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The importance of graphics processing units (GPUs) in accelerating HPC applications
is evident by the fact that a large number of supercomputing clusters are GPU
enabled. Many of these HPC applications use message passing interface (MPI) as their
programming model. These MPI applications frequently exchange data that is
noncontiguous in GPU memory. MPI provides derived datatypes (DDTs) to represent
such data. Past research on DDTs mainly focused on optimizing the pack-unpack
kernels. Modern HCAs are capable of gathering/scattering data from/to
noncontiguous GPU memory regions. We propose a low-overhead HCA-assisted
scheme to improve the performance of GPU-based noncontiguous exchanges without
the GPU-based pack-unpack kernels. We show that the proposed scheme provides up
to 2x benefits compared to the existing pack-based scheme at the benchmark level.
Furthermore, we show up to 17% improvement with the SW4Lite application compared
to other MPI libraries, such as MVAPICH2-GDR and OpenMPI+UCX.

G raphics processing units (GPUs) have
become ubiquitous in modern supercom-
puters due to their high compute capability
and power efficiency. In these supercomputing clus-
ters, many message passing interface (MPI)-based
large-scale GPU-based applications exchange data
that are noncontiguous in memory. MPI provides
derived datatypes (DDTs) that allow an application to
represent any noncontiguous layout in memory.
Table 1 gives a summary of access pattems and possi-
ble datatypes of different HPC applications. This
underscores the importance of optimizing such non-
contiguous transfers.

MPI libraries typically use pack-unpack kernels for
intemode DDT-based exchanges. All the preceding
studies on DDT-based internode optimizations have
either optimized 1) pack-unpack kernels® or 2) over-
lapped kernels with transfers/other kernels for inter-
node GPU-to-GPU transfers.'® While pack/unpack
kemels can be an effective approach to transfer DDT
messages, they involve the additional steps of packing
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and unpacking every buffer on the sender and receiver
sides, respectively. Modern host channel adapters
(HCAs) provide scatter-gather feature, which allows
HCAs to directly gather noncontiguous data from
source buffers and scatter noncontiguous data to the
destination buffers without pack-unpack kemels. None
of the pastresearch on GPU DDT optimization explored
this possibility of doing noncontiguous transfers using
HCA-assisted scatter—gather mechanisms. There are
overheads associated with such transfers, such as the
cost of registering the layouts with HCAs. In this work,
we identify all the challenges in using the HCA-assisted
mechanisms for moving GPU resident noncontiguous
data and design a low-overhead HCA-assisted data-
transfer scheme that performs better than pack-based
schemes for certain application layouts.

Memory Registration

InfiniBand (IB) requires memory regions to be registered
with the HCA before they can be used for data transfers.
Every memory registration with the HCA using the ibv_-
reg_mrfunction retums an Ikey and rkey. For any remote
direct memory access (RDMA) operation (ReAD Or WRITE)
posted local on a buffer requires an “lkey” retumed from
the buffer registration. For a process to perform any
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TABLE 1. Summary of datatypes used in HPC applications.

Applications MPI DDTs used Data
exchange
pattern
NAS MPI_Type_Vector 2D, 3Dface
exchange
MILC MPI_Type_Vector, 4D face
MPI_Type_Contiguous exchange
Specfem3D MPI_Type_Vector, Unstructured
MPI_Type_Indexed exchange

RDMA operation on a remote buffer, an “rkey” of the
remote bufferis needed. This is why MPI processes typi-
cally exchange rkeys of buffers before performing actual
data transfer.

IN THIS WORK, WE IDENTIFY ALL THE
CHALLENGES IN USING THE HCA-
ASSISTED MECHANISMS FOR MOVING
GPU RESIDENT NONCONTIGUOUS
DATAAND DESIGN A LOW-
OVERHEAD HCA-ASSISTED DATA-
TRANSFER SCHEME THAT PERFORMS
BETTER THAN PACK-BASED SCHEMES
FOR CERTAIN APPLICATION LAYOUTS.

Eliminating Overheads Associated With
Pack-Unpack Kernels

Prior works*'% have shown that pack unpack can con-
sume 20%-40% of time in DDT-based exchanges.
From our profiling, we found that the costs could be
as high as 40% of the total transfer time. We have
omitted this graph here considering the space. Given
this information, we strive to know if we can leverage
the HCA's scatter/gather mechanism to exchange
non-contiguous data between MPI ranks.

