2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid) | 979-8-3503-0119-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/CCGRID57682.2023.00022

2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

Implementing and Optimizing a GPU-aware MPI
Library for Intel GPUs: Early Experiences

Chen-Chun Chen*, Kawthar Shafie Khorassani*, Goutham Kalikrishna Reddy Kuncham®*, Rahul Vaidya*,
Mustafa Abduljabbar*, Aamir Shafi*, Hari Subramoni’ and Dhabaleswar K. Pandaf
Department of Computer Science and Engineering
The Ohio State University, Columbus, Ohio
*Email: {chen.10252, shafiekhorassani.l, kuncham.2, vaidya.84, abduljabbar.1, shafi.16}@osu.edu
TEmail: {subramon, panda}@cse.ohio-state.edu

Abstract—As the demand for computing power from High-
Performance Computing (HPC) and Deep Learning (DL) appli-
cations increase, there is a growing trend of equipping mod-
ern exascale clusters with accelerators, such as NVIDIA and
AMD GPUs. GPU-aware MPI libraries allow the applications
to communicate between GPUs in a parallel environment with
high productivity and performance. Although NVIDIA and
AMD GPUs have dominated the accelerator market for top
supercomputers over the past several years, Intel has recently
developed and released its GPUs and associated software stack,
and provided a unified programming model to program their
GPUs, referred to as oneAPI. The emergence of Intel GPUs
drives the need for initial MPI-level GPU-aware support that
utilizes the underlying software stack specific to these GPUs and a
thorough evaluation of communication. In this paper, we propose
a GPU-aware MPI library for Intel GPUs using oneAPI and
an SYCL backend. We delve into our experiments using Intel
GPUs and the challenges to consider at the MPI layer when
adding GPU-aware support using the software stack provided
by Intel for their GPUs. We explore different memory allocation
approaches and benchmark the memory copy performance
with Intel GPUs. We propose implementations based on our
experiments on Intel GPUs to support point-to-point GPU-aware
MPI operations and show the high adaptability of our approach
by extending the implementations to MPI collective operations,
such as MPI_Bcast and MPI_Reduce. We evaluate the benefits
of our implementations at the benchmark level by extending
support for Intel GPU buffers over OSU Micro-Benchmarks. Our
implementations provide up to 1.8x and 2.2x speedups on point-
to-point latency using device buffers at small messages compared
to Intel MPI and a naive benchmark, respectively; and have up
to 1.3x and 1.5x speedups at large message sizes. At collective
MPI operations, our implementations show 8x and 5x speedups
for MPI_Allreduce and MPI_Allgather at large messages. At the
application-level evaluation, our implementations provide up to
40% improvement for 3DStencil compared to Intel MPIL.

Index Terms—oneAPI, Intel GPUs, GPU-aware MPI

I. INTRODUCTION

Graphics Processing Units (GPUs) from various industry
vendors have increasingly become an integral component of
modern High-Performance Computing (HPC) systems [1].
Popular Deep Learning (DL) frameworks like PyTorch and
TensorFlow—as well as traditional scientific applications—are
now capable of exploiting the raw computer power available

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

on these devices. Historically, NVIDIA and AMD GPUs have
dominated the list of accelerators used in HPC systems. The
TOP500 project [1] tracks the 500 fastest supercomputers in
the world twice every year. According to the latest TOP500
list published in June 2022, NVIDIA Ampere and Volta GPUs
hold 26.9% of the overall performance share. The AMD
MI250X occupies 30.2% of the overall performance share.
However, this share is mainly influenced by the #1-ranked
TOP500 system called Frontier at the ORNL.

Despite starting late, Intel is currently actively designing and
developing a range of GPU products and the associated ecosys-
tem. In 2020, Intel launched the new discrete GPU—named
Intel Iris X°® Max [2]—and provided a new platform, called
Intel DevCloud, for developers to access Iris X and consumer
laptop grade GPUs for development and testing. Intel’s next-
generation GPUs—called Ponte Vecchio—aim to deliver 2x
higher performance than NVIDIA’s A100 GPUs [3]. The data-
center follow-up GPU named Rialto Bridge is also underway.
The Ponte Vecchio GPUs are planned to power the compute
nodes of the upcoming exascale system “Aurora” at the
Argonne National Laboratory. Figure 1 shows the architectural
overview of the Intel Iris X® Max, also known as DGI.
This GPU has 1 Slice, and the Slice consists of 6 Subslices.
Each Subslice contains 16 Execution Units (EUs), so there
are 96 EUs in total. Just like NVIDIA and AMD GPUs, the
programmers are responsible for porting their CPU codes to
Intel GPUs by using the associated software ecosystem. An
upfront porting effort is also needed for CUDA and HIP-based
applications.

As the pioneer of the high-performance GPUs market,
NVIDIA came up with its in-house programming toolkit,
Compute Unified Device Architecture (CUDA), to simplify
the development of GPU applications. Inspired by NVIDIA,
AMD also brought Radeon Open Compute (ROCm) software
stacks, and the HIP features allow programmers to develop
portable applications for AMD GPUs. There are almost one-
to-one mappings of CUDA and HIP APIs. Table I summarizes
some common APIs of CUDA and HIP. AMD also provides a
tool, called hipification, for porting CUDA codes to ROCm
applications. Currently, these compute devices—offered by
several vendors—are being programmed using a plethora of
complex programming languages and environments.

