Check for
Updates

DPU-Bench: A Micro-Benchmark Suite to Measure Offload
Efficiency Of SmartNICs

Benjamin Michalowicz
michalowicz.2@osu.edu
The Ohio State University
Columbus, Ohio, USA

Dhabaleswar K. Panda

panda@cse.ohio-state.edu

The Ohio State University
Columbus, Ohio, USA

ABSTRACT

Smart Network Interface Cards (SmartNIC) have experienced mas-
sive growth in popularity over the last few years such as the NVIDIA
BlueField-2 Data Processing Unit (DPU). Being equipped with their
own set of cores and memory allows them to perform actions be-
yond a regular NIC, and HPC researchers are designing new ways
to use them. For example, offloading communication to one en-
ables the CPU "host" to perform more computationally heavy tasks.
However, one question remains: How much of that work can be
distributed among processes placed on the SmartNIC before facing
performance degradation? We present DPU-Bench: A low-level
micro-benchmark suite using IB-Verbs primitives to enable HPC
users to examine the number of processes to be placed on one or
more SmartNICs in order to efficiently offload a given communi-
cation pattern. We examine direct algorithms in this paper at a
medium scale with different work assignment mechanisms and
give insights into the trends found with varying numbers of worker
processes and message sizes.

KEYWORDS

SmartNICS, High-Performance Computing Interconnects, Network-
Based Computing, Benchmarks, Micro-Benchmarks, InfiniBand

ACM Reference Format:

Benjamin Michalowicz, Kaushik Kandadi Suresh, Hari Subramoni, Dha-
baleswar K. Panda, and Steve Poole. 2023. DPU-Bench: A Micro-Benchmark
Suite to Measure Offload Efficiency Of SmartNICs. In Practice and Experience
in Advanced Research Computing (PEARC °23), July 23-27, 2023, Portland, OR,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3569951.
3593595

1 INTRODUCTION

High-Performance Computing has evolved rapidly in recent years.
In particular, accelerators have become the dominating force among
the majority of the Top500 [16]. MPI libraries and benchmarks have

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

PEARC °23, July 23-27, 2023, Portland, OR, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9985-2/23/07...$15.00
https://doi.org/10.1145/3569951.3593595

Kaushik Kandadi Suresh
kandadisuresh.1@osu.edu
The Ohio State University

Columbus, Ohio, USA

94

Hari Subramoni
subramoni.1@osu.edu
The Ohio State University
Columbus, Ohio, USA

Steve Poole
swpoole@lanl.gov
Los Alamos National Laboratory
Los Alamos, NM, USA

been designed to test and become aware of these accelerators as
they’ve appeared and evolved over the years. A substantially more
recent development is that of the SmartNIC. In particular, NVIDIA’s
BlueField Data-Processing Units (DPU) have rapidly developed to
become a part of HPC clusters and have popularized the abilities of
SmartNICs to have a plethora of resources beyond what’s provided
by both CPUs and a regular NIC. However, designing applications
and/or libraries to efficiently utilize the added resources is a non-
trivial task, and naively placing processes onto the DPU for appli-
cations and/or benchmarks does not necessarily mean enhanced
improvement. To combat this, we propose DPU-Bench: an IB-Verbs-
level[9] micro-benchmark suite to calculate the offload efficiency
of staging utilized in collective operations.

1.1 Motivation

1.1.1 The need to design a new benchmark suite: Benchmark
suites such as the OSU Microbenchmarks and Intel Microbench-
marks are primarily used to test functionality and baseline perfor-
mance of MPI operations [6, 12] (For more on these, see Section 5).
They answer the question of whether an HPC cluster is running as
expected and how new MPI-level designs compare to the current
state of the art. These benchmarks cannot measure the latency
incurred when offloading to devices like DPUs, nor what the of-
fload potential is — including time taken to exchange information
between a host and a worker process (processes spawned on the
DPUs that assist in communication). This benchmark suite mea-
sures the offload efficiency of collective communication patterns
one or more DPUs so as to determine whether the same pattern
will benefit from such offloading in an application. This brings us
to our first major challenge: How can we design a benchmark that
will allow us to measure the amount of overlap that can be achieved
by offloading a custom communication pattern to the DPUs?

Listing 1: Template of a Scatter-Dest Alltoall using Nonblock-
ing MPI_Isend/Irecv calls

for (i = 0 ; i<comm_size ; i++){
s = comm_size - ij;
for(j = 0; j < s; j++){
dst = (cur_rank + i + j)

% comm_size;
// Offset is calculated
MPI_Irecv(recvbuf+offset, count, type,
dst, tag, comm_ptr, &req_ptr[jl);

https://doi.org/10.1145/3569951.3593595
https://doi.org/10.1145/3569951.3593595
https://doi.org/10.1145/3569951.3593595
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569951.3593595&domain=pdf&date_stamp=2023-09-10

PEARC °23, July 23-27, 2023, Portland, OR, USA

}
for(j = 0; j <s; j++){
dst = (cur_rank - i - j + comm_size)
% comm_size;
// Offset is calculated elsewhere
MPI_Isend(sendbuf+offset, count, type,
dst, tag, comm_ptr, &req_ptr[j+s]);
}
dummy_compute ();
MPI_Waitall (2*s, req_ptr, status_arr);

