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Abstract—Smart Network Interface Cards (SmartNICs) such
as NVIDIA’s BlueField Data Processing Units (DPUs) provide
advanced networking capabilities and processor cores, enabling
the offload of complex operations away from the host. In the
context of MPI, prior work has explored the use of DPUs
to offload non-blocking collective operations. The limitations
of current state-of-the-art approaches are twofold: They only
work for a pre-defined set of algorithms/communication patterns
and have degraded communication latency due to staging data
between the DPU and the host. In this paper, we propose
a framework that supports the offload of any communication
pattern to the DPU while achieving low communication latency
with perfect overlap. To achieve this, we first study the limitations
of higher-level programming models such as MPI in expressing
the offload of complex communication patterns to the DPU. We
present a new set of APIs to alleviate these shortcomings and
support any generic communication pattern. Then, we analyze
the bottlenecks involved in offloading communication operations
to the DPU and propose efficient designs for a few candidate
communication patterns. To the best of our knowledge, this

patterns, and 2) The underlying mechanisms used to efficiently
offload communication operations.

The mechanisms used for offloading communication op-
erations either involve an asynchronous thread [4] on the
CPU, or an external hardware device such as a SmartNIC or
switch. While using another thread on the CPU for progress-
ing communication is convenient, the presence of additional
threads steals CPU cycles that would otherwise be used
for application computation. Switch-based offload techniques,
such as NVIDIA SHARP [5], are highly effective for certain
communication operations, especially because switches can
eliminate redundancy, are aware of the network topology, and
can perform operations at very fast rates. However, current
switch-based solutions only support barrier/reduction opera-
tions and operate on limited switch-based resources.
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communication offload to the DPU. Our proposed framework
outperforms state-of-the-art staging-based offload solutions by CPU Timeline VN Computel EWPIL  Compute2 [WPIN|
HCA Timeline

47% in Alltoall micro-benchmarks, and at the application level,
we see improvements up to 60% in P3DFFT and 15% in HPL
on 512 processes.
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I. INTRODUCTION

Modern CPU-based High-Performance Computing (HPC)
clusters employ the use of powerful processors with high core
counts, and high-bandwidth, low-latency network interface
cards (NICs)/switches. The emergence of network hardware
such NVIDIA’s ConnectX-7 NICs [1]/Quantum-2 switches [2]
capable of 400Gbps per port, and 128+ core AMD EPYC
CPUs [3], indicate a trend toward supporting massive amounts
of compute and network parallelism for AI/HPC workloads.
The onus is on communication libraries and applications
to efficiently utilize these platforms. A popular strategy to
achieve this goal is by offloading communication operations
to another thread/hardware resource to overlap them with
compute operations. The idea of “offloading” a communication
pattern can be viewed from two perspectives: 1) The set
of APIs that define how to orchestrate the offload of these
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Fig. 1. Comparison of a Ring-based broadcast communication pattern
per process between 1) Standard MPI implementation, 2) Staging offload
mechanism utilizing new proposed primitives/APIs, 3) Proposed, advanced
offload mechanism utilizing new proposed primitives/APIs

From an API perspective, popular programming models
such as MPI [6] and OpenSHMEM [7] provide primitives for
non-blocking point-to-point and collective operations. While
these non-blocking functions are effective at expressing a wide
variety of offload scenarios, they fail to capture the semantics
of ordering without synchronized calls such as MPI_Wait.
This is problematic in cases where the host tries to offload
a series of ordered operations to another device (such as a
SmartNIC). Issuing an MPI_Wait would force the host to block
until the operation completes, which results in sub-optimal
utilization of CPU resources. In the context of MPI, the
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same problem is exacerbated with certain collective algorithms
that are implemented using only point-to-point operations.
This is explained in Figure 1 which shows a simple ring
communication pattern that has two steps. In the first step
data from transferred from process 1 to process 2. Then,
process 2 transfers the received data to process 3 in the second
step. Existing non-blocking primitives in MPI do not give
the flexibility to the implementation to efficiently overlap this
kind of communication pattern as there is a data dependency
between successive steps. Figure 1 shows the timeline of the
progression of events on CPU and HCA of process 2 for three
cases. In the first case, the ring communication pattern is im-
plemented using non-blocking MPI point-to-point primitives.
In this case after step 1, due to the computation on the CPU,
there is a delay in the initiation of the second step at process
P2 which impacts the overall time. Our proposed primitives
alleviate this issue by providing a set of APIs that will record
the entire data-exchange pattern in the beginning, with a call
to complete the transfer. This provides the implementation the
flexibility to offload any kind of pattern to an external device.
Next, we look at the mechanisms to implement our proposed
framework.

Existing solutions to offload communication to the DPUs
such as [8], [9] provide offload support only for specific
communication patterns (MPI_lalltoall and MPI_Ibcast, re-
spectively) using staged mechanisms. This limits the usability
of such solutions for various applications that use basic point-
to-point primitives to perform custom communication patterns.
Our framework extends the applicability of staged mechanisms
for any generic communication pattern, such as point-to-point
operations or patterns with dependencies (e.g. ring). However,
in staging-based mechanisms, data has to be moved from the
host to the DPU and to the destination host process from the
DPU. Though the scheme provides overlap, it incurs additional
overhead in the communication latency, which significantly
degrades performance as shown in Figure 1, case (2). To
alleviate this, we propose efficient mechanisms that avoid
staging using X-GVMI, which leads to better performance
(shown in Figure 1, case (3)).