979-8-3503-0119-9/23/$31.00 ©2023 IEEE 131
DOI 10.1109/CCGrid57682.2023.00022
Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

Intel X® GPU (DG1)

[Command Frond End]

3D / Compute Slice

Geomety (=]l

EU

Subslice Subslice

Thread Dispatch

[s][

Thread Dispatch |

Raster EY =

Pixel Dispatch
Pixel Backend

EU

EU

Pixel Backend [

[Media Siice]

L1S Tex$ SLM

[Memory Fabric]

Fig. 1. The architecture overview of Intel Iris X¢ Max, a.k.a. DG1. DG1 has
1 Slice and 6 Subslices, and each Subslice contains 16 EUs, so there are 96
EUs in total. Each EU consists of 7 Threads. The global memory size is 7.53
GB, and the local memory size is 64 KB.

TABLE 1
THE DIFFERENCE BETWEEN CUDA, ROCM(HIP), AND ONEAPI FOR
DIFFERENT API CALLS

\ CUDA [ROCm(HIP) [oncAPI |
cudaMemcpy hipMemcpy sycl::queue.memcpy
cudaMalloc hipMalloc sycl::malloc_device
cudaFree hipFree sycl::free

cudaStreamCreate
cudaDeviceSynchronize
cudaMallocHost
cudaMallocManaged
__syncthreads

hipStreamCreate
hipDeviceSynchronize
hipHostMalloc
hipMallocManaged
__syncthreads

sycl::queue
sycl::queue::wait
sycl::malloc_host
sycl::malloc_shared
sycl::nd_item::barrier

Intel simplifies the programmer’s task by supporting DPC++
(short for Data Parallel C++), which is an SYCL [4] standard-
compliant programming interface. This support comes along
with a single unified API and associated packages—called
oneAPI [S]—to program the processing elements from multi-
ple vendors to innovate the next generation of DL and HPC
applications. oneAPI supports a variety of hardware archi-
tectures, including CPUs, GPUs, and even FPGAs. oneAPI
[5] includes DPC++ with SYCL and OpenMP for C, C++,
and Fortran. Programmers can utilize oneAPI to develop
their codes with either kernel (DPC++) or directive-based
(OpenMP) style. DPC++ supports the SYCL standard, which
is a cross-platform abstraction layer that builds on OpenCL
for heterogeneous systems. Intel also provides the translation
tool, DPCT, for programmers to easily port their CUDA code
to SYCL/DPC++ code-based and support different hardware,
including Intel GPUs.

A. Motivation

The Message Passing Interface (MPI) [6] is a standard
for developing distributed parallel programs. With the high
demand for GPUs on HPC systems, GPU-aware MPI libraries
play a pivotal role by offering efficient and productive com-
munication between GPU-based processes. Programmers can
pass the device buffer pointers to MPI primitives as they used
to deal with host buffer pointers. The state-of-the-art MPI
libraries, such as MVAPICH2-GDR [7] and Open MPI [8],
have supported NVIDIA GPUs for a long time now. Support
for AMD GPUs has recently been added because of the recent
adoption of these GPUs. With the emergence and the potential
of Intel GPUs on next-generation clusters, communication

132

libraries need to provide support for these GPUs, too. The
primary motivation of this work is to add support for
Intel GPUs in an MPI library. Intel MPI [9] currently has
support for Intel GPUs using the so-called offloading approach.
We show in this paper that the offloading approach does
not provide the best performance, and our proposed solution
provides an efficient alternative. Also, Intel MPI is closed-
source software, so we, and the community, do not have
any insight into how the MPI library is implemented and
optimized. In order to fulfill the high demand from HPC and
DL applications on the upcoming supercomputers equipped
with Intel accelerators, it is critical to have another high-
performance and efficient GPU-aware support on Intel GPUs.

B. Challenges

We address the following challenges to develop and opti-
mize an efficient GPU-aware MPI library:

« How can we implement and optimize a high-performance
GPU-aware MPI library that supports Intel GPUs and the
other GPU systems in the market?

« How to decide the switching point between using versus
not using pipeline parallelism for the GPU-aware imple-
mentation? And, how to tune the block size for pipeline
stages to reduce latency?

e What are the features and limitations of Intel GPUs for
GPU-to-GPU communication that can benefit or impact
the MPI operations?

« How can we seamlessly design a benchmark to evaluate
the performance of the MPI library on Intel GPUs with-
out breaking the generality of the existing OSU Micro-
Benchmarks (OMB) interface and main code-base?

C. Contributions

This paper makes the following contributions:

1) Implement and optimize a GPU-aware MPI runtime by
adopting the CPU staging approach and extending the
host-based MPI with oneAPI library to support Intel
GPUs. (Section III)

Explore the features of Intel GPUs and identify the
challenges of supporting GPU-aware MPI operations.
(Figure 1, Table I)

Analyze the different host buffer types to achieve en-
hanced memory copy performance for communication
on Intel GPUs; optimize the implementations with
pipeline techniques, identify the bottleneck, and propose
advanced implementations. (Section IV)

Implement benchmarks to evaluate communication per-
formance on Intel GPU buffers with GPU-aware MPI
runtime; implement benchmarks using a naive approach
as the baseline. (Section V-A)

Evaluate MPI point-to-point and collective operations
for GPU resident data and compare our proposed im-
plementations with Intel MPI, Intel oneCCL, and naive
approach. The latency of our proposed implementation
is better than Intel MPI's by 18%, and by 30% for

2)

3)

4)

5)

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

the naive point-to-point operations. It reaches up to 8x
improvement for collective operations. (Figures 7 and 8)

6) Demonstrate that our proposed implementations offer up
to 40% improvement for 3DStencil in the application-
level evaluation. (Figure 9)

To the best of our knowledge, our proposed implemen-
tation is the first that offers better performance for both
point-to-point and collective operations against the Intel
MPI library on Intel GPUs.