Amortizing the Mkey Mapping
Overhead

State-of-the-art NVIDIA HCAs support noncontiguous
RDMA operations through the user mode memory reg-
istration (UMR) feature. This feature allows a program
to directly exchange noncontiguous data from a set of
source buffers to a set of destination buffers using a
single post operation. This feature allows the source
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FIGURE 1. UMR overhead as a percentage of total latency ina
ping-pong benchmark, which exchanges noncontiguous lay-
outs used in the MILC application between source and desti-
nation GPU buffers. The UMR overhead refers to the cost of
mapping mkeys to a particular layout. The input parameters
represent the grid dimensions used by the MILC application.

HCA to gather the noncontiguous data blocks and
transfer them to the destination HCA. Then, the desti-
nation HCA scatters the data to the destination mem-
ory addresses. However, this operation requires the
user to create a mkey and map the set of noncontigu-
ous buffers with the mkey and subsequently use that
mkey for posting send operations. To understand the
cost of these operations we wrote an IB level bench-
mark that exchanges noncontiguous layouts used in
the MIMD lattice computation (MILC) application. We
used UMR to exchange the noncontiguous data. We
observed that the creation of a single mkey takes
about 200 us, which is approximately twice the latency
of transfer for the layouts shown in Figure 1. In Figure 1,
we show the time spent in mapping the UMR mkeys to
the layout as a percentage of the total time taken to do
RDMA-wrrme operation of noncontiguous data. How-
ever, applications tend to reuse a particular layout mul-
tiple times. Can we leverage this information to
amortize the overhead of mapping mkeys to a layout in
UMR based transfers?

Amortizing the Mkey Exchange
Overhead

By mapping a single mkey to a set of buffers, we can
exchange all the buffers using a single ibv_post opera-
tion. However, the number of buffers associated with a
single mkey is limited. Therefore, one needs to use multi-
ple mkeys depending on the number of blocks in a non-
contiguous layout. For a process to do RDMA-wriTE to a
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remote process, the local process needs the list of
remote process’ mkeys. To understand the effect of this
exchange, let us consider a layout with 4,096 blocks.
Assuming the HCA can support four blocks per mkey,
this would require 1,024 keys, which can amount to 4 KB
of data exchange. This can have a significant impact on
the performance of medium message transfers. How-
ever, the applications tend to reuse many layouts. This
brings us to the next challenge where we ask: Given the
temporal repetition of layouts in the application how
can we amortize this mkey exchange?

In this work, we motivate the need for a hardware-
assisted intemode transfer mechanism for GPU resident
noncontiguous memory layouts by analyzing the pack
costs of application layouts. Driven by this motivation, we
identify the challenges with a hardware-assisted mecha-
nism called UMR and propose a design that addresses
the abovementioned challenges.

To summarize, this article makes the following
contributions.

1) Motivate the need to use HCA-assisted noncon-
tiguous data transfers by profiling the layout of
the MILC application.

2) Propose a UMR-based design and optimize it by
implementing efficient caching mechanisms.

3) Demonstrate the usefulness of the proposed
schemes by comparing the performance of the
proposed designs on real application layouts in
GPU-based HPC clusters.

In this section, we discuss our network-based noncon-
tiguous transfer design (proposed UMR).

Mkey Mapping

When DDTs are used in MPI calls, such as MPI_Isend,
first the sender/receiver parses the DDT handle to get
a list of input/output vectors (IOVs). An IOV is a struc-
ture that contains the address and length of a contig-
uous memory block. The number of 10Vs in a layout
indicates the number of blocks in that layout. It is
from this list of addresses the data are sent and
received. For more details on DDT processing and
IOVs refer to Suresh et al.”

Given this list of I0Vs obtained after parsing send/
receive input DDT handles, first, these memory regions
are registered’ with the HCA, which generates a list of
lkeys and rkeys. Then, UMR mkey is created and then
mapped to the list of addresses. This mkey object
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FIGURE 2. Sliding window based approach to map mkeys to
10V list. At each step the IOVs covered by the window is
mapped to a new mkey. This way the entire layout is mapped
to a set of mkeys, which represent the layout.

contains one lkey and one rkey that refers to the entire
memory region. We can use this mkey's lkey to post
RDMA operations provided we have the corresponding
mkey-based rkey of a destination buffer address. The
HCA's DMA engine is responsible for gathering data
referred to by the newly created mkey from the local
node and scattering data to the remote node according
to the mapping in the remote process’'s mkey.

