2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 979-8-3503-1199-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/IPDPSW59300.2023.00065

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

In-Depth Evaluation of a Lower-Level Direct-Verbs
API on InfiniBand-based Clusters: Early
Experiences

Benjamin Michalowicz, Kaushik Kandadi Suresh, Bharath Ramesh,
Aamir Shafi, Hari Subramoni, Mustafa Abduljabbar, Dhabaleswar Panda
Department of Computer Science and Engineering
The Ohio State University Columbus, USA
{michalowicz.2, suresh.1, ramesh.113, shafi.16, subramoni.l, abduljabbar.1, panda.2} @osu.edu

Abstract—Many High-Performance Computing (HPC) clusters
around the world use some variation of InfiniBand interconnects,
all of which are powered by the ‘“Verbs” API. Verbs supply
a quick, efficient, and developer-friendly method of passing
data buffers between nodes through their interconnect(s). In
more recent years, the MLXS-DV (Direct Verbs) API has made
itself known as a method of providing mechanisms to access
and expose low-level structures and buffers to a developer. In
principle, MLXS5-DV is meant to give improved performance over
Verbs thanks to the removal of intermediate layers of software
abstraction. In this paper, we examine the inner workings of
what this means for potential performance improvement and how
MLXS5-DV compares to its higher-level counterpart. In addition,
we will offer insights on how application developers and MPI
programmers can use this to their advantage based on initial
experiences with benchmark and application-level results.

Index Terms—HPC, Interconnects, InfiniBand, RDMA-Core,
HCA, Verbs, MLX5DV, MLX5

I. INTRODUCTION

The InfiniBand Verbs (“Verbs”, “IB-Verbs”) API [5] has
been an integral component in HPC clusters for over twenty
years with its portability and ease of use. It is a well-known
library of functions and data structures used as the backbone
of several libraries in the HPC community. Primarily, it is
used in the realm of inter-node data transfers through send
and receive-based operations and supports a wide range of
low-level data structures to manage how these messages are
processed at the network level.

A. IB-Verbs Are Fast; Can We Go Faster?

Accelerating traditional HPC workloads is a non-trivial
task. HPC researchers spend countless hours profiling ap-
plications and libraries to understand bottlenecks and design
better algorithms. Researchers and end users alike want high-
level, portable, and fast solutions. IB-Verbs offers a high-
performance, low-latency answer for these applications and
libraries. However, IB-Verbs is a relatively high-level API for
those that work on MPI libraries and poses some limitations
despite all of its capabilities. For example, beneath a call

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

to ibv_post_send, multiple steps are taken to write data
into the memory location from which it will be sent, such
as placing data in the proper spot in memory, examining the
type of “send” to be performed, and alerting the hardware to
finally transfer said data across the network. Optimizations can
be made here, though not with the IB-Verbs APL

B. MLX5-DV — “Direct” Verbs

The MLX5-DV API was designed in mind to do three
main things: 1) remove the layers of abstraction presented in
the IB-Verbs library around data structures and send/receive
routines; 2) expose special memory regions and mechanisms
to a developer for potential optimization; and 3) offer a method
of bridging the IB-Verbs API through InfiniBand’s“Extended
API” [15].

C. Additional Motivation: Rapid Advances in IB Interconnects

As newer network interface cards (NIC) enter the HPC mar-
ket, software and firmware must be designed and developed
to fully harness the resources available on them. For example,
NVIDIA’s ConnectX-7 NICs and Quantum-2 switches [11],
[13] are capable of 400Gb/s per port. Algorithms will be
made to harness this kind of power in MPI libraries running
over IB-Verbs and/or MLX5-DV, and an insight as to how the
API can be used both on current and next-generation hardware
will further accelerate the research and design that is done on
HPC clusters.

Furthermore, the MLX5-DV API has gone through several
modifications over the years (see Section II). Some papers
have given small evaluations with MLXS5-DV such as [18],
though no other work has conducted an in-depth investigation
of the MLX5DV-API on benchmarks and applications.