1.1.2 Developing IB-Level benchmarks: Our second challenge
is: How can we design benchmarks to reflect the true amount of
communication and overlap measured when offloading communica-
tion to DPUs? Listing 1 shows a common MPI-level algorithm for a
non-personalized all-to-all communication pattern. Naively offload-
ing communication to the DPUs such as the sends and receives in
this code snippet is costly: while the number of function calls may
not be an issue, message progression on both the send and receive
paths is within any MPI library — MPI libraries have what is known
as a "progress engine" that ensures whether non/blocking send
and receive operations have fully completed. This issue is further
exacerbated by operations taking place between CPU and DPU pro-
cesses. We decided to forgo MPI in favor of IB-Verbs [2, 9]. IB-Verbs
allows us to perform operations and stage data to DPUs more easily
for a number of reasons. The first is that RDMA semantics do not
face the issue of message progression, guaranteeing that data sent
will reach its target immediately. The second is that RDMA-level
semantics also allow for the recipient of an RDMA read or write
to not be involved with data exchange; this is crucial for us, as
we want to ensure that there is no communication performed by
the CPU-based processes in our benchmark once data is staged to
the DPUs. Thirdly, the only bottlenecks involved at this level are
the limitations of the hardware and the need to poll a completion
queue.

1.1.3 Benefits of this Benchmark Suite: To the best of our
knowledge, this is the first benchmark suite of its kind in
existence. Previous works [3, 13] have presented staging-based
solutions within an MPI library on offloading communication to
DPUs. However, not many MPI libraries are DPU-aware as of the
writing of this paper. Because of this, and since no other HPC
benchmark suite takes the notion of offloading communication to
DPUs, we propose these benchmarks to determine if an applica-
tion’s communication can be further improved via offloading to
them.

1.2 Contributions

This paper makes the following contributions:

(1) Design of a new micro-benchmark suite that lies closer to
hardware to analyze the offload potential of various collec-
tives.

(2) Explores the impact of staging-based offload of communica-
tion to DPUs on three direct-algorithm-based implementa-
tions for one-to-all, all-to-one, and non-personalized-all-to-
all communication patterns.

95

Michalowicz, et al.

(3) An analysis on said designs and presenting results on both
the offload potential/efficiency and the possible runtime im-
pact that offloading communication provides.

(4) Empirical analysis of how to obtain the maximum possi-
ble benefits from offloading communication over a variable
number of worker processes.

1.3 Paper Breakdown

The rest of the paper is broken down as follows: Section 2 explains
the background needed to understand our motivation and design.
Section 3 explains the design and implementation of these bench-
marks. Section 4 breaks down our experiments and analyzes our
results. Section 5 details work related to our paper, primarily on
that of the benchmarking side. Lastly, Section 6 recaps the paper
and presents ideas for future work in this direction.

2 BACKGROUND

In this section, we break down the building blocks leading us to
design this benchmark suite.

2.1 The Message Passing Interface (MPI)

The MPI standard is the de-facto method of communication for
HPC clusters [10]. While this work does not explicitly focus on
MPI, we do use it for the placement of processes to perform IB-
Verbs-level operations on both the Host and the DPU. With DPUs
becoming another competitor in the accelerator race, MPI libraries
may need to become aware of their capabilities and generalize
their approaches to account for them. Libraries such as MPICH
and MVAPICH [1, 11], among others, are already able to enable
a naive approach to this through their multi-program, multi-data
(MPMD) executions! — that is, at runtime, a user can specify how
many processes are used to execute one or more applications in
parallel. This not only allows multiple programs to potentially
communicate with each other, but it also enables the use of multiple
architectures, such as x86 CPUs and the ARM cores on the DPUs
used in our experiments. Previous work has been done for specific
collectives ([3, 13]) at the MPI level, also utilizing staging among
other techniques.

2.2 The NVIDIA Bluefield-2 DPU

The NVIDIA BlueField-2 DPU [4] is a System-on-Chip (SoC) that
combines traditional network capabilities with a multi-core ARM
CPU (the ARM Cortex A-72), on-chip memory, and acceleration
engines for specific operations in other realms such as Artificial
Intelligence (AI) and security — the latter components are not within
the scope of this paper, so we will not be discussing them. Aside
from advanced networking capabilities, the aforementioned works,
among others, have presented designs in offloading communication,
computation, or even different phases of Deep Learning (DL) onto
these DPUs [7].

Lhttps://www.intel.com/content/wwwy/us/en/develop/documentation/mpi-
developer-guide-linux/top/running-applications/mpmd-launch-mode. html has a
good explanation of MPMD executions.

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/mpmd-launch-mode.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/mpmd-launch-mode.html

DPU-Bench

2.3 The IB-Verbs Library

InfiniBand interconnects have powered HPC clusters for over 20
years. The IB-Verbs library, and its standardized version "libibverbs",
have been the de facto standard for any Verbs-based transfers and
has been a component of the Linux kernel since 2005 [2, 9]. Nu-
merous protocols can run over Verbs such as TCP/IP and other
socket-based interfaces. It provides high-level and easy-to-use func-
tions for an array of operations. The NVIDIA BlueField-2 DPUs run
over IB-Verbs, enabling us to design these benchmarks and perform
RDMA transfers between them and their respective hosts.