As described in the “Motivation” section, we can
only map a limited number of blocks/IOVs’ to a single
mkey. Therefore, we use a list of mkeys to represent a
single layout. To simplify the data exchange process,
we first fix a chunk size for a given layout. Then, we
use a moving window-based approach to map mkeys
with the I0Vs. A window of size chunk size starts at
IOV-0, and spans all the 10Vs whose collective sum of
size is the chunk size. The first mkey is mapped to the
IOVs spanned by the window. After the first mkey is
mapped, the window is moved by an offset of chunk-
size. Now that the next mkey is mapped to the IOVs
under the current window. This process continues
until we exhaust all the IOVs. Note that the window
does not span the gaps between blocks, it operates at
the 10V level. This process is shown in Figure 2.

When we use the abovementioned approach to
map a list of 10Vs with a list of mkeys, we also add a
constraint of the max number of 10Vs per mkey to
ensure that our RDMA operation does not fail.

UMR-Based Design
Since the sender and receiver's layouts may not be
identical it is necessary to create and map mkeys on
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FIGURE 3. Steps involved in the UMR design between a sender
and receiver. The figure shows how one send/recv buffer can
have multiple mkeys representing regions in memory, and the
independent transfer of each region using RDMA operations.

the sender and receiver’s side in a co-operative man-
ner to ensure data validation. Now, both sender and
receiver will create mkeys based on the agreed chunk-
size. This will result in the same number of mkeys on
the sender and receiver's sides. A single mkey in the
sender side will be used to post an RDMA-wriTE opera-
tion using a corresponding remote mkey from the
receiver side. This way the responsibility of gathering
and scattering data from any type of source layout to
any type of destination layout is given to the source
and the destination HCAs.

Figure 3 illustrates the various steps involved in
our UMR design. First, the sender and receiver register
the entire send and receive buffers to obtain the lkey
and the rkey. Then the sender sends its chunk size to
the receiver. After receiving the sender's layout infor-
mation, the receiver arrives at an agreed chunk size
and it creates and maps mkeys to the receiver's IOVs
with this agreed chunk size. These mkeys and agreed
chunk size values are sent to the sender in the clear
to send (CTS) packet. Then, the sender creates and
maps a set of mkeys to its layout based on the agreed
chunk size value obtained in the CTS packet. Then,
the sender uses the remote mkey's rkey to post
RDMA-wrITE operations. The number of RDMA-wRITE
operations is equal to the number of mkeys created.

The agreed chunk size is calculated as follows.
The sender first sends its minimum block length
(Sblockmin) in the RTS message. The receiver uses
this value, and its own minimum block length

(Rblockmin) to compute Ablockmin = MIN(Sblockmin,
Rblockmin). With this the chunk size is calculated
as csize = MAX_ IOVS_PER_.WQE x Ablockmin, where
MAXIOVS_PER_WQE is the maximum allowed I0Vs
that is supported by the HCA. This ensures that the
chunk size satisfies the max 0V criteria for both the
sender and the receiver.

Enhancing the UMR Design

As discussed in the “Motivation” section, mkey crea-
tion is an expensive operation. Therefore, we create
a pool of mkeys at the time of MPI_Init. During the
run of the application, a sender/receiver obtains a
mkey from the pool and uses it for mapping to I0Vs.
If at any point the size of the free pool is reduced to
50%, an auxiliary thread is signaled, which creates
and adds a fixed number of mkeys to the pool. This
is done to ensure that the main thread does not get
impacted if it runs out of mkeys. The mkey pool is
released in MPI_Finalize at the end of the applica-
tion. This is because it does not affect the applica-
tion performance.

We use a layout-cache? to amortize the layout pars-
ing cost. In the abovementioned design, the sender
and receiver use the same set of layouts multiple times,
each time the receiver performs UMR-based registra-
tions and exchanges the list of mkeys with the sender.
To amortize the UMR registration cost and the mkey
exchange cost, we propose a UMR mkey caching.

We propose the implementation of two mkey
caches. The first is a local cache, which is to avoid
remapping of mkeys to the layouts. The second is a
remote cache maintained at the sender side to cache
the remote mkeys. This cache is used by the sender
when the receiver's layout was already sent to it at an
earlier exchange.

The first cache is implemented as a hash table that
is indexed by local layout-cache-id, local base address,
and chunk size. Each entry of the cache stores a list of
mkeys that are uniquely identified by the abovemen-
tioned three parameters. In addition to the mkey list,
the local cache stores a bitmap. This bitmap is used
by the receiver to store the ranks to which the mkey
list was sent. The bitmap size is determined by the
total number of ranks involved in the transfer. One bit
is reserved for each rank. On the sender’s side, this bit-
map is not used.