D. Contribution and Paper Breakdown

This paper provides the following contributions:

1) An evaluation and analysis of the MLX5-DV API in
the context of benchmarks and applications against IB-
Verbs. This includes run-time performance, CPU-level
behavior, and memory/heap footprint analyses.
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2) High-and-low-level trade-offs from both APIs, including
runtime, flexibility, and the scope of usability for each
APL

Insights on how to approach development with the
MLX5-DV API in standalone applications and MPI
libraries.

Correlation of performance to CPU-level counters mea-
sured via the PAPI library — primarily in the number
of stalled read/write cycles, instructions-per-cycle
values, and branch mispredictions.

To the best of our knowledge, this is the first paper that
makes this comparison between both APIs.

3)

4)

The rest of this paper is organized as follows: Section II
discusses some more in-depth background and what each API
provides as well as work related to this study. Section III
explains the general structure of what an MLXS-DV-based
send might look like and how it can be designed. Section
IV Details our experiments and subsequent analysis at the
benchmark and application level. Section V discusses related
work in both design and evaluation along this direction.
Section VI will summarize our findings and provide insights.

II. BACKGROUND
A. Background

Here, we will provide background on the Verbs and MLXS5-
DV APIs and the tradeoffs that come with each of them. In
addition, we will briefly explain how MPI libraries can use
this APL

1) The IB-Verbs API: As mentioned in Section I, the
IB-Verbs API has a long history dating back to the early
2000s. In [1], it is noted that “libibverbs” has been the de-
facto standard for Verbs-based transfers since the early 2000s
and has been a component of the Linux kernel since kernel
version 2.6.11 (2005). In addition to InfiniBand-based clusters,
numerous protocols can run over Verbs such as TCP/IP and
other socket-based interfaces. It provides high-level and easy-
to-use functions for an array of operations. This includes
managing Send/Receive queues, querying devices to allocate
necessary resources, and even providing a level of security for
the prevention of data corruption/overwriting.

IB-Verbs’ structures have layers to them. They refer to other
structures/structure pointers, which refer to other structures
and pointers, and so on. This can potentially result in passing
around relatively large/heavy structures, which can result in
potentially massive memory requirements as an application’s
scale increases. For example, the ibv_ gp structure for queue-
pairs (QP) holds a reference to a ibv_context structure,
which contains references to even more data structures. The
IB-level QP also has references to other data structures for
completion queues, shared-receive queues, and so on.

2) The MLX5-DV API: The MLXS5-DV API has shown
up under various names over the years. Initially, it was
presented as the “mlx4” (and eventually “mlx5”) interface
in older OFED releases, though operations under this name
and other “experimental” Verbs functionalities — where each
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function has the prefix ibv_exp_XYZ [14] — have since
been deprecated [16].

Aside from having its own set of data structures and mech-
anisms, it is compatible with IB-Verbs, requiring the higher-
level API to create some set of its structures. There are two
more important aspects to MLX5-DV’s makeup. The first is
that it exposes a host of hardware/software features to perform
send/receive functions. These include using programmable I/O
through Mellanox/NVIDIA’s “BlueFlame” mechanism [12],
[24] and exposing the region directly onto which data/WQE’s
are placed before a transfer — the “doorbell” region. The
second is that its data structures are substantially more
lightweight. For example, the m1x5dv_qgp QP structure might
look like it contains more fields than its IB-Verbs counterpart,
but there are fewer pointers to other data structures [4]. This
creates a comparably lighter-weight structure to be passed
around from one node to the next.

Structures at this level are also available for specific con-
trol/data segments needed to post a message, further breaking
down the components needed in send and receive code paths,
which may further open up the possibility of performance
improvement. All user-level code is available in a publicly
available "RDMA-core” repository [4] with documentation
from [15].

3) Use in MPI libraries: The Message Passing Interface
(MPI) [6] has been around since 1994. Many MPI libraries
use IB-Verbs and MLX5-DV mainly in one of three ways:
1) by directly calling IB-Verbs/MLXS5-DV API functions/in
wrappers; 2) through the OpenFabrics Interface’s “Verbs”
provider; or 3) through the Unified Communications-X (UCX)
library (See Section V).

