Check for
Updates

Enabling Reconfigurable HPC through MPI-based Inter-FPGA
Communication

Nicholas Contini, Bharath Ramesh, Kaushik Kandadi Suresh, Tu Tran, Ben Michalowicz, Mustafa
Abduljabbar, Hari Subramoni, Dhabaleswar Panda
The Ohio State University
The Department of Computer Science and Engineering
Columbus, OH, USA
{contini.26,ramesh.113,kandadisuresh.1,tran.839,michalowicz.2,abduljabbar.1,subramoni.1}@osu.edu
panda@cse.ohio-state.edu

ABSTRACT

Modern HPC faces new challenges with the slowing of Moore’s
Law and the end of Dennard Scaling. Traditional computing archi-
tectures can no longer be expected to drive today’s HPC loads, as
shown by the adoption of heterogeneous system design leveraging
accelerators such as GPUs and TPUs. Recently, FPGAs have become
viable candidates as HPC accelerators. These devices can accelerate
workloads by replicating implemented compute units to enable task
parallelism, overlapping computation between and within kernels
to enable pipeline parallelism, and increasing data locality by send-
ing data directly between compute units. While many solutions for
inter-FPGA communication have been presented, these proposed
designs generally rely on inter-FPGA networks, unique system se-
tups, and/or the consumption of soft logic resources on the chip.
In this paper, we propose an FPGA-aware MPI runtime that avoids
such shortcomings. Our MPI implementation does not use any spe-
cial system setup other than plugging FPGA accelerators into PCle
slots. All communication is orchestrated by the host, utilizing the
PCle interconnect and inter-host network to implement message
passing. We propose advanced designs that address data movement
challenges and reduce the need for explicit data movement between
the device and host (staging) in FPGA applications. We achieve up
to 50% reduction in latency for point-to-point transfers compared
to application-level staging.

CCS CONCEPTS

« Software and its engineering — Message passing; Message
oriented middleware; - Hardware — Hardware accelerators;
» General and reference — Performance; Experimentation;
« Networks — Network experimentation; Programming inter-
faces.

KEYWORDS

MPI, FPGA, heterogeneous computing, OpenCL, distributed com-
puting, high performance computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’23, June 21-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06....$15.00
https://doi.org/10.1145/3577193.3593720

477

ACM Reference Format:

Nicholas Contini, Bharath Ramesh, Kaushik Kandadi Suresh, Tu Tran,
Ben Michalowicz, Mustafa Abduljabbar, Hari Subramoni, Dhabaleswar
Panda. 2023. Enabling Reconfigurable HPC through MPI-based Inter-FPGA
Communication. In International Conference on Supercomputing (ICS °23),
FJune 21-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3577193.3593720

1 INTRODUCTION

In recent years, we have seen the diversification of HPC hardware.
For example, several of the Top500 [29] systems include GPUs, most
notably the number one system, Frontier. They excel at tackling
"embarrassingly parallel” compute tasks due to the hardware’s fo-
cus on simpler design with massive multi-threading capabilities
in contrast to the design of a CPU that targets much more com-
plex logic flow. Some accelerators are even designed with specific
applications in mind; ASICs such as Tensor Processing Units are
available through Google Cloud infrastructure expressly for acceler-
ating Deep Learning workloads [10]. Data-Processing Units (DPU)
are one of the latest attempts at specialized hardware, enabling the
ability to offload certain communication-based tasks to free the
CPU for more compute-intensive tasks.

These advances are spurred by the slowing of Moore’s Law and
Dennard Scaling. Computational scientists can no longer expect
new hardware to double in efficiency and performance every few
years. Co-design between hardware designers, system engineers,
and application developers will be vital in the coming years. Consid-
ering this, FPGAs and other reconfigurable hardware are becoming
very attractive options in the HPC space. With the rising demand
for specialized hardware, these devices enable rapid development
of hardware logic. Furthermore, they excel at tackling computa-
tional tasks that exhibit more irregular forms of parallelism that
other architectures such as GPUs would be hindered by [24]. For
example, implementing Fast Fourier Transform on a CPU or GPU
would require many transfers between registers and larger mem-
ory systems further away from the computational units. An FPGA
can retain high data locality by feeding the output of one block of
soft logic into the next. FPGAs also have also made their way into
green supercomputing spaces, with an FPGA-based system, ENIAD,
taking the number 10 spot on the Graph 500 Green list for small
datasets and the number 9 spot for big datasets [6].

One of the biggest hurdles preventing the adoption of these de-
vices from accelerating modern HPC workloads is the difficulty of
development; FPGAs were traditionally used for hardware prototyp-
ing, many of the programming abstractions differing significantly

https://doi.org/10.1145/3577193.3593720
https://doi.org/10.1145/3577193.3593720
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577193.3593720&domain=pdf&date_stamp=2023-06-21

ICS °23, June 21-23, 2023, Orlando, FL, USA

from software development abstractions. For example, developers
were previously limited to programming FPGAs using hardware de-
scription languages such as VHDL and Verilog which even hardware
engineers found challenging to use. When using these languages,
many concepts used in software do not exist, such as requesting
memory from an operating system as one would in C/C++. These
languages to this day are still very challenging for software devel-
opers to use. Luckily, many advances have been made to decrease
development overhead. Vendors have created robust High-Level
Synthesis workflows, enabling software developers to create effi-
cient and performant designs using familiar C/C++, OpenCL, and
Python interfaces[16, 24, 27]. However, there is still much work to
be done in aiding the development of FPGA-based HPC applications.
For example, MPI is a vital component of HPC applications, as it is
considered the defacto programming model in HPC. It enables scal-
ing computation beyond a single compute node, possibly scaling an
application across thousands of nodes within a cluster. As of now,
there are no available FPGA-aware MPI implementations. With-
out FPGA-to-FPGA support within MPI, many traditional HPC
applications will have to be rewritten in order to utilize FPGAs
effectively.

Previous attempts have been made to utilize MPI with reconfig-
urable hardware [4, 5, 13, 14, 20]; however, the resulting designs
either focused on using FPGAs as independent nodes, in-network
devices, or using inter-FPGA networks. While these setups can
provide advantages, adding requirements at a cluster level may
discourage adoption. Another issue with existing approaches is
that they use some of the soft logic resources on the FPGA for
implementing custom circuits, taking away resources that can po-
tentially be used for computation. Although these designs may take
minimal space, any use of FPGA resources may prevent an optimal
placement of logic used for actual computation. In this paper,
we propose an MPI runtime that enables applications to ini-
tiate optimal data transfers between FPGA devices without
the need to explicitly transfer data between the host and the
FPGA using OpenCL APIs and Xilinx OpenCL extensions.

if (rank == 0) {

clEnqueueReadBuffer (command_queue, fpga_buffer, CL_TRUE, 0,
BUFFER_SIZE, send_buffer, @, NULL, NULL);
MPI_Send(send_buffer, BUFFER_SIZE, MPI_BYTE, 1, tagl,
MPI_COMM_WORLD) ;
} else {
MPI_Recv(recv_buffer, BUFFER_SIZE, MPI_BYTE, 0, tag2,
MPI_COMM_WORLD, &status);
clEnqueueWriteBuffer (command_queue, fpga_buffer, CL_TRUE, 0,
BUFFER_SIZE, recv_buffer, @, NULL, NULL);
}
Listing 1: A naive implementation of inter-

FPGA communication that achieves high productivity but
may not be optimal.