3 DESIGN

In this section, we will break down the design of our benchmarks.

Inter-Process Metadata Exchange

DPU-Bench

IB-Verbs

HPC Platforms

Figure 1: Where DPU-Bench Exists in the Lower Levels of
the HPC Ecosystem

3.1 General Approach

Figure 1 shows where DPU-Bench stands in the HPC Ecosystem.
While we use MPI to distribute processes, communication at the
IB-Verbs level can also be facilitated by sockets. Performing RDMA-
based operations at the IB-Verbs levels requires steps both in initial-
izing the runtime environment and when preparing RDMA reads
and writes. Listing 2 gives a high-level overview of how each bench-
mark is designed.

Runtime initialization for each process is similar to the case in
which a non-RDMA operation is performed — an IB-Verbs level
protection domain is initialized to allow for the creation and utiliza-
tion of an IB-Verbs level memory region (MR). The major change
present is the addition and distribution of each MR’s remote key
("rkey") and remote addresses. These can be facilitated by calls to
MPI_Allgather so that every process ultimately has every other
process’ rkey and remote buffer address handle.

Listing 2: General Approach to Each Benchmark

/* Setup - assume options are

passed in through CLI =%/

MPI_Init(...);

/*Record-keeping structx/

global_struct g;

/* Every process makes its own memory region

* which makes the needed rkeys

*/

setup_ib_counters (&g,
num_workers, num_host_procs);

/* Exchange of rkeys between processes */

MPI_Allgather(...);

/* Exchange of RDMA Buffer addresses =x/

MPI_Allgather(...);

create_sends_and_recvs_pure_host();

run_pure_host(); //gives reference time

create_sends_and_recv_worker_procs();

msg_size,

96

PEARC °23, July 23-27, 2023, Portland, OR, USA

1{2(3 12]13|14|15
Host Host
0 56| 7] | InfiniBand | 1 16|17 (18|19
9 (10|11 20(21{22]23
DPU O DPU 1
24|25(26|27 >8129130]31

Figure 2: Depiction of a 2-node, 12 PPN, 4 WPN case and
how processes are placed. The DPUs act as "separate” hosts
alongside the actual CPU-based hosts to allow for offload of
operations like communication. The numbers inside each
box refer to the MPI rank number.

if (proc_is_on_dpu()){

/* IB-level RDMA-operations =*/
run_benchmark ();

Yelse{
perform_compute_on_host(ref_time);

3

MPI_Barrier (MPI_COMM_WORLD);

obtain_max_of_lat_and_comp();

compute_overlap();

cleanup();

MPI_Finalize();

During a program’s runtime, an RDMA read/write requires three
modifications compared to a "standard" IBV_WR_SEND: 1) Change
of the IB-Verbs level opcode used to one of IBV_WR_RDMA_READ
or IBV_WR_RDMA_WRITE; 2) Utilize both the buffer of data on the
host’s side and the buffer address handle of the corresponding
process; 3) the use of the rkey for validation from the process
being sent to/received from. In addition, both processes can simply
use ibv_post_send for their operations instead of needing to also
match a call to ibv_post_recv.

Every benchmark has the same structure: 1) Perform a "pure-
host" — no worker processes involved — version of the benchmark
designed to obtain a reference latency. 2) Use that latency to perform
a "dummy" computation on the host processes while 3) we offload
the communication to the worker processes placed on the DPUs
and have them perform all RDMA-based operations.

At runtime, a user of these benchmarks can enable the use of
one or more worker processes. Given the need to run on different
architectures, these experiments must be run in the MPMD fash-
ion mentioned in Section 2. This is done either explicitly on the
command line or by providing a configuration file. For simplicity
in setting up MPI runtime commands, hostfiles, configuration files,
and process placement, all of the worker processes are associated
with the higher-numbered MPI ranks spawned (see Figure 2). We
also make the assumption that the end user will request additional
processes beyond those needed for the "pure-host" variant of the
program. For example, if a pure-host run of an application requires
eight processes and the user wishes to utilize four extra workers,
then the beginning of their MPI runtime command will start out as
mpirun -np 12 instead of mpirun -np 8.

When obtaining the final offload efficiency metric, we take the
maximum of the DPU-based communication time and the hosts’

PEARC °23, July 23-27, 2023, Portland, OR, USA

compute time (see Section 4 for extra details) by placing a barrier
at the end of the main loop in the benchmark. To analyze how the
distribution of work impacts offloading performance, we design
two variants of work assignment to the workers: one in which
work is distributed cyclically among worker processes, and one
in which work is distributed in blocks. Section 4 shows how this
ultimately impacts work based on collective design and the number
of workers for a given message size. In addition, we have also
designed some rudimentary data validation to ensure that each
benchmark transferred the staged data as expected.

3.2 Distribution of Workers

Work is distributed statically during runtime. Users must make sure
that their hostfiles and configuration files reflect our MPI process
placement as shown by Figure 2.

