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Abstract—Smart Network Interface Cards (SmartNICs) such
as NVIDIA’s BlueField Data Processing Units (DPUs) provide
advanced networking capabilities and processor cores, enabling
the offload of complex operations away from the host. In the
context of MPI, prior work has explored the use of DPUs
to offload non-blocking collective operations. The limitations
of current state-of-the-art approaches are twofold: They only
work for a pre-defined set of algorithms/communication patterns
and have degraded communication latency due to staging data
between the DPU and the host. In this paper, we propose
a framework that supports the offload of any communication
pattern to the DPU while achieving low communication latency
with perfect overlap. To achieve this, we first study the limitations
of higher-level programming models such as MPI in expressing
the offload of complex communication patterns to the DPU. We
present a new set of APIs to alleviate these shortcomings and
support any generic communication pattern. Then, we analyze
the bottlenecks involved in offloading communication operations
to the DPU and propose efficient designs for a few candidate
communication patterns. To the best of our knowledge, this
is the first framework providing both efficient and generic
communication offload to the DPU. Our proposed framework
outperforms state-of-the-art staging-based offload solutions by
47% in Alltoall micro-benchmarks, and at the application level,
we see improvements up to 60% in P3DFFT and 15% in HPL
on 512 processes.

Index Terms—HPC, Infiniband, MPI, SmartNIC, DPU, Of-
fload, GVMI, Cross-GVMI

I. INTRODUCTION

Modern CPU-based High-Performance Computing (HPC)

clusters employ the use of powerful processors with high core

counts, and high-bandwidth, low-latency network interface

cards (NICs)/switches. The emergence of network hardware

such NVIDIA’s ConnectX-7 NICs [1]/Quantum-2 switches [2]

capable of 400Gbps per port, and 128+ core AMD EPYC

CPUs [3], indicate a trend toward supporting massive amounts

of compute and network parallelism for AI/HPC workloads.

The onus is on communication libraries and applications

to efficiently utilize these platforms. A popular strategy to

achieve this goal is by offloading communication operations

to another thread/hardware resource to overlap them with

compute operations. The idea of “offloading” a communication

pattern can be viewed from two perspectives: 1) The set

of APIs that define how to orchestrate the offload of these

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

patterns, and 2) The underlying mechanisms used to efficiently

offload communication operations.

The mechanisms used for offloading communication op-

erations either involve an asynchronous thread [4] on the

CPU, or an external hardware device such as a SmartNIC or

switch. While using another thread on the CPU for progress-

ing communication is convenient, the presence of additional

threads steals CPU cycles that would otherwise be used

for application computation. Switch-based offload techniques,

such as NVIDIA SHARP [5], are highly effective for certain

communication operations, especially because switches can

eliminate redundancy, are aware of the network topology, and

can perform operations at very fast rates. However, current

switch-based solutions only support barrier/reduction opera-

tions and operate on limited switch-based resources.

Wasted Time

Increased Comm Time

Fig. 1. Comparison of a Ring-based broadcast communication pattern
per process between 1) Standard MPI implementation, 2) Staging offload
mechanism utilizing new proposed primitives/APIs, 3) Proposed, advanced
offload mechanism utilizing new proposed primitives/APIs

From an API perspective, popular programming models

such as MPI [6] and OpenSHMEM [7] provide primitives for

non-blocking point-to-point and collective operations. While

these non-blocking functions are effective at expressing a wide

variety of offload scenarios, they fail to capture the semantics

of ordering without synchronized calls such as MPI Wait.

This is problematic in cases where the host tries to offload

a series of ordered operations to another device (such as a

SmartNIC). Issuing an MPI Wait would force the host to block

until the operation completes, which results in sub-optimal

utilization of CPU resources. In the context of MPI, the
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same problem is exacerbated with certain collective algorithms

that are implemented using only point-to-point operations.

This is explained in Figure 1 which shows a simple ring

communication pattern that has two steps. In the first step

data from transferred from process 1 to process 2. Then,

process 2 transfers the received data to process 3 in the second

step. Existing non-blocking primitives in MPI do not give

the flexibility to the implementation to efficiently overlap this

kind of communication pattern as there is a data dependency

between successive steps. Figure 1 shows the timeline of the

progression of events on CPU and HCA of process 2 for three

cases. In the first case, the ring communication pattern is im-

plemented using non-blocking MPI point-to-point primitives.

In this case after step 1, due to the computation on the CPU,

there is a delay in the initiation of the second step at process

P2 which impacts the overall time. Our proposed primitives

alleviate this issue by providing a set of APIs that will record

the entire data-exchange pattern in the beginning, with a call

to complete the transfer. This provides the implementation the

flexibility to offload any kind of pattern to an external device.

Next, we look at the mechanisms to implement our proposed

framework.

Existing solutions to offload communication to the DPUs

such as [8], [9] provide offload support only for specific

communication patterns (MPI Ialltoall and MPI Ibcast, re-

spectively) using staged mechanisms. This limits the usability

of such solutions for various applications that use basic point-

to-point primitives to perform custom communication patterns.

Our framework extends the applicability of staged mechanisms

for any generic communication pattern, such as point-to-point

operations or patterns with dependencies (e.g. ring). However,

in staging-based mechanisms, data has to be moved from the

host to the DPU and to the destination host process from the

DPU. Though the scheme provides overlap, it incurs additional

overhead in the communication latency, which significantly

degrades performance as shown in Figure 1, case (2). To

alleviate this, we propose efficient mechanisms that avoid

staging using X-GVMI, which leads to better performance

(shown in Figure 1, case (3)).

A. Problem Statement
NVIDIA’s BlueField Data Processing Units (DPUs) [10]

provide advanced networking capabilities and processor cores

that can be used to offload communication operations. Current

state-of-the-art DPU-based MPI offload solutions [8], [9] incur

significant data movement costs due to the limitation of the

DPU processes not having direct access to host memory for

RDMA operations. To alleviate this problem, modern NVIDIA

SmartNIC DPUs provide a feature called cross-GVMI, which

allows host processes to expose their memory regions to DPU

processes.