1.1 Motivation

Putting the burden of inter-FPGA communication on the appli-
cation developer can lead to suboptimal performance and/or low
productivity. For example, consider the naive approach presented
in Listing 1 demonstrating a basic send and receive between two
ranks. In this code snippet, the sending rank first transfers data from
FPGA memory to host memory by calling c1EnqueueReadBuffer

478

Nicholas Contini et al.

, Lost Overlap Potential ,

6 1 2 3 4 5 6 7

8 Time

D-H

Naive H-H

o

Figure 1: Diagram showing the lost potential overlap of data
transfer.

before calling MPI_Send. The receiving rank calls MPI_Recv and
then uses c1EnqueueWriteBuffer to transfer the received data to
the FPGA. While this can easily be implemented by most software
developers, it is suboptimal. Consider Figure 1, for example. This
breaks the overall communication into FPGA-to-host, host-to-host,
and host-to-FPGA transfers and spreads them on a timeline. Since
host-to-FPGA and host-to-host transfers use independent resources
on the system, they can be run simultaneously, meaning the portion
of the D-H transfer corresponding to timestamp 1 can be overlapped
with the H-H transfer corresponding to timestamp 3. The same re-
lationship exists between H-H and H-D transfers; the H-H transfer
occurring at timestamp 4 can be overlapped with the H-D transfer
at timestamp 6.

Now consider a more optimized approach to inter-FPGA trans-
fers in Listing 2. In this snippet the sending rank initiates mul-
tiple non-blocking clEnqueueReadBuffer calls. It then waits on
an event corresponding to each of these commands. When the
event is marked complete, the data is guaranteed to exist within
host memory and thus the sender calls MPI_Isend before wait-
ing on the next chunk of data to arrive. Once all the MPI_Isend
commands are issued, MPI_Waitall is called to ensure each com-
munication completes. The receiving rank executes similar code,
except several calls of MPI_Irecv are made first. As eachMPI_Irecv
completes, a clEnqueueWriteBuffer call is made to move the re-
ceived data to FPGA memory. After each device write is enqueued,
clWaitForEvents is called on the corresponding events to ensure
data has reached the FPGA. This takes advantage of the potential
overlap presented in Figure 1, but it is significantly more verbose
than the naive approach presented above. Code this complex lowers
productivity and is prone to errors. Furthermore, even though extra
work was put into writing it, this code still might not be the most
optimal solution for every given scenario. As technologies mature
more advanced forms of data transfer may be available, rendering
this code outdated. Constant refactoring of code to keep up with
the state of the art further limits productivity.

By creating an FPGA-aware MPI, application developers can
easily achieve the best of both worlds. MPI developers can integrate
optimizations such as the one presented above into the runtime,
removing any need for explicit data transfer between the host and
FPGA at the application level. This maximizes productivity while
achieving good performance. Furthermore, instead of several HPC
applications requiring refactoring to keep up with new optimiza-
tions, only MPI implementations need to update their source.

Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication

1.2 Contributions

Our implementation will allow developers to easily adopt reconfig-
urable hardware implementations into existing HPC applications.
By keeping communication host-driven, our implementation can
build upon decades of optimizing point-to-point and collective com-
munication both in the context of CPU-based and accelerator-based
computation. Traditional HPC applications will not have to rewrite
their MPI code to stage data onto FPGA accelerators, nor will future
HPC clusters be forced to be designed any differently from how
they are designed today other than installing the FPGA accelerator
into a node. Furthermore, no resources on the FPGA itself are used
for the implementation, meaning all resources on the FPGA can be
used for computation and no FPGA shell or kernel must be inte-
grated with the application kernels. For this study we implement
our designs on an InfiniBand cluster. However, our findings can be
reapplied to other higher performance networks.

1 cl_event events[BUFFER_SIZE / CHUNK_SIZE]

2 MPI_Request requests[BUFFER_SIZE / CHUNK_SIZE]J;

3 MPI_Status statuses[BUFFER_SIZE / CHUNK_SIZE];

4 if (rank = @) {

5 for (int i = @; i < BUFFER_SIZE / CHUNK_SIZE;

6 size_t size = CHUNK_SIZE;

7 if (CHUNK_SIZE * (i + 1) > BUFFER_SIZE) {
BUFFER_SIZE T % CHUNK_SIZE;

++i) {

8 size =
9 }
10 clEnqueueReadBuffer (command_queue,
* CHUNK_SIZE, size, ((char x)send_buffer) +

fpga_buffer, CL_FALSE,
CHUNK_SIZE =*

™

i, @, NULL, &events[il);
}
for (int i = @; i < BUFFER_SIZE / CHUNK_SIZE; ++i) {
3 size_t size = CHUNK_SIZE;
14 if (CHUNK_SIZE * (i + 1) > BUFFER_SIZE) {
5 size = BUFFER_SIZE T % CHUNK_SIZE;
16 3
clWaitForEvents(1, &events[il);
18 MPI_Isend(((char *)send_buffer) + CHUNK_SIZE * i, size,
MPI_BYTE, 1, tagl, MPI_COMM_WORLD, &requests[i]);
19 }
20 MPI_Waitall (BUFFER_SIZE / CHUNK_SIZE, requests, statuses);
} else {
for (int i = @; i < BUFFER_SIZE / CHUNK_SIZE; ++i) {

2 size_t size = CHUNK_SIZE;

2 if (CHUNK_SIZE * (i + 1) > BUFFER_SIZE) {
25 size = BUFFER_SIZE T % CHUNK_SIZE;

26 3

27 MPI_Irecv(((char *)recv_buffer) + CHUNK_SIZE * i,
tagl, MPI_COMM_WORLD, &request[il);

size,
MPI_BYTE, 1,

}

29 for (int i = @; i < BUFFER_SIZE / CHUNK_SIZE;

30 size_t size = CHUNK_SIZE;

if (CHUNK_SIZE % (i + 1) > BUFFER_SIZE) {

BUFFER_SIZE T % CHUNK_SIZE;

++i) {

2 size =
3

34 MPI_Wait (&requests[i], &statuses[il]);

35 clEnqueueWriteBuffer (command_queue, fpga_buffer, CL_FALSE,
i % CHUNK_SIZE, size, ((char *)recv_buffer) + CHUNK_SIZE * i
, @, NULL, &events[il);

36 3}

clWaitForEvents (BUFFER_SIZE / CHUNK_SIZE, events);

38}
Listing 2: A pipelined implementation of inter-FPGA
communication that potentially is optimal but at the loss
of productivity

In this paper we contribute the following:

(1) Identify a paradigm for inter-FPGA communication that
requires minimal coding effort and therefore increases pro-
ductivity.