Performing a cyclic distribution of work uses a counter such
that workers get assigned to their respective host processes in
a round-robin fashion. Performing a block-based distribution of
work reverses the order of logic in the cyclic distribution case: the
counter for which worker gets assigned work at that instance is
placed outside of the loop iterating over the host-based processes,

num_host_procs
num _Rost_procs wwe note that
num_workers

a naive block-based work distribution may not use all workers
present and/or create a workload imbalance if the number of host
processes is not evenly divisible by the number of workers, so we
add an extra check to account for the remaining host processes as
necessary; this resets the worker-based counter back to the rank
value of the first worker process and we iterate over the remaining
host processes not yet accounted for.

To ensure that we have a reasonable number of host processes
still doing computation and have data for communication, we re-
strict the number of workers to be less than that of the number
of host processes — or at most half of the total number of MPI
ranks requested at runtime. This creates a degree of robustness
to prevent unrealistic tests from being run such as every process
being a worker process with no dummy compute being done.

Given the example in Figure 2, one would run these bench-
marks with a command similar to the following: mpirun -np 32
-hostfile /path/to/hostfile -configfile
path/to/configfile /path/to/benchmark, where the configu-
ration file will contain extra parameters such as number of itera-
tions, number of workers, message size, number of warmup itera-
tions, etc.

and that an interval is decided as

3.3 Staged Broadcast

Our staged one-to-all benchmark employs a direct algorithm. When
staging begins, every worker will perform an RDMA read from the
root process — assumed to be rank 0 — before sending them to one
or more host processes. During this, the host processes perform the
computation, and as mentioned above, all ranks get synchronized
via a barrier at the end of each iteration. See Figure 3 for a high-
level view of how the cyclic distribution of work is employed. In a
block-based distribution of work, the orange arrows pointing to, for
example, Host-1 and Host-2, would spawn out of Worker-1, with
the next two spawning out of Worker-2, and so on.

97

Michalowicz, et al.

Host 0 | Host 1 Host 2 | Host 3 | Host 4 Host 5 Host 6 |
|
Worker |..[Worker | [worker | [worker

1

4

Figure 3: Cyclic Bcast Design. Green arrows represent RDMA
reads (performed first), with orange arrows representing
RDMA writes (performed second).

Host 0 Host 1 Host 2 Host 3

A A A

Worker 0 Worker 1 Worker 2 Worker 3

Figure 4: Single-Leader Cyclic Allgather Design. This is a
three-step approach with a singular root among the workers
(Black lines perform RDMA reads first, followed by blue lines
for RDMA writes, followed by orange lines for Worker-to-
Host RDMA writes).

3.4 Staged Gather

Our staged all-to-one benchmark also employs a direct algorithm.
Essentially, it performs the same operations that the one-to-all
benchmark performs, but in reverse: the worker processes will read
from each of the hosts — in a round-robin or block-based fashion —
before writing to appropriate offsets in the root’s memory.

3.5 Staged Allgather/"Non-Personalized
Alltoall”

3.5.1 Version 1: Single-Leader Approach: Performing an All-
gather — or a non-personalized all-to-all communication — with
staging is trickier than a one-to-all or all-to-one communication pat-
tern. Each process has data at the base offset of its individual buffer,
with the gathered result being distributed across all processes. In
the case of multiple workers, we buffer all data to a single "leader”
of the worker processes, which in turn performs a broadcast to the
remaining host processes.

Figure 4 gives a graphic representation of the cyclic work as-
signment approach. The black line from one host to one worker is
"Step one": every worker initiates an RDMA read. The blue lines are
step two — a single "leader" is selected to gather the data from each
worker — with the orange line acting as step "three" of returning the
data to the host processes involved. In particular, the block-based
work distribution requires a wrap-around as performing RDMA
writes among the other worker processes required more work than
just writing back to a single host process. Section 4 will show how

DPU-Bench

this ultimately does not scale well, nor does this kind of pattern
exhibit good offload efficiency.

3.5.2 Version 2: An "All-In" Approach: In a multi-leader ap-
proach, every worker process that gets added to the DPU side
becomes involved in transmitting their messages. Instead of trans-
mitting their data to that of the single "leader" as mentioned in
Version 1, each worker is aware of what host processes have given
it work and which ones have not such that when it comes time to
distribute the data back to the hosts after performing communica-
tion, no worker will overwrite another’s already-written data. This
mainly affects the implications of using multiple workers. Utilizing
a single worker remains unchanged here. To better visualize this,
imagine Figure 4, except with the removal of blue lines and orange
lines extending from each of the workers to each of the hosts.

3.6 Offload Efficiency Calculation

The central part of this benchmark is how efficiently a communi-
cation pattern can be offloaded to the DPU (as opposed to tradi-

tionally calculating overlap). "Offload Efficiency" is calculated as
reference_time

max (pure_comm,compute_time)

the communication time of the communication excuted over the

DPUs and "compute_time" refers to the time taken to perform a

dummy compute as shown by Listing 2.

% 100, where "Pure_Comm" refers to

4 EXPERIMENTS AND EVALUATION

In this section, we will describe our experimental setup, the experi-
ments run, and insights gained from our results.

4.1 Experimental Setup

Our experimental testbed consists of 32 Intel Dual-Socket E5-2697A
V4 CPUs @ 2.60 GHz (16 cores/socket), and each node is equipped
with NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters
and one NVIDIA BlueField-2 SoC, HDR100 100Gb/s InfiniBand/VPI
adapter.