The remote mkey cache is implemented as an
array of hash tables where the array is indexed by
remote rank. Each entry of the array has a structure
similar to the local cache, which is a hash table
indexed by the remote layout-cache-id, remote base
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address and chunk size. The receiver will not send the
mkey list in the CTS packet when it determines that
the mkey was already sent to a particular. In such
cases, when the sender receives CTS packet without
the mkey list, the sender uses the remote cache to
retrieve the mkey list.

Hybrid-Tuned UMR design

Although the local and remote caches help in amortiz-
ing the layout mapping and exchange costs, the HCA
has limitations due to which after a certain number of
IOVs the performance of the UMR is inferior to a pack-
based scheme. This motivates the need for a hybrid
scheme where a pack-based scheme is chosen for lay-
outs with large I0Vs counts. The optimized UMR-
based scheme is chosen for layouts with small block
lengths and large 10V sizes. The exact threshold for
block lengths and IOV counts are determined by
empirical evaluation for each architecture of GPU and
HCA. On ThetaGPU systems (refer to the “Perfor-
mance Evaluation” section) through experimental
evaluation we found that the limit for UMR scheme is
a layout of 128 I0Vs and a block size of 512 bytes.

In this section, we compare the performance of the pro-
posed scheme against other existing pack-based
schemes on GPU-based clusters. We also compare the
proposed scheme with the state-of-the-art MPI libraries.

Experimental Platforms and Setup

We use MRI and ThetaGPU clusters for our evalua-
tions. The detailed hardware specifications of these
clusters are shown in Table 2. MRl is an in-house clus-
ter of eight nodes with AMD-EPYC processors and
A100 NVIDIA GPU nodes. The ThetaGPU cluster,
deployed at the Argonne Leadership Computing Facil-
ity (ALCF), contains 24 DGX-A100 nodes with AMD-
EPYC processors. Each node has NVIDIA DGX A100
GPU with 40-GB HBM2 memory. The GPUs are con-
nected with the third generation NVIDIA NVLink and
the second generation NVIDIA NVSwitch.

We implemented the proposed scheme (UMR) in
MVAPICH2-GDRE using MPI DDT and we compare this
with other pack-based MPI-DDT schemes in our MPI
library. We compare pack-gdr and pack-staged with
our scheme. In pack-gdr, the noncontiguous data are
packed to a contiguous GPU buffer using CUDA-pack
kernels and moved across GPUs using GPU-direct-
RDMA. In pack staged, the data are packed to a con-
tiguous GPU buffer and moved to the destination GPU
by staging it through host. The state-of-the-art MPI
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TABLE 2. Hardware

specification of different test-bed

clusters.
Specification MRI ThetaGPU
Processor family AMD EPYC AMD EPYC
Processor model EPYC 7713 EPYC 7742
Clock speed 20GHz 34GHz
Sockets 2 2
Cores per socket 64 64
NUMA nodes 2 8
CCX per NUMA 8 4
RAM (DDR4) 256 GB 1TB
Interconnect IB-HDR(200 G}—1 | 1B-HDR(200 G)—8

HCA HCAs

GPU processor NVIDIA A100x4 NVIDIA A100:x8
GPU memory 40 GB 40GB
Interconnects PCle NVLink-3 and
between GPUs NVSwitch
NVIDIA driver 510.39.01 470.82.01
version

libraries, such as OpenMPI/MVAPICH2-GDR, have
been tuned to use their best packing scheme by
default. Moreover, libraries, such as OpenMPI, may
not give us the option to select a DDT scheme. There-
fore, when we compare against the state-of-the-art
MPI libraries we use their default configuration.

First, to understand the performance of a simple
noncontiguous layouts, we modified the osu_latency
test provided by the Ohio State University (OSU)
micro-benchmarks suite to support MPI_Type_Vector
datatype. In this benchmark, a simple vector layout of
a given block length and count is exchanged in a ping-
pong manner for a given number of iterations.

Then, we evaluate application kernels with repre-
sentative application layouts. Finally, to understand
application level performance benefit we evaluate
SWALite proxy application. For all our experiments, we
report an average of 100 iterations, excluding the 10
warmup iterations for a total of 110 iterations.