A. Problem Statement

NVIDIA’s BlueField Data Processing Units (DPUs) [10]
provide advanced networking capabilities and processor cores
that can be used to offload communication operations. Current
state-of-the-art DPU-based MPI offload solutions [8], [9] incur
significant data movement costs due to the limitation of the
DPU processes not having direct access to host memory for
RDMA operations. To alleviate this problem, modern NVIDIA
SmartNIC DPUs provide a feature called cross-GVMI, which
allows host processes to expose their memory regions to DPU
processes.

This paper tackles the problem of efficient communi-
cation offload to DPUs by proposing a framework that
defines a set of APIs to express hardware-based offload
for any generic communication pattern, and designs to
alleviate bottlenecks in using the cross-GVMI mechanism.
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The framework is designed to be programming model agnos-
tic, and to provide perfect overlap with low communication
latency for both point-to-point as well as collective operations.

II. MOTIVATION AND CHALLENGES

We motivate the need for our proposed framework by
discussing the limitations of higher-level programming models
such as MPI in expressing offload primitives and the bottle-
necks involved in DPU-based offloading techniques.

A. Semantic mismatch between higher-level MPI primitives
and DPU-based offload

We show the limitations of higher-level MPI-like primitives
in effectively offloading communication patterns by taking a
simple ring-based exchange code similar to the communication
pattern found in High-Performance Linpack (HPL) Code (see
Section VIII-D)

int next, prev;

next = (my_rank + 1)% num_ranks;
prev = my_rank - 1;
if (rank == 0) {

6 MPI_Isend(..next, &req);
while (!complete) {

8 do_compute () ;

9 MPI_Test (&complete, req);
10 }
) } else {
12 MPI_TIrecv(..prev, &req);
13 while (!complete) {
1 do_compute () ;
15 MPI_Test (&complete, req);
16 }
1 //Received data from left, now send
//it to my right neighbor
19 complete = 0;
20 MPI_TIsend(..next,
21 while (!complete) {
2 do_compute () ;

3 MPI_Test (&complete, req);

&req) ;

Listing 1. Ring Bcast Example

Listing 1 provides a pseudo-code for a simple ring pattern
where the data from process/rank 0 broadcasts to other pro-
cesses in a ring-like exchange as explained in figure 1. This
type of communication pattern has a data dependency in each
step. Therefore, even with the non-blocking MPI primitives,
it is necessary for the application to call MPI primitives in
order to progress the communication. In the Listing 1 a rank
receives data while the application is busy doing computation
in line 14, and the data transfer gets delayed as shown in
case 1 of Figure 1. The transfer is started only when the code
reaches line 20. This kind of CPU intervention is required
with the existing MPI’'s APIs because of the ordering of the
steps forced by the communication pattern. This brings us to
our first challenge: How do we design a generic set of APIs
for offloading any communication to DPUs that does not
force the requirement of the CPU’s intervention even with
ordered communication patterns such as the ring?
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Fig. 2. RDMA-Write Latency of Host-to-Host versus Host-to-DPU
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Fig. 3. RDMA-Write Bandwidth of Host-to-Host versus Host-to-DPU.
Normalized with respect to Host-to-Host, higher is better.
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B. Synchronization overheads between Host and DPU

The offload of collective operations requires the exchange
of synchronization messages and metadata (such as the buffer
addresses, registered keys, sizes of data, etc.) between the
Host and DPU processes. Figures 2 and 3 show the latency
and bandwidth of host-to-host transfers versus DPU-Host
transfers. Though the DPU-Host numbers shown here are
between a local Host and a remote DPU, the numbers remain
the same for local Host-DPU-based transfer. We observe that
while the latency of DPU-Host transfers is close to Host-to-
Host transfers, Host-to-Host transfers have close to twice the
bandwidth of DPU-Host transfers. This can be explained by
the slower ARM cores (relative to the host) on the current
generation of NVIDIA DPUs, since the bandwidth of smaller
messages (their injection rate) is sensitive to the frequency of
the processor. This brings us to the second challenge: Can we
design APIs and mechanisms to minimize the overheads
involved in synchronization and metadata exchange be-
tween the Host and the DPU for various communication
patterns?

C. Registration and other data movement overheads

Authors in [8], [9] proposed collective algorithms using
DPUs for offloading communication operations. Figure 4
shows results of a simple ping-pong benchmark that contains
non-blocking sends/receives followed by an MPI_Waitall op-
eration. The brown bars show the default host-to-host latency
for different message sizes. The green bars show the latency
of using a staging-based design that uses DPU memory as an
intermediate memory to transfer data between two hosts. The
figure shows a degradation for staging-based transfers when
compared to direct host-host transfers. Cross-GVMI aims to
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fix this by allowing the DPU to perform transfers on behalf
of the host. However, it has a few caveats.

For a DPU process to transfer data with cross-GVMI, two
kinds of memory registration must happen. First, the source
buffer must be registered by the host process. Second, the DPU
(or worker) process must use the same source address/key from
the first registration to perform another registration operation.
This registration needs to be performed every time a send-
receive operation occurs. Section V explains this process
in further detail. The costs of registration are quantified
in figure 5. These overheads are significant and will hurt
application/benchmark performance if not handled correctly.
Standard MPI libraries use a registration cache to amortize
the cost of memory registration which is useful when requests
have a repetition of buffer addresses. Traditional registration
caches cannot be used here as they maintain only local
buffer information on the host. With cross-GVMI, registration
occurs on both the host and the DPU. Moreover, the second
registration not only depends on the buffer address but also
requires additional parameters from the first registration. This
requires designing registration caches that work on both the
host and the DPU, as well as efficient synchronization between
the designed registration caches to maintain correctness and
achieve good performance. This brings us to the third chal-
lenge: How can we design an efficient registration cache
for cross-GVMI transfers that amortizes various overheads
and gives performance comparable to the host?
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ITII. CONTRIBUTIONS
We propose a framework that offloads communication oper-
ations to the DPU (from the host). Our framework is designed
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to tackle two fundamental shortcomings of state-of-the-art
solutions: 1) Semantic mismatches arising from higher-level
abstractions that lead to sub-optimal offload for certain com-
munication patterns. 2) Avoid staging overheads between DPU
and host, and other associated overheads involved in cross-
GVMlI-based transfers. To achieve these, we propose a set of
primitives (APIs) that allows the offload of any communication
pattern, and designs to amortize various overheads associated
with DPU-based transfers. We implement our framework
inside a production MPI library to demonstrate the efficacy
of our designs. We make the following key contributions:

o Identify limitations of higher-level programming models
such as MPI in expressing the offload of complex com-
munication patterns