4.2 Experiments

We demonstrate our benchmarks at 8 nodes and 8 processes per
node (PPN) on the host, with an increasing number of workers
placed onto the DPUs. At a smaller total number of workers, we
assign one per worker per node (WPN) on each DPU until one
worker exists on every DPU requested, though as we increase the
number of workers beyond the number of host nodes we work with,
we also see the effects of 2, 4, 6, and 8 WPN.

We test medium-to-large message sizes: 256KB to 4MB. Smaller
messages such as those below 16KB transfer rather quickly and thus
do not incur massive overhead, leading to "low" offload efficiency.
The numbers we show of each message size within each benchmark
are the average of four back-to-back executions, each of which has
an internal loop running for one thousand iterations. In addition,
we show the effects of work being assigned to workers in both cyclic
and block-based fashions. During allocations on said HPC cluster,
we assume that the number of host nodes present is equivalent to
the number of DPUs available. In our experiments, we show results
for one-to-all (broadcast), all-to-one (gather), and non-personalized
all-to-all (allgather) communication patterns.

98

PEARC °23, July 23-27, 2023, Portland, OR, USA

4.3 Experimental Results: 1 WPN

Figure 5a shows how a smaller number of workers can achieve
reasonable offload efficiency up until a "sweet spot" is approached.
For all of our results, We empirically evaluated that this is when
the number of worker processes equals the number of host nodes
present in a given allocation — or otherwise 1 worker per node
(WPN). With one worker being offloaded all the communication,
we see that it clearly is not close to the "sweet spot" to maximize
overlap with respect to all message sizes. Similarly, Figure 5b shows
a larger difference when using two or more workers compared to
one worker in the all-to-one (gather) operation. Part of this lies
in increased amounts of RDMA reads and writes issued by each
worker to their respective host process/processes. Figures 7a and
7b show similar trends — asymptotically approaching a maximum
offload efficiency as we approach the 1 WPN threshold.

We recognize that a single-root-worker approach to implement-
ing allgather is a naive and inefficient approach, hence the substan-
tially smaller overlap efficiencies shown in Figures 5c¢ and 7c, as
well as later on in Figures 8c and 9c. Utilizing OMB’s and IMB’s
calculations for overlap does not necessarily help here, as they
will always result in 100% overlap between communication and
computation. Figure 6 showcases a more intelligent and efficient
design to showcase 1) how DPUs can improve offload efficiency in
a more complex scheme and 2) the effects of offloading different
communication patterns for the same collective operation to them.
As we approach placing one worker on every DPU (1 WPN), we
obtain a sweet spot for maximizing offload efficiency.

4.4 Experimental Results: 2, 4, 6, and 8 WPN

Increasing the total number of workers and workers per node shows
different trends for each work assignment. Both Figures 8 and 9
show that having both 2 and 4 workers per node have only mildly
decreasing offload efficiency results compared to the 8-worker, 1-
WPN case — all revolving around 98.6 and 98.7%. However, the work
distribution — block versus cyclic — appears to have a substantial
impact at 6 WPN.

At 6-WPN, the block-work-assignment variant of broadcast/one-
to-all takes a hit at smaller message sizes on account of the extra
RDMA writes from more workers. This and the increased degra-
dation at 8 WPN come up given that the BlueField-2 DPUs have
one memory controller and a substantially smaller number of cores
compared to host CPUs these days. The same analysis can be ap-
plied to the 8-WPN case for the block-based work assignment for
the all-to-one/gather benchmark.

Block-based work assignment appears to give substantial degra-
dations as the number of workers increases to 8 WPN, despite
higher/comparable overlaps being achieved with larger message
sizes to that of the cyclic work distribution. Figure 9a shows this in
particular as 6 WPN only reaches maximal overlap at 4MB message
sizes. Part of this is thanks to the architectural limitations of the
BlueField-2 DPU — a single memory controller for its 8 cores even-
tually has to deal with the contention of resource requests as each
core requires memory slots to create and issue RDMA reads and/or
writes. Similarly, 6 WPN provides a mix of uneven work distribu-
tion compared to 8 WPN, and the degradations that come with it
also show in the block-based work assignment. This degradation at

PEARC °23, July 23-27, 2023, Portland, OR, USA

00
0 “ “ “ “ “

262144 524288 1048576 2097152 4194304
Message Size (bytes)

.
52 o
S S oS

% Efficiency

~
S

m 1 Worker m 2 Workers 4 Workers 8 Workers

(a) Cyclic Bcast Work Assignment, 1 WPN,
up to 8 workers total

100

0
0
0
0
0

262144 524288 1048576 2097152 4194304
Message Size (bytes)

5 o ®

% Efficiency

~

m 1 Worker m 2 Workers 4 Workers 8 Workers

(b) Cyclic Gather Work Assignment, 1 WPN,
up to 8 workers total

100

%-Efficiency
N OB O ®
s 8 & &

262144

524288 1048576 2097152
Message Size (bytes)

4194304

o

m 1 Worker m2 Workers 4 Workers 8 Workers

(c) Cyclic AllGather (Single Leader) Work
Assignment, 1 WPN, up to 8 workers total

Figure 5: Offload efficiency of 1-WPN Cyclic assignment of
work for Gather, Broadcast, and Single-Leader Allgather (8
nodes, 8 PPN)