III. INSIDE LOOK: ANALYSIS OF THE MLX5-DV
SEND/RECV PATHS

A. The MLX5-DV Send Path

In this section, we will break down how a “send” operation
can be performed using MLXS5-DV.

On the IB-Verbs side, the main steps of performing a
send include setting up a work request (struct ibv_wr),
appropriately setting up a QP, and calling ibv_post_send
while letting the underlying levels of the library handle the
remaining steps.

The first step in an MLX5-DV-based send is to determine
what kind of “send” we wish to perform — a “standard” send,
an atomic operation, or an RDMA write. We will examine the
first option.

For a standard send, we deal with the QP as well as
intermediate data segments and the need to determine the
proper sizes for each portion of the send-based data structures
involved. Firstly, we must create and manage the WQE that
will eventually be posted. We represent the first data segment
of it as a triple — a byte count, a local key (1key), and an
address to represent the buffer of data being sent. The lkey
will later be used to match a send operation with a receive
operation. Next, a data structure for the control segment is
initialized to contain the correct send opcode, a QP number,
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WQE size, immediates for offsets, etc. The lkey is also given
to the actual buffer being sent as metadata.

At the MLX5-DV level, the doorbell record is an address
space to which the counter for a given WQE is written —
similar to how a WQE is posted from the IB-Verbs level in
ibv_post_send. Once this record is posted, the destination
buffer — a void = pointer — is assigned a reference to an
address used inside the work queue. From here, we transfer
the data from the source buffer to the destination buffer
in one of two ways: 1) we copy the message through the
BlueFlame/programmable I/O, or 2) use memcpy. Lastly,
pointers for the work queue are updated so that the next WQE
in line can be placed in this memory address and posted to the
HCA, and the BlueFlame register is given an XOR operation
using its size/length. This “rings” the doorbell and sends a
signal to the hardware to send our payload.

Assembly-level “barriers” are inserted into the code for
correctness and to prevent possible latency degradations. For
example, UCX has such barriers surrounding writes to the
doorbell region and copying the source buffer to its destination.

B. The MLX5-DV Receive Path

The MLXS5-DV-based “post-receive” involves fetching
WQE:s from an SRQ in an infinite loop. The loop exits when
setting a corresponding data segment on the receive side is
no longer possible. This happens 1) if The SRQ entry has
been posted but not released, or 2) if setting the next data
segment results in an error. The latter involves iterating over
a bitmap and setting data segments as needed. After this
loop, the doorbell record is then written to update the SRQ’s
resource counts. Compared to the send operation, assembly-
level “barriers” are not needed on the receive side.

IV. EXPERIMENTS AND EVALUATION

Here, we discuss our experimental setup, tests, and results.
Our primary cluster of choice features NVIDIA ConnectX-6
HDR100 100Gb/s InfiniBand/VPI adapters and Dual-Socket
Intel Xeon E5-2697A V4 CPUs @ 2.60 GHz (32 cores/node).
The next several subsections, in order, show results on the uni-
directional bandwidth, bi-directional bandwidth, and latency
OSU Microbenchmarks (OMB) v5.9 [10], followed by OMB
collectives at various scales and processes per node (PPN).
In addition, we show various metrics obtained through PAPI
version 6.0.0 [22] on five different metrics: Total Cycles, Total
Instructions, Stalled Cycles from ALL resource requests, L3
Cache Misses, and Total Branch Mispredictions.

Our software stack is MVAPICH2-3.0a as released by
The Ohio State University [9] running over UCX 1.13.1.
UCX provides communication and transport-layer protocols
for InfiniBand-based clusters (see more in Section V).

Each graph contains three lines: The blue line represents IB-
Verbs-based runs, the orange line represents MLX5-DV, and
the gray line represents the percent improvement MLX5-DV
obtains with respect to IB-Verbs. The percent improvement
runs along the right-hand vertical axis.

