
In-Depth Evaluation of a Lower-Level Direct-Verbs
API on InfiniBand-based Clusters: Early

Experiences

Benjamin Michalowicz, Kaushik Kandadi Suresh, Bharath Ramesh,
Aamir Shafi, Hari Subramoni, Mustafa Abduljabbar, Dhabaleswar Panda

Department of Computer Science and Engineering
The Ohio State University Columbus, USA

{michalowicz.2, suresh.1, ramesh.113, shafi.16, subramoni.1, abduljabbar.1, panda.2}@osu.edu

Abstract—Many High-Performance Computing (HPC) clusters
around the world use some variation of InfiniBand interconnects,
all of which are powered by the “Verbs” API. Verbs supply
a quick, efficient, and developer-friendly method of passing
data buffers between nodes through their interconnect(s). In
more recent years, the MLX5-DV (Direct Verbs) API has made
itself known as a method of providing mechanisms to access
and expose low-level structures and buffers to a developer. In
principle, MLX5-DV is meant to give improved performance over
Verbs thanks to the removal of intermediate layers of software
abstraction. In this paper, we examine the inner workings of
what this means for potential performance improvement and how
MLX5-DV compares to its higher-level counterpart. In addition,
we will offer insights on how application developers and MPI
programmers can use this to their advantage based on initial
experiences with benchmark and application-level results.

Index Terms—HPC, Interconnects, InfiniBand, RDMA-Core,
HCA, Verbs, MLX5DV, MLX5

I. INTRODUCTION

The InfiniBand Verbs (“Verbs”, “IB-Verbs”) API [5] has

been an integral component in HPC clusters for over twenty

years with its portability and ease of use. It is a well-known

library of functions and data structures used as the backbone

of several libraries in the HPC community. Primarily, it is

used in the realm of inter-node data transfers through send

and receive-based operations and supports a wide range of

low-level data structures to manage how these messages are

processed at the network level.

A. IB-Verbs Are Fast; Can We Go Faster?

Accelerating traditional HPC workloads is a non-trivial

task. HPC researchers spend countless hours profiling ap-

plications and libraries to understand bottlenecks and design

better algorithms. Researchers and end users alike want high-

level, portable, and fast solutions. IB-Verbs offers a high-

performance, low-latency answer for these applications and

libraries. However, IB-Verbs is a relatively high-level API for

those that work on MPI libraries and poses some limitations

despite all of its capabilities. For example, beneath a call

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

to ibv_post_send, multiple steps are taken to write data

into the memory location from which it will be sent, such

as placing data in the proper spot in memory, examining the

type of “send” to be performed, and alerting the hardware to

finally transfer said data across the network. Optimizations can

be made here, though not with the IB-Verbs API.

B. MLX5-DV — “Direct” Verbs

The MLX5-DV API was designed in mind to do three

main things: 1) remove the layers of abstraction presented in

the IB-Verbs library around data structures and send/receive

routines; 2) expose special memory regions and mechanisms

to a developer for potential optimization; and 3) offer a method

of bridging the IB-Verbs API through InfiniBand’s“Extended

API” [15].

C. Additional Motivation: Rapid Advances in IB Interconnects

As newer network interface cards (NIC) enter the HPC mar-

ket, software and firmware must be designed and developed

to fully harness the resources available on them. For example,

NVIDIA’s ConnectX-7 NICs and Quantum-2 switches [11],

[13] are capable of 400Gb/s per port. Algorithms will be

made to harness this kind of power in MPI libraries running

over IB-Verbs and/or MLX5-DV, and an insight as to how the

API can be used both on current and next-generation hardware

will further accelerate the research and design that is done on

HPC clusters.

Furthermore, the MLX5-DV API has gone through several

modifications over the years (see Section II). Some papers

have given small evaluations with MLX5-DV such as [18],

though no other work has conducted an in-depth investigation

of the MLX5DV-API on benchmarks and applications.