The rest of the paper is structured as follows. The back-
ground of our work is given in Section II. Section III and
Section IV detail the implementation and optimization of our
designs. The experimental results are presented in Section V.
The related work is discussed in Section VI, and the paper is
concluded in Section VII.

II. BACKGROUND
A. oneAPI

oneAPI [5] provides a unified” programming model that
can be used to target multiple hardware architectures, such as
CPU, GPU, FPGA, and other accelerators. It comprises various
toolkits and libraries designed for diverse applications and use
cases. oneAPI simplifies programming on diverse architectures
using the SYCL programming model, which is built on top of
OpenCL [10].

B. SYCL

SYCL [4] is a cross-platform abstraction layer developed by
Khronos Group enables code for heterogeneous systems to be
written in a single-source C++ file. With SYCL, it is possible
to create the software from a single source, allowing C++
template functions to design complicated OpenCL-accelerated
algorithms and reuse those methods throughout their source
code for various forms of data.

C. Intel GPU

Intel launched its new discrete GPU “Intel Iris X¢ Max” [2]
(also known as "DG1”) in 2020. This GPU has 96 Execution
Units with a maximum clock frequency of 1650 Mhz. It
supports up to three-dimensional work items with a maximum
of 512 work items in each dimension. The maximum work-
group size is 512, the global memory size is 7.53 GB,
the maximum memory allocation is 3.76 GB, and the local
memory size is 64 KB.

D. GPU-aware MPI

MPI [6] is a standardized API for communicating data
and messages across distributed processes. In conventional
MPI implementations, to communicate between two GPUs
on different nodes, developers need to take care of staging
GPU buffers using memcpy. The staging technique refers to
copying source GPU data to host memory to enable host-
to-host transfer using MPI, and finally copy the receive
buffer to destination GPU. However, with GPU-aware MPI,
the MPI library is capable of sending and receiving GPU
buffers directly, without needing to first stage them in host
memory.

133

Algorithm 1: GPU-aware Implementation in MPI

1 if is_device(buf) then

2 void* h_buf = malloc_host<char>(size, q);
3 g.memcpy(h_buf, buf, size).wait();;

4 void* ori_buf = buf;

5 buf = h_buf;

6 end

7 [* Perform MPI operation for host buffer */

s if is_device(buf) then

9 q.memcpy(ori_buf, buf, size).wait();;

10 buf = ori_buf;

11
12

free(h_buf, q);
end

III. IMPLEMENTATION OF GPU-AWARE MPI LIBRARY
USING ONEAPI

Since Intel is new to developing its accelerators, the existing
advanced techniques, such as RDMA and GPUDirect RDMA
technology, are under development and do not apply to Intel
GPUs currently. Hence. in our early experiment, we utilized
a CPU staging approach to implement the proposed GPU-
aware MPI library. Algorithm 1 reveals how to apply CPU
staging techniques to our implementations. First, the MPI
library should identify whether the buffer pointers passed by
the users are either host buffer or device buffer. If the pointers
are device buffers, create and maintain the host staging buffer
and start data copying. Otherwise, perform the regular host-
based MPI operations.

Existing GPU-aware MPI libraries, such as MVAPICH2-
GDR and Open MPI, have explored NVIDIA and AMD
GPUs for the past decade. They utilize CUDA or ROCm
toolkits to implement their own algorithm over GPUs. Hence,
following a similar idea, we adopt the Intel oneAPI library
to implement our proposed implementations for supporting
Intel GPUs. However, the implementation is more challenging
than people ported design from supporting NVIDIA GPUs to
AMD GPUgs. It is because CUDA and ROCm libraries are
nearly 1-to-1 mapping, but this fact does not hold for oneAPI
APIs. Table I summarizes the common GPU library APIs.
We can find corresponding API pairs in CUDA and ROCm
with the prefix cuda or hip, but the API primitives are quite
different for oneAPI. It is to say we have to re-implementation
the code structure and algorithm for oneAPI-based implemen-
tation. Furthermore, CUDA and ROCm have their runtime
libraries called cuda_runtime.h and hip_runtime.h,
which allows users to call the APIs even in C code. However,
oneAPI does not support such runtime libraries. It raises
the difficulty for programmers to integrate oneAPI into their
previous implementation if it was written in C.

We implement both MPI point-to-point operations, in-
cluding blocking calls MPI_Send, MPI_Recv, and non-
blocking calls MPI_Isend, MPI_Irecv, and collective op-
erations, MPI_Bcast, MPI_Reduce, MPI_Allreduce, and
MPI_Allgather. In this paper, we will focus on discussing
MPI_Send and MPI_Recv.