479

ICS °23, June 21-23, 2023, Orlando, FL, USA

(2) An evaluation of the effect of mapping OpenCL buffers on
FPGA transfer and MPI latency.

(3) An analysis of P2P (PCle peer-to-peer) functionality made
available through the Xilinx Runtime.

(4) Identify bottlenecks and potential areas of overlap for inter-
FPGA communication operations.

(5) Propose an FPGA-aware MPI runtime with optimizations for
intranode and internode FPGA-to-FPGA communication.

We compare our designs against paradigms using explicit stag-
ing calls to implement inter-FPGA communication. Our proposed
designs achieve a 25% improvement in intranode point-to-point
latency for message sizes less than 16KB and a 33% and 50% im-
provement in intranode and internode point-to-point latency for
message sizes above 2MB.

2 BACKGROUND

2.1 The Message Passing Interface

The Message Passing Interface (MPI) is the de-facto standard used
for communication, enabling applications to run on the world’s
fastest HPC clusters [15]. Multiple MPI processes can be distributed
amongst multiple cores within a single machine as well as amongst
machines connected through a network. By providing a generic
interface for communication, application developers can avoid in-
terfacing with low-level communication mediums such as Ethernet,
InfiniBand, up-and-coming network interconnects such as Sling-
shot, shared memory, etc. The MPI standard has been adapted and
modified over the years to keep up with ever-evolving hardware,
from host processors and software tools to accelerators such as
GPUS and FPGAs. MPI implementations such as OpenMPI [19]
and MVAPICH2 [11] have enabled direct accelerator-to-accelerator
communication by integrating vendor-provided APIs such as CUDA
and HIP. For example, the authors of [30] presented GPU-aware
designs over MVAPICH2 such that application developers can avoid
manually copying data to/from GPU memory. SmartNICs, such as
Bluefield DPUs, have also gained attention from MPI implementa-
tions [1, 25].

2.2 FPGAs

Field Programmable Gate Arrays (FPGA) are traditionally classified
as "reconfigurable hardware." Traditionally, these devices are used
for hardware prototyping. A circuit can be designed using a hard-
ware design language, flashed onto an FPGA development board,
and then tested. When flashed, portions of the circuit are mapped
to different components on an FPGA. These are:

1) Logic/soft blocks: Units of reconfigurable hardware built using
hardware lookup tables (LUTs), registers, and multiplexers. Recently
DSP units have been added to FPGAs to enable better floating-point
computation performance.

2) Hard blocks: Static circuits that cannot be reconfigured but
can execute logic more efficiently than soft blocks. These blocks
are interconnects, controllers, or even embedded processors.

3) Configurable buses: these buses are configurable using several
multiplexers, allowing flexible routing of output from one compo-
nent to many other potential components.

It is vital to be cautious when using these resources on FPGAs.
Using too many of one resource can cause issues with placement

ICS °23, June 21-23, 2023, Orlando, FL, USA

of logic. For example, two soft blocks may not be able to be located
closely together on the FPGA if too many soft blocks are already
consumed. This may lead to lower clock rates as the circuit’s critical
path may have to be lengthened to accommodate the poor locality
of logical components. Once issues with the design are identified,
the code can be altered, reflashed, and retested until a design that
is ready to be manufactured is realized.

The flexibility of the FPGA makes them very attractive. Instead
of being restricted to the fetch, decode, execute, and store paradigm
of common processors, FPGAs can be configured to custom circuits.
One of the main deterrents for adopting these devices in the HPC
community and beyond was the lack of familiarity with the tradi-
tional FPGA development languages such as VHDL and Verilog.
These hardware designs languages differ greatly from the software
programming languages used for HPC applications. However, the
research community and vendors have long worked at creating a
higher-level approach to program FPGAs called High Level Synthe-
sis (HLS). HLS programming interfaces allow software developers
to create hardware designs using more familiar languages such as
C, C++, OpenCL, and Python. These advances have greatly lowered
barriers preventing software developers from considering FPGAs
as viable accelerators. As FPGAs become easier to use, this enables
hardware co-design with applications

FPGAs are also known to excel at pipelineable/parallelizable code.
Instead of moving data between computational units (CUs) and
memory, data can be fed directly from one CU to another, increasing
data locality. These different CUs can execute concurrently; once
one CU completes a calculation that other CUs depend on, it can
continue to process the next portion of input data while other CUs
process its outputted data.

2.3 OpenCL

The Open Computing Language (OpenCL) standard is a cross-
platform parallel programming model for accelerators in various
capacities [18]. Like the MPI standard, the OpenCL standard pro-
vides a plethora of memory objects in addition to specifications
for shared virtual memory, ordering rules, and consistency models
for backward compatibility with prior releases. OpenCL is a major
force in allowing FPGAs to be integrated into data centers and
HPC clusters and is vendor-agnostic; through this, developers are
able to write vendor-agnostic or vendor-specific codes as needed.
Our designs (described in Section 3), rely on the use of OpenCL
for queues to store various send/receive-related objects as well as
being able to map/unmap buffers as needed..

2.4 The Xilinx Runtime

The Xilinx Runtime (XRT) is a low-level runtime and API for inter-
acting with Xilinx FPGA accelerator cards. XRT provides a low-level
native API and an implementation of the OpenCL standard (XCL).
Within XCL, extensions are implemented to provide advanced func-
tionality for which the OpenCL standard does not provide interfaces.
These functionalities include the ability to allocate device mem-
ory in specific global memory banks and translation from OpenCL
handles to native XRT handles.

480

Nicholas Contini et al.

FPGAT & FPGA
g 5
&

% Main ij s Main %’
FPGAI-E [“’—': Memen | 2L FPGA
£ g
g g g g
i 1= £l | &
FPGA- 2 . SLFPGA

| Cle—Z| [EL—#cre

Figure 2: Diagram showing different stages of FPGA to FPGA
MPI transfers.

FPGA-0 HOST-0 HOST-1 FPGA-1

Q. & D-H FPGA to Host
> Data transfer
2, Data post-to-Host
& === Data transfer
H-D Host to FPGA
& > Data transfer
\g Staging
Overhead

(a) Eager protocol. The lack of a handshake phase minimizes latency
as copies incur little overhead at small message sizes.

FPGA-0 HOST-0 HOST-1 FPGA-1

Rrg D-H FpGA to Host
3 o) > Data transfer
Data Host-to-Host
. == Data transfer
Y
H-D Host to FPGA
" Data transfer
&
andshake
(2 Handshaki
FIN Staging
Overhead

(b) Rendezvous protocol. For larger message sizes, a handshake
phase allows the receiver to prepare a receive buffer to avoid un-
necessary copies.

Figure 3: Demonstration of Eager and Rendezvous protocols.
The red arrows demonstrate the extra staging calls needed
to make them FPGA-aware.

3 DESIGN

Currently, FPGA application developers are expected to explicitly
manage data movement between host and device, which we refer
to as staging. OpenCL provides two different interfaces to stage
data:

1) Explicit data transfers, calls to clEnqueueWriteBuffer,
clEnqueueReadBuffer, or clEnqueueMigrateMemObject are made.
Any one of these will submit a data transfer request to the OpenCL
queue. Afterward, any other entries in the queue depending on this
data movement must wait on an event object corresponding to the
transfer. These transfers require the CPU to be involved.

Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication

2) Implicit data transfers, where a device buffer is mapped
to host memory using clEnqueueMapBuffer. Depending on the
OpenCL implementation, this may cause host memory to be pinned,
preventing it from being "paged out." Pinning memory lets DMA
engines coordinate the data transfer, thus minimizing the CPU’s
involvement. Once the device buffer is mapped, the host may in-
teract with the corresponding host memory using loads and stores.
Then the application can call one of clEnqueueWriteBuffer,
clEnqueueReadBuffer, or clEnqueueMigrateMemObjects to mi-
grate data to/from the device explicitly. Alternatively,
clEnqueueUnmapMemObject can be called to release the mapped
host buffer, potentially triggering data movement to the device in
the event of writes on the host.

Our design removes the need for any application-level data move-
ment between the host and device and instead opts to handle this
within the MPI runtime itself. The first task we tackle is how to
identify device buffers. We focus on the second method of staging
described above as this best fits within MPI semantics. Our FPGA-
aware MPI implementation wraps calls to clCreateBuffer and
clEnqueueMapBuffer in order to store the OpenCL buffer handle
and virtual address pair created. Later when the application calls an
MPI primitive, the implementation checks to see if the send/receive
buffer address corresponds to a device buffer, prompting it to in-
voke device-specific protocols to transfer the data from one device
to another. This transfers the responsibility of optimizing inter-
FPGA data movement from the application developers to the MPI
developers. Furthermore, as more optimizations are added to our
implementation, application developers simply must install a new
version of the implementation to reap the benefits. The following
subsections will describe our designs for inter-FPGA point-to-point
communication.

3.1 One-Shot Staged Design

Our base design for intranode transfers utilizes shared memory as
a communication medium. We utilize an Eager protocol for small
messages which is visualized in Figure 3a. No handshake is executed
between the communicating processes in the Eager protocol, and
the sending process starts transferring data immediately. Once
the receiver has posted a receive request and the corresponding
incoming data has been transferred, the data can be directly moved
into application buffers. To enable these transfers between FPGAs,
data is copied directly from FPGA buffers to shared memory. Once
the receiver matches its request to the sent data, a final copy is
executed from either shared memory or a temporary host buffer to
a device buffer.

A Rendezvous protocol is implemented for larger messages (see
Figure 3b). Copying larger messages incurs significant overhead,
and the rendezvous protocol mitigates this by instead executing a
handshake between processes to bypass copies and send/receive
data directly to the application-level buffers. The handshake first
starts with a Ready-to-Send (RTS) packet. Once the receiver has
posted its receive request, it will respond with a Clear-to-Send
(CTS) packet. Data can then freely be transferred to completion,
upon which the receiver will send a Finished (FIN) signal, thus se-
mantically allowing the send buffer to be written to and the receive
buffer to be read. In order to enable FPGA communication within

481

ICS °23, June 21-23, 2023, Orlando, FL, USA

this framework, we have the sending process transfer data from
device memory to host memory after sending the RTS, overlapping
the Rendezvous protocol with device-to-host transfers. Upon re-
ceiving the CTS, the sender copies the data into shared memory.
The receiving process then transfers the data from shared memory
to device memory and sends a FIN, completing the point-to-point
operation.

When the two FPGAs are on separate nodes, shared memory
no longer can be used as the communication medium. In this case,
we take advantage of the InfiniBand network. Copies into shared
memory are instead replaced with Remote Direct Memory Access
(RDMA) operations. These operations allow one process to send
data through the network and directly place data into another pro-
cess’ memory space. This requires that two processes exchange
"keys" that grant access to a specified buffer. The process that owns
the buffer first generates local and remote keys (lkey and rkey) cor-
responding to that process. The rkey is then transferred to another
process, which then uses this rkey in every read/write operation.
In our designs, these rkeys are exchanged during MPI_Init. When
transferring an Eager message over InfiniBand, the sending pro-
cess puts the message directly into preallocated memory held by
the receiving process. This preallocated memory is created during
MPI_Init. The receiving process then copies this data into an ap-
plication buffer. This incurs an extra copy, but since this protocol is
used at lower message sizes, the overhead is negligible compared to
exchanging an RTS and CTS in the Rendezvous protocol. To add sup-
port for FPGA buffers, a device-to-host transfer is executed before
the RDMA "put," and a host-to-device buffer transfer is executed
from the preallocated memory on the receiver.

At larger message sizes, copies become more expensive, and thus
it is beneficial to utilize the Rendezvous protocol to avoid extra
copies. This is done by attaching a buffer address to the RTS signal
to allow the receiving process to execute an RDMA get directly into
an application buffer or attaching a buffer address to the CTS to
allow the sending process to execute an RDMA put directly into an
application buffer. To support transfers from and to FPGA buffers,
device-to-host transfers are made while the sending process waits
for the CTS and host-to-device transfers are made once data is
received, similar to our scheme in the shared memory design.

These designs have some shortcomings. For example, whenever
staging occurs, the shared memory or InfiniBand are completely
unused. This means that bandwidth is not being maximized. More
optimized designs will saturate the bandwidth available on the PCle
interface and the transport simultaneously. Furthermore, intranode
transfers use a redundant copy. Two devices both connected over
PCle should theoretically be able to transfer data between each
other without first sending the data to host memory. This removes
some overhead as well as frees up the CPU to work on other tasks.
We explore this in the next section.

3.2 Internode Pipelined Design

There are multiple stages within point-to-point inter-FPGA com-
munication: the staging calls and the transfer between hosts. These
transfers use separate resources, the staging using the PCle inter-
face and the host-to-host transfer using either shared memory or
InfiniBand. These operations can happen simultaneously, so long

ICS °23, June 21-23, 2023, Orlando, FL, USA

FPGA-0 HOST-0 HOST-1 FPGA-1

R Rrs Ci Chunk #i data
2 | TS transfer
% oVDs: Sender Side
Overlap
OVPr: Receiver Side
K Overla
p
OVPr
N
(a) Stages of the pipelined design
Time
D-H
Naive — H-H
H-D
D-H | D-H | D-H
Pipelined — H-H | H-H | H-H Improvement
H-D | H-D | H-D i

(b) A display of the achieved improvement.

Figure 4: Visual representations of the pipelined design. By
overlapping different stages of the overall transfer, overall
latency is reduced.

as they operate on different portions of the message. In this section,
we discuss the requirements of creating a pipelined design for larger
messages.

By breaking down one large message into smaller chunks, we
can divide the entire communication process into separate pipeline
stages and overlap each of the stages to reduce overall commu-
nication latency. In our pipelined design there are three stages:
device-to-host transfer, a send via the inter-node network, and a
host-to-device transfer. Benefits can only be seen when staging
overheads are equal to or less than the host to host transfers. This
means that a pipelined design will only work for large message sizes.
The benefit of the pipelined design is demonstrated in Figure 4b. We
decide to utilize this design for internode transfers as the latency
of InfiniBand transfers is higher than a shared memory transfer.
This allows staging operations to overlap the host-to-host com-
munication more effectively. Furthermore, we discuss a separate
optimization for intranode transfers in the coming section.