D. Contribution and Paper Breakdown

This paper provides the following contributions:

1) An evaluation and analysis of the MLX5-DV API in

the context of benchmarks and applications against IB-

Verbs. This includes run-time performance, CPU-level

behavior, and memory/heap footprint analyses.

354

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

979-8-3503-1199-0/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPSW59300.2023.00065

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
79

-8
-3

50
3-

11
99

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

W
59

30
0.

20
23

.0
00

65

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

2) High-and-low-level trade-offs from both APIs, including

runtime, flexibility, and the scope of usability for each

API.

3) Insights on how to approach development with the

MLX5-DV API in standalone applications and MPI

libraries.

4) Correlation of performance to CPU-level counters mea-

sured via the PAPI library — primarily in the number
of stalled read/write cycles, instructions-per-cycle
values, and branch mispredictions.

To the best of our knowledge, this is the first paper that
makes this comparison between both APIs.

The rest of this paper is organized as follows: Section II

discusses some more in-depth background and what each API

provides as well as work related to this study. Section III

explains the general structure of what an MLX5-DV-based

send might look like and how it can be designed. Section

IV Details our experiments and subsequent analysis at the

benchmark and application level. Section V discusses related

work in both design and evaluation along this direction.

Section VI will summarize our findings and provide insights.

II. BACKGROUND

A. Background

Here, we will provide background on the Verbs and MLX5-

DV APIs and the tradeoffs that come with each of them. In

addition, we will briefly explain how MPI libraries can use

this API.
1) The IB-Verbs API: As mentioned in Section I, the

IB-Verbs API has a long history dating back to the early

2000s. In [1], it is noted that “libibverbs” has been the de-

facto standard for Verbs-based transfers since the early 2000s

and has been a component of the Linux kernel since kernel

version 2.6.11 (2005). In addition to InfiniBand-based clusters,

numerous protocols can run over Verbs such as TCP/IP and

other socket-based interfaces. It provides high-level and easy-

to-use functions for an array of operations. This includes

managing Send/Receive queues, querying devices to allocate

necessary resources, and even providing a level of security for

the prevention of data corruption/overwriting.

IB-Verbs’ structures have layers to them. They refer to other

structures/structure pointers, which refer to other structures

and pointers, and so on. This can potentially result in passing

around relatively large/heavy structures, which can result in

potentially massive memory requirements as an application’s

scale increases. For example, the ibv_qp structure for queue-

pairs (QP) holds a reference to a ibv_context structure,

which contains references to even more data structures. The

IB-level QP also has references to other data structures for

completion queues, shared-receive queues, and so on.
2) The MLX5-DV API: The MLX5-DV API has shown

up under various names over the years. Initially, it was

presented as the “mlx4” (and eventually “mlx5”) interface

in older OFED releases, though operations under this name

and other “experimental” Verbs functionalities — where each

function has the prefix ibv_exp_XYZ [14] — have since

been deprecated [16].

Aside from having its own set of data structures and mech-

anisms, it is compatible with IB-Verbs, requiring the higher-

level API to create some set of its structures. There are two

more important aspects to MLX5-DV’s makeup. The first is

that it exposes a host of hardware/software features to perform

send/receive functions. These include using programmable I/O

through Mellanox/NVIDIA’s “BlueFlame” mechanism [12],

[24] and exposing the region directly onto which data/WQE’s

are placed before a transfer — the “doorbell” region. The

second is that its data structures are substantially more

lightweight. For example, the mlx5dv_qp QP structure might

look like it contains more fields than its IB-Verbs counterpart,

but there are fewer pointers to other data structures [4]. This

creates a comparably lighter-weight structure to be passed

around from one node to the next.

Structures at this level are also available for specific con-

trol/data segments needed to post a message, further breaking

down the components needed in send and receive code paths,

which may further open up the possibility of performance

improvement. All user-level code is available in a publicly

available ”RDMA-core” repository [4] with documentation

from [15].

