <1 <1 <1 <1 4
kosarak ALICE-B <1 <1 <1 <1 7
GMMT 1 2 2 3 19
ALICE-A <1 <1 <1 1 5
chess ALICE-B <1 <1 3 4 59
GMMT 7 16 25 38 357
ALICE-A <1 <1 <1 <1 4
foodmart ALICE-B <1 <1 <1 <1 6
GMMT 1 2 2 3 17
ALICE-A <1 <1 <1 <1 5
db-occ ALICE-B <1 <1 <1 <1 6
GMMT 1 3 3 3 24
ALICE-A <1 <1 <1 <1 5
BMSI ALICE-B <1 <1 <1 1 6
GMMT 21 45 48 50 537
ALICE-A <1 <1 <1 <1 4
BMS2 ALICE-B <1 <1 <1 1 8
GMMT 62 84 89 94 126
ALICE-A <1 <1 <1 <1 4
retail ALICE-B <1 <1 <1 <1 9
GMMT 111 167 179 189 296

sampler, we perform 10k steps and compute the distribution of
step times, reported in Fig. 2. For completeness, we include the
step times of GMMT, although they are not really comparable
to those of our algorithms, because GMMT samples from a
different null set Z which includes datasets with different
BJDMs. The median step time scales linearly with the size
of the dataset. ALICE-A is the fastest sampler, requiring less
than 8ms to perform a step in the largest dataset, and less than
Ims in most of the cases. In contrast, the step times of ALICE-
B are characterized by more variability, as they depend on (i)
whether the performed RBSO is an rRBSO or a cRBSO, and
(ii) the size of the set S: the time required to compute c(D)
is larger for cRBSO, and it grows with the size of S.

Table II reports the min, QI, median, Q3, and max time
required to perform a step, for each sampler. The step time
of ALICE-B tends to be larger in chess, despite it not being
the largest dataset. This fact is due to the high density of this
dataset, and its large transaction length (37). Hence, the size of
S is usually high. In foodmart, on the other hand, the average
transaction length is 4.42 and the average item support is 5.6,
so the size of S is often 1. An algorithmic improvement in
the bookkeeping due to the size of S would results in better
performance of ALICE-B, as mentioned above.

Significance of the Number of Frequent Itemsets. To show
that the null model we introduce is different than the one that
only preserves the two fundamental properties, We test the
null hypothesis Hy from Eq. (1), and estimate the p-value
as in Eq. (3) with T' = 4352 samples from the null model,
for each sampler.® We remark that this kind of hypothesis is
just a simple but clear example of the tasks that can (and
should) be formed to assess the statistical validity of results

8The number of steps is empirically fixed according to the results obtained
in the convergence experiment.
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TABLE 1T
NoO. OF FIS IN THE ORIGINAL DATASET D, AVG. NO. OF FIS IN THE
SAMPLE D;, ESTIMATED P-VALUE pp, g, FOR Hg FROM EQ. (1).

T
Dataset [Flg(D)|  Sampler M PP, H
ALICE-A 173 2.3E-4

iewiki 65665 ALICE-B 171 2.3E-4

0 =1.4E-2 GMMT 2257 1.8E-2
ALICE-A 4865 2.3E-4

kosarak 6277 ALICE-B 4130 2.3E-4
6 = 3.0E-3 GMMT 31774 1.0E-0
ALICE-A 6183 4.6E-4

chess’ 8227  ALICE-B 6182  4.6E-4
6=0.8 GMMT 6179 4.6E-4
ALICE-A 2229 2.3E-4

foodmart 4247 ALICE-B 2228 2.3E-4
0 = 3.0E-4 GMMT 2226 2.3E-4
ALICE-A 702 2.3E-4

db-occ 834 ALICE-B 703 2.3E-4

0 = 5.0E-4 GMMT 598 2.3E-4

obtained from transactional datasets. Other tasks include, for
example, mining the statistically-significant frequent itemsets.
We limit ourselves to this task because it is straightforward
to present and it is sufficient to show the significant (pun
intended) difference between preserving the BJDM, as our null
model does, and not preserving it.

Table III reports the number of Fls in the observed dataset,
the average number of FIs in the sampled datasets, and
the empirical p-value, for datasets where GMMT terminated
within two days. The fact that (very) different p-values can
be obtained with ALICE and with GMMT, which sample
from a different null model, highlights the striking impact of
preserving the BIDM. As an example, for any critical value
in (0.00023,0.01815), in iewiki Hy would be rejected under
the null model we introduce, but not under the null model
that only preserves the two fundamental properties. Figure 3
shows the distribution of the number of FIs of different lengths
in the original dataset, and the average of the same quantity
over the datasets sampled by the different samplers. Since they
sample from the same null model, ALICE-A and ALICE-B
obtain the same distribution (up to sampling noise), which is
quite different than the one obtained by GMMT. Note that
whether the sampled datasets have more or less FIs than the
observed dataset depends both on the null model and on the
dataset. For instance, in iewiki (Fig. 3, left) datasets sampled
from all null models have fewer FIs than the observed one.
Conversely, in kosarak (Fig. 3, right) the BJDM-preserving

°In this case, T'= 2176, due to the prohibitive running time of GMMT.

null model produces samples with a similar number of FIs,
while the datasets sampled from the null model that preserves
the two fundamental properties have a larger number of FIs. In
addition, in iewiki, the samples from this latter model usually
contain FIs of length larger than any FIs in the observed
dataset: the max length of a FI in iewiki is 16, whereas it
grows to 22 in the datasets sampled by GMMT. In kosarak,
the datasets sampled by GMMT contain both a larger number
of FIs per length and FIs of larger length (12 vs. 7). The
increase in the number of FIs of length 3, leads to a substantial
difference in the number of FIs of length in the range [4,7]:
we observe up to 246x more FIs in the sampled datasets. In
contrast, since all the transactions in chess have the same
length, we observe (not shown in figure) similar average
numbers of FIs across the samplers. In this dataset, any swap
operation performed by GMMT is actually a RBSO, and hence
also the datasets sampled by GMMT preserve the BJDM.
Similarly, the fact that the nodes in the graph representation
of foodmart display high assortativity indicates that most of
the swap operations of GMMT are RBSO.