3.3 Intranode Peer-to-Peer Design

A regular inter-FPGA transfer generally requires the application to
first make a call to transfer from the source device’s global memory
into the host’s main memory. A separate call to move the data
from the main memory into the destination device’s global memory
would then be made. Xilinx provides an extension to the OpenCL

482

Nicholas Contini et al.

FPGA FPGA
S—pop 7 4‘
_I PCle —I
v Main
Memory
| J

Figure 5: A diagram demonstrating the path of a standard
inter-FPGA transfer within a single node vs using P2P. Us-
ing P2P reduces the number of copies by one.

interface that includes a feature to execute Peer-to-Peer (P2P) trans-
fers between two FPGAs connected to the same host. This enables
callers to avoid transferring data to host memory by instead writ-
ing to PCle BAR memory. Figure 5 compares the standard data
path for an FPGA to FPGA transfer vs. using P2P. Ideally, this fea-
ture would be used between two FPGAs located on the same PCle
switch. However, in our testing, we saw the benefits of using these
features under the unideal system configurations where the FP-
GAss are located under separate PCle roots when transferring large
messages.

Executing P2P transfers between two processes requires some
initialization. First, one of the two buffers involved in the data
transfer must be created using the XCL_MEM_EXT_P2P_BUFFER flag
in Xilinx’s OpenCL memory extension. The buffer then must be
exported using a call to xc1GetMemObjectFd. This function returns
a file descriptor corresponding to the input buffer. This file descrip-
tor must then be transferred to the other process. Since the file
descriptor is simply an integer that is only valid under the context
of the originating process, special steps must be taken to generate
a valid file descriptor for the receiving process. We achieve this
through the use of Unix Domain Sockets (UDS). After the second
process receives the file descriptor, it imports the originating pro-
cess’s buffer’s handle by calling xc1GetMemObjectFromFd on the
received file descriptor. After this setup is complete, the second
process is free to call clEnqueueCopyBuffer using the imported
handle and any other buffer handle. The second process’s buffer
handle does not have to be flagged as a P2P buffer.

We propose a protocol that utilizes P2P data transfers to enhance
intranode point-to-point transfers between FPGAs. We use the
Rendezvous protocol as a base for our design. To integrate P2P
within this framework, we have the sending process attach the
exported file descriptor and an offset to the RTS. It is important to
note that this descriptor is not valid to the receiving process, and
thus only serves as an identifier. We will refer to this descriptor as
the identifying file descriptor (IFD). Upon receiving the RTS, if the
receiver does not recognize the received IFD, it must go through P2P
initialization. The receiver will then read the exported file descriptor
through a UDS that is set up within MPI_Init between each process
local to a node. The receiving process then imports the buffer handle
corresponding to the sending process, storing the imported buffer
handle in a cache using the IFD as a key. Subsequent transfers
utilizing the same buffer can skip the initialization step using this

Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication

100

80

60

40

Latency (us)

20

0 2KB 4KB
Message Size

8KB

16KB 32KB

(a) For message size up to 8KB, mapped buffers show
neither an advantage nor disadvantage.

2000 guy p-H (Unmapped)
H-H (Unmapped)
H-D (Unmapped)

~1500
o I D-H (Mapped)
; H-H (Mapped)
21000 H-D (Mapped)
]
©
-
500 §
g
64KB 128KB 256KB 512KB 1iMB
Message Size
(b) For messages sizes greater than 64KB, mapped

buffers exhibit greater advantages and reduce both
staging and MPI latency.

Figure 6: A comparison of using mapped and unmapped
buffers when using MPI for inter-FPGA communication on
a single node.

cached handle. After retrieving the imported buffer handle the
receiving process sends back a CTS and executes an asynchronous
clEnqueueCopyBuffer. Once the copy is complete, the receiver
sends its FIN to complete the rendezvous transfer.

4 EXPERIMENTS AND EVALUATION

In this section, we discuss the systems/hardware used for our ex-
periments, the experiments run, and our evaluation of them.

4.1 Experimental Systems and Software

Our primary system is comprised of dual-socket nodes featuring
AMD Milan 7713 processors (64 cores) at 2.00GHz with Mellanox
100/200 HDR. We utilize 16 nodes containing three Xilinx Alveo
U280 cards each. In addition to 32 GiB of DDR RAM on each FPGA,
the FPGAs are equipped with 8 GiB of HBM2 memory. For intranode
tests, including our analysis of P2P buffers, we utilize a system with
a single node containing two AMD EPYC 7713 processors with 64
cores each at 2GHz and two Xilinx Alveo U200 cards. These FPGA
cards have 32 GiB of DDR RAM each.

We have implemented our proposed designs in an MPI library.
We tune our MPI implementation to utilize the optimal design for
a given message range. We find that our One-Shot designs perform

483

ICS °23, June 21-23, 2023, Orlando, FL, USA

the best at message sizes less than message sizes less than 2MB
and our P2P and pipelined designs are best at larger message sizes
for intranode and internode respectively. We refer to this final
implementation as "Proposed". Furthermore we use an adapted
version of OSU Micro Benchmarks (OMB) [12] to collect our point-
to-point latencies. This version is able to allocate FPGA buffers. We
use this benchmark to compare our proposed design with implicit
staging against "Application Level Staging", which utilizes explicit
staging calls in conjunction with a host-based MPL

We do not compare against ACCL, an existing collective commu-
nication library, due to the fact that it utilizes a TCP/IP transport
over an inter-FPGA network. The emphasis of these projects is to
provide a communication runtime that works in the more common
use case where traditional high-performance networks are utilized,
but a supplementary dedicated FPGA network is not in place. In
these contexts, ACCL is not applicable.

4.2 Experiments and Results

The following subsections are as follows. In section 4.2.1 we do
an analysis of the benefits of using device buffers mapped to host
memory space. In section 4.2.2 we break down the internode trans-
fer latency into its parts to determine an optimal chunk size for
our proposed pipelined design. In section 4.2.3 we examine the
effects of P2P buffers on intranode point-to-point communication.
Finally, in section 4.2.4 we compare the performance of inter-FPGA
communication using application-level staging and our proposed
design.

4.2.1 Performance of Mapped Buffers. This section quantifies the
benefit of mapping device buffers to host memory and the effect of
MPI performance. For this experiment, we design a benchmark that
uses application-level device transfer in conjunction with MPI point-
to-point calls to implement inter-FPGA communication. There are
two processes, Rank 0, which will first send data and then receive
data, and Rank 1, which will do the same in reverse order. The
benchmark can optionally map the host buffers used for the trans-
fer. We measure device-to-host, host-to-host, and host-to-device
latency within a single node. Figures 6a and 6b show the average
observed half round-trip latency of each portion of the inter-FPGA
transfer for both unmapped and mapped buffers across 5 back-to-
back calls of the benchmark. At the lowest message sizes, transfers
between the device and host in both directions seem to perform
similarly regardless of whether the device buffer is mapped. How-
ever, starting at message size 32KB and above, mapped buffers have
a distinct advantage in latency. More interestingly, we see that the
host-to-host transfers also perform better with mapped buffers.
This emphasizes that mapping host memory to device buffers is
not an optimization exclusively affecting the OpenCL runtime per-
formance, but also parts of the application. In light of this, we used
mapped buffers for the rest of our experimentation.