This paper tackles the problem of efficient communi-
cation offload to DPUs by proposing a framework that
defines a set of APIs to express hardware-based offload
for any generic communication pattern, and designs to
alleviate bottlenecks in using the cross-GVMI mechanism.

The framework is designed to be programming model agnos-

tic, and to provide perfect overlap with low communication

latency for both point-to-point as well as collective operations.

II. MOTIVATION AND CHALLENGES

We motivate the need for our proposed framework by

discussing the limitations of higher-level programming models

such as MPI in expressing offload primitives and the bottle-

necks involved in DPU-based offloading techniques.

A. Semantic mismatch between higher-level MPI primitives
and DPU-based offload

We show the limitations of higher-level MPI-like primitives

in effectively offloading communication patterns by taking a

simple ring-based exchange code similar to the communication

pattern found in High-Performance Linpack (HPL) Code (see

Section VIII-D)

1

2 int next, prev;
3 next = (my_rank + 1)% num_ranks;
4 prev = my_rank - 1;
5 if(rank == 0) {
6 MPI_Isend(..next, &req);
7 while(!complete) {
8 do_compute();
9 MPI_Test(&complete, req);

10 }
11 } else {
12 MPI_Irecv(..prev, &req);
13 while(!complete) {
14 do_compute();
15 MPI_Test(&complete, req);
16 }
17 //Received data from left, now send
18 //it to my right neighbor
19 complete = 0;
20 MPI_Isend(..next, &req);
21 while(!complete) {
22 do_compute();
23 MPI_Test(&complete, req);
24 }
25 }

Listing 1. Ring Bcast Example

Listing 1 provides a pseudo-code for a simple ring pattern

where the data from process/rank 0 broadcasts to other pro-

cesses in a ring-like exchange as explained in figure 1. This

type of communication pattern has a data dependency in each

step. Therefore, even with the non-blocking MPI primitives,

it is necessary for the application to call MPI primitives in

order to progress the communication. In the Listing 1 a rank

receives data while the application is busy doing computation

in line 14, and the data transfer gets delayed as shown in

case 1 of Figure 1. The transfer is started only when the code

reaches line 20. This kind of CPU intervention is required

with the existing MPI’s APIs because of the ordering of the

steps forced by the communication pattern. This brings us to

our first challenge: How do we design a generic set of APIs
for offloading any communication to DPUs that does not
force the requirement of the CPU’s intervention even with
ordered communication patterns such as the ring?
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Fig. 2. RDMA-Write Latency of Host-to-Host versus Host-to-DPU

Fig. 3. RDMA-Write Bandwidth of Host-to-Host versus Host-to-DPU.
Normalized with respect to Host-to-Host, higher is better.

B. Synchronization overheads between Host and DPU
The offload of collective operations requires the exchange

of synchronization messages and metadata (such as the buffer

addresses, registered keys, sizes of data, etc.) between the

Host and DPU processes. Figures 2 and 3 show the latency

and bandwidth of host-to-host transfers versus DPU-Host

transfers. Though the DPU-Host numbers shown here are

between a local Host and a remote DPU, the numbers remain

the same for local Host-DPU-based transfer. We observe that

while the latency of DPU-Host transfers is close to Host-to-

Host transfers, Host-to-Host transfers have close to twice the

bandwidth of DPU-Host transfers. This can be explained by

the slower ARM cores (relative to the host) on the current

generation of NVIDIA DPUs, since the bandwidth of smaller

messages (their injection rate) is sensitive to the frequency of

the processor. This brings us to the second challenge: Can we
design APIs and mechanisms to minimize the overheads
involved in synchronization and metadata exchange be-
tween the Host and the DPU for various communication
patterns?

C. Registration and other data movement overheads
Authors in [8], [9] proposed collective algorithms using

DPUs for offloading communication operations. Figure 4

shows results of a simple ping-pong benchmark that contains

non-blocking sends/receives followed by an MPI Waitall op-

eration. The brown bars show the default host-to-host latency

for different message sizes. The green bars show the latency

of using a staging-based design that uses DPU memory as an

intermediate memory to transfer data between two hosts. The

figure shows a degradation for staging-based transfers when

compared to direct host-host transfers. Cross-GVMI aims to

fix this by allowing the DPU to perform transfers on behalf

of the host. However, it has a few caveats.

For a DPU process to transfer data with cross-GVMI, two

kinds of memory registration must happen. First, the source

buffer must be registered by the host process. Second, the DPU

(or worker) process must use the same source address/key from

the first registration to perform another registration operation.

This registration needs to be performed every time a send-

receive operation occurs. Section V explains this process

in further detail. The costs of registration are quantified

in figure 5. These overheads are significant and will hurt

application/benchmark performance if not handled correctly.

Standard MPI libraries use a registration cache to amortize

the cost of memory registration which is useful when requests

have a repetition of buffer addresses. Traditional registration

caches cannot be used here as they maintain only local

buffer information on the host. With cross-GVMI, registration

occurs on both the host and the DPU. Moreover, the second

registration not only depends on the buffer address but also

requires additional parameters from the first registration. This

requires designing registration caches that work on both the

host and the DPU, as well as efficient synchronization between

the designed registration caches to maintain correctness and

achieve good performance. This brings us to the third chal-

lenge: How can we design an efficient registration cache
for cross-GVMI transfers that amortizes various overheads
and gives performance comparable to the host?