« Analyze synchronization and data movement bottlenecks
for generic point-to-point and collective transfers of-
floaded to the DPU

o Propose a framework with APIs to conveniently express
the offload of generic communication patterns to the DPU

o Propose basic and optimized designs to implement the
APIs

« Demonstrate the efficacy of the proposed designs on real
systems using micro-benchmarks and applications. Our
framework outperforms state-of-the-art solutions by up
to 47% in ialltoall micro-benchmarks and up to 60%
and 15% in the P3DFFT and HPL respectively.

IV. BACKGROUND

To further understand overlap and offload in the context of
MPI, we need to understand MPI semantics, implementation,
and underlying hardware/capabilities.

MPI provides both blocking and non-blocking semantics.
Blocking semantics dictate that, on the sender’s side, the
buffer can be re-used after returning from MPI_Send, and
for the receiver, the data is available in the buffer after a
call to MPI_Recv returns. Non-blocking semantics provides
MPI_Isend and MPI_Irecv, which return a request object, and
MPI_Wait which takes in a request object to ensure that the
request is complete. After returning from MPI_I* functions,
MPI_Test can be used with the same request object to progress
the communication and check for completion.

InfiniBand [11] is one of many popular network-level in-
terconnects supported by a large number of MPI libraries.
Infiniband requires memory regions to be registered with the
HCA before they can be used for data transfers. Every memory
registration with the HCA using the ibv_reg_mr function
returns an “lkey” and “rkey”. For any RDMA operation
(READ or WRITE) posted local on a buffer requires an
“lkey” returned from the buffer registration. For a process to
perform any RDMA operation on a remote buffer, an “rkey”
of the remote buffer is needed. This is why MPI processes
typically exchange rkeys of buffers before performing actual
data transfer.

V. OVERVIEW OF CROSS-GVMI
For a DPU process to transfer data from one host process to
another, the data has to be read from the source host process’
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Fig. 6. Data transfer path for staged and GVMI-based transfer. Staged suffers
from the overhead of an extra RDMA-write to DPU

memory to the DPU’s memory, and then the data is written
to the destination host’s memory. This mechanism is called
staging. However, GVMI enables a DPU process to transfer
data from a process on the local host machine to any process
on a remote host. Figure 6 contrasts the steps involved in
transferring data from one node (NODE 1) to the other (NODE
2) using GVMI and staging mechanism. We observe that a
staged transfer requires an additional movement of data to
NODE1’s DPU’s memory which is not required in a GVMI-
based transfer.

First, a DPU process on NODE1 generates a GVMI-ID
(done only once per protection domain) and sends it to the host
process on NODE]1. The host process then registers the source
buffer with this GVMI-ID. After registration, the host process
sends the source address, buffer size, and mkey (obtained
from registration) to the DPU process. Next, the destination
process on host-2 registers the destination buffer and sends
the buffer information to the DPU process, which registers
the source buffer to obtain mkey2. This process is called
“cross-registration”. It requires the source buffer address, mkey
(obtained from the source process), buffer size, and source
GVMI-ID. Finally, after generating mkey2, the DPU process
does an RDMA-Write to the remote process. For the final
RDMA-Write, the DPU process uses mkey?2 as the lkey and all
other parameters do not change. The final mkey?2 is analogous
to an lkey in a normal InfiniBand transfer as described in
Section IV. However, now the mkey?2 is used to transfer data
on behalf of a host process’ local buffer.

VI. DESIGNING APIS FOR EXPRESSING GENERIC
COMMUNICATION PATTERNS

In this section, we address the challenge mentioned in
section II-A by proposing a set of APIs. We first propose
Basic primitives which are required to support basic transport
operations such as sends and receives available in any com-
munication library. Then we propose Group primitives which
provide APIs to completely offload any kind of communication
pattern which cannot be expressed with current communica-
tion models such as MPI, and OpenSHEM.

A. Proposed Primitives

Listing 2 presents the set of proposed basic primitives.
The simple primitives are largely parallel to MPI point-to-
point primitives. Listing 3 explains how to write a simple
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ping-pong program with the Basic Primitives and MPI. The
Init_Offload function initializes the library by creating
and assigning ranks to all the processes. Send_Offload
and Recv_Offload functions are two-sided non-blocking
functions that offload the sends and receives to the DPU.
The Wait function is for the calls to complete. addr is
the buffer address from/to which the data is moved when
Send_Offload/Recv_Offload primitive is invoked. The
dst and src fields specify the destination and source host
ranks involved in the data transfer. For every Send_Offload
there should be a matching Receive_Offload. tag, dst,
and dst fields are used for matching the sends and receives.
req is the identifier for a particular transfer that can later be
used in the Wait function to complete the transfer.
B. Group Primitives