4.2.2 Optimizing Pipelining Chunk Size. In order to implement an
effective design that pipelines transfers between the device and
host and InfiniBand transfers, we must first observe how each part
of the inter-FPGA transfer contributes to the overall latency. Us-
ing the same benchmark as before, we measure each part of the
inter-FPGA transfer, each FPGA on a separate node. We present

ICS °23, June 21-23, 2023, Orlando, FL, USA

(a) For message sizes up to 128KB the overall latency
is dominated by the staging calls.

(b) For message sizes above 256KB the host to host la-
tency starts to overtake the staging latency.

Figure 7: Point-to-point latency broken down into device-to-
host, host-to-host, and device-to-host segments

the results of our experiment in Figure 7. At lower message sizes,
the device-to-host and host-to-device transfers contribute the most
to the total transfer latency. This is attributed to the PCle interface
and the device drivers. Solutions to reducing the overhead of these
small transfers likely require either advanced interconnect technol-
ogy or advanced transfer interfaces. For example, CXL and CCIX
interconnect technologies enable cache coherence to connected de-
vices as well as unified memory spaces between host(s) and devices.
Furthermore, NVIDIA has provided protocols such as GPUDirect
RDMA, GDRCopy, and CUDA IPC, all of which have been used to
decrease the latency of transfers between host and device.

As message sizes grow, the host-to-host transfer latency becomes
a larger proportion of the overall transfer latency. Although trans-
fers over PCle have a higher base latency, since later generations
of the interconnect can achieve higher bandwidth than InfiniBand,
it scales better. At 32KB, the host to host latency becomes larger
than a transfer between device and host. This indicates pipelining
can feasibly be implemented at message sizes greater than 32KB
since the device-to-host can be theoretically completely overlapped
with host-to-host transfers, which can be completely overlapped by
host-to-device transfers. To determine the optimal chunk size for
our design, we implement our proposed pipelining-based design
at the MPI level. We test using chunk sizes of 32KB to 2MB, dis-
playing the results in Figure 8. We only present results for message
sizes 1MB and above since the our Eager design performs better
at message sizes below that threshold. Using certain chunk sizes,

484

Nicholas Contini et al.

especially 32KB and 64KB, result in worse performance than the
baseline. This is because the overhead of orchestrating the pipeline
is not offset by the overlap between the stages of communication.
However, chunk sizes greater than 128KB generally produce better
performance than the baseline. While there is no single chunk size
that always produces the lowest latency, using a chunk size of 1MB
performs the best on average.

4.2.3 Effects of P2P Buffers. In our testing, we find that using the
XCL_MEM_EXT_P2P_BUFFER flag can have a significant impact on
point-to-point performance, even when the P2P protocol is not
being used to do the data transfer. We hypothesize that mapping
BAR may have effects on the cache. To verify this, we utilize our
benchmark with application-level staging in conjunction with PAPL
PAPI is an analysis tool that gives applications an easy-to-use inter-
face to various hardware counters. The application registers which
events the it would like to count, the metadata stored within an
array of integers referred to as the event set. When the applica-
tion wants to actually start counting events, it passes the event set
into PAPI_start. Counting stops when the event set is passed into
PAPI_stop, which outputs an array of counts. To support our hy-
pothesis, we measure the average number of L1 and L2 cache misses
for each message size. We place PAPI_start and PAPI_stop before
and after measuring the latency of inter-FPGA transfers for each
message sizes and present the results in Figure 9. At lower message
sizes, the number of cache misses is similar between the test with
P2P buffers and without. Once the message size grows to 32KB, a
notable divergence can be seen. Tests using P2P buffers start to ex-
perience more cache misses relative to tests using non-P2P buffers.
This difference grows to it’s largest difference, the tests with P2P
buffers suffering from 5 times more L1 cache misses. At message
sizes of 2MB and above the number of cache misses between the
two scenarios converges. This suggests that the negative effects of
P2P buffers is negligible at this message size, thus we take these
considerations when using our design.

One possible explanation for the increased cache misses could
be that mapping the BAR leads to cache pollution. When the BAR
is not mapped to host memory, data read and written to the device
does not enter the cache hierarchy. When the BAR is mapped, reads
and writes now occur within the host’s memory space and thus
the cache is populated with entries corresponding to these values.
However, this cached memory is not useful to the MPI runtime
as they are not read back within a short period of time, meaning
these cached values are destined to be evicted without ever being
used. Rank 0, which in our benchmark sends first and receives
second, experiences more cache misses than Rank 1. This trend
can be explained by the fact that receives will be more affected by
pollution of the cache since more read operations happen within
this phase. The send phase must be polluting the cache causing
degraded performance by the following receive. We will do further
analysis to verify our hypothesis.

4.2.4 Final Point-to-Point Comparison. In this section we detail
the performance of our proposed designs against application level
staging. We alter our benchmark to make all application-level stag-
ing optional. We turn application-level staging off when using our
FPGA-aware MPI and turn it on when comparing to a non-FPGA
aware MPI. Figure 10 and 11 demonstrate how our designs compare

Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication

ICS °23, June 21-23, 2023, Orlando, FL, USA

Figure 8: Latency of pipelined design using different chunk sizes. Larger chunks generally exhibit better or equal latency to

smaller chunks.

Figure 9: Number of L1 cache misses when creating buffers
with and without the P2P flag. This flag greatly affects cache
performance at message sizes between 128KB and 1MB.

to the state of the art (i.e. application-level device transfers). The
bars represent the mean latency while the error bars represent one
standard deviation above and below the mean. The error bars indi-
cate that there is very little deviation from the mean in almost all
scenarios. In Figure 11a the deviation 1KB to 4KB is slightly larger
than the baseline but relative to the value of the mean, these devia-
tions are of little concern. At smaller message sizes for intranode
transfers (Figure 10a), our proposed design actually shows improve-
ments over application-level staging. This is because our design
skips two copies to an application-level host buffer and instead
copies straight to/from shared memory. This effectively means that
there are only two copies in our shared memory Eager design vs
four copies in the application-level staging, providing up to a 25%
decrease in latency at the smallest messages sizes.

At larger message sizes (Figure 10b), our proposed design per-
forms similarly to the application-level staging. However, when
transferring messages 2MB and above, we are able to utilize our P2P
optimization. At these larger message sizes for intranode transfers
our P2P design performs significantly better than the state-of-the-
art with almost as much as 33% less latency. It is important to note
that these numbers are taken using a PCle configuration that is less
than ideal. Ideally, our FPGAs would be connected to the same PCle
switch, however due to resource constraints, we were unable to

485

(a) For message sizes less than 64KB our design outperforms appli-
cation level staging due to avoiding two extra copies.