Fig. 4. Communication Latency for Nonblocking Pingpong (Concurrent two-
way isend/irecvs) using Host and Staging-based MPI Designs

Fig. 5. The overhead time of two kinds of memory registration for a DPU
process to transfter data with cross-GVMI

III. CONTRIBUTIONS

We propose a framework that offloads communication oper-

ations to the DPU (from the host). Our framework is designed
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to tackle two fundamental shortcomings of state-of-the-art

solutions: 1) Semantic mismatches arising from higher-level

abstractions that lead to sub-optimal offload for certain com-

munication patterns. 2) Avoid staging overheads between DPU

and host, and other associated overheads involved in cross-

GVMI-based transfers. To achieve these, we propose a set of

primitives (APIs) that allows the offload of any communication

pattern, and designs to amortize various overheads associated

with DPU-based transfers. We implement our framework

inside a production MPI library to demonstrate the efficacy

of our designs. We make the following key contributions:

• Identify limitations of higher-level programming models

such as MPI in expressing the offload of complex com-

munication patterns

• Analyze synchronization and data movement bottlenecks

for generic point-to-point and collective transfers of-

floaded to the DPU

• Propose a framework with APIs to conveniently express

the offload of generic communication patterns to the DPU

• Propose basic and optimized designs to implement the

APIs

• Demonstrate the efficacy of the proposed designs on real

systems using micro-benchmarks and applications. Our

framework outperforms state-of-the-art solutions by up

to 47% in ialltoall micro-benchmarks and up to 60%
and 15% in the P3DFFT and HPL respectively.

IV. BACKGROUND

To further understand overlap and offload in the context of

MPI, we need to understand MPI semantics, implementation,

and underlying hardware/capabilities.

MPI provides both blocking and non-blocking semantics.

Blocking semantics dictate that, on the sender’s side, the

buffer can be re-used after returning from MPI Send, and

for the receiver, the data is available in the buffer after a

call to MPI Recv returns. Non-blocking semantics provides

MPI Isend and MPI Irecv, which return a request object, and

MPI Wait which takes in a request object to ensure that the

request is complete. After returning from MPI I* functions,

MPI Test can be used with the same request object to progress

the communication and check for completion.

InfiniBand [11] is one of many popular network-level in-

terconnects supported by a large number of MPI libraries.

Infiniband requires memory regions to be registered with the

HCA before they can be used for data transfers. Every memory

registration with the HCA using the ibv reg mr function

returns an “lkey” and “rkey”. For any RDMA operation

(READ or WRITE) posted local on a buffer requires an

“lkey” returned from the buffer registration. For a process to

perform any RDMA operation on a remote buffer, an “rkey”

of the remote buffer is needed. This is why MPI processes

typically exchange rkeys of buffers before performing actual

data transfer.

V. OVERVIEW OF CROSS-GVMI
For a DPU process to transfer data from one host process to

another, the data has to be read from the source host process’

Fig. 6. Data transfer path for staged and GVMI-based transfer. Staged suffers
from the overhead of an extra RDMA-write to DPU

memory to the DPU’s memory, and then the data is written

to the destination host’s memory. This mechanism is called

staging. However, GVMI enables a DPU process to transfer

data from a process on the local host machine to any process

on a remote host. Figure 6 contrasts the steps involved in

transferring data from one node (NODE 1) to the other (NODE

2) using GVMI and staging mechanism. We observe that a

staged transfer requires an additional movement of data to

NODE1’s DPU’s memory which is not required in a GVMI-

based transfer.

First, a DPU process on NODE1 generates a GVMI-ID

(done only once per protection domain) and sends it to the host

process on NODE1. The host process then registers the source

buffer with this GVMI-ID. After registration, the host process

sends the source address, buffer size, and mkey (obtained

from registration) to the DPU process. Next, the destination

process on host-2 registers the destination buffer and sends

the buffer information to the DPU process, which registers

the source buffer to obtain mkey2. This process is called

“cross-registration”. It requires the source buffer address, mkey

(obtained from the source process), buffer size, and source

GVMI-ID. Finally, after generating mkey2, the DPU process

does an RDMA-Write to the remote process. For the final

RDMA-Write, the DPU process uses mkey2 as the lkey and all

other parameters do not change. The final mkey2 is analogous

to an lkey in a normal InfiniBand transfer as described in

Section IV. However, now the mkey2 is used to transfer data

on behalf of a host process’ local buffer.

VI. DESIGNING APIS FOR EXPRESSING GENERIC

COMMUNICATION PATTERNS

In this section, we address the challenge mentioned in

section II-A by proposing a set of APIs. We first propose

Basic primitives which are required to support basic transport

operations such as sends and receives available in any com-

munication library. Then we propose Group primitives which

provide APIs to completely offload any kind of communication

pattern which cannot be expressed with current communica-

tion models such as MPI, and OpenSHEM.

A. Proposed Primitives
Listing 2 presents the set of proposed basic primitives.

The simple primitives are largely parallel to MPI point-to-

point primitives. Listing 3 explains how to write a simple
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ping-pong program with the Basic Primitives and MPI. The

Init_Offload function initializes the library by creating

and assigning ranks to all the processes. Send_Offload
and Recv_Offload functions are two-sided non-blocking

functions that offload the sends and receives to the DPU.

The Wait function is for the calls to complete. addr is

the buffer address from/to which the data is moved when

Send_Offload/ Recv_Offload primitive is invoked. The

dst and src fields specify the destination and source host

ranks involved in the data transfer. For every Send_Offload
there should be a matching Receive_Offload. tag, dst,

and dst fields are used for matching the sends and receives.

req is the identifier for a particular transfer that can later be

used in the Wait function to complete the transfer.

B. Group Primitives
Listing 4 lists the set of APIs in Group Primitives. A Groups

Primitives-based implementation of the ring pattern described

in Listing 1 is shown in Listing 5. Any algorithm using group

primitives must begin with Group_Offload_start, which

returns a request object. Any subsequent calls to Send_* or

Recv_* functions must use the same request object. After all

the calls are made, Group_Offload_end must be called

to mark the termination of the communication pattern. Then

Group_Offload_call must be used to offload the entire

communication graph that is recorded by the request object.

To enforce ordering between local transfers, we introduce

Local_barrier_Goffload which ensures that any oper-

ations after the barrier will begin only after the completion of

all the operations before it. This operation is local to a process.