%-Efficiency
» o » O
S &8 & 3

N
o

262144

524288

1048576
Message Size (bytes)

2097152

4194304

o

® 1 Worker 2 Workers 4 Workers 8 Workers

Figure 6: Results of a more intelligent offloading of the Direct,
Cyclic-Work-Assignment Allgather up to 1 WPN (8 nodes, 8
PPN)

6 WPN does NOT occur within the cyclic case, as shown by each
of the subfigures in Figure 8.

Figure 10 examines what happens when DPUs ultimately receive
less and less work to do after hitting the empirically observed sweet
spot. While each DPU is ultimately performing less operations, the
number of processes communicating through the HCA increases.
The spike at 8 WPN in which the 8 DPUs used in our experiments
are fully subscribed is uncharacteristic compared to previous ele-
ments. One running hypothesis is that a work threshold has been

99

Michalowicz, et al.

100

0 “ “ ‘I “ “

262144 524288 1048576 2097152 4194304
Message Size (bytes)

5 o ®
S © o

% Efficiency

N
5]

® 1 Worker 2 Workers 4 Workers 8 Workers

(a) Block Bcast Work Assignment, 1 WPN,
up to 8 workers total

100

0
0
0
0
0

262144 524288 1048576 2097152 4194304
Message Size (bytes)

2 @ ®

% Efficiency

™

m1Worker 2 Workers 4 Workers 8 Workers

(b) Block Gather Work Assignment, 1 WPN,
up to 8 workers total

100

5 o ®
S © o

%-Efficiency

524288 1048576 2097152
Message Size (bytes)

4194304

“ II
0
262144

™1 Worker ™2 Workers 4 Workers 8 Workers

(c) Block AllGather (Single Leader) Work As-
signment, 1 WPN, up to 8 workers total

Figure 7: Offload efficiency of 1-WPN Block assignment of
work for Gather, Broadcast, and Single-Leader Allgather (8
nodes, 8 PPN)

reached in which the distribution allows for greater offload efficien-
cy/improved runtime on the DPU side, though further profiling is
needed on this side.

Figure 11 shows general runtime trends of cyclic work assign-
ment on the three benchmarks designed thus far for DPU-Bench.
These compare the pure-host reference time with that of the pure
communication time that ultimately becomes the dominating factor
in determining both traditional overlap measurements and measure-
ments of our offload efficiency. As mentioned above, the overhead
of all of the workers sending to a "root" worker in our allgather
implementation leads to substantial overhead in the pure communi-
cation times shown in Figure 11c and the lowered offload efficiency
previously shown.

4.5 Profiling Performance On the DPU

Profiling the NVIDIA BlueField-2 is non-trivial. Compiling and
building PAPI [15] on the BlueField-2 is possible, though there
are no DPU-based performance counters available. Other profiling
tools may be able to analyze DPUs at a sample-based level such as
TAU [14], though this still requires building two separate versions

DPU-Bench

100

o ‘l ‘I “ |‘ “

262144 524288 1048576 2097152 4194304
Message Size (bytes)

% Efficiency
5 @
8§ & 38

N
S

W2WPN m4WPN 6 WPN 8 WPN

(a) Cyclic Bcast Work Assignment, 2/4/6/8
WPN

100

0 “ || “ |‘ “

262144 524288 1048576 2097152 4194304
Message Size (bytes)

% Efficiency
N oA 9 ®
s &8 &8 &8

W2WPN ™4 WPN 6 WPN 8 WPN

(b) Cyclic Gather Work Assignment, 2/4/6/8
WPN
100

80

60

40

20
ol | | | 8 ([(BN [[[BETIBET

262144 524288 1048576 2097152 4194304
Message Size (bytes)

%-Efficiency

W2WPN m4WPN 6 WPN 8 WPN

(c) Cyclic AllGather (Single Leader) Work
Assignment, 2/4/6/8 WPN

Figure 8: Offload efficiency of 2/4/6/8-WPN Cyclic assignment
of work for Gather, Broadcast, and Single-Leader Allgather
(8 Nodes, 8 PPN)

of the software to run on both CPU and DPU and ensuring that it
can work in conjunction with calls to, e.g., an MPI library.

5 RELATED WORK

In this section, we detail related works to both designing HPC
microbenchmarks as well as microbenchmarks for DPUs.

5.1 Current State of the Art Micro-benchmark
suites
Our group has developed the OSU Microbenchmark suite (OMB) [12],
which stands as one of the standards for MPI-based HPC microbench-
marks. Along with the MVAPICH library, it has been downloaded
over 1.6 million times as of February 2023 [11] and contains ap-
plications to evaluate both MPI and PGAS libraries for CPUs and
GPUs.

The Intel MPI benchmarks (IMB) [6] are analogous to that of
OMB, providing an equally vast array of benchmarks over which
users can test and benchmark MPI libraries across blocking, non-
blocking, point-to-point, and one-sided communication, similar to
that of OMB.