For PAPI results, we note the following:
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1) For total cycles, lower is better.
2) For stalled cycles, lower is better.
3) For L3/LLC cache misses, lower is better.

All results with OMB were obtained over six back-to-
back runs, with the inner loop of each microbenchmark being
profiled through PAPI. This allows our performance metrics
obtained from OMB to correlate directly with the information
obtained by PAPI. The performance counters are totaled over
the course of each message size — the standard/default
message sizes set by each OMB. Each collective was run from
two to sixteen nodes, increasing from 1 PPN to 32 PPN by
powers of 2. Higher bandwidth (MB/s) results are better, and
lower latency (microseconds) are better.

In an attempt to examine further tradeoffs between both
APIs, we utilize Massif [8], a memory checker that analyzes
memory footprint throughout a program’s runtime within Val-
grind. Massif outputs human-readable files that can be further
processed to include graphs beyond human-readable content,
and we analyze files from each run of the collective OMB to
further examine how each API behaves.

A. Runtime Results

In this section, we will display and explain our analysis
of the pure runtime numbers for various point-to-point and
collective OMB run over IB-Verbs and MLXS5-DV.

1) Point-to-Point: Through OMB, we deduce that the
MLX5-DV API is beneficial for smaller, and sometimes
medium message sizes. Point-to-point latency, as shown in
Figure la, starts consistently performing less than five percent
better than IB-Verbs after 4KB, and the difference becomes
negligible beyond 16KB. These messages are all sent over
an eager protocol, which becomes a bottleneck as message
sizes increase. Both APIs need handling of messages in the
context of an MPI library such as MVAPICH2 to account
for larger messages, hence the increasingly small performance
improvements.

2) Collectives: This section showcases and analyzes per-
formance results on collective operations at various scales (2
to 16 Nodes, up to 32 PPN).

Our first two figures detail the performance of osu_allgather
at various node and PPN counts. In Figure 2, we see up to
a 30% benefit within osu_allgather across various scales Be-
tween each set of results, smaller performance benefits/degra-
dations may vary, with larger degradations largely unchanging.

In Figure 3, we see some factors that can influence per-
formance either positively or negatively in the context of
osu_allgather. The first subgraph demonstrates the potential
performance degradations seen if full subscription is used with
UCX, as the library allocates a helper thread for asynchronous
progress. As we will see later, some collectives may perform
better, and some worse, when attempting to utilize all cores on
a node. System variation can sometimes be a culprit and lead
to results shown where an already-low latency’s fluctuations
can mean massive performance degradations.

Pure inter-node runs (1-PPN) with any number of nodes
will generally perform as well or better for most collectives.
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Figure 4 details similar trends to previous figures with a
slowly decreasing performance improvement as message size
increases.

Certain collectives are a bit less predictable with the MLXS5-
DV APIL such as osu_scatter and osu_alltoall. The perfor-
mance of osu_scatter changes vastly between 8 nodes/32
PPN and 16 Nodes/32 PPN, with the latter showing MLXS5-
DV obtaining half the runtime as its IB-Verbs counterpart.
Figure 5 shows 1-megabyte messages gaining more than a
50% performance against IB-Verbs. osu_alltoall’s performance
improvements vary heavily with respect to IB-Verbs.

B. PAPI Counter Analysis

As previously mentioned, we use a subset of PAPI counters
to profile the inner loop of various OMB — that is, the loop
performing both warmup and timed iterations of each point-
to-point and collective operation.
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1) PAPI counters on Point-to-Point OMB: In general, the
PAPI counters taken correlate with our runtime results. As per
Figure 6, we can see that MLX5-DV’s direct access to lower-
level memory improves various performance metrics, such as
a decrease in stalled cycles as well as Instructions and Clock
Cycles. In addition, MLX5-DV is shown to have a smaller
number of total stalled cycles in bi-directional bandwidth —
one whole order of magnitude — which explains the larger
performance benefits at the point-to-point level.

2) PAPI counters on Collectives: Here, we will try to
correlate our runtime results from Section IV-A with the PAPI
counter results shown here.