Microbenchmark Results

In this section, we first evaluate the modified osu_la-
tency vector benchmark for block sizes of 1, 2, and
4 KB. For each of these block sizes, we vary the num-
ber of segments from 16 to 128. These block lengths
are representative of some of the layouts in halo
exchange-based applications. Figure 4(a), (b), and (c)
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FIGURE 4. Performance comparison of schemes for representative layouts with the basic pack schemes. (a) 1-KB block size.

(b) 2-KB block size. (c) 4-KB block size.

shows the results on the MRI cluster. We observe that
UMR performs up to 2x better than pack-GDR and up
to 3x better than pack staged. The HCA's ability to
scatter/gather data directly to GPU buffers coupled
with our UMR cache design, which ensures that
expensive operations like UMR-registration and mkey
exchange happen only once, enable the UMR scheme
to outperform pack-based schemes.

FFT Alltoallw Benchmark

In this section, we used an MPI_Alltoallw benchmark
with MPI_Type_subarray DDT. The benchmark is
derived from an earlier work® on FFT that proposed
the use of Alltoallw with MPI DDTs to implement multi-
dimensional FFTs. Our benchmark measures the time
taken to perform the communication operation to
transfer the input grid from one dimension to another
for a pencil-based FFT applications. We used an input
grid size of 128 x8x16 on two nodes and performed a
weak scaling study where the grid size per node
remains the same, as shown in Figure 5(a). This way the
layout of DDT used for each run is the same. The layout
for this input size contains 64 blocks of 1 KB. Similarly
Figure 5(b) and (c) shows the same experiment for
different block sizes which in-tum will have
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corresponding noncontiguous layouts. We observe
that the proposed scheme is 2x better than the pack-
staged scheme. The proposed scheme is atleast 20%
better than the pack-GDR scheme. The benefits are
consistent on systems of up to eight nodes.

Comparison of Application Layouts
With the State-of-the-Art MPI Libraries
In this section, we evaluate the proposed designs for
the performance of various application layouts using
applications-level kemels and compare the results
with existing state-of-the-art GPU-aware MPI libraries.
For our comparisons here, we utilize the MVAPICH2-
GDR library (version 2.3.7) and OpenMPI+UCX (Open-
MPI version 4.1.4 and UCX version 1.13.0).

We utilize the following application layouts for our
evaluation.

MILC: MILC studies the integration of quarks and
gluons using quantum chromodynamics. The MILC -
su3_zdkemel in DDTbench models the z-direction of
the su3_rmdapplication from the MILC code. It uses
nested vector datatype for 4-D face exchanges.
Figure 6(a) shows that the proposed-UMR scheme is
at least 15% better than MVAPICH2-GDR and is at
least 10 x better than OpenMPI+UCX. The layout used
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FIGURE 5. Weak scaling experiment of FFT Alltoallw benchmark for different problem sizes on ThetaGPU cluster. (a) Problem
size starting at 128x8x6 on two nodes. (b) Problem size starting at 64x16x16 on two nodes. (c) Problem size starting at

64x8x16 on two nodes.
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FIGURE 6. Normalized performance comparison of proposed-UMR with state-of-the-art solutions using application kernels for

different input sizes. Latencies are normalized with OpenMPI+UCX. Higher is better. (a) MILC on ThetaGPU. Grid dimensions
are A = (88,16,32), B = (8,16,16,32), C = (16,16,32,32), D = (16,32,32,32). (b) NASMGY on ThetaGPU. Grid dimensions are A =
(512,66,66), B = (1024,66,66), C = (2048,66,120). (c) SPECFEM3D mt on ThetaGPU. Grid dimensions are A = (10242,32), B =

(1024,2,64), C = (1024,2,128).

for the inputs has block lengths varying from 768 to
6,144 bytes. The strides for these layouts are several
orders of magnitude larger than the block length. The
15+% benefits with GDR compared to the proposed
scheme stems from the usage of optimized UMR-
based design with mkey cache.

NAS_MG: NAS_MG is a fluid dynamics application
that does 3-D face exchanges in z-, 3, and z-directions
with vector and nested vector datatypes. For inputs
shown in the graphs, the block lengths go to 6 KB and
similar to MILC strides several orders of magnitude
more than the block lengths. The counts used for
these layouts are around 60 elements. Our proposed
scheme is at least 50% better than MVAPICH2-GDR
and about 30x better than OpenMPI+UCX. This again
demonstrates the efficiency of HCA-assisted designs
that avoid the usage of pack-unpack kernels.