3) Use in MPI libraries: The Message Passing Interface

(MPI) [6] has been around since 1994. Many MPI libraries

use IB-Verbs and MLX5-DV mainly in one of three ways:

1) by directly calling IB-Verbs/MLX5-DV API functions/in

wrappers; 2) through the OpenFabrics Interface’s “Verbs”

provider; or 3) through the Unified Communications-X (UCX)

library (See Section V).

III. INSIDE LOOK: ANALYSIS OF THE MLX5-DV

SEND/RECV PATHS

A. The MLX5-DV Send Path

In this section, we will break down how a “send” operation

can be performed using MLX5-DV.

On the IB-Verbs side, the main steps of performing a

send include setting up a work request (struct ibv_wr),

appropriately setting up a QP, and calling ibv_post_send
while letting the underlying levels of the library handle the

remaining steps.

The first step in an MLX5-DV-based send is to determine

what kind of “send” we wish to perform — a “standard” send,

an atomic operation, or an RDMA write. We will examine the

first option.

For a standard send, we deal with the QP as well as

intermediate data segments and the need to determine the

proper sizes for each portion of the send-based data structures

involved. Firstly, we must create and manage the WQE that

will eventually be posted. We represent the first data segment

of it as a triple — a byte count, a local key (lkey), and an

address to represent the buffer of data being sent. The lkey

will later be used to match a send operation with a receive

operation. Next, a data structure for the control segment is

initialized to contain the correct send opcode, a QP number,

355

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

WQE size, immediates for offsets, etc. The lkey is also given

to the actual buffer being sent as metadata.

At the MLX5-DV level, the doorbell record is an address

space to which the counter for a given WQE is written –

similar to how a WQE is posted from the IB-Verbs level in

ibv_post_send. Once this record is posted, the destination

buffer — a void * pointer — is assigned a reference to an

address used inside the work queue. From here, we transfer

the data from the source buffer to the destination buffer

in one of two ways: 1) we copy the message through the

BlueFlame/programmable I/O, or 2) use memcpy. Lastly,

pointers for the work queue are updated so that the next WQE

in line can be placed in this memory address and posted to the

HCA, and the BlueFlame register is given an XOR operation

using its size/length. This “rings” the doorbell and sends a

signal to the hardware to send our payload.

Assembly-level “barriers” are inserted into the code for

correctness and to prevent possible latency degradations. For

example, UCX has such barriers surrounding writes to the

doorbell region and copying the source buffer to its destination.

B. The MLX5-DV Receive Path

The MLX5-DV-based “post-receive” involves fetching

WQEs from an SRQ in an infinite loop. The loop exits when

setting a corresponding data segment on the receive side is

no longer possible. This happens 1) if The SRQ entry has

been posted but not released, or 2) if setting the next data

segment results in an error. The latter involves iterating over

a bitmap and setting data segments as needed. After this

loop, the doorbell record is then written to update the SRQ’s

resource counts. Compared to the send operation, assembly-

level “barriers” are not needed on the receive side.

IV. EXPERIMENTS AND EVALUATION

Here, we discuss our experimental setup, tests, and results.

Our primary cluster of choice features NVIDIA ConnectX-6

HDR100 100Gb/s InfiniBand/VPI adapters and Dual-Socket

Intel Xeon E5-2697A V4 CPUs @ 2.60 GHz (32 cores/node).

The next several subsections, in order, show results on the uni-

directional bandwidth, bi-directional bandwidth, and latency

OSU Microbenchmarks (OMB) v5.9 [10], followed by OMB

collectives at various scales and processes per node (PPN).

In addition, we show various metrics obtained through PAPI

version 6.0.0 [22] on five different metrics: Total Cycles, Total

Instructions, Stalled Cycles from ALL resource requests, L3

Cache Misses, and Total Branch Mispredictions.

Our software stack is MVAPICH2-3.0a as released by

The Ohio State University [9] running over UCX 1.13.1.

UCX provides communication and transport-layer protocols

for InfiniBand-based clusters (see more in Section V).

Each graph contains three lines: The blue line represents IB-

Verbs-based runs, the orange line represents MLX5-DV, and

the gray line represents the percent improvement MLX5-DV

obtains with respect to IB-Verbs. The percent improvement

runs along the right-hand vertical axis.