Listing 4 lists the set of APIs in Group Primitives. A Groups
Primitives-based implementation of the ring pattern described
in Listing 1 is shown in Listing 5. Any algorithm using group
primitives must begin with Group_Offload_start, which
returns a request object. Any subsequent calls to Send_~* or
Recv_~* functions must use the same request object. After all
the calls are made, Group_Offload_end must be called
to mark the termination of the communication pattern. Then
Group_Offload_call must be used to offload the entire
communication graph that is recorded by the request object.
To enforce ordering between local transfers, we introduce
Local_barrier_Goffload which ensures that any oper-
ations after the barrier will begin only after the completion of
all the operations before it. This operation is local to a process.
This operation cannot be done in a nonblocking manner with
the MPI APIs. Therefore, the group primitives provide users
the flexibility to implement any kind of communication pattern
with the goal of complete non-blocking semantics which will
allow the implementation to offload the entire pattern to DPU.
In addition, it also makes it convenient for the implementation
to provide optimizations which are described in a later section.
Lines 19 to 21 in Listing 5 show how we offload the entire
ring communication pattern to the DPU and achieve overlap
without the CPU intervention unlike the ring code shown in
Listing 1.

> Init_Offload() ;

3 Send_Offload (voidx addr,

7 Recv_Offload (void* addr,

8

9
10
11
12

size_t size,
OffloadRequest x*req,
int dst_rank,
int tag);
size_t size,
OffloadRequest =xreq,
int src_rank,
int tag);
Wait (OffloadRequest req);
Finalize Offload();

Listing 2. Basic Primitives
//Ping—-Pong with Basic Primitves

> Init_Offload();

3 void #sbuf,

*rbuf;

size_t size 1024;
OffloadRequest x*req;
Send_Offload(sbuf, size, &req,

1, 3);

’ Recv_Offload(rbuf, size, &req,1,3);
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Wait (&req);
Finalize_Offload() ;

with MPI
> MPI_Init();
3 void =*sbuf,
4 size_t size
15 MPI_Request reqg;
16 MPI_Isend(sbuf,size, ...
17 MPI_TIrecv (rbuf,size, ...
18 MPI_Wait (&req, st);

10
11 //Ping-Pong
1
1

*rbuf;

1024;

MPI_Status st;
)i

)i

Listing 3. Ping-Pong Example with Basic Primitives

> Send_Goffload (voidx addr, size_t

OffloadGroupRequest
} int dst_rank,

5 int tag);

s Recv_Goffload (voidx addr, size_t
OffloadGroupRequest

8 int src_rank,

9 int tag);

10 Local_barrier Goffload (OffloadGroupRequest xreq);

11 Group_Offload start (OffloadGroupRequest =*req);

12 Group_Offload _end (OffloadGroupRequest =*req);

1

1

size,
*req,

size,
xreq,

3 Group_Offload_call (OffloadGroupRequest =*req);
. Group_Wait (OffloadGroupRequest xreq);

Listing 4. Group Primitives

//Bcast with Ring Exchange
> Init_Offload();
3 void xbuf;
OffloadRequest =req;
left (rank - 1 + numProcs) $%
right (rank + 1) % numProcs;
Group_Offload_start (&req) ;
g if (rank == 0) {
9

— o

comm_size;

Send_Goffload(sbuf, bufsize,

Local_barrier_Goffload(&req);

&req, right, 4);
} else

1

1

12 Recv_Goffload(rbuf, bufsize, &req, left, 4);
1 Local_barrier_Goffload(&req);

14 Send_Goffload(rbuf + idx_send » bufsize,

4);

bufsize
, &req, right,
15 }

16 Group_Offload_end(&req);
17 //Overlap with compute

18 Group_Offload_call (&req);
19 do_compute () ;

Group_Wait (&req) ;

Listing 5. Ring Pattern Example with Group Primitives

VII. DESIGNING EFFICIENT MECHANISMS USING
DPU-BASED OFFLOAD FOR HOST-HOST TRANSFERS

This section describes the underlying mechanisms used by
our proposed APIs and designs to solve challenges described
in Sections II-B and II-C. In our offload framework, we
launch a set of processes on the DPU that are referred to as
proxy or worker processes. These processes perform the data
transfer on behalf of the host processes. This is how the host
communication is offloaded to the DPU processes.

A. Implementation of Basic Primitives

The Init_Offload() method launches worker pro-
cesses and assigns ranks to each of them similar to MPI ranks.
As described in section V, for GVMI-based registration,
a DPU process needs the remote host process’ GVMI-ID.
Since the GVMI-ID does not change for a process, it gets
generated inside Init_Offload () and exchanged with all
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other processes in the global communicator, which includes
all processes on the host and DPU.

Figure 7 lists the steps of RDMA-Write-based implementa-
tions of Send_Offload () and Recv_Offload () on the
host’s side. After choosing the proxy process, the sender does a
GVMI-based memory registration of the source buffer with the
proxy process’ GVMI-ID to generate a mkey. A host process
is mapped to a proxy process on the DPU in the same Node.
Mappings are calculated using proxy_local_rank
host_source_rank % num_proxies_per_dpu. The
receiver does normal InfiniBand-based registration of the des-
tination address to generate rkey. Then sender and receiver
processes send Ready-To-Send (RTS) and Ready-To-Receive
(RTR) control messages to the chosen proxy process with the
necessary information such as buffer addresses, mkey/rkey,
buffer sizes.