A. Buffer Identification

Modern GPU programming interface usually provides
a convenient runtime API for users to identify the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

buffer type. For example, programmers using CUDA can
call cuPointerGetAttribute to get the printer at-
tributes, and attributes.type will tell the printer
type. ROCm programmer can also utilize the correspond-
ing APl hipPointerGetAttributes. However, oneAPI
does not provide 1-to-1 mapping APIs, but develop-
ers can use get_pointer_type in SYCL to achieve
the same functionality. This function will return the
buffer type in terms of sycl::usm::alloc::host,
sycl::usm::alloc::device, etc. In our implementa-
tion, we only consider sycl::usm::alloc: :device as
the device buffer, so the rest of them return the type of host
buffer.

B. CPU Staging

CPU staging is a well-known and simple approach to
dealing with data in the device memory. It maintains a staging
buffer in host memory so that we can trigger the original CPU-
based MPI algorithm to the host buffer pointer. Algorithm 1
demonstrates how we apply the CPU staging approach to
GPU-aware MPI implementations. To fully provide downward
compatibility to the regular host buffer, we maintain the
original device buffer, as lines 4, 5, and 10 show, before
and after the MPI call. Like CUDA provides cudaMemcpy
interface for programmers to copy data between host and
device, oneAPI offers an easier way. In an SYCL queue,
memcpy allows programmers to copy data without con-
sidering the buffer type. It is to say the programmers do
not have to pass the memory copying kind tag, such as
cudaMemcpyHostToDevice, the oneAPI memcpy will
handle it underlying. Notice that in lines 3 and 9, a wait
function is called after memcpy. It indicates in this algorithm,
we are using synchronous memory copy. It will block the
execution on the host until the data copies completely. The
programmers can perform asynchronous memory copy by
removing the wait function. This technique can be utilized
in our optimized pipeline designs.

C. Extension to Non-blocking Point-to-point MPI Operations

Extending the current CPU staging implementations to non-
blocking MPI operations takes more effort. In blocking MPI
operations, there is only one function to be called and the data
transferring is completed before the function returns. However,
in non-blocking MPI usage, MPI_Wait or MPI_Waitall is
called after the non-blocking operations to make sure the
message is transferred, which increases the difficulty of main-
taining both the host staging buffer and the original device
buffer pointers. In our implementations, we keep this necessary
information in MPI_Request so that we can perform the third
step of CPU staging in MPI_Wait or MPI_Waitall after the
data transfer between processes is done.

D. Extension to Collective MPI Operations

Extending the current implementations from point-to-point
to collective operations is simple. We take the same idea
of copying data to the host buffer and applying the above

134

a. Naive CPU Staging:

Sender

Process D2H

<«

MPI
Middleware

MPI

Receiver
Process

H2D

b. CPU Staging with Pipeline Design:
1 1

D2H1 | D2H2 D2H3 | D2H4 1 1
! ! IExpected!

Sender
Process

i VMPI 'MPI 2 'MPI VMPI 4 ! Benefit !
Middleware 1 3 3 et
Recei Y = = tPipeliningt|
leceiver ;
Process HaD 1 H2D 2 H2D 3 H2D 4 : '

c. CPU Staging with Advanced Pipeline Design: 1€ >

T 1

Sender

Process | P2H1 D2H2 D2H3 D2H 4 l 1 1

v \ v 1 E i

MPI I Benefit from 1!
Middleware MPI 1 MPI 2 MPI3 I MPI 4 N e
Receiver | Earl ¥ o > & +—Pipelining.
leceiver arlier i :
Process Trigger:> Ha2D 1 H2D 2 H2D 3 & ! |
Timeline 1€—>

Fig. 2. General timeline view for naive CPU staging and pipeline de-
signs. D2H denotes device-to-host data transferring, MPI denotes CPU-based
MPI_Send/MPI_Recv operations between processes, and H2D denotes host-
to-device data transferring. The number indicates the index of each message
segment. By earlier triggering the H2D 1, the advanced pipeline design (c)
provides more expected benefits.

techniques to collective implementations. Make sure to copy
only useful data between the host and device buffer, or it
may introduce unnecessary communication and drag down the
performance. For example, in MPI_Bcast, only copy the data
in the root buffer to the staging buffer; or in MPIReduce
operation, only copy the data in the root buffer back to the
device side. Also, make sure to allocate a proper size of the
host staging buffer. For example, in MPI_Allgather, the recv
buffer size should be the multiplication of recvcountand
the communication size.

IV. OPTIMIZATION OF GPU-AWARE MPI LIBRARY
A. Host Memory Type

The host buffer is allocated and managed by the devel-
opers. The very intuitive idea is to allocate CPU memory
through malloc in the C library. Considering the mem-
ory alignment for better performance, people may apply
posix_memalign to their implementation. Although we
can simply call g.memcpy, (assuming ’q” is a sycl::queue
object belonging to GPU device) for copying data between
the host and device buffer. The device cannot access any host
buffer we pass directly. The data need to be copied to another
staging pinned memory allocated on host memory and then be
moved from the temporary pinned memory to the final device
buffer [11]. Inspired by the fact that using pinned memory
in the CUDA program improves the data-transferring speed,
we explore similar techniques using oneAPI. It may be more
efficient if we can allocate a pre-pinned memory as the host
buffer because it can save the time of copying data from the
host buffer to the temporary pinned memory.