For PAPI results, we note the following:

1) For total cycles, lower is better.

2) For stalled cycles, lower is better.

3) For L3/LLC cache misses, lower is better.

All results with OMB were obtained over six back-to-

back runs, with the inner loop of each microbenchmark being

profiled through PAPI. This allows our performance metrics

obtained from OMB to correlate directly with the information

obtained by PAPI. The performance counters are totaled over

the course of each message size — the standard/default

message sizes set by each OMB. Each collective was run from

two to sixteen nodes, increasing from 1 PPN to 32 PPN by

powers of 2. Higher bandwidth (MB/s) results are better, and

lower latency (microseconds) are better.

In an attempt to examine further tradeoffs between both

APIs, we utilize Massif [8], a memory checker that analyzes

memory footprint throughout a program’s runtime within Val-

grind. Massif outputs human-readable files that can be further

processed to include graphs beyond human-readable content,

and we analyze files from each run of the collective OMB to

further examine how each API behaves.

A. Runtime Results

In this section, we will display and explain our analysis

of the pure runtime numbers for various point-to-point and

collective OMB run over IB-Verbs and MLX5-DV.

1) Point-to-Point: Through OMB, we deduce that the

MLX5-DV API is beneficial for smaller, and sometimes

medium message sizes. Point-to-point latency, as shown in

Figure 1a, starts consistently performing less than five percent

better than IB-Verbs after 4KB, and the difference becomes

negligible beyond 16KB. These messages are all sent over

an eager protocol, which becomes a bottleneck as message

sizes increase. Both APIs need handling of messages in the

context of an MPI library such as MVAPICH2 to account

for larger messages, hence the increasingly small performance

improvements.

2) Collectives: This section showcases and analyzes per-

formance results on collective operations at various scales (2

to 16 Nodes, up to 32 PPN).

Our first two figures detail the performance of osu allgather

at various node and PPN counts. In Figure 2, we see up to

a 30% benefit within osu allgather across various scales Be-

tween each set of results, smaller performance benefits/degra-

dations may vary, with larger degradations largely unchanging.

In Figure 3, we see some factors that can influence per-

formance either positively or negatively in the context of

osu allgather. The first subgraph demonstrates the potential

performance degradations seen if full subscription is used with

UCX, as the library allocates a helper thread for asynchronous

progress. As we will see later, some collectives may perform

better, and some worse, when attempting to utilize all cores on

a node. System variation can sometimes be a culprit and lead

to results shown where an already-low latency’s fluctuations

can mean massive performance degradations.

Pure inter-node runs (1-PPN) with any number of nodes

will generally perform as well or better for most collectives.

356

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

(a) osu latency on 2 Nodes, 1 PPN (b) osu bw on 2 Nodes, 1 PPN (c) osu bibw on 2 Nodes, 1 PPN

Fig. 1: OMB Pt2Pt up to 16KB with percent difference in performance

(a) osu allgather at 2 Nodes, 1 PPN (b) osu allgather at 2 Nodes, 8 PPN (c) osu allgather at 16 Nodes, 2 PPN

Fig. 2: osu allgather: A sampling of MLX5-DV’s Performance Benefits against IB-Verbs

(a) osu allgather at 4 Nodes, 32 PPN (b) osu allgather at 16 Nodes, 4 PPN (c) osu allgather at 16 Nodes, 8 PPN

Fig. 3: osu allgather: A sampling of MLX5-DV’s Performance Fluctuations

Figure 4 details similar trends to previous figures with a

slowly decreasing performance improvement as message size

increases.

Certain collectives are a bit less predictable with the MLX5-

DV API, such as osu scatter and osu alltoall. The perfor-

mance of osu scatter changes vastly between 8 nodes/32

PPN and 16 Nodes/32 PPN, with the latter showing MLX5-

DV obtaining half the runtime as its IB-Verbs counterpart.