This operation cannot be done in a nonblocking manner with

the MPI APIs. Therefore, the group primitives provide users

the flexibility to implement any kind of communication pattern

with the goal of complete non-blocking semantics which will

allow the implementation to offload the entire pattern to DPU.

In addition, it also makes it convenient for the implementation

to provide optimizations which are described in a later section.

Lines 19 to 21 in Listing 5 show how we offload the entire

ring communication pattern to the DPU and achieve overlap

without the CPU intervention unlike the ring code shown in

Listing 1.

1

2 Init_Offload();
3 Send_Offload(void* addr, size_t size,
4 OffloadRequest *req,
5 int dst_rank,
6 int tag);
7 Recv_Offload(void* addr, size_t size,
8 OffloadRequest *req,
9 int src_rank,

10 int tag);
11 Wait(OffloadRequest req);
12 Finalize_Offload();

Listing 2. Basic Primitives
1 //Ping-Pong with Basic Primitves
2 Init_Offload();
3 void *sbuf, *rbuf;
4 size_t size = 1024;
5 OffloadRequest *req;
6 Send_Offload(sbuf,size,&req, 1, 3);
7 Recv_Offload(rbuf,size,&req,1,3);

8 Wait(&req);
9 Finalize_Offload();

10

11 //Ping-Pong with MPI
12 MPI_Init();
13 void *sbuf, *rbuf;
14 size_t size = 1024;
15 MPI_Request req; MPI_Status st;
16 MPI_Isend(sbuf,size,...);
17 MPI_Irecv(rbuf,size,...);
18 MPI_Wait(&req, st);

Listing 3. Ping-Pong Example with Basic Primitives

1

2 Send_Goffload(void* addr, size_t size,
3 OffloadGroupRequest *req,
4 int dst_rank,
5 int tag);
6 Recv_Goffload(void* addr, size_t size,
7 OffloadGroupRequest *req,
8 int src_rank,
9 int tag);

10 Local_barrier_Goffload(OffloadGroupRequest *req);
11 Group_Offload_start(OffloadGroupRequest *req);
12 Group_Offload_end(OffloadGroupRequest *req);
13 Group_Offload_call(OffloadGroupRequest *req);
14 Group_Wait(OffloadGroupRequest *req);

Listing 4. Group Primitives

1 //Bcast with Ring Exchange
2 Init_Offload();
3 void *buf;
4 OffloadRequest *req;
5 left = (rank - 1 + numProcs) % comm_size;
6 right = (rank + 1) % numProcs;
7 Group_Offload_start(&req);
8 if(rank == 0) {
9 Send_Goffload(sbuf, bufsize, &req, right, 4);

10 Local_barrier_Goffload(&req);
11 } else {
12 Recv_Goffload(rbuf, bufsize, &req, left, 4);
13 Local_barrier_Goffload(&req);
14 Send_Goffload(rbuf + idx_send * bufsize, bufsize

, &req, right, 4);
15 }
16 Group_Offload_end(&req);
17 //Overlap with compute
18 Group_Offload_call(&req);
19 do_compute();
20 Group_Wait(&req);

Listing 5. Ring Pattern Example with Group Primitives

VII. DESIGNING EFFICIENT MECHANISMS USING

DPU-BASED OFFLOAD FOR HOST-HOST TRANSFERS

This section describes the underlying mechanisms used by

our proposed APIs and designs to solve challenges described

in Sections II-B and II-C. In our offload framework, we

launch a set of processes on the DPU that are referred to as

proxy or worker processes. These processes perform the data

transfer on behalf of the host processes. This is how the host

communication is offloaded to the DPU processes.

A. Implementation of Basic Primitives

The Init_Offload() method launches worker pro-

cesses and assigns ranks to each of them similar to MPI ranks.

As described in section V, for GVMI-based registration,

a DPU process needs the remote host process’ GVMI-ID.

Since the GVMI-ID does not change for a process, it gets

generated inside Init_Offload() and exchanged with all
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other processes in the global communicator, which includes

all processes on the host and DPU.

Figure 7 lists the steps of RDMA-Write-based implementa-

tions of Send_Offload() and Recv_Offload() on the

host’s side. After choosing the proxy process, the sender does a

GVMI-based memory registration of the source buffer with the

proxy process’ GVMI-ID to generate a mkey. A host process

is mapped to a proxy process on the DPU in the same Node.

Mappings are calculated using proxy_local_rank =
host_source_rank % num_proxies_per_dpu. The

receiver does normal InfiniBand-based registration of the des-

tination address to generate rkey. Then sender and receiver

processes send Ready-To-Send (RTS) and Ready-To-Receive

(RTR) control messages to the chosen proxy process with the

necessary information such as buffer addresses, mkey/rkey,

buffer sizes.

Sender Proxy 1
GVMI-IDGMVI-based

Registration

Generate

Receiver
IB-based

Registration

Generate

RTS
RTR

Launch
RDMA_Write

RDMA_Write

Computing

Computing

Computing

Computing
Fin Fin

1

1

22

3
3

Fig. 7. Generation of GVMI’s mKey and IB-based rKey used in setup for
control-messages and RDMA-Write-based implementation of Send/Recv Of-
fload()

Figure 8 provides a sequence of events that occur in the

DPU handler when RTR and RTS packets are received. As

shown in Figure 8, a proxy process has two sets of request

queues: one is for send requests, which has the data provided

by the source host process that includes the source address,

data size, mkey, and source request ID; the other is for receive

requests, which contains destination information: size, rkey,

destination request ID. Since multiple source and destination

ranks can send control messages to a given DPU process, the

DPU process maintains a list of request queue headers which

are ordered by the destination rank number. In Figure 8, once

the RTS from 1 arrives, it searches for a matching request in

the receive queue. Since it does not find one, it adds it to the

send queue. Then the RTR arrives, which searches the send

queue and finds a match. Then the request is removed from

the send queue and added to the combined queue. After this,

the requests from the combined queues are processed. Once

the RDMA operations are complete the FIN packets are sent

to the host processes.