The OpenHPCA benchmark suite [5] employs, along with OMB
and the Sandia Microbenchmarks, a time-driven model to find the

100

PEARC °23, July 23-27, 2023, Portland, OR, USA

100

262144 524288 1048576 2097152 4194304
Message Size (bytes)

% Efficiency
PO
53 8

~
S

H2WPN m4WPN 6 WPN 8 WPN

(a) Block Bcast Work Assignment, 2/4/6/8
‘WPN

100

0 “ “ I‘ I‘ “

262144 524288 1048576 2097152 4194304
Message Size (bytes)

% Efficiency
a
2

N
S S

E2WPN ®m4WPN =6WPN 8 WPN

(b) Block Gather Work Assignment, 2/4/6/8
WPN
100
80
60

%-Efficiency

40

20
. TNIL NNND HEOR mOER m

262144 524288 1048576 2097152 4194304
Message Size (bytes)

H2WPN m4WPN 6 WPN 8 WPN

(c) Block Allgather (Single Leader) Work
Assignment, 2/4/6/8 WPN

Figure 9: Offload efficiency of 2/4/6/8-WPN Block assignment
of work for Gather, Broadcast, and Single-Leader Allgather
(8 Nodes, 8 PPN)

| | || |
0 | | || II

262144 524288 1048576 2097152 4194304
Message Size (bytes)

%-Efficiency
-
B D =] o
o o o

N
=3

H2WPN m4WPN 6 WPN 8 WPN

Figure 10: Results of a more intelligent offloading of the
Direct, Cyclic-Work-Assignment Allgather from 2 to 8 WPN
(8 nodes, 8 PPN)

maximum amount of work that can be injected while executing a
given nonblocking collective (NBC) in a given problem size and
scale — for reference, most other benchmarks utilize what is known
as a "Data-Driven Model"

In all of the above cases, hostfiles and MPMD configuration
files can be used to arbitrarily place processes in virtually any
given configuration. However, this will not necessarily always give
an optimal overlap measurement for offloading communication to
SmartNICs, as eventually every process in e.g., an OMB nonblocking

PEARC °23, July 23-27, 2023, Portland, OR, USA

32768

4096
1

262144 524288 1048576 2097152 4194304
Message Size (bytes)

@
o B2
w &

log scale

m Reference Latency ® 1 Worker 2 workers
4 Workers

=4 WPN

Reference vs Pure Comm time (us),

= 8 workers W2 WPN

(a) Cyclic Bcast Runtimes up to 4 WPN

32768
4096

262144 524288 1048576 2097152
Message Size (bytes)

@
o B
o &R

4194304

Reference vs Pure Comm time (us),
log scale

m Reference Latency m 1 Worker 2 Workers
4 Workers = 8 Workers

=4 WPN

w2 WPN

(b) Cyclic Gather Runtimes up to 4 WPN

2097152
26214
32768
4096

4 “| ‘“

512
262144 524288 1048576 2097152
Message Size (bytes)

@
o &

4194304

Reference vs Pure Comm time (us),
o scale

2 Workers = 4 Workers
=4 WPN

m Reference ® 1 Worker
= 8 Workers m 2 WPN

(c) Cyclic Allgather (Single Leader) Runtimes
up to 4 WPN

Figure 11: Runtime comparison of Cyclic-Based Work As-
signment on One-to-All (Broadcast), All-to-One (Cyclic), and
Non-Personalized All-to-All (Single-Leader Allgather) at 8
Nodes, 8 PPN, up to 4 WPN (32 total workers)

collective eventually gets called to do a dummy compute, which
would defeat the purpose of offloading collective communication
and having only host processes perform their computation.

Most of the developments of our benchmarks — adjusting prob-
lem sizes, number of iterations for which the benchmark runs,
warm-up iterations, and basic data validation/verification — came
from ideas presented in these benchmarks to ensure that they can
be equally as useful to HPC researchers and application developers.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed DPU-Bench: A micro-benchmark suite
designed to actively measure the offload efficiency of offloading
communication from various collectives onto a SmartNIC such
as the BlueField-2 DPU. We present designs regarding one-to-all,
all-to-one, and non-personalized all-to-all transfers and measure
them at a medium/large scale, using up to 64 workers on eight
NVIDIA BlueField-2 DPUs. We discuss the possibilities of how
work is distributed among worker processes — block-based versus
round-robin — and how each approach can benefit or potentially
degrade performance at different numbers of workers and message
sizes. We have shown that it is possible to relatively quickly, and
empirically, find a number of workers based on the number of

101

Michalowicz, et al.

nodes and host processes involved that can give maximum offload
efficiency.

We plan to perform the following tasks on these benchmarks:
1) Investigate the performance of other non-trivial flat and hierar-
chical algorithms (recursive doubling, k-nomial, etc.), 2) ultimately
integrate into the OMB repertoire, and 3) develop them to send
information relevant to routines like staging, pure communication
time, etc., to monitoring tools such as OSU INAM[8].

ACKNOWLEDGMENTS

This research is done as a part of contract #19537 from Los Alamos
National Laboratory/US Department of Defense to The Ohio State
University and is partially supported by National Science Founda-
tion grants #2007991 and #2018627. We would also like to thank the
HPC-AI Advisory Council for allowing us access to their resources
so that we could perform our experiments.

REFERENCES

[1]
[2]

(3]

Argonne National Laboratory 2022. MPICH. https://www.mpich.org/.