Figure 5 shows 1-megabyte messages gaining more than a

50% performance against IB-Verbs. osu alltoall’s performance

improvements vary heavily with respect to IB-Verbs.

B. PAPI Counter Analysis

As previously mentioned, we use a subset of PAPI counters

to profile the inner loop of various OMB — that is, the loop

performing both warmup and timed iterations of each point-

to-point and collective operation.

1) PAPI counters on Point-to-Point OMB: In general, the

PAPI counters taken correlate with our runtime results. As per

Figure 6, we can see that MLX5-DV’s direct access to lower-

level memory improves various performance metrics, such as

a decrease in stalled cycles as well as Instructions and Clock

Cycles. In addition, MLX5-DV is shown to have a smaller

number of total stalled cycles in bi-directional bandwidth —

one whole order of magnitude — which explains the larger

performance benefits at the point-to-point level.

2) PAPI counters on Collectives: Here, we will try to

correlate our runtime results from Section IV-A with the PAPI

counter results shown here.

Figure 7 showcases the PAPI counters obtained from the

runs in Figure 2. Almost immediately, we see how decreased

numbers in metrics like stalled cycles and identical clock-

cycle counts aid in the small message performance benefits for

the 16-node/2-PPN and 2-Node/1-PPN cases. While helpful

357

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

(a) osu alltoall at 4 Nodes, 1 PPN (b) osu bcast at 4 Nodes, 1 PPN (c) osu reduce at 8 Nodes, 1 PPN

(d) osu scatter at 8 Nodes, 1 PPN (e) osu allreduce at 16 Nodes, 1 PPN

Fig. 4: IB-Verbs v. MLX5-DV: 1-PPN Collectives-level Performance

(a) osu alltoall at 8 Nodes, 32 PPN (b) osu alltoall at 16 Nodes, 32 PPN

(c) osu scatter at 8 Nodes, 32 PPN (d) osu scatter at 16 Nodes, 32 PPN

Fig. 5: IB-Verbs vs. MLX5DV: Performance changes in osu scatter and osu alltoall at full subscription (32 PPN)

in analysis, branch mispredictions and total instruction count

appear to have a smaller impact on the performance benefits

thus far than the rest of the metrics.

osu scatter’s PAPI counters over MLX5-DV have a stronger

correlation with improved runtime; the substantially smaller

number of stalled cycles, L3 cache misses, and increased IPC

values all contribute, especially at the larger messages in both

the 8 and 16-node cases. However, extensive analysis is needed

for osu alltoall given a) its communication-intensive nature,

and b) the sporadic change in performance across both scales

and message sizes.

C. Memory footprint

We profiled four different collective OMB — osu alltoall,

osu gather, osu scatter, and osu allreduce — at 8 nodes and

various PPN with the Massif tool that comes along with

Valgrind [8]. Figure 10 shows how MLX5-DV’s heap footprint

remains constant against the increasing amount of memory

requested by IB-Verbs. This initial reduction in memory

footprint comes from the shallower MLX5-DV structures

mentioned in Section II-A2.

358

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

(a) osu latency performance counters on total
stalled cycles, total cycles, and total instructions

(b) osu latency performance counters on branch
mispredictions and L3 cache misses

(c) osu bibw performance counters on total
stalled cycles, total cycles, and total instructions

(d) osu bibw performance counters on branch
mispredictions and L3 cache misses

Fig. 6: PAPI counters on both MLX5-DV and IB-Verbs for osu latency and osu bibw. For this and subsequent graphs, the

majority of the performance benefits are influenced by L3 Cache Misses, number of cycles, and Total number of Stalled Cycles

Fig. 7: PAPI counters on both MLX5-DV and IB-Verbs, focused on osu allgather results from Figure 2

Figure 11 shows a deviation in the increased memory foot-

print exhibited by IB-Verbs-backed variant of MVAPICH2-

3.0a over UCX. Once a microbenchmark is run at more than

512 processes, we see a sudden drop in IB-Verbs’ memory

consumption. At runtime, unless a user selects specific pro-

tocols (UD, RC, etc.), UCX will default to the best protocol

for initialization at runtime (such as UD), hence the drop in

IB-Verbs memory consumption beyond 512 processes.