According to the Intel Developer Guide [12], SYCL USM
host allocations may use pre-pinned memory by calling
g.malloc_host. We also find that we can allocate aligned
host pinned memory by calling q.aligned_alloc_host

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

104 ;
I Device to Host

CPU-based MPI
Send/recv
BN Host to Device

4 16 64 256 1K 4K 16K 64K256K 1M 4M
Message Size (Bytes)

Fig. 3. Individual bandwidth of device-to-host, CPU-based
MPI_Send/MPI_Recv, and host-to-device data transferring using Intel
GPU on 1 machine. There is overhead for small messages, and the trend of
bandwidth becomes smooth after 64KB. Also, host-to-device data transferring
has the lowest bandwidth, which indicates it can be the bottleneck of the
whole flow.

10?

10

Bandwidth (MB/s)
>

10

10

llI
1

As a result, we explore 4 different types of memory allocation
({C, oneAPI} x {malloc, aligned malloc}), evaluate the mem-
ory transferring time between host and device, choose the best
one and use it in our implementations.

B. Pipeline Design

Algorithm 1 shows the idea of implementing a GPU-aware
MPI using CPU staging techniques. This naive approach
provides good productivity but poor performance because we
do not fully utilize all communication channels. Specifically,
the communication between the host and device memory can
be overlapped with the communication between processes.
Part A of figure 2 depicts this naive approach. It is clear
that at any given time, there is no overlapping of any 2
channels. The CPU-based MPI does not start transferring
data between processes until the data is entirely copied to
the host staging buffer. In the meantime, there is no data
copied back to the device buffer until the whole data is
entirely transferred through CPU-based MPI communication.
However, because the message segments are independent, we
can separate the entire message into pieces and send it using
pipeline techniques. It provides the potential for overlapping
communication among different channels.

Part B of figure 2 demonstrates a timeline profiling result
using pipeline designs. The original array of messages is
divided into 4 pieces. The CPU-based MPI operation (marked
as MPI 1) can start transferring data once the 1% piece of
message copied to the staging buffer (marked as D2H 1).
Similarly, H2D 1 can be triggered once MPI 1 is done. In the
meantime, a similar data-transferring process for the 2" piece
of a message can be triggered once the 1% D2H step is done.
Although there are more steps for more message segments, the
total elapsed running can be saved because of the overlapping
of different communication channels.

Despite the potential for overlapping, the pipeline strategy
is unlikely to overlap the communication, especially in the
beginning stage fully. Ideally, we can divide the message
block very small and try to trigger the following step earlier
for more overlapping. However, there are overheads for each
step. Figure 3 shows the device-to-host (D2H), CPU-based
MPI send-recv (MPI), and host-to-device (H2D) bandwidth

135

Listing 1. Pseudo code of MPI_Send for the advanced pipeline designs.
1 /+ Allocate & maintain the host/device buffer +/

2 for (int i = 0; 1 < pipeline_length; i++) {

3 if (pipeline_length > 1) {

4 /% Use the advanced pipeline designs x/
5 if (1 == 0) {

6 /+ the 1st block #*/

7 offset = ixblock_size;

8 block_size = block_size - block_size/2;
9 } else if (i == pipeline_length - 1) {

10 /% the last block */

11 offset = ixblock_size - block_size/2;
12 block_size = block_sizexl.5;

13 } else {

14 /% the other blocks */

15 offset = ixblock_size - block_size/2;
16 block_size = block_size;

17 }

18 } else {

19 /% Without using pipeline approach */

20 offset = ixblock_size;

21 block_size = block_size;

22 }

23 oneapi_memcpy (buf + offset, block_size, o) 8
24 MPI_TIsend (buf + offset, block_size, o)) P
25 }

26 for (int i = 0; i < pipeline_length; i++) {
27 MPI_Wait (request[i], o)) 8

28 }

29 /x Deallocate & maintain the host/device buffer */

of all message sizes. Unfortunately, the bandwidth for small
messages is quite low, indicating it requires more time to
transfer the same amount of data using a smaller block size.
Hence, we are not going to use the pipeline strategy for small
message transferring. The bandwidth trend becomes smooth
after 64K, which hints that we can set a threshold here for
applying the pipeline designs.

The poor performance for small messages hampers us from
adopting a more fine-grained pipeline strategy. Figure 2 shows
there are serial parts in the timeline, especially at the beginning
and before the end of execution. Figure 3 also shows the
host-to-device has the worst performance for large messages
compared to the previous 2 steps, which indicates it will
leave a longer “tail” that cannot be overlapped at the end.
From figure 2 and figure 3, we know that host-to-device
data transferring almost dominates the total running time
because it is the most time-consuming step, and it can only be
triggered after the CPU-based step of the 1% message block
is finished. Hence, we propose advanced pipeline designs that
aim to trigger the host-to-device data transfer earlier. In the
naive pipeline designs, the message block size is even over
all blocks. However, the advanced pipeline designs reduce
the block size of the first block of the message for sooner
device-to-host and CPU-based MPI running time and expect
the earlier host-to-device data transferring starting time that
benefits the total ending time of the last message block. In
the advanced designs, the amount of diminished data in the
first message block will be handled in the last message block
to ensure all data are transferred. As a result, the proposed
designs have lower total running time compared to the naive
CPU staging pipeline designs.

We have decided where to start using pipeline designs,

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

but how many blocks we should take is still challenging.
A higher granularity allows more overlapping but introduces
more overhead, and vice versa. Evaluation V-D shows the
trend that the block size could be half of the message size.
Hence, we design a tunable parameter to let users assign
the proper number of blocks value based on their machine
architecture. In our implementations, we set the default value
to 2.