(b) For message sizes greater than 2MB our optimized P2P design is
used to avoid copies into host memory.

Figure 10: Intranode Point-to-point communication latency

test with this configuration. In an ideal scenario, it is likely that our
P2P design would perform even better than what we demonstrated
here, especially at lower message sizes.

Looking at smaller message sizes for internode transfers (Fig-
ure 11a), our proposed design performs almost identically to the
application-level staging, sometimes showing some marginal im-
provement. This is justified by the fact that the data movement is
identical between these two cases; first, a copy happens from the
device to the host, followed by a transfer over InfiniBand, and a
final copy from the host to the device. However at larger message

ICS °23, June 21-23, 2023, Orlando, FL, USA

(a) The proposed design performs similarly to application level stag-
ing for smaller messages.

(b) At 2MB and above our optimized pipeline design is used to over-
lap staging and network transfers to reduce overall latency

Figure 11: Internode Point-to-point communication latency

sizes, our pipelined design can be used as the transfer become less
sensitive to PCle transfer latency and becomes more bandwidth
bound. Our optimized design shows up to a 33% reduction in latency
at the largest message sizes.

5 RELATED WORK

In the HPC community, power constraint is becoming an unavoid-
able and challenging problem for supercomputers. More and more
research has been put into FPGAs due to their energy efficiency.
Even though FPGAs have never truly appeared in HPC production
systems due to programmablity and design constraints, FPGA com-
munities have gradually demonstrated the benefits of it over CPU
and GPU at the application level in terms of performance and power
consumption for certain application scenarios. Many such publica-
tions [2, 13, 20] discuss the current challenges of FPGA utilization
and its status in HPC systems and demonstrate requirements for
system architectures and interconnects to scale out FPGA resources
in a distributed computing environment.

Recently, a lot of publications show the potential of FPGAs in
many directions including in-switch processing, deep learning, and
traditional HPC. Specifically, FPGA devices can be reconfigured to
be switches with complete capabilities for handling communica-
tion, demonstrating speedups of commonly used collectives with

486

Nicholas Contini et al.

benchmarks and mini-applications [7, 28]. Shawahna et al. [26] re-
view the recent existing techniques for accelerating deep learning
networks on FPGAs and show the potential enhancement of FPGAs
for CNN acceleration. For HPC applications, Nguyen et al. [17]
demonstrate the benefits of FPGA for running numerical kernels
found in scientific applications.

Our paper is the first publication of an MPI design to providing
support for FPGA communication without utilizing any soft logic
on the FPGA nor requiring any special networking hardware. Even
though communication is done explicitly through MPI primitives
in contrast to several works, the syntax and semantics for pro-
gramming with FPGA remain the same as with CPU, so there is no
need for application-level code changes for communication tasks.
However, there exists plenty of literature regarding support for
FPGA communication. Notable publications are as follows: Christ-
gau et al. [3] propose the usage of partitioned communication in
FPGAs enabled by SYCL. The authors reason the full MPI imple-
mentation is too complicated for FPGAs; as a result, they limit the
scope to sub-communication in which only FPGAs are involved.
However, our FPGA library does not have this constraint. Haro
et al. [8] propose an MPI-like extension to OmpSs, a task-based
programming model developed at the Barcelona Supercomputing
Center, that is capable of executing and scaling out applications on
multiple FPGAs. In this work, communication is done implicitly
through OpenMP-like pragma tags. Another similar work is pre-
sented by Ringlein et al. [21] in which they propose transpilation
to seamlessly run MPI applications on CPU+FPGA clusters in one
click without code modification. This implementation is limited
by the need to specify system information to the transpiler; this
means that code needs to be rebuilt for HPC jobs involving dif-
ferent numbers of nodes/FPGAs. Furthermore, it utilizes the soft
logic on the FPGA. He et al. [9] proposed ACCL, an FPGA-specific
MPI-like collective communication library over TCP/IP stack. For
large messages, collectives with FPGA-driven communication, em-
powered by ACCL, outperform the host-based ones, empowered
by OpenMPI. However, the solutions were not flexible as it was
specifically designed for special systems with direct connections be-
tween FPGAs. Saldana et al. present the work on TMD-MPI [22, 23],
which is an implementation of MPI for FPGA by creating a soft-
ware library for embedded processors and TMD Message Passing
Engine (TMD-MPE) for hardware kernels. This engine brings MPI
functionality to hardware kernels by handling MPI’s protocol and
packet generation. This approach not only utilizes soft logic on the
FPGA but requires refactoring when migrating applications to new
FPGA devices.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed an MPI implementation capable of doing
inter-FPGA transfers. By removing application-level staging calls
and doing the staging implicitly from within the MPI runtime not
only does this simplify the application’s code, but it also allows
the MPI runtime to provide optimizations that may be difficult to
implement. This enables application developers to spend less time
focusing on communication code and focus more on optimizing
computation, increasing productivity. Furthermore, since MPI is the
defacto solution for interprocess communication in HPC workloads,

Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication

this makes it easier to alter existing CPU-based or GPU-based HPC
applications. Communication code can remain untouched.

We presented our One-Shot point-to-point designs for an FPGA-
aware MPI implementation and proposed two optimized designs
for large message sizes. Furthermore, we executed an analysis of
two optimizations provided through the OpenCL and XRT run-
times and their effects on the MPI runtime. Using these results, we
implemented our FPGA-aware MPI runtime. We also developed a
microbenchmark and demonstrated that our designs enable up to
25% improvement for small intranode transfers and 50% and 33% im-
provement for large internode and intranode transfers respectively
for point-to-point communication between FPGAs.

In future work, we would like to explore accelerating existing
HPC applications by developing FPGA kernels and utilizing our
designs. Furthermore, we would like to provide a framework to
use our MPI design in a way that enables streamed computation
rather than the traditional compute-then-communicate paradigm
traditionally used in MPI applications. Doing so will encourage the
adoption of FPGAs in the HPC community. Adopting these devices
may enable end-to-end co-design and innovative architectures to
accelerate modern-day applications.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, and #2018627. We also would like to thank
AMD for access to resources through the Heterogeneous Acceler-
ated Compute Clusters (HACC) program and University of Pader-
born for granting access to Noctua2.