This difference in heap usage, however, will not be apparent

at scale with applications, as medium and large problem sizes

will dwarf the heap usage of an MPI library.

D. Collectives at Scale

We briefly examine larger-scale runs on the Frontera [21]

supercomputer. We showcase 128-node collectives at 16-PPN

(2048 processes). Figure 12 shows how how performance can

change at a large scale for collectives like osu allreduce,

osu bcast, osu gather, and osu scatter. Whereas we saw

smaller message benefits at smaller scales, larger messages

generally exhibit larger benefits here.

359

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: PAPI counters on both MLX5-DV and IB-Verbs, focused on osu allgather results from Figure 3

Fig. 9: PAPI counters on both MLX5-DV and IB-Verbs, focused on osu scatter and osu alltoall results from Figure 5.

We previously saw benefits at small messages for

osu allreduce shrank until the 512KB message size. Overall,

MLX5-DV gives up to 20% performance benefits at larger

scales.

E. Application-Level Results

Here, we present the results of two applications running

MVAPICH2-3.0a over IB-Verbs and MLX5-DV at a medium

scale. Contrary to OMB, 32 PPN cannot be done on account of

UCX’s asynchronous thread. One application is MILC [7] — a

lattice-based physics application. The other is LAMMPS [23]

— a molecular-dynamics simulation code.

360

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

(a) Heap usage in osu allreduce (b) Heap usage in osu scatter

(c) Heap usage in osu alltoall (d) Heap usage in osu gather

Fig. 10: Heap Profiling with Massif on Different Communication Patterns/OMB (8 Nodes)

(a) Heap usage in osu allreduce (b) Heap usage in osu scatter

(c) Heap usage in osu alltoall (d) Heap usage in osu gather

Fig. 11: Heap Profiling with Massif on Different Communication Patterns/OMB (32 Nodes)

In MILC, we run the pure gauge “su3 rmd” test with a mesh

of dimensions 170 x 180 x 160 x 7. The numbers for our MILC

experiments (averaged over six back-to-back executions) are

shown in Figure 13. Here we see that in this problem set

and at these scales, MLX5-DV generally obtains either small,

consistent, positive performance improvement, or virtually no

improvement (less than 1%) in either the positive or negative

direction. Smaller problem sizes offer similar/consistent re-

sults. TAU [20] profiles with MILC indicate mild fluctuations

in runtime between both MLX5-DV and IB-Verbs during MPI

communication, leading us to believe that the message sizes

used within MILC relate to the areas of little performance

difference for given collectives.

Our LAMMPS experiments use an enlarged version of the

361

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

(a) 128N-16PPN osu allreduce (b) 128N-16PPN osu bcast

(c) 128N-16PPN osu gather (d) 128N-16PPN osu scatter

Fig. 12: Large-Scale Collectives on the Frontera Supercomputer

(a) MILC on 8 nodes (b) MILC on 16 nodes

Fig. 13: MILC 8-and-16-Node, Multi-PPN Experiments

3D Lennard-Jones melt experiment with numbers obtained

identically to that of the MILC experiments shown in Figure

14. Here, we see that while MLX5-DV offers a slightly larger

improvement compared to that of MILC’s executions in these

experiments, neither API vastly outperforms the other. Further

experimentation on different problem sets and scales will be

needed to further evaluate performance impact.