Thanks to these results, we conclude that the BIDM cap-
tures important additional information about the data gener-
ation process. Therefore, using a null model that preserves
it may lead to very different conclusions about the data
generation process compared to one that does not. These
results highlight, once more, how the choice of the null model
by the user must be extremely deliberate.

VII. CONCLUSION

We introduce a novel null model for statistically assessing
the results obtained from an observed transactional dataset,
which preserves its Bipartite Joint Degree Matrix (BJDM).
This property enforces, in addition to the dataset size, transac-
tion lengths, and item supports, also the number of caterpillars
of the bipartite graph corresponding to the observed dataset,
which is a natural and important property that captures addi-
tional structure. We describe ALICE, a suite of two Markov-
Chain-Monte-Carlo algorithms for sampling datasets from the
null model. The results of our experimental evaluation show
that ALICE scales well and that our null model allows to find
different significant results than those from existing models.

Directions for future work include the development of even
more descriptive null models (e.g., by preserving the number



of butterflies [36]), and of efficient procedures to sample from
them, which is usually the challenging aspect.
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APPENDIX
A. Counterexample

We now show that preserving the two fundamental prop-
erties and the number of caterpillars does not imply that the
BIDM is preserved.

N A A
VNN

//\\ /\ /\
A\/Nﬂ\ﬂ\ A\N A\N

Fig. 4. Two bipartite graphs with the same degree distributions and the same
number of caterpillars, but different BJDMs.

Each bipartite graph in Fig. 4 has three connected compo-
nents, with a total of 27 left-hand side nodes (light-blue nodes)
and 8 right-hand side nodes (yellow nodes). It is easy to see
that the two graphs have the same degree distributions, and the
same number of caterpillars (48). Indeed in the upper graph,
the leftmost component contains 36 caterpillars, while each of
the other two components contains 6 caterpillars, for a total
of 48 caterpillars. Similarly, in the lower graph, the leftmost
component contains 36 caterpillars, and the other two 6
caterpillars each. The two graphs have, nevertheless, different
BJDMs: in the upper graph there are edges connecting nodes
with degree 4 to nodes with degree 5 (top left), but the lower
graph has no such edge.

B. Other Results

Figure 5 reports the mean number of FIs per length for
ALICE-A, ALICE-B, and GMMT, in chess, foodmart, db-occ,
BMSI1, and BMS2. For the latter two datasets, we do not report
results for GMMT, due to its prohibitive running time.

In chess, all the rows in the biadjacency matrix have the
same sum, and thus, any swap operation performed by GMMT
is a RSO, which, in turn, preserves the BJDM. As a result, the
average numbers of Fls in the datasets generated by GMMT
and ALICE are almost identical.

In foodmart, we observe that the product between the two
marginals is close to the BJDM in terms of Frobenius norm,
meaning that preserving the marginals almost preserves the
BJDM. As a consequence, also in this case, the distribution of
the numbers of FIs for GMMT is similar to that for ALICE.

In all datasets, we can see that the distribution of the number
of FIs in the observed dataset is different from those obtained
from the sampled datasets. In particular, the longer itemsets
are, in general, less frequent in the sampled datasets than in



the original dataset. As an example, BMS2 contains many FIs  C. Extension to other settings

of length larger than 3 (roughly 52% of the Fls), while most Previous work studied null models for testing the statistical
of the Fls in the datasets sampled by ALICE have length 1. gjonificance of results obtained from other kinds of datasets,
such as sequential datasets [17, 18, 19, 37]. We now show
- how to define new null models for sequential datasets to also

-l - s mms 7o o mm 0 preserve the BJIDM.
10 Jenkins et al. [19] propose other two null models for
sequential datasets. Most of what we just discussed can be

g applied, with minor modifications, to these null models.
W | ‘ I | | | | |
uJ‘

chess

S

Mean Num. Freq. Itemsets

Length
I total
2 10" 1
2 - 2
8 3
5'-102 L)
i 5
: - 6
< 101
8
=
10%: -
foodmart ALICE A LICE B MMT
10‘
Length
N otal
‘é 1
2 - 2
3 102 3
o - g
£ 5
: - 6
g . 7
210
=
3
=
100+ - m
db-occ ALICE A LICE B MMT
Length
N total
2 10 L
2 -2
e 3
5 -
i 102 5
: -
:
s
B 0l-
S
ALICE-A ALICE-B
i Length
B N total
2 1
£ 10°- -2
£ - 3
5 -
[ 5
L -6
5 7
< 10%-
3 N
=
BMS2 ALICE-A ALICE-B

Fig. 5. Mean number of frequent itemsets per length for ALICE-A, ALICE-B,
and GMMT, in chess, foodmart, db-occ, BMS1, and BMS2.
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