SPECFEM3D_GLOBE: Specfem3d_Globe is a spec-
tral-element application that can simulate global seis-
mic wave propagation through the Earth model. We
used the SPECFEM3D_mt kemel, which uses vector
and contiguous datatypes for data exchange. In
Figure 6(c), we compare the performance of the pro-
posed scheme with MVAPICH2-GDR and OpenMPI.
The block length used is 4 KB and the counts vary
from 32 to 128. Our proposed scheme is nearly 20%
better than MVAPCIH2-GDR and performs approxi-
mately 20 x better than OpenMPI+UCX.

SW4Lite

SWAdlLite is a proxy application, which contains some
of the important kernels of the SW4 application. SW4
simulates the propagation of seismic waves in a three-
dimensional heterogeneous material model. It uses a
fourth order in space and time finite-difference discre-
tization of the elastic wave equations in displacement
formulation. SW4Lite exchanges data in two
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directions (X and Y). It uses nested vector datatype
to represent the layouts to be exchanged in each of
these directions. To understand the benefits of the
proposed UMR design we used the pointsource test of
SWdlite with a grid size of 100 x100x 50 starting on two
nodes. We performed a weak scaling experiment by
maintaining a constant problem size per process. The
results are shown in Figure 7. For our problem size, in
one direction the vector layout has a block size of
5 KB and a count of 55. In the other direction, the lay-
out has 3,000 blocks of 48 bytes. In these scenarios
with heterogeneous layouts, our hybrid-tuned UMR
design will choose the optimized UMR-based scheme
for one direction and the best pack-kernel-based
scheme on the other direction. As a result the pro-
posed scheme performs up to 17% better in the total
application time compared to MVAPICH2-GDR on
eight nodes. We also observe more than 2x improve-
ments compared to OpenMPI+UCX.
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FIGURE 7. SWA4Lite weak scaling result. MV2 refers to MVA-
PICH2-GDR, UMR refers to the proposed-UMR design and
OMPI refers to OpenMPI+UCX. We have limited the Y-axis to
300 ms. The communication times for OpenMPI+UCX are
547.23,1,980.1, and 1,887.2 ms.



Past works®® optimized GPU-based DDT exchange by
using efficient pack kernels to perform packing—
unpacking of noncontiguous data. Chu et al." and Wu
et al'® proposed additional optimizations, such as
chunking and overlapping pack kemels with transfers.
However, none of these approaches use HCA hard-
ware accelerated schemes to avoid pack-unpack ker-
nels. Traff et al.® proposed “flattening on the fly"
scheme to optimize the parsing of MPI DDT layout.
This approach is aimed at optimizing the DDT process-
ing cost whereas we optimize the exchange of data.

Suresh et al.” explored the aspect of using HCA-
assisted mechanisms for GPU-based noncontiguous
exchanges. However, their scheme is only beneficial
for workloads with homogeneous layouts. Our design
benefits applications with heterogeneous layouts by
selecting the UMR-based scheme wherever it outper-
forms other schemes. In addition, our work shows the
evaluation of the proposed scheme on the MPI_AIl-
toallw benchmark and SWA4Lite application.

IN THIS WORK, WE PROPOSED AN
EFFICIENT MECHANISM TO HANDLE
NONCONTIGUOUS DATA ON GPUs
BEING COMMUNICATED ACROSS THE
NETWORK FOR INTERNODE
COMMUNICATION.

The deployment of GPUs to accelerate many modern
supercomputers has created a need for optimized
communication patterns that adhere to the needs of
these applications. In particular, applications that are
utilizing GPU-aware MPI may require exchanging data
that is noncontiguous in GPU memory. While MPI
DDTs have been used in the past and extensive work
has elaborated on the usage of datatypes for noncon-
tiguous data movement, most of this work focuses on
optimizing packing and unpacking schemes. In this
work, we proposed an efficient mechanism to handle
noncontiguous data on GPUs being communicated
across the network for internode communication.
Through these designs, we utilize the features pro-
vided by modem HCAs in order to gather then scatter
data between noncontiguous GPU memory regions.
We provide an extensive evaluation of our proposed
schemes against existing approaches. At the

benchmark layer, we are able to present approxi-
mately 2x improvement with our HCA-assisted
schemes compared to approaches currently utilized in
various state-of-the-art GPU-aware MPI libraries. We
also utilize the layouts provided by MILC, NASMG, and
Specfem3D to show improvement against various
libraries including MVAPICH2-GDR and OpenMPI
+UCX. Furthermore, at the application level we show
up to 17% improvement with SW4Lite proxy applica-
tion compared to other MPI libraries.
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