(a) LAMMPS on 8 nodes (b) LAMMPS on 16 nodes

Fig. 14: LAMMPS 8-and-16-Node, Multi-PPN Experiments

V. RELATED WORK

UCX [19] is a standalone library that can be incorporated

into other HPC libraries and act as the communication layer for

MPI and PGAS environments. UCX also provides the ability

to turn on/off support for MLX5-DV-based functionality at the

point-to-point and collective levels1. [25] performed an analy-

sis on high-performance communication using PCIe hardware

counters to measure low-level transfers and analyze bottle-

necks within HPC communication. While a very insightful

work, not all clusters have such hardware to perform the same

level of analysis. [3] uses a performance monitoring library

(found at [2]) to analyze PCIe metrics. This library requires

root access to use and, to the best of our knowledge, cannot be

run inside an MPI application. While we attempted to use this

library (with root access enabled), we found it was suitable for

our analysis. [17] also performs an initial evaluation of UCX

over InfiniBand, focusing on its performance under MPICH-

3.3, though with no focus on the MLX5 (later MLX5-DV)

support. [18] dedicates a section to a comparison of MLX5-

DV and IB-Verbs in the context of RMA operations.

VI. INSIGHTS AND CONCLUSION

A. Insights: Trade-offs in APIs

MLX5-DV already shows significant benefits with the po-

tential to out-perform its IB-Verbs counterpart. At the same

time, it also has its own set of drawbacks. For example,

clusters running on older OFED releases may not be able to

benefit from the usage of this API. Furthermore, utilization

of this API requires more effort on the developer than if they

1This is a configure-time option, not a run-time option

362

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

were using IB-Verbs. As mentioned in Section III, there is

no exact counterpart for ibv_post_send. As it currently

stands, MLX5-DV appears to be more susceptible to system

jitters that lead to potentially wild performance benefits and

degradations. As we have seen, MLX5-DV’s memory con-

sumption does not change when transitioning between the UD

and RC communication protocols.

Based on our results, we propose the following suggestions:

1) Interchange MLX5-DV and IB-Verbs at different message

sizes. Smaller message sizes appear more advantageous for

MLX5-DV – such as those below 16KB — in the majority

of cases; 2) Utilize different APIs at different scales —

while more analysis is needed, MLX5-DV generally shows

benefits at larger scales. Fine-tuning for each collective is

needed to obtain more improvements beyond what is shown in

Figure 12, and further profiling is needed to explore the large-

message degradations occurring within the large-scale gather.

MPI libraries traditionally run either over a layer such as UCX

or the Open Fabrics Interface (OFI) or by calling IB-Verbs

functions directly. Being a low-level extension of IB-Verbs,

MLX5-DV could be made more user-friendly by providing an

option for standardized send and receive-based abstractions so

that they can be more readily integrated should an MPI library

attempt to utilize it — similar to ibv_post_send/recv.

B. Conclusion and Future Work

In this paper, we performed an in-depth analysis and eval-

uation of two approaches to communication in InfiniBand-

based clusters. We have presented results at various scales

including runtime analysis, collection of performance counters

at the CPU level, and analyses on the memory footprint of

both the MLX5-DV API and the IB-Verbs API in the case of

the OSU Microbenchmark suite. We have also provided in-

sights and results on two well-known applications at medium-

large scales. We have provided insights on the performance

tradeoffs between both APIs and how to integrate them into

both standalone applications and, e.g., MPI libraries. Future

directions along this line include further profiling and analysis,

further exploration of features, and attempts to stabilize the

performance shown in this paper. It would be prudent to

analyze instructions executed in the “Send” and “Receive”

sections of each code path, such as through Intel’s Software

Development Emulator, compared to the results shown through

PAPI in Section IV-B. Investigating other communication

protocols within the IB stack in the manner of this paper will

be interesting, such as with the DC protocol. In addition, we

hope to further profile MLX5-DV to stabilize the performances

shown in this paper.

REFERENCES

[1] Dotan Barak. Verbs programming tutorial, 2014.
https://www.cs.mtsu.edu/ waderholdt/6430/papers/ibverbs.pdf.

[2] Intel. Intel/pcm: Processor counter monitor, Jan 2017.
https://github.com/intel/pcm.

[3] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guide-
lines for high performance RDMA systems. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 437–450, Denver, CO,
June 2016. USENIX Association.

[4] Kernel.org team. Rdma-core userspace libraries and daemons repository.
https://github.com/linux-rdma/rdma-core.