Figure 7 showcases the PAPI counters obtained from the
runs in Figure 2. Almost immediately, we see how decreased
numbers in metrics like stalled cycles and identical clock-
cycle counts aid in the small message performance benefits for
the 16-node/2-PPN and 2-Node/1-PPN cases. While helpful
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in analysis, branch mispredictions and total instruction count
appear to have a smaller impact on the performance benefits
thus far than the rest of the metrics.

osu_scatter’s PAPI counters over MLXS5-DV have a stronger
correlation with improved runtime; the substantially smaller
number of stalled cycles, L3 cache misses, and increased IPC
values all contribute, especially at the larger messages in both
the 8 and 16-node cases. However, extensive analysis is needed
for osu_alltoall given a) its communication-intensive nature,
and b) the sporadic change in performance across both scales
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and message sizes.

C. Memory footprint

We profiled four different collective OMB — osu_alltoall,
osu_gather, osu_scatter, and osu_allreduce — at 8 nodes and
various PPN with the Massif tool that comes along with
Valgrind [8]. Figure 10 shows how MLX5-DV’s heap footprint
remains constant against the increasing amount of memory
requested by IB-Verbs. This initial reduction in memory
footprint comes from the shallower MLXS5-DV structures
mentioned in Section II-A2.
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Fig. 7: PAPI counters on both MLX5-DV and IB-Verbs, focused on osu_allgather results from Figure 2

Figure 11 shows a deviation in the increased memory foot-
print exhibited by IB-Verbs-backed variant of MVAPICH2-
3.0a over UCX. Once a microbenchmark is run at more than
512 processes, we see a sudden drop in IB-Verbs’ memory
consumption. At runtime, unless a user selects specific pro-
tocols (UD, RC, etc.), UCX will default to the best protocol
for initialization at runtime (such as UD), hence the drop in
IB-Verbs memory consumption beyond 512 processes.

This difference in heap usage, however, will not be apparent
at scale with applications, as medium and large problem sizes
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will dwarf the heap usage of an MPI library.

D. Collectives at Scale

We briefly examine larger-scale runs on the Frontera [21]
supercomputer. We showcase 128-node collectives at 16-PPN
(2048 processes). Figure 12 shows how how performance can
change at a large scale for collectives like osu_allreduce,
osu_bcast, osu_gather, and osu_scatter. Whereas we saw
smaller message benefits at smaller scales, larger messages
generally exhibit larger benefits here.
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Fig. 9: PAPI counters on both MLXS5-DV and IB-Verbs, focused on osu_scatter and osu_alltoall results from Figure 5.

We previously saw benefits at small messages for
osu_allreduce shrank until the 512KB message size. Overall,
MLX5-DV gives up to 20% performance benefits at larger
scales.
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E. Application-Level Results

Here, we present the results of two applications running
MVAPICH2-3.0a over IB-Verbs and MLX5-DV at a medium
scale. Contrary to OMB, 32 PPN cannot be done on account of
UCX’s asynchronous thread. One application is MILC [7] — a
lattice-based physics application. The other is LAMMPS [23]
— a molecular-dynamics simulation code.
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Fig. 11: Heap Profiling with Massif on Different Communication Patterns/OMB (32 Nodes)

In MILC, we run the pure gauge “su3_rmd” test with a mesh
of dimensions 170 x 180 x 160 x 7. The numbers for our MILC
experiments (averaged over six back-to-back executions) are
shown in Figure 13. Here we see that in this problem set
and at these scales, MLX5-DV generally obtains either small,
consistent, positive performance improvement, or virtually no
improvement (less than 1%) in either the positive or negative
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direction. Smaller problem sizes offer similar/consistent re-
sults. TAU [20] profiles with MILC indicate mild fluctuations
in runtime between both MLX5-DV and IB-Verbs during MPI
communication, leading us to believe that the message sizes
used within MILC relate to the areas of little performance
difference for given collectives.