B. Optimizing GVMI registration and exchange Overheads
In this section, we outline the optimizations for the Basic

Primitives implementations described in the previous section.

As described in Section V, GVMI involves two types of

registration: one which is done at the host process, and the

Proxy 1
RTS

Send queue

Search Recv 

Recv queue

queue
!Not found!

Add to Send  queue

Send queue Recv queue

RTR

Search Send queue
!found!

Append sender info

Append receiver info

Add to Combined queue  
Ready for

RDMA_Write

1

2
3

4

5
6

7 Send Fin

Fig. 8. Proxy Portion of Handling Control Messages on the DPU side Using
GVMI.

other which is done at the proxy process. Each of these uses a

different set of input parameters. Source address, data size, and

remote GVMI-ID are the parameters needed for registration

on the host side. This generates an mkey which is sent to the

chosen DPU process. Since remote GVMI-ID depends on a

remote rank, the registration cache needs to use the source

address, data size, and remote-rank as the keys. The DPU

process uses a source address, data size, remote GVMI-ID, and

remote mkey (obtained from the host process) for registration.

Though there are two additional parameters (GVMI-ID,

mkey) for the registration cache, we can still use source ad-

dress, data size, and remote rank as the key to the registration

cache in the DPU process; this is because the value of the

mkey depends on the source address and source data size, so

it is impossible to have multiple values of the same mkey given

a source address and GVMI-ID. Similarly on the DPU side,

for every host rank there are only distinct entries of the set

(source-address, data-size, mkey) provided by the source since

mkey depends on source-address and data-size. Therefore,

one can again use source-adress, data-size, and rank as the

parameters for the DPU’s GVMI-cache.

Based on this, we use an array of Binary Search Trees to

represent the registration cache of both the host and DPU sides.

The array is indexed by remote rank and the BST is indexed

by memory address. The cache has an array at the first level

and a BST at the second level. An array is used at the first

level because there is only a finite number of ranks allowed

in a communicator. When a host process attempts to register

a mkey using source address, data size, and GVMI-ID, the

array of BSTs is queried using the mapped DPU proxy’s rank

as the key to obtain a reference to the correct BST for it.

Then the BST is queried using the address and size to obtain

a cache entry that contains the mkey, GVMI-ID, address, and

data size.

On a cache hit, the entry is returned. On a cache miss, a new

cache entry object is created, the host’s registration function is

called, and the cache entry is updated with the object’s mkey

and inserted to the BST corresponding to its mapped DPU

proxy’s rank. On the DPU side, when a RTS comes, similar

set of querying happens with source-address and host-process’

rank provided in RTS.
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C. Implementation of Group Primitives

Here, we will introduce Group Primitives as a way of

improving upon Simple Basic Primitives.

Local buffers

ReceiveSend

GVMI InfiniBand G_ops G_ops G_ops G_ops
Remote receivers' queues

Gather

G_opsLocal queue
G_ops

G_ops G_ops G_ops G_ops

Local match

Match rank, tag, ...

Matched ops combine
Send/Recv Info

Add to combined queue

From Host 1 From Host 2

Proxy 1 Proxy 2

1 2 3

4 5

group_offload_packet

Fig. 9. Steps shown when performing Group Offload call between GVMI
and InfiniBand, including send/receive, gathering, rank/tag matching, queue
insertion, and offloading to proxy processes.

When a Group_Offload_start function is invoked, a

new request object is created and returned. Any subsequent

calls to Group * functions with a given request object will

create a new Group_op structure and add all the local and

remote buffer details to it. This will then be added to a queue,

where the request will have the head pointer to that queue.

Figure 9, lists the steps involved in the host process when

Group_Offload_call is invoked. Local buffers here are

the buffer addresses (addr field) obtained from group prim-

itive calls. First, the send buffers are registered using GVMI

cache, and receive buffers are registered using IB registration

cache. Then Group_op queue is gathered from all receiving

processes. After this, each Group_op send entry from the

source queue is matched with a matching receive entry in

the remote queues based on destination rank, tag. Then the

queue of matched entries is added to a Group_Offload_-
packet and sent to the corresponding proxy process that

is mapped to the host process. Group_Offload_packet
contains Group_op queue, host-rank, request-ID obtained

from Group_Offload_call.

1 2 3

Proxy 1 Peer Proxy

Proxies exchange  
counter buffer info

Local buffers

GVMI registers send buffer 

Combined G_ops

Proxy 1 Combined G_ops

RDMA_Write

Peer Host

Host 1

RDMA_Write

!Barrier!

Peer Proxy

4

Proxy 1 Combined G_ops

RDMA_Write

5

Host 1

Peer HostProxy 1Poll peer's
counter
buffer

Proxy 1

Host 1

Completion

Clear

Proxy 1 Combined G_ops

6

Fig. 10. Steps shown when performing Group_offload_packet han-
dling, including RDMA-based operations and updating of buffer counters.

Figure 10 shows at a high level the steps involved in the

proxy side when a Group_Offload_packet is received.

First, all the proxies exchange a pre-registered buffer counter

which is used for implementing barrier. Then for each entry

in the received queue, if a send operation is encountered the

sender buffer is registered with GVMI cache to generate the

final mkey. Then RDMA write is posted. If a barrier is encoun-

tered, the sender writes the barrier count to its remote peer’s

counter buffer. Then it polls for the local barrier counter if any

receive operation was posted. Only after the expected barrier

counter is read, the next entry is processed. This process

repeats until all the entries are processed. Once all entries

are processed, the completion counter on the host memory

is updated using RDMA-write and the barrier counters are

cleared

When a Group_Wait is called, each host process waits

until the completion counter associated with the given request

object is set. Once the completion counter is set, the function

returns.

The barrier-counters are needed because each worker pro-

cess must know the receive completion progress of its locally

mapped host process.