Dotan Barak. 2014. Verbs Programming Tutorial. https://www.cs.mtsu.edu/
~waderholdt/6430/papers/ibverbs.pdf

Mohammadreza Bayatpour, Nick Sarkauskas, Hari Subramoni, Jahanzeb Maq-
bool Hashmi, and Dhabaleswar K. Panda. 2021. BluesMPI: Efficient MPI Non-
blocking Alltoall Offloading Designs on Modern BlueField Smart NICs. In High
Performance Computing, Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem
Ltaief, and Piotr Luszczek (Eds.). Springer International Publishing, Cham, 18-37.
Idan Burstein. 2021. Nvidia Data Center Processing Unit (DPU) Architecture.
In 2021 IEEE Hot Chips 33 Symposium (HCS). 1-20. https://doi.org/10.1109/
HCS52781.2021.9567066

High Performance Compute Availability Group 2022. OpenHPCA Benchmark
Suite. https://github.com/openucx/openhpca.

Intel 2022. Intel MPI Benchmarks. https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-mpi-benchmarks.html.

Arpan Jain, Nawras Alnaasan, Aamir Shafi, Hari Subramoni, and Dhabaleswar K
Panda. 2021. Accelerating CPU-based Distributed DNN Training on Modern HPC
Clusters using BlueField-2 DPUs. In 2021 IEEE Symposium on High-Performance
Interconnects (HOTI). 17-24. https://doi.org/10.1109/HOTI52880.2021.00017
Pouya Kousha, Kamal Raj Sankarapandian Dayala Ganesh Ram, Mansa Kedia,
Hari Subramoni, Arpan Jain, Aamir Shafi, Dhabaleswar Panda, Trey Dockendorf,
Heechang Na, and Karen Tomko. 2021. INAM: Cross-Stack Profiling and Analysis
of Communication in MPI-Based Applications. In Practice and Experience in
Advanced Research Computing (Boston, MA, USA) (PEARC °21). Association
for Computing Machinery, New York, NY, USA, Article 14, 11 pages. https:
//doi.org/10.1145/3437359.3465582

Patrick MacArthur, Qian Liu, Robert D. Russell, Fabrice Mizero, Malathi Veer-
araghavan, and John M. Dennis. 2017. An Integrated Tutorial on InfiniBand,
Verbs, and MP1. IEEE Communications Surveys & Tutorials 19, 4 (2017), 2894-2926.
https://doi.org/10.1109/COMST.2017.2746083

Message Passing Interface Forum. 2021. MPI: A Message-Passing Interface Standard
Version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
Network-Based Computing Laboratory 2022. MVAPICH: MPI over InfiniBand,
10GigE/iWARP and RoCE. http://mvapich.cse.ohio-state.edu/.
Network-Based Computing Laboratory 2022. OSU Microbenchmarks.
//mvapich.cse.ohio-state.edu/benchmarks/.

Nick Sarkauskas, Mohammadreza Bayatpour, Tu Tran, Bharath Ramesh, Hari
Subramoni, and Dhabaleswar K. Panda. 2021. Large-Message Nonblocking
MPI_Iallgather and MPI Ibcast Offload via BlueField-2 DPU. In 2021 IEEE 28th
International Conference on High Performance Computing, Data, and Analytics
(HiPC). 388-393. https://doi.org/10.1109/HiPC53243.2021.00054

Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance
System. Int. J. High Perform. Comput. Appl. 20, 2 (may 2006), 287-311. https:
//doi.org/10.1177/1094342006064482

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Miiller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157-173. https://doi.org/
10.1007/978-3-642-11261-4_11

Top500 2022. Top500. https://www.top500.org/lists/top500/2022/11/.

[8

—
L

[10

[11

[12

http:

=
&

[14

[15

=
&

https://www.mpich.org/
https://www.cs.mtsu.edu/~waderholdt/6430/papers/ibverbs.pdf
https://www.cs.mtsu.edu/~waderholdt/6430/papers/ibverbs.pdf
https://doi.org/10.1109/HCS52781.2021.9567066
https://doi.org/10.1109/HCS52781.2021.9567066
https://github.com/openucx/openhpca
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-mpi-benchmarks.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-mpi-benchmarks.html
https://doi.org/10.1109/HOTI52880.2021.00017
https://doi.org/10.1145/3437359.3465582
https://doi.org/10.1145/3437359.3465582
https://doi.org/10.1109/COMST.2017.2746083
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
 http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1109/HiPC53243.2021.00054
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11
https://www.top500.org/lists/top500/2022/11/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Paper Breakdown

	2 Background
	2.1 The Message Passing Interface (MPI)
	2.2 The NVIDIA Bluefield-2 DPU
	2.3 The IB-Verbs Library

	3 Design
	3.1 General Approach
	3.2 Distribution of Workers
	3.3 Staged Broadcast
	3.4 Staged Gather
	3.5 Staged Allgather/"Non-Personalized Alltoall"
	3.6 Offload Efficiency Calculation

	4 Experiments and Evaluation
	4.1 Experimental Setup
	4.2 Experiments
	4.3 Experimental Results: 1 WPN
	4.4 Experimental Results: 2, 4, 6, and 8 WPN
	4.5 Profiling Performance On the DPU

	5 Related Work
	5.1 Current State of the Art Micro-benchmark suites

	6 Conclusion and Future Work
	Acknowledgments
	References