Listing 1 illustrates the pseudo-code of the MPI_Send part
for the proposed advanced pipeline designs. It modifies the
message sizes of different blocks and intends to trigger the
first block of device-to-host data transferring earlier. Line 4 to
6 demonstrates we shrink the block size to half of the normal
size, and line 7 to 9 show we add the remaining message size
to the last block. Moreover, we need to modify the offset of
each buffer pointer by shifting half of the block size. SYCL
memory copy and non-blocking send are called after the block
size and offset modifications. This mechanism allows the first
block to send the message sooner than the regular pipeline
designs.

C. CPU Mapping

Because our algorithm relies on a significant amount of
data transferring between the host and device buffer, finding
the shortest and most efficient path between CPU and GPU
memory is essential. Typically, we prefer the GPU to be bound
to the CPU in the same socket and NUMA node. In a multi-
node cluster system, we will also consider the HCA (Host
Channel Adapter) location and try to bind it with the nearest
HCA.

V. EVALUATION

A. Experimental Setup

We conducted the following evaluations on our in-house
systems. The compute node is equipped with 4 Intel® Xeon®
Gold 6348H CPUs (96 physical cores in total), 376GB mem-
ory, and Intel Iris X* MAX Graphics card (DG1 as the code
name) [2]. The Intel DG1 GPU contains 96 EUs and 7.53 GB
of device memory with 68 GB/s memory bandwidth.

To evaluate the basic performance metrics of Intel GPUs,
we developed micro-benchmarks using DPC++ to compare the
elapsed time for memory copying between buffers. To evalu-
ate the MPI-level performance with GPU-aware support, we
implemented and added Intel GPU buffer support to existing
benchmarks based on OSU Micro-Benchmarks (OMB) [13]
suite version 5.8. It utilizes oneAPI to allocate the device
buffer and directly passes device buffer pointers to MPI calls.
We only modified and enhanced the backend part of OMB so
all the benchmarks, including point-to-point and collective, can
benefit without code changes. We also implemented a latency
benchmark using a naive approach based on osu_latency
to simulate the condition that people do not use GPU-aware
MPI libraries. We call it the “proposed naive approach” in the
following figures.

136

We use 3DStencil in the application-level evaluation. 3DS-
tencil uses plenty of MPI_Isend and MPI_Irecv pairs to com-
municate. We ported a previous CUDA version of 3DStencil to
SYCL-based code with Intel DPCT tool and manually edited
the code fragments which were not ported by Intel DPCT.

We report the mean values of 5 runs for the following
benchmark and application-level evaluations. We use Intel
MPI Library version 2021.6 and Intel oneCCL Library version
2021.6 as the baseline and Intel oneAPI DPC++/C++ version
2022.1.0 as the oneAPI library.

B. Basic Memory Copy Evaluation for Intel GPUs

To have a comprehensive understanding of the feature of
new-coming Intel GPUs, we develop a benchmark to evaluate
the basic metrics, including host-to-device (H2D) and device-
to-host (D2H) memory copy latency. We allocate the host
or device buffer at the beginning and perform memory copy
operations through g.memcpy using oneAPI. We take two
numbers from the mean value of 1000 iterations after 200
warmups.

We evaluate the memory copy speed between the device and
different types of host buffers. The host buffer types include
memory and aligned memory allocated using C and oneAPI li-
brary. In particular, we use malloc and posix_memalign
in C and use malloc_host and aligned_alloc_host
in SYCL. We fix the alignment value to 4KB. Figure 4 depicts
the results of H2D and D2H memory copy latency from 1
byte to 4MB. We notice that the numbers for malloc and
aligned malloc are almost identical for both C and SYCL type
of buffer, so we only consider aligned memory numbers in
the following discussion. The H2D and D2H memory copy
latencies with SYCL malloc host buffer are as low as 24.8
pus and 28.4 ps for 16 bytes in figure 4(a) and figure 4(c).
Compared to the numbers with C malloc host buffer, which
are 54.1 us and 54.8 ps shown in, it is approximately 2x faster.
For large message at 4M shown in figure 4(b) and figure 4(d),
the numbers with SYCL malloc host buffer are 1140 ps and
773 ps, which is 1.3x and 1.2x faster compared to 1492 ps and
1249 ps using a C malloc host buffer. The results suggest using
pinned host buffer has significant performance improvement
compared to a regular host buffer, and the improvement is
more pronounced for small messages. Moreover, we notice
the D2H latency is lower than the H2D latency for large
messages. For example, the D2H speed is 1.5x faster than
the H2D speed at 4MB. These evaluation results suggest our
proposed implementation to use SYCL malloc to allocate the
host staging buffer. We need to be aware that host-to-device
memory copy can be a bottleneck in the staging flow.