[5] Patrick MacArthur, Qian Liu, Robert D. Russell, Fabrice Mizero,
Malathi Veeraraghavan, and John M. Dennis. An integrated tutorial on
infiniband, verbs, and mpi. IEEE Communications Surveys & Tutorials,
19(4):2894–2926, 2017.

[6] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 4.0, June 2021.

[7] MIMD Lattice Computation Collaboration. MIMD Lattice Computation
(MILC). https://web.physics.utah.edu/ detar/milc/milc qcd.html.

[8] Nicholas Nethercote, Robert Walsh, and Jeremy Fitzhardinge. ”building
workload characterization tools with valgrind”. In 2006 IEEE Interna-
tional Symposium on Workload Characterization, pages 2–2, 2006.

[9] Network-Based Computing Laboratory. Mvapich.
https://www.mvapich.cse.ohio-state.edu/.

[10] Network-Based Computing Laboratory. Osu microbenchmarks.
https://mvapich.cse.ohio-state.edu/benchmarks/.

[11] NVIDIA. NVIDIA ConnectX-7 NDR 400 InfiniBand Adapter Card.
[12] NVIDIA. Nvidia mlnx ofed documentation rev 5.6-2.0.9.0 user manual.

https://docs.nvidia.com/networking/display/MLNXOFEDv562090/Introduction.

[13] NVIDIA. Nvidia quantum-2 infiniband platform.
[14] NVIDIA. Mlnx ofed v4.5-1.0.1.0 documentation, 2018.

https://docs.nvidia.com/networking/display/MLNXOFEDv451010.
[15] NVIDIA. Migration to rdma-core, 2020.

https://docs.nvidia.com/networking/display/rdmacore50/Migration+to+RDMA-
Core#MigrationtoRDMACore-Overview.

[16] NVIDIA. Mlnx ofed documentation rev 5.0-1.0.0.0, 2021.
https://docs.nvidia.com/networking/display/OFEDv501000/MLNX OFED
+Documentation+Rev+5.0-1.0.0.0.

[17] Nikela Papadopoulou, Lena Oden, and Pavan Balaji. A performance
study of ucx over infiniband. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
345–354, 2017.

[18] Pavel Shamis, M. Graham Lopez, and Gilad Shainer. Enabling one-
sided communication semantics on arm. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 805–813, 2017.

[19] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez,
Matthew B Baker, Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad
Shainer, Richard L Graham, Liran Liss, et al. Ucx: an open source
framework for hpc network apis and beyond. In 2015 IEEE 23rd
Annual Symposium on High-Performance Interconnects, pages 40–43.
IEEE, 2015.

[20] Sameer S. Shende and Allen D. Malony. The tau parallel performance
system. Int. J. High Perform. Comput. Appl., 20(2):287–311, may 2006.

[21] Dan Stanzione, John West, R. Todd Evans, Tommy Minyard, Omar
Ghattas, and Dhabaleswar K. Panda. Frontera: The evolution of
leadership computing at the national science foundation. In Practice
and Experience in Advanced Research Computing, PEARC ’20, page
106–111, New York, NY, USA, 2020. Association for Computing
Machinery.

[22] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collect-
ing performance data with papi-c. In Matthias S. Müller, Michael M.
Resch, Alexander Schulz, and Wolfgang E. Nagel, editors, Tools for
High Performance Computing 2009, pages 157–173, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[23] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton. LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales. Comp.
Phys. Comm., 271:108171, 2022.

[24] Rohit Zambre, Aparna Chandramowlishwaran, and Pavan Balaji. Scal-
able communication endpoints for mpi+threads applications. In 2018
IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), pages 803–812, Dec 2018.

[25] Rohit Zambre, Megan Grodowitz, Aparna Chandramowlishwaran, and
Pavel Shamis. Breaking band: A breakdown of high-performance
communication. In Proceedings of the 48th International Conference on
Parallel Processing, ICPP 2019, New York, NY, USA, 2019. Association
for Computing Machinery.

363

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:08:45 UTC from IEEE Xplore. Restrictions apply.