Sonder] [Proxy 1
GMVi-based | SYMH IB-based
Registrationl ] Registration
@ Generate | @ | G%nerate

mKey RTS rKey

T RTR
H ®
Launch [

RDMA_Write

RDMA_Write

Fin Fin

Fig. 7. Generation of GVMI’s mKey and IB-based rKey used in setup for
control-messages and RDMA-Write-based implementation of Send/Recv_Of-
fload()

Figure 8 provides a sequence of events that occur in the
DPU handler when RTR and RTS packets are received. As
shown in Figure 8, a proxy process has two sets of request
queues: one is for send requests, which has the data provided
by the source host process that includes the source address,
data size, mkey, and source request ID; the other is for receive
requests, which contains destination information: size, rkey,
destination request ID. Since multiple source and destination
ranks can send control messages to a given DPU process, the
DPU process maintains a list of request queue headers which
are ordered by the destination rank number. In Figure 8, once
the RTS from 1 arrives, it searches for a matching request in
the receive queue. Since it does not find one, it adds it to the
send queue. Then the RTR arrives, which searches the send
queue and finds a match. Then the request is removed from
the send queue and added to the combined queue. After this,
the requests from the combined queues are processed. Once
the RDMA operations are complete the FIN packets are sent
to the host processes.

B. Optimizing GVMI registration and exchange Overheads
In this section, we outline the optimizations for the Basic
Primitives implementations described in the previous section.
As described in Section V, GVMI involves two types of
registration: one which is done at the host process, and the
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Fig. 8. Proxy Portion of Handling Control Messages on the DPU side Using
GVML.

other which is done at the proxy process. Each of these uses a
different set of input parameters. Source address, data size, and
remote GVMI-ID are the parameters needed for registration
on the host side. This generates an mkey which is sent to the
chosen DPU process. Since remote GVMI-ID depends on a
remote rank, the registration cache needs to use the source
address, data size, and remote-rank as the keys. The DPU
process uses a source address, data size, remote GVMI-ID, and
remote mkey (obtained from the host process) for registration.

Though there are two additional parameters (GVMI-ID,
mkey) for the registration cache, we can still use source ad-
dress, data size, and remote rank as the key to the registration
cache in the DPU process; this is because the value of the
mkey depends on the source address and source data size, so
it is impossible to have multiple values of the same mkey given
a source address and GVMI-ID. Similarly on the DPU side,
for every host rank there are only distinct entries of the set
(source-address, data-size, mkey) provided by the source since
mkey depends on source-address and data-size. Therefore,
one can again use source-adress, data-size, and rank as the
parameters for the DPU’s GVMI-cache.

Based on this, we use an array of Binary Search Trees to
represent the registration cache of both the host and DPU sides.
The array is indexed by remote rank and the BST is indexed
by memory address. The cache has an array at the first level
and a BST at the second level. An array is used at the first
level because there is only a finite number of ranks allowed
in a communicator. When a host process attempts to register
a mkey using source address, data size, and GVMI-ID, the
array of BSTs is queried using the mapped DPU proxy’s rank
as the key to obtain a reference to the correct BST for it.
Then the BST is queried using the address and size to obtain
a cache entry that contains the mkey, GVMI-ID, address, and
data size.

On a cache hit, the entry is returned. On a cache miss, a new
cache entry object is created, the host’s registration function is
called, and the cache entry is updated with the object’s mkey
and inserted to the BST corresponding to its mapped DPU
proxy’s rank. On the DPU side, when a RTS comes, similar
set of querying happens with source-address and host-process’
rank provided in RTS.
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C. Implementation of Group Primitives

Here, we will introduce Group Primitives as a way of
improving upon Simple Basic Primitives.

Local queue Local match
Local buffers
Remote receivers' queues
CVMI | finiBand | Exoee] soe] oo ] | o] Ecore o] e
Send  Receive Gather Match rank, tag, ... ®
Matgheﬂ,;ps C‘[’Tbine From Host1  From Host 2
end/Recv Info = =4
O O
group_offload_packet
Add to combined queue
e ®

Fig. 9. Steps shown when performing Group_Offload_call between GVMI
and InfiniBand, including send/receive, gathering, rank/tag matching, queue
insertion, and offloading to proxy processes.

When a Group_Offload_start function is invoked, a
new request object is created and returned. Any subsequent
calls to Group_* functions with a given request object will
create a new Group_op structure and add all the local and
remote buffer details to it. This will then be added to a queue,
where the request will have the head pointer to that queue.

Figure 9, lists the steps involved in the host process when
Group_Offload_call is invoked. Local buffers here are
the buffer addresses (addr field) obtained from group prim-
itive calls. First, the send buffers are registered using GVMI
cache, and receive buffers are registered using IB registration
cache. Then Group_op queue is gathered from all receiving
processes. After this, each Group_op send entry from the
source queue is matched with a matching receive entry in
the remote queues based on destination rank, tag. Then the
queue of matched entries is added to a Group_Offload_-
packet and sent to the corresponding proxy process that
is mapped to the host process. Group_Offload_packet
contains Group_op queue, host-rank, request-ID obtained
from Group_Offload_call.

Proxy 1 Combined G_ops
Local buffers i |

Proxies exchange
counter buffer info

Peor P (=S|
VM gt crsita| | {T
RDMA_Write
o Feorost
@ Combined G_ops @
Proxy 1 Combined G_ops| Proxy 1 Combined G_ops
!Barrier!l R— RDMA_Write 1 Completion
N Poll peer's|
T @ buffer ) @ >.<4.>©

Fig. 10. Steps shown when performing Group_offload_packet han-
dling, including RDMA-based operations and updating of buffer counters.
Figure 10 shows at a high level the steps involved in the
proxy side when a Group_Offload_packet is received.
First, all the proxies exchange a pre-registered buffer counter
which is used for implementing barrier. Then for each entry
in the received queue, if a send operation is encountered the
sender buffer is registered with GVMI cache to generate the
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final mkey. Then RDMA write is posted. If a barrier is encoun-
tered, the sender writes the barrier count to its remote peer’s
counter buffer. Then it polls for the local barrier counter if any
receive operation was posted. Only after the expected barrier
counter is read, the next entry is processed. This process
repeats until all the entries are processed. Once all entries
are processed, the completion counter on the host memory
is updated using RDMA-write and the barrier counters are
cleared

When a Group_Wait is called, each host process waits
until the completion counter associated with the given request
object is set. Once the completion counter is set, the function
returns.