Our LAMMPS experiments use an enlarged version of the
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3D Lennard-Jones melt experiment with numbers obtained
identically to that of the MILC experiments shown in Figure
14. Here, we see that while MLX5-DV offers a slightly larger
improvement compared to that of MILC’s executions in these
experiments, neither API vastly outperforms the other. Further
experimentation on different problem sets and scales will be
needed to further evaluate performance impact.
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V. RELATED WORK

UCX [19] is a standalone library that can be incorporated
into other HPC libraries and act as the communication layer for
MPI and PGAS environments. UCX also provides the ability
to turn on/off support for MLX5-DV-based functionality at the
point-to-point and collective levels'. [25] performed an analy-
sis on high-performance communication using PCle hardware
counters to measure low-level transfers and analyze bottle-
necks within HPC communication. While a very insightful
work, not all clusters have such hardware to perform the same
level of analysis. [3] uses a performance monitoring library
(found at [2]) to analyze PCle metrics. This library requires
root access to use and, to the best of our knowledge, cannot be
run inside an MPI application. While we attempted to use this
library (with root access enabled), we found it was suitable for
our analysis. [17] also performs an initial evaluation of UCX
over InfiniBand, focusing on its performance under MPICH-
3.3, though with no focus on the MLXS5 (later MLXS5-DV)
support. [18] dedicates a section to a comparison of MLXS5-
DV and IB-Verbs in the context of RMA operations.

VI. INSIGHTS AND CONCLUSION

A. Insights: Trade-offs in APIs

MLXS5-DV already shows significant benefits with the po-
tential to out-perform its IB-Verbs counterpart. At the same
time, it also has its own set of drawbacks. For example,
clusters running on older OFED releases may not be able to
benefit from the usage of this API. Furthermore, utilization
of this API requires more effort on the developer than if they

IThis is a configure-time option, not a run-time option
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were using IB-Verbs. As mentioned in Section III, there is
no exact counterpart for ibv_post_send. As it currently
stands, MLX5-DV appears to be more susceptible to system
jitters that lead to potentially wild performance benefits and
degradations. As we have seen, MLX5-DV’s memory con-
sumption does not change when transitioning between the UD
and RC communication protocols.

Based on our results, we propose the following suggestions:
1) Interchange MLX5-DV and IB-Verbs at different message
sizes. Smaller message sizes appear more advantageous for
MLXS5-DV — such as those below 16KB — in the majority
of cases; 2) Utilize different APIs at different scales —
while more analysis is needed, MLX5-DV generally shows
benefits at larger scales. Fine-tuning for each collective is
needed to obtain more improvements beyond what is shown in
Figure 12, and further profiling is needed to explore the large-
message degradations occurring within the large-scale gather.
MPI libraries traditionally run either over a layer such as UCX
or the Open Fabrics Interface (OFI) or by calling IB-Verbs
functions directly. Being a low-level extension of IB-Verbs,
MLXS5-DV could be made more user-friendly by providing an
option for standardized send and receive-based abstractions so
that they can be more readily integrated should an MPI library
attempt to utilize it — similar to ibv_post_send/recv.

B. Conclusion and Future Work

In this paper, we performed an in-depth analysis and eval-
uation of two approaches to communication in InfiniBand-
based clusters. We have presented results at various scales
including runtime analysis, collection of performance counters
at the CPU level, and analyses on the memory footprint of
both the MLX5-DV API and the IB-Verbs API in the case of
the OSU Microbenchmark suite. We have also provided in-
sights and results on two well-known applications at medium-
large scales. We have provided insights on the performance
tradeoffs between both APIs and how to integrate them into
both standalone applications and, e.g., MPI libraries. Future
directions along this line include further profiling and analysis,
further exploration of features, and attempts to stabilize the
performance shown in this paper. It would be prudent to
analyze instructions executed in the “Send” and “Receive”
sections of each code path, such as through Intel’s Software
Development Emulator, compared to the results shown through
PAPI in Section IV-B. Investigating other communication
protocols within the IB stack in the manner of this paper will
be interesting, such as with the DC protocol. In addition, we
hope to further profile MLXS5-DV to stabilize the performances
shown in this paper.
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