D. Optimizing Group Primitives
Here, we take our baseline implementation and show how

we were able to optimize our Group Primitives, by including

caches to reduce host-to-DPU control message exchange.

We introduce caches in the host and worker processes to

reduce the overhead of control messages and registrations. On

the host side, the cache is indexed by the request ID and proxy

rank. Each entry of the cache contains the buffer addresses,

entries of the GVMI and IB registration caches, and a flag

indicating whether request details were sent to the proxy rank.

On the DPU side, a cache is created which is indexed by the

host’s request ID and rank. If the host detects a cache hit, it

sends the request ID to the DPU. The DPU queries the cache to

retrieve the corresponding Group_op entry queue. In addition

to this information, the group entry queue also contains the

GVMI registration cache entry. This way, the DPU process

is saved from searching the GVMI cache for each Group op

entry.

Algorithm 1 concisely describes the steps performed by

the proxy process when a Group_Offload_packet is

received and it is a cache hit. The PostCachedEntryOps
iterates over the Group op entry objects and issues send

RDMA operation if a send is encountered. If a receive entry is

encountered, the source host rank is added to recvRankSet
hashset. Similarly, the distinct destination ranks are recorded

after posting send operations. Once a barrier entry is encoun-

tered, we increment the numBarriers counter variable.

After all the preceding sends are completed, the value of

numBarriers is written to all proxy process’ barrier coun-

ters which are mapped to the list of destination ranks present in

the sendRankSet hashset. The local barrier counter is then

polled for the value of numBarriers from all the proxy

ranks mapped to the ranks present in the recvRankSet. If

the counter values are not found, then the request is marked

incomplete and the code returns to the progress engine. This is

needed because the proxy process could be handling multiple

host processes. Therefore, to avoid deadlock in the event of

one proxy waiting for the receive that is posted by the same

proxy, we need to break from the function to the progress

engine to progress other requests as well.
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Algorithm 1: High-Level Proxy Side Algorithm to

Process GroupOffload packet

1 Function PostCachedEntryOps(cacheEntry):
2 foreach curOpEntry in

cacheEntry− > GroupOpEntries do
3 if curOpEntry− > type == SEND then
4 PostRDMAWrite(curOpEntry)
5 sendRankSet.add(curOpEntry− >

dstRank)

6 else if curOpEntry− > type == RECV then
7 recvRankSet.add(curOpEntry− >

srcRank)

8 else if curOpEntry− > type == BARRIER
then

9 cacheEntry− > numBarriers++
10 writeRemoteBarrierCntr(sendRankSet,
11 cacheEntry)
12 sendRankSet.clear()
13 if isRecvBarrierDone(recvRank,
14 cacheEntry) == False then
15 break;

16 else
17 recvRankSet.clear()

VIII. EXPERIMENTAL EVALUATION

Fig. 11. 3DStencil Normalized Overall Time for Proposed GVMI and Intel
MPI, running with 16 Nodes 32 PPNg

Fig. 12. 3DStencil Overlap percentage of communication and compute time
for Proposed GVMI and Intel MPI, running with 16 Nodes 32 PPN

Our experimental platform has 32 nodes, each equipped

with a BlueField-2 SmartNIC as well as a separate ConnectX-

6 HCA, the Broadwell series of Xeon dual-socket, 16-core

processors with 3.40 GHz and 256 GB RAM.

We implemented the proposed schemes in an MPI library.

We used basic primitives to implement MPI non-blocking

sends and receives. We used Group Primitives to implement

non-blocking collectives. In this section, we compare the

performance of the proposed APIs implemented in our base

MPI library with the following MPI runtimes: Intel MPI 2021

(IntelMPI), BluesMPI framework. We would like to point out

that BluesMPI is a DPU-offload-support-based MPI library

that uses a staging mechanism to offload MPI_Ialltoall.

For micro-benchmark-level evaluation, we utilize OMB [12]

to show the benefits of our Group Primitives over the state-

of-the-art DPU offload framework BluesMPI. Each test was

run for 100 iterations and an average of 3 runs is reported.

For evaluating Simple Primitives, we use an in-house 3D-

Stencil Overlap benchmark. For application-level results, we

compared the performance of a non-blocking version of

P3DFFT [13] which overlaps the computation with MPI Iall-

toall communication and HPL 2.3 with ring-based broadcast.

A. Basic Primitives Evaluation with 3DStencil Benchmark
3D Stencil benchmark follows a near-neighbor communi-

cation pattern which is common in HPC applications. In this

benchmark, each process sends and receives data buffers using

MPI Isend/MPI Irecv to/from at most 6 neighbors. A dummy

compute is overlapped with the communication. The % Over-

lap is measured in a manner similar to OMB Non-Blocking

Collectives. We ran this benchmark for 3 problem sizes:

512×512×512, 1024×1024×1024, and 2048×2048×2048.

We compared this with IntelMPI default as BluesMPI does

not support point-to-point offload. Figure 11, gives the overlap

time which has both compute and communication overlapped.

We observe that we get more than 20% benefits. Figure 12

shows the percentage overlap obtained for all the cases. We

observe that the percentage overlap remains more or less

constant at around 78% for the Proposed schemes, however, it

drops for IntelMPI for the largest problem size because of

which the overall time is also impacted. We note that the

Proposed Scheme’s overlap is not 100% because the intra-node

MPI transfers do not use our Simple Primitives for offloading,

therefore they are more or less blocked by the CPU.

B. Group Primitive Evaluation with MPI Ialltoall
We implemented a scatter-destination Algorithm using

Group Primitives in MPI Ialltoall. Figure 13 shows the overall

time for MPI Ialltoall which includes communication and

compute time on 4, 8, and 16 nodes with 32 processes per

node. On 4 nodes, the Proposed scheme performs up-to 25%

better than BluesMPI, and 35% better than IntelMPI. On

8 nodes, we get 40% improvement compared to IntelMPI

and up-to 30% improvement compared to BluesMPI. As we

scale up to 16 nodes, we achieve up to 58% improvement

compared to IntelMPI and 47% improvement compared to

BluesMPI. The primary reason for the improvements com-

pared to BluesMPI is the benefits from the absence of staging,

and the caching design contributes to further enhancement.