The barrier-counters are needed because each worker pro-
cess must know the receive completion progress of its locally
mapped host process.

D. Optimizing Group Primitives

Here, we take our baseline implementation and show how
we were able to optimize our Group Primitives, by including
caches to reduce host-to-DPU control message exchange.

We introduce caches in the host and worker processes to
reduce the overhead of control messages and registrations. On
the host side, the cache is indexed by the request ID and proxy
rank. Each entry of the cache contains the buffer addresses,
entries of the GVMI and IB registration caches, and a flag
indicating whether request details were sent to the proxy rank.
On the DPU side, a cache is created which is indexed by the
host’s request ID and rank. If the host detects a cache hit, it
sends the request ID to the DPU. The DPU queries the cache to
retrieve the corresponding Group_op entry queue. In addition
to this information, the group entry queue also contains the
GVMI registration cache entry. This way, the DPU process
is saved from searching the GVMI cache for each Group_op
entry.

Algorithm 1 concisely describes the steps performed by
the proxy process when a Group_Offload_packet is
received and it is a cache hit. The PostCachedEntryOps
iterates over the Group_op entry objects and issues send
RDMA operation if a send is encountered. If a receive entry is
encountered, the source host rank is added to recvRankSet
hashset. Similarly, the distinct destination ranks are recorded
after posting send operations. Once a barrier entry is encoun-
tered, we increment the numBarriers counter variable.

After all the preceding sends are completed, the value of
numBarriers is written to all proxy process’ barrier coun-
ters which are mapped to the list of destination ranks present in
the sendRankSet hashset. The local barrier counter is then
polled for the value of numBarriers from all the proxy
ranks mapped to the ranks present in the recvRankSet. If
the counter values are not found, then the request is marked
incomplete and the code returns to the progress engine. This is
needed because the proxy process could be handling multiple
host processes. Therefore, to avoid deadlock in the event of
one proxy waiting for the receive that is posted by the same
proxy, we need to break from the function to the progress
engine to progress other requests as well.
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Algorithm 1: High-Level Proxy Side Algorithm to
Process GroupOffload packet

1 Function PostCachedEntryOps (cacheEntry) :
2 foreach curOpEntry in
cacheEntry— > GroupOpEntries do

3 if curOpEntry— > type == SEND then
PostRDM AW rite(curOpEntry)
5 sendRankSet.add(curOpEntry— >
| dstRank)
6 else if curOpEntry— > type == RECYV then
7 recvRankSet.add(curOpEntry— >
| srcRank)
8 else if curOpEntry— > type == BARRIER
then
9 cache Entry— > numBarriers + +
10 writeRemote BarrierCnir(send RankSet,
1 cacheEntry)
12 sendRankSet.clear()
13 if isRecvBarrier Done(recvRank,
14 cacheEntry) == False then
15 | break;
16 else
17 | recvRankSet.clear()

VIII. EXPERIMENTAL EVALUATION
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Fig. 11. 3DStencil Normalized Overall Time for Proposed GVMI and Intel
MPI, running with 16 Nodes 32 PPN
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for Proposed GVMI and Intel MPI, running with 16 Nodes 32 PPN
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Our experimental platform has 32 nodes, each equipped
with a BlueField-2 SmartNIC as well as a separate ConnectX-
6 HCA, the Broadwell series of Xeon dual-socket, 16-core
processors with 3.40 GHz and 256 GB RAM.

We implemented the proposed schemes in an MPI library.
We used basic primitives to implement MPI non-blocking
sends and receives. We used Group Primitives to implement
non-blocking collectives. In this section, we compare the
performance of the proposed APIs implemented in our base
MPI library with the following MPI runtimes: Intel MPI 2021
(InteIMPI), BluesMPI framework. We would like to point out
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that BluesMPI is a DPU-offload-support-based MPI library
that uses a staging mechanism to offload MPI_Talltoall.

For micro-benchmark-level evaluation, we utilize OMB [12]
to show the benefits of our Group Primitives over the state-
of-the-art DPU offload framework BluesMPI. Each test was
run for 100 iterations and an average of 3 runs is reported.
For evaluating Simple Primitives, we use an in-house 3D-
Stencil Overlap benchmark. For application-level results, we
compared the performance of a non-blocking version of
P3DFFT [13] which overlaps the computation with MPI_Iall-
toall communication and HPL 2.3 with ring-based broadcast.
A. Basic Primitives Evaluation with 3DStencil Benchmark

3D Stencil benchmark follows a near-neighbor communi-
cation pattern which is common in HPC applications. In this
benchmark, each process sends and receives data buffers using
MPI_Isend/MPI_Irecv to/from at most 6 neighbors. A dummy
compute is overlapped with the communication. The % Over-
lap is measured in a manner similar to OMB Non-Blocking
Collectives. We ran this benchmark for 3 problem sizes:
512x512x 512, 1024 x 1024 x 1024, and 2048 x 2048 x 2048.