REFERENCES

[1] Bayatpour, M., Sarkauskas, N., Subramoni, H., Magbool Hashmi, J., Panda, D.K.:
Bluesmpi: Efficient mpi non-blocking alltoall offloading designs on modern blue-
field smart nics. In: Chamberlain, B.L., Varbanescu, A.L., Ltaief, H., Luszczek, P.
(eds.) High Performance Computing. pp. 18-37. Springer International Publishing,
Cham (2021)

Chen, D.: Fpgas in supercomputers: Opportunity or folly? In: Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
p. 201. FPGA 19, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3289602.3293929, https://doi.org/10.1145/3289602.
3293929

Christgau, S., Knaust, M., Steinke, T.: A first step towards support for mpi parti-
tioned communication on sycl-programmed fpgas. In: IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Computing,
H2RC@ SC 2022, Dallas, TX, USA, November, 2022 (2022)

Favaro, F., Dufrechou, E., Oliver,].P., Ezzatti, P.: Time-power-energy balance of
blas kernels in modern fpgas. In: Navaux, P., Barrios H., CJ., Osthoff, C., Guer-
rero, G. (eds.) High Performance Computing. pp. 78-89. Springer International
Publishing, Cham (2022)

Freitag, T.: Acceleration of an autoencoder using a fpga-soc in a high-performance
node of a distributed onboard computer (2022), https://publica.fraunhofer.de/
handle/publica/430107

Graph 500 green list (november 2022). https://graph500.org/?page_id$=$1128
(2022)

Haghi, P., Guo, A., Xiong, Q., Yang, C., Geng, T., Broaddus, J.T., Marshall, R.,
Schafer, D., Skjellum, A., Herbordt, M.C.: Reconfigurable switches for high per-
formance and flexible mpi collectives. Concurrency and Computation: Practice
and Experience 34(6), 6769 (2022)

de Haro, .M., Cano, R., Alvarez, C., Jiménez-Gonzalez, D., Martorell, X., Ayguadé,
E., Labarta, J., Abel, F., Ringlein, B., Weiss, B.: Ompss@ cloudfpga: An fpga task-
based programming model with message passing. In: 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 828-838. IEEE (2022)
He, Z., Parravicini, D., Petrica, L., O’Brien, K., Alonso, G., Blott, M.: Accl: Fpga-
accelerated collectives over 100 gbps tcp-ip. In: 2021 IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Computing
(H2RC). pp. 33-43. IEEE (2021)

487

ICS °23, June 21-23, 2023, Orlando, FL, USA

[10] Jouppi, N.P.,, Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,
Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis
of a tensor processing unit. In: Proceedings of the 44th annual international
symposium on computer architecture. pp. 1-12 (2017)

Laboratory, N.B.C.: Mvapich: Mpi over infiniband, 10gige/iwarp and roce. http:
//mvapich.cse.ohio-state.edu/

Laboratory, N.B.C.: OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/
benchmarks/, [Online; accessed May 15, 2023]

Lant, J., Navaridas, J., Lujan, M., Goodacre, J.: Toward fpga-based hpc:
Advancing interconnect technologies. IEEE Micro 40(1), 25-34 (2020).
https://doi.org/10.1109/MM.2019.2950655

Lin, Y.C., Zhang, B., Prasanna, V.: Accelerating gnn training on cpu+multi-fpga
heterogeneous platform. In: Navaux, P., Barrios H., C.J., Osthoff, C., Guerrero, G.
(eds.) High Performance Computing. pp. 16-30. Springer International Publishing,
Cham (2022)

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 4.0 (Jun 2021), https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.
pdf

Meyer, M., Kenter, T., Plessl, C.: Evaluating fpga accelerator performance with
a parameterized opencl adaptation of selected benchmarks of the hpcchallenge
benchmark suite. In: 2020 IEEE/ACM International Workshop on Heterogeneous
High-performance Reconfigurable Computing (H2RC). pp. 10-18. IEEE (2020)
Nguyen, T., Williams, S., Siracusa, M., MacLean, C., Doerfler, D., Wright, N.J.: The
performance and energy efficiency potential of fpgas in scientific computing. In:
2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). pp. 8-19. IEEE (2020)

OpenCL Specification. https://registry.khronos.org/OpenCL/specs/3.0-unified/
pdf/OpenCL_APLpdf (2022)

Open MPI: Open Source High Performance Computing. http://www.open-
mpi.org

Plessl, C.: Bringing fpgas to hpc production systems and codes (11 2018), invited
talk at the R2HC 18 workshop at SC’18

Ringlein, B., Abel, F., Ditter, A., Weiss, B., Hagleitner, C., Fey, D.: Programming
reconfigurable heterogeneous computing clusters using mpi with transpilation. In:
2020 IEEE/ACM International Workshop on Heterogeneous High-performance
Reconfigurable Computing (H2RC). pp. 1-9. IEEE (2020)

Saldana, M., Chow, P.: Tmd-mpi: An mpi implementation for multiple processors
across multiple fpgas. In: 2006 International Conference on Field Programmable
Logic and Applications. pp. 1-6 (2006). https://doi.org/10.1109/FPL.2006.311233
Saldafia, M., Patel, A., Madill, C., Nunes, D., Wang, D., Chow, P., Wittig, R.,
Styles, H., Putnam, A.: Mpi as a programming model for high-performance
reconfigurable computers. ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 3(4), 1-29 (2010)

Sanaullah, A., Herbordt, M.C.: Fpga hpc using opencl: Case study in 3d fft. In:
Proceedings of the 9th International Symposium on Highly-Efficient Accelerators
and Reconfigurable Technologies. pp. 1-6 (2018)

Sarkauskas, N., Bayatpour, M., Tran, T., Ramesh, B., Subramoni, H., Panda,
D.K.: Large-message nonblocking mpi_ iallgather and mpi ibcast offload
via bluefield-2 dpu. In: 2021 IEEE 28th International Conference on High
Performance Computing, Data, and Analytics (HiPC). pp. 388-393 (2021).
https://doi.org/10.1109/HiPC53243.2021.00054

Shawahna, A., Sait, S.M., EI-Maleh, A.: Fpga-based accelerators of deep learning
networks for learning and classification: A review. ieee Access 7, 7823-7859
(2018)

Steiger, R.: HPCG for FPGAs: A Data-Centric Approach. B.S. thesis, ETH Zurich
(2022)

Stern, J., Xiong, Q., Skjellum, A., Herbordt, M.: A novel approach to supporting
communicators for in-switch processing of mpi collectives. In: Workshop on
Exascale MPI (2018)

Top500. https://www.top500.org/lists/top500/2022/11/ (2022)

Wang, H., Potluri, S., Luo, M., Singh, AK,, Sur, S., Panda, D.K.: Mvapich2-gpu:
optimized gpu to gpu communication for infiniband clusters. Computer Science-
Research and Development 26(3), 257-266 (2011)

[11

[12

(13]

[15

[16

[17

=
&

[19

[20

[21

[22

I
&

[24

[25

https://doi.org/10.1145/3289602.3293929
https://doi.org/10.1145/3289602.3293929
https://publica.fraunhofer.de/handle/publica/430107
https://publica.fraunhofer.de/handle/publica/430107
https://graph500.org/?page_id$=$1128
 http://mvapich.cse.ohio-state.edu/
 http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.top500.org/lists/top500/2022/11/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 The Message Passing Interface
	2.2 FPGAs
	2.3 OpenCL
	2.4 The Xilinx Runtime

	3 Design
	3.1 One-Shot Staged Design
	3.2 Internode Pipelined Design
	3.3 Intranode Peer-to-Peer Design

	4 Experiments and Evaluation
	4.1 Experimental Systems and Software
	4.2 Experiments and Results

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