This is corroborated by the communication latency where

GVMI outperforms BluesMPI for all scales. Figure 14 shows

the percentage overlap for MPI Ialltoall on 4,8,16 nodes with

32 processes per node. We observe that both BluesMPI and

the Proposed scheme provides close to a 100% overlap. Since

the Proposed scheme’s communication time is superior, it

outperforms BluesMPI.

C. Benefits of Group Primitives for Dense Patterns
In Figure 15, we show the performance of a simple scatter-

destination pattern for a personalized alltoall exchange on 8
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(a) 4-Node Overall Time (b) 8-Node Overall Time (c) 16-Node Overall
Fig. 13. Overall time for MPI Ialltoall communication and compute, with BluesMPI, Proposed, and IntelMPI on 4, 8 and 16 Nodes with 32 PPN

(a) 4-Node %-Overlap (b) 8-Node %-Overlap (c) 16-Node %-Overlap
Fig. 14. Percentage overlap for MPI Ialltoall communication and compute, with BluesMPI, Proposed and IntelMPI on 4, 8 and 16 Nodes with 32 PPN

nodes/32 PPN. We implemented it using a) Simple Primitives

and b) Group Primitives. We observe that the Group Primitives

based implementation gives an improvement of up-to 40%

over the Simple Primitives based implementation. In the Sim-

ple Primitives version, for each send-recv transfer from host-

to-host, four control messages are exchanged between the host

and DPU: two for RTS and RTR during initialization and two

for FIN packets at the end. However, in the Group Primitives

Fig. 15. Impact of using cache to reduce control messages between Host and
DPU on 8 Nodes 32 PPN for Scatter-Destination Pattern

case, first all the destination buffers needed for a proxy process

are gathered by the host process. Then a single contiguous

message is sent to the proxy process by each host process.

This method of gathering data from the Host is advantageous

because the RDMA operations performed by the host are

superior in performance compared to those performed by the

DPU as shown in section II-B. Another advantage of Group

Primitives is that thanks to the cache design all the meta-

data (e.g. receive buffer addresses, rkeys), is exchanged only

once and thus avoids the expensive Host-to-DPU transfers for

exchanging the meta-data. This is useful from an application

standpoint because many applications tend to exhibit temporal

locality when it comes to buffer addresses being used in a

group communication pattern.

D. Application Evaluation
PD3FFT: In this section, we evaluate the impact of the MPI

Collectives implemented with the proposed Group framework

on performance of the Parallel Three-Dimensional Fast Fourier

Transforms (P3DFFT) application [13]. This library uses a 2D,

or pencil, decomposition and increases the degree of paral-

lelism and scalability of FFTs. The data grid is transformed

during each iteration using nonblocking Alltoall collectives.

We used test sine.x program for our evaluation. In this pro-

gram, given an input grid size in X,Y,Z it performs forward and

backward Fourier transforms through pencil decomposition. In

Figure16(a) we show P3DFFT application runs on 8 nodes

with 32 PPN. We fixed X and Y to 256 and increased Z

from 512 to 2048. We observe up to 16% improvement

compared to IntelMPI and up to 55% improvement compared

to BluesMPI. Figure 16(b) shows P3DFFT runs on 16 nodes

with 32 PPN in which we fix X and Y to 512 and vary Z

from 1024 to 4096. Here we observe up to 20% improvement

compared to IntelMPI and up to 60% improvements com-

pared to BluesMPI. The improvement over BluesMPI mainly

stems from the overall latency improvement of our proposed

schemes. This is attributed to the caching and direct GVMI-

based transfer designs in the group offload framework.

To understand the relative performance of MPI runtimes, we

profiled the P3DFFT application to calculate the time spent in

compute and MPI for a single iteration of the forward phase

as shown in figure 16(c). We found that the computation loop

initiates two MPI Ialltoall calls with different buffers of sizes

65KB for Problem size P1. It then performs some computation,

waits for one call to complete. The loop then repeats the

process by performing further computation before waiting for

another call to complete. At any point, the computation phase
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(a) P3DFFT 8N-32PPN (b) P3DFFT 16N-32PPN (c) P3DFFT Profile
Fig. 16. Normalized Application Run-Times and profile for P3DFFT. P3DFFT values are normalized with IntelMPI. Figure 16(c) shows the runtime of a
single phase of the forward FFT. Compute and Time spent in MPI are shown for 8 Nodes 32 PPN run for problem P1. (Lower is better.)

Fig. 17. Normalized values of HPL total runtime for different % memory
sizes running on 16 Nodes 32 PPN. Values are normalized with respect to
IntelMPI-HPL-1ring. (Lower is better)

can be overlapped with 2 MPI Ialltoall calls. The computation

time was the same for all 3 libraries. BluesMPI spent the

most time in MPI Wait. This differs from benchmark-level

measurements, where BluesMPI outperforms IntelMPI. When

we measured the pure-communication time of BluesMPI with

2 back-to-back MPI Ialltoalls with different buffer sizes in

P3DFFT, we found that BluesMPI has a lot of degradation

in performance compared to IntelMPI for the first several

iterations. Since these libraries are closed-source, it is difficult

to concretely define the cause of this degradation demonstrated

at the application layer by evaluating the MPI implementation.

However, one difference between the application level and

benchmark level evaluations is the use of warm-up iterations.

At the benchmark level, degraded performance is hidden

through the use of multiple warm-up iterations and evaluating

a single MPI Ialltoall call, whereas at the application level

with no warm-up iterations, there are two back-to-back MPI -

Ialltoall calls with different source and destination buffers. We

determined this effect of warm-up by evaluating BluesMPI at

the benchmark level without utilizing any warm-up iterations

and witnessed poor performance for the first few evaluations

of the BluesMPI implementation of the MPI Ialltoall call.