We compared this with IntelMPI default as BluesMPI does
not support point-to-point offload. Figure 11, gives the overlap
time which has both compute and communication overlapped.
We observe that we get more than 20% benefits. Figure 12
shows the percentage overlap obtained for all the cases. We
observe that the percentage overlap remains more or less
constant at around 78% for the Proposed schemes, however, it
drops for InteIMPI for the largest problem size because of
which the overall time is also impacted. We note that the
Proposed Scheme’s overlap is not 100% because the intra-node
MPI transfers do not use our Simple Primitives for offloading,
therefore they are more or less blocked by the CPU.
B. Group Primitive Evaluation with MPI_lalltoall

We implemented a scatter-destination Algorithm using
Group Primitives in MPI_Ialltoall. Figure 13 shows the overall
time for MPI_Ialltoall which includes communication and
compute time on 4, 8, and 16 nodes with 32 processes per
node. On 4 nodes, the Proposed scheme performs up-to 25%
better than BluesMPI, and 35% better than InteIMPI. On
8 nodes, we get 40% improvement compared to IntelMPI
and up-to 30% improvement compared to BluesMPIL. As we
scale up to 16 nodes, we achieve up to 58% improvement
compared to InteIMPI and 47% improvement compared to
BluesMPI. The primary reason for the improvements com-
pared to BluesMPI is the benefits from the absence of staging,
and the caching design contributes to further enhancement.
This is corroborated by the communication latency where
GVMI outperforms BluesMPI for all scales. Figure 14 shows
the percentage overlap for MPI_Ialltoall on 4,8,16 nodes with
32 processes per node. We observe that both BluesMPI and
the Proposed scheme provides close to a 100% overlap. Since
the Proposed scheme’s communication time is superior, it
outperforms BluesMPI.
C. Benefits of Group Primitives for Dense Patterns

In Figure 15, we show the performance of a simple scatter-
destination pattern for a personalized alltoall exchange on 8
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nodes/32 PPN. We implemented it using a) Simple Primitives
and b) Group Primitives. We observe that the Group Primitives
based implementation gives an improvement of up-to 40%
over the Simple Primitives based implementation. In the Sim-
ple Primitives version, for each send-recv transfer from host-
to-host, four control messages are exchanged between the host
and DPU: two for RTS and RTR during initialization and two
for FIN packets at the end. However, in the Group Primitives
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Fig. 15. Impact of using cache to reduce control messages between Host and
DPU on 8 Nodes 32 PPN for Scatter-Destination Pattern

case, first all the destination buffers needed for a proxy process
are gathered by the host process. Then a single contiguous
message is sent to the proxy process by each host process.
This method of gathering data from the Host is advantageous
because the RDMA operations performed by the host are
superior in performance compared to those performed by the
DPU as shown in section II-B. Another advantage of Group
Primitives is that thanks to the cache design all the meta-
data (e.g. receive buffer addresses, rkeys), is exchanged only
once and thus avoids the expensive Host-to-DPU transfers for
exchanging the meta-data. This is useful from an application
standpoint because many applications tend to exhibit temporal
locality when it comes to buffer addresses being used in a
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group communication pattern.

D. Application Evaluation

PD3FFT: In this section, we evaluate the impact of the MPI
Collectives implemented with the proposed Group framework
on performance of the Parallel Three-Dimensional Fast Fourier
Transforms (P3DFFT) application [13]. This library uses a 2D,
or pencil, decomposition and increases the degree of paral-
lelism and scalability of FFTs. The data grid is transformed
during each iteration using nonblocking Alltoall collectives.
We used test_sine.x program for our evaluation. In this pro-
gram, given an input grid size in X,Y,Z it performs forward and
backward Fourier transforms through pencil decomposition. In
Figurel6(a) we show P3DFFT application runs on 8 nodes
with 32 PPN. We fixed X and Y to 256 and increased Z
from 512 to 2048. We observe up to 16% improvement
compared to InteIMPI and up to 55% improvement compared
to BluesMPI. Figure 16(b) shows P3DFFT runs on 16 nodes
with 32 PPN in which we fix X and Y to 512 and vary Z
from 1024 to 4096. Here we observe up to 20% improvement
compared to InteIMPI and up to 60% improvements com-
pared to BluesMPI. The improvement over BluesMPI mainly
stems from the overall latency improvement of our proposed
schemes. This is attributed to the caching and direct GVMI-
based transfer designs in the group offload framework.

To understand the relative performance of MPI runtimes, we
profiled the P3DFFT application to calculate the time spent in
compute and MPI for a single iteration of the forward phase
as shown in figure 16(c). We found that the computation loop
initiates two MPI_Ialltoall calls with different buffers of sizes
65KB for Problem size P1. It then performs some computation,
waits for one call to complete. The loop then repeats the
process by performing further computation before waiting for
another call to complete. At any point, the computation phase
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can be overlapped with 2 MPI_Ialltoall calls. The computation
time was the same for all 3 libraries. BluesMPI spent the
most time in MPI_Wait. This differs from benchmark-level
measurements, where BluesMPI outperforms InteIMPI. When
we measured the pure-communication time of BluesMPI with
2 back-to-back MPI_Ialltoalls with different buffer sizes in
P3DFFT, we found that BluesMPI has a lot of degradation
in performance compared to InteIMPI for the first several
iterations. Since these libraries are closed-source, it is difficult
to concretely define the cause of this degradation demonstrated
at the application layer by evaluating the MPI implementation.
However, one difference between the application level and
benchmark level evaluations is the use of warm-up iterations.
At the benchmark level, degraded performance is hidden
through the use of multiple warm-up iterations and evaluating
a single MPI Ialltoall call, whereas at the application level
with no warm-up iterations, there are two back-to-back MPI_-
Jalltoall calls with different source and destination buffers. We
determined this effect of warm-up by evaluating BluesMPI at
the benchmark level without utilizing any warm-up iterations
and witnessed poor performance for the first few evaluations
of the BluesMPI implementation of the MPI_Ialltoall call.
HPL: HPL [14] is a portable High-Performance implemen-
tation of Linpack — the standard for ranking the world’s
TOP500 supercomputers. The code records the time required
for LU factorization of a dense matrix. Based on the time, it
calculates the rate of floating point operations of the system.
HPL follows a 2-D block decomposition strategy for load
balancing. The total number of processors is split into a PxQ
grid. The broadcast operation is used in HPL to forward a
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panel for the factorization of blocks owned by individual
processors.