C. Different Memory allocation Approaches for CPU Staging
Technique

We implement GPU-aware MPI point-to-point operations
(MPI_Send and MPI_Recv) with a naive CPU staging ap-
proach (without pipeline design) and evaluate the perfor-
mance with different types of host staging buffer through

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

60 1500

—— C malloc

C aligned malloc
—=— SYCL malloc
—e— SYCL aligned malloc

—_——— = < 1250
—— Cmalloc

C aligned malloc
—— SYCL malloc
—— SYCL aligned malloc

._.f—’

u
=)

1000

Latency (ps)
S
o
Latency (ps)
N
&
o

500

w
o

250

—t—————
—_—

90 —— MPI w/ C malloc
MPI w/ C aligned malloc
—— MPI w/ SYCL malloc

—— MPI w/ SYCL aligned malloc

80

Latency (us)

70

60
e

50

1 2 4 8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

(a) Host to Device - Small Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M 1 2 4
Message Size (Bytes)

(b) Host to Device - Large Messages

8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

(a) Small Messages

)
v

= 1200{ —— Cmalloc
St~ T L —

u
=)

10001 —— sYCL malloc

—— C malloc

C aligned malloc
—— SYCL malloc
—s— SYCL aligned malloc

~
o

800

IS
=)

Latency (ps)
Latency (ps)

w
o

‘_._._._./.\'_._._._.,_A
— —

w
=)

C aligned malloc

—e— SYCL aligned malloc

—— MPI w/ C malloc
MPI w/ C aligned malloc
—— MPI w/ SYCL malloc
—s— MPI w/ SYCL aligned malloc /

3000
2500
42000

1500

Latency

1000

500

1 2 4 8 16 32 64 128256512 1K 2K 4K

Message Size (Bytes)

(c) Device to Host - Small Messages

Fig. 4. Comparison of D2H and H2D memcpy latency using different host buffer allocation
approaches: malloc and aligned malloc (with alignment set to 4KB) using C and SYCL. The
memory copy speed using SYCL malloc is about 2x compared to the memory copy speed using
C malloc. It suggests utilizing the SYCL malloc memory space as the host staging buffer.

osu_latency in modified OMB. We extend the OMB back-
end to support memory allocation and data validation on the
device buffer. This evaluation demonstrates that our proposed
implementation can carry out GPU-aware MPI operations and
we can utilize different types of host staging buffers in our
implementation. Figure 5 shows the latency of our proposed
naive implementation with different types of buffers indicated
in the previous evaluation. The trend is also very similar
to figure 4, which means the latency numbers for using C
malloc staging buffer is higher than the ones using SYCL
malloc buffer, and there is not much difference between regular
memory and aligned memory. The latency of naive GPU-aware
MPI implementation using C malloc is 107.3 ps at 16 bytes,
which is 2.1x slower compared to 50.0 ps, the one using
the SYCL malloc approach. For large messages at 4 MB,
the SYCL malloc approach can achieve 1.3x faster latency
compared to the C malloc approach from 3126 to 2406.5 ps.

The evaluations show better performance and support the
assumption that we should adopt the SYCL malloc approach
to allocate host staging buffer. Therefore, we choose to utilize
SYCL aligned malloc approach in the following implementa-
tions and evaluations.

D. Pipeline Threshold selection for Advanced Proposed De-
signs

As described in section IV-B, there is an overhead for
transferring small messages. Hence, it is unlikely to divide the
messages into smaller block sizes and expect highly efficient
overlapping and good performance without any restriction.
Figure 6 demonstrates the latency for large messages (from
64KB to 4MB) using the advanced pipeline design with
different block sizes. We normalize the latency values to the

0
8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

(d) Device to Host - Large Messages

137

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)
(b) Large Messages

Fig. 5. Comparison of osu_latency using
different host buffer allocation approaches: mal-
loc and aligned malloc (with alignment set to
2K) using C and SYCL.

one with block size 1, which indicates no pipeline executing.
We see obvious benefits from using our advanced pipeline
design. For example, we observe 12.5%, 9.3%, and 5.5% of
improvements with block sizes 2, 4, and 8 at 4MB. However,
the performance decreases for smaller messages if it uses more
pipeline blocks. For instance, we get 8.3% improvement at 512
KB using 2 pipeline blocks, but the latency grows 34% if it
adopts block size 8, which is even worse than the baseline.
We notice that pipeline design has no benefit if the message
size is lower than 64 KB. The overhead becomes extremely
large, so we set a threshold at 64 KB and apply the pipeline
design techniques after 64 KB.

In the meantime, we also observe the best block size is
usually 2 for most message sizes, which suggests that message
sizes greater than the 64 KB threshold, we should use 2 blocks
to design our advanced pipeline approach.

E. Point-to-point Communication Evaluations

We integrate our findings from the pipeline CPU stag-
ing approach and implement a high-performance GPU-aware
MPI_Send and MPI_Recv operations, and extend the imple-
mentations to MPI_Isend and MPI_Irecv. We also implement
a naive approach based on osu_latency, osu_bw and
osu_bibw as the baseline to simulate the condition that
users do not utilize a GPU-aware library to transfer messages
between device buffers. Users have to maintain and operate the
host staging buffer by themselves. On the other hand, compile
and run the Intel GPU buffer-supported point-to-point bench-
marks in OMB using Intel MPI 2021.6 as another baseline. It
is the same version that we evaluated for our proposed imple-
mentation. Figure 7 shows the latency and bandwidth of the 3
designs. We see the proposed implementation reports as low as

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

Bl Block Size 8
>1'4 Block Size 4
013 B Block Size 2
] B Block Size 1
812
e
g1
©
£1.0
o
Z0.9
0.8

64K

128K 256K 512K 1M
Message Size (Bytes)

2M 4M

Fig. 6. Normalized latency over different pipeline block sizes. The numbers
are normalized to block size 1” (serial). In most message sizes, block size
2 can deliver the lowest latency. There are no benefits for message sizes less
than 64 KB. Note that the figure is clipped at the top at normalized latency
of 1.5.