HPL: HPL [14] is a portable High-Performance implemen-

tation of Linpack — the standard for ranking the world’s

TOP500 supercomputers. The code records the time required

for LU factorization of a dense matrix. Based on the time, it

calculates the rate of floating point operations of the system.

HPL follows a 2-D block decomposition strategy for load

balancing. The total number of processors is split into a PxQ

grid. The broadcast operation is used in HPL to forward a

panel for the factorization of blocks owned by individual

processors.

The existing HPL application implements ring-based algo-

rithms using MPI point-to-point primitives which is called

the HPL-1ring algorithm. The HPL code attempts to overlap

this broadcast with independent computation via a look-ahead

strategy. The overlap portion is roughly similar to the code

shown in the Listing 1. Therefore, it requires CPU intervention

to check the arrival of the message. This would be an ideal

candidate for our proposed offload framework as it will use

DPUs to progress communication without CPU intervention.

We modified the HPL code to add support for MPI Ibcast.

Since broadcast algorithms are implemented with point-to-

point operations, we can compare our proposed design with

BluesMPI which does not support point-to-point offload. We

also compare with IntelMPI’s HPL-1ring. In addition, we also

compare with IntelMPI’s MPI Ibcast so that we can compare

with Intel-MPI’s best Ibcast Algorithm. We have added all

possible combinations of libraries to make the comparison fair.

We ran the problem of sizes that occupied 5% to 75% of the

system memory (256GB) which is the standard for HPL. We

observed that using our proposed scheme results in a runtime

of approximately 18% lower than using Intel-MPI’s Ibcast,

15% lower than using BluesMPI on 5% and 10% problem

sizes. Intel 1-Ring roughly performs similarly to BluesMPI for

all problem sizes. Our proposed scheme’s runtime increases to

90% compared to IntelMPI-HPL-1ring on 50 and 75% mem-

ory inputs. We believe this is due to the overheads caused by

large Ibcasts-based transfers using GVMI. Nevertheless, our

proposed scheme manages to perform at least 8.5% better than

IntelMPI which saves roughly 13 minutes of the execution

time for 75% memory input. The reason the proposed scheme

outperforms BluesMPI is due to 1) the absence of the staging

overhead and 2) the optimized cache designs. The HPL-1Ring

has delays caused by the need for the CPU to initiate the

next phase of the ring. Intel’s Ibcast also requires the CPU’s

intervention to progress the transfers using MPI Test which

reduces the overlap potential.

IX. RELATED WORK

A previous work that leverages DPUs to offload nonblock-

ing collectives is BluesMPI [8], [9]. In this work, DPUs

were used to offload nonblocking collectives to achieve 99%
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overlap of communication and computation. In BluesMPI,

however, its offload functionality is tightly coupled with MPI,

is algorithm-specific, and does not cover other communication

patterns. The semantic issue is also not addressed by this

work. BluesMPI also incurs a staging overhead between the

host and the DPU, due to the fact that the DPU could not

directly issue RDMA operations on behalf of the host. Our

paper alleviates these issues with carefully designed APIs and

efficient usage of the cross-GVMI mechanism. Floem [15]

is a framework to ease the development of applications that

offload work to SmartNICs. It includes a language, compiler,

and runtime that allows developers to define “elements” of

C code that are executable on SmartNICs. This project dif-

fers from ours in that it focuses on offloading computation

rather than communication. Another offloading framework,

iPipe [16], implements an actor-based programming model

that allows developers to easily offload complex algorithms

that were not previously synthesizable on older, FPGA-based

SmartNICs. This work differs from ours in its focus on of-

floading computation and packet processing rather than point-

to-point communication primitives. Other projects focusing on

specifically offloading MPI communication include NVIDIA’s

SHARP [5]. SHARP leverages NVIDIA switches to execute

in-network collectives, specifically Reduce and Allreduce.

This significantly decreases the time spent executing these

collectives compared to implementing them on the host pro-

cessor. However, it does not allow offload of nonblocking

communication nor point-to-point communication, nor does it

enhance MPI primitives beyond All/Reduce. A similar project

to SHARP is MPI FPGA [17]. This library focuses on using

in-switch FPGAs to implement multiple collective algorithms

in reconfigurable logic. However, this work does not augment

nonblocking communication or point-to-point communication.

Past works [18], [19] designed nonblocking collectives that

utilize a communication thread. However, this inhibits the use

of one of the CPU cores. Other works [4] reduce the effect

of this asynchronous progress thread, but fail to achieve the

overlap reached by GVMI.

X. CONCLUSION AND FUTURE WORK

Asynchronous communication and overlap is an important

field of research within the HPC community. Many applica-

tions still fail to leverage non-blocking collectives due to sub-

optimal designs. Since DPU technology has enabled new ways

of offloading tasks, work has been done to leverage this device

in the context of progressing communication. Despite previ-

ous efforts, state-of-the-art designs proved to be inflexible.

Previous works utilizing DPUs to offload computation were

limited to a few collective operations and locked to a single

programming model. In this paper, we identify the limitations

of these higher-level designs. We identify bottlenecks in point-

to-point and collective communication patterns and design a

generic framework for offloading communication to the DPU.

We develop two primitives as part of our design. One primitive

provides basic point-to-point functionality while the second

enables optimized group communication patterns. We describe

initial implementations of these primitives and detail further

optimizations. Our design also leverages NVIDIA’s new cross-

GVMI capability that enables the DPU to access host memory.

This functionality is important in allowing the DPU to do

RDMA reads and write on behalf of the host. With these

advances, we are able to outperform state-of-the-art designs by

47% in ialltoall, 60% in P3DFFT and up-to 15% in HPL. In

future work, we would like to experiment with next generation

BlueField-3 SmartNICs and Infiniband NDR interconnects to

enhance our designs.
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