The existing HPL application implements ring-based algo-
rithms using MPI point-to-point primitives which is called
the HPL-1ring algorithm. The HPL code attempts to overlap
this broadcast with independent computation via a look-ahead
strategy. The overlap portion is roughly similar to the code
shown in the Listing 1. Therefore, it requires CPU intervention
to check the arrival of the message. This would be an ideal
candidate for our proposed offload framework as it will use
DPUs to progress communication without CPU intervention.

We modified the HPL code to add support for MPI_Ibcast.
Since broadcast algorithms are implemented with point-to-
point operations, we can compare our proposed design with
BluesMPI which does not support point-to-point offload. We
also compare with IntelMPI’s HPL-1ring. In addition, we also
compare with IntelMPI’s MPI_Ibcast so that we can compare
with Intel-MPI’s best Ibcast Algorithm. We have added all
possible combinations of libraries to make the comparison fair.
We ran the problem of sizes that occupied 5% to 75% of the
system memory (256GB) which is the standard for HPL. We
observed that using our proposed scheme results in a runtime
of approximately 18% lower than using Intel-MPI’s Ibcast,
15% lower than using BluesMPI on 5% and 10% problem
sizes. Intel 1-Ring roughly performs similarly to BluesMPI for
all problem sizes. Our proposed scheme’s runtime increases to
90% compared to InteIMPI-HPL-1ring on 50 and 75% mem-
ory inputs. We believe this is due to the overheads caused by
large Ibcasts-based transfers using GVMI. Nevertheless, our
proposed scheme manages to perform at least 8.5% better than
InteIMPI which saves roughly 13 minutes of the execution
time for 75% memory input. The reason the proposed scheme
outperforms BluesMPI is due to 1) the absence of the staging
overhead and 2) the optimized cache designs. The HPL-1Ring
has delays caused by the need for the CPU to initiate the
next phase of the ring. Intel’s Ibcast also requires the CPU’s
intervention to progress the transfers using MPI_Test which
reduces the overlap potential.

IX. RELATED WORK

A previous work that leverages DPUs to offload nonblock-
ing collectives is BluesMPI [8], [9]. In this work, DPUs
were used to offload nonblocking collectives to achieve 99%
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overlap of communication and computation. In BluesMPI,
however, its offload functionality is tightly coupled with MPI,
is algorithm-specific, and does not cover other communication
patterns. The semantic issue is also not addressed by this
work. BluesMPI also incurs a staging overhead between the
host and the DPU, due to the fact that the DPU could not
directly issue RDMA operations on behalf of the host. Our
paper alleviates these issues with carefully designed APIs and
efficient usage of the cross-GVMI mechanism. Floem [15]
is a framework to ease the development of applications that
offload work to SmartNICs. It includes a language, compiler,
and runtime that allows developers to define “elements” of
C code that are executable on SmartNICs. This project dif-
fers from ours in that it focuses on offloading computation
rather than communication. Another offloading framework,
iPipe [16], implements an actor-based programming model
that allows developers to easily offload complex algorithms
that were not previously synthesizable on older, FPGA-based
SmartNICs. This work differs from ours in its focus on of-
floading computation and packet processing rather than point-
to-point communication primitives. Other projects focusing on
specifically offloading MPI communication include NVIDIA’s
SHARP [5]. SHARP leverages NVIDIA switches to execute
in-network collectives, specifically Reduce and Allreduce.
This significantly decreases the time spent executing these
collectives compared to implementing them on the host pro-
cessor. However, it does not allow offload of nonblocking
communication nor point-to-point communication, nor does it
enhance MPI primitives beyond All/Reduce. A similar project
to SHARP is MPI_FPGA [17]. This library focuses on using
in-switch FPGAs to implement multiple collective algorithms
in reconfigurable logic. However, this work does not augment
nonblocking communication or point-to-point communication.
Past works [18], [19] designed nonblocking collectives that
utilize a communication thread. However, this inhibits the use
of one of the CPU cores. Other works [4] reduce the effect
of this asynchronous progress thread, but fail to achieve the
overlap reached by GVMI.
X. CONCLUSION AND FUTURE WORK

Asynchronous communication and overlap is an important
field of research within the HPC community. Many applica-
tions still fail to leverage non-blocking collectives due to sub-
optimal designs. Since DPU technology has enabled new ways
of offloading tasks, work has been done to leverage this device
in the context of progressing communication. Despite previ-
ous efforts, state-of-the-art designs proved to be inflexible.
Previous works utilizing DPUs to offload computation were
limited to a few collective operations and locked to a single
programming model. In this paper, we identify the limitations
of these higher-level designs. We identify bottlenecks in point-
to-point and collective communication patterns and design a
generic framework for offloading communication to the DPU.
We develop two primitives as part of our design. One primitive
provides basic point-to-point functionality while the second
enables optimized group communication patterns. We describe
initial implementations of these primitives and detail further
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optimizations. Our design also leverages NVIDIA’s new cross-
GVMI capability that enables the DPU to access host memory.
This functionality is important in allowing the DPU to do
RDMA reads and write on behalf of the host. With these
advances, we are able to outperform state-of-the-art designs by
47% in ialltoall, 60% in P3DFFT and up-to 15% in HPL. In
future work, we would like to experiment with next generation
BlueField-3 SmartNICs and Infiniband NDR interconnects to

enhance our designs.
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