51.0 ps latency at 16 bytes in figure 7(a). Compared to 91.5 us
and 108.0 ps using Intel MPI and naive approach, our proposed
implementation achieves 44.2% and 52.8% improvements. For
the large message, the proposed implementation continues
to stay ahead. Figure 7(d) shows 2196 ps for our proposed
implementation compared to 2688 us and 3168 ps for Intel
MPI and naive approach, respectively. In figure 7(b), 7(e), 7(c)
and 7(f), we see the bandwidth of proposed implementations
is 0.2x to 1.4x higher than the bandwidth of Intel MPI and
1.6x higher for bi-directional bandwidth. In this range, the
proposed implementations deliver 1.76 GB/s bandwidth and
1.82 GB/s bi-directional bandwidth at 4 MB. The evaluation
results verify that our proposed implementation provides the
GPU-aware MPI support for point-to-point operations with the
best performance at all message sizes compared against Intel
MPI and the naive approach.

F. Collective Communication Evaluations

We extend our proposed implementation to MPI col-
lectives operations, including MPI_Bcast, MPI_Reduce,
MPI_Allreduce, and MPI_Bcast. We evaluate the latency
performance of the proposed implementation, Intel oneCCL
and Intel MPI on 8 MPI processes over 1 GPU in fig-
ure 8. For oneCCL version, we use ccl::allreduce,
ccl::reduce, and ccl: :broadcast to implement the
benchmarks. Note that there isno ccl: :allgather in Intel
oneCCL library, so we just compare the results of 3 collectives.
For MPI_Bcast results shown in figure 8(a), our proposed
implementation is 2.3x and 4x faster for small messages.
The latency is as low as 128.0 ps compared to 299.2 us
and 523.0 ps for Intel MPI and Intel oneCCL at 16 bytes.
For larger messages, we see 878.7 us at 512 KB for our
proposed implementation compared to 4981.9 us and 951.2
ps for Intel MPI and Intel oneCCL. We notice there is a
step for Intel MPI at 8 KB, but our proposed implementation
depicts a smooth trend there, which is the key to having a
much better performance for larger messages. In the meantime,
there is no such step or Intel oneCCL, so the latency for
large messages is even better than Intel MPI. However, our
implementation still performs the best among all sizes and
designs. Figure 8(b) shows a similar trend for MPI_Reduce,
our proposed implementation achieves 188.9 ps and 1129.5

138

us latency at 16 bytes and 512 KB, which is 1.8x and 1.6x
faster compared to the 337.8 ps and 1789.4 ps latency for
Intel MPI, and 3.6x and 1.5x faster compared to the 671.5
us and 1638.5 us latency for Intel oneCCL. We see a similar
trend for MPI_Allreduce and MPI_Allgather comparisons in
figure 8(c) and 8(d). our proposed implementations have 4x
to 8x lower latency for MPI_Allreduce and 5x lower latency
for MPI_Allgather.

G. Application-level Evaluations

We evaluate our implementations at the application level
with 3DStencil. It uses lots of non-blocking point-to-point
MPI_Isend and MPI_Irecv pairs to commute data. Figure 9
demonstrates the performance results using 4 PPN (process
per node) and 8 PPN on 1 node. In figure 9(a), the latency of
our proposed implementations is 39% better than Intel MPI at
16 bytes, and have 16% improvement at 256 KB. Figure 9(b)
shows a trend similar to 8 PPN. The proposed implementations
have approximately 40% improvement from 1 byte to 64 KB,
and stay ahead up to 256 KB. The trend of this evaluation is
quite similar to the bandwidth evaluations in figure 7. That is
because both benchmarks consist of many non-blocking point-
to-point operations.

VI. RELATED WORK

Over the past decade, GPUs have gained significant pop-
ularity in performing compute-intensive tasks and are widely
used in many modern-day clusters. Therefore, it is pertinent
to have robust communication between GPUs as well as
across GPU and host memory for optimal performance. In
the early works, Jacobsen et al. [14] have overlapped GPU
data movement and MPI communication with computation to
simulate computational fluid dynamics (CFD) using MPI and
CUDA. Wang et al. [15] came up with an optimal CUDA-
based design to achieve GPU-GPU communication for Infini-
Band clusters. Their proposed solution integrated GPU data
movement with MPI interfaces and achieved inter-node GPU
communication using host-based pipelining techniques. Wang
et al. [16] have also proposed novel research to improve data
transfers between GPUs in RDMA-enabled clusters without
the involvement of the CPU. Potluri et al. [17] utilized the
GPUDirect RDMA feature in CUDA to improve MPI-based
inter-node GPU-GPU communication. They proposed a hybrid
design that incorporated host-based pipelining and GPUDirect
RDMA. Subramoni et al. [18] proposed designs capable of
dynamically adapting to the communication characteristics of
processes at runtime. Their proposed solution can make the
transition from one eager threshold to another without any
impact on the throughput. Kawthar et al. [19] analyzed the
performance of various CUDA-aware MPI libraries such as
MVAPICH2-GDR, Spectrum MPI, and Open MPI + UCX by
comparing their point-to-point performance.

While most of the research has been focused on NVIDIA
GPUs/CUDA, few researchers have made use of AMD
GPUs/ROCm. Kuznetsov et al. [20] investigated whether

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

200 102
175 —=— Proposed Advanced Design
—— Intel MPI 2021.6

150 —— Proposed Naive Approach % 10'{ mmm Proposed Naive Approach % 10| ™ Proposed Naive Approach
C) a
— @ @
3125 = =
< <
g100 £ 10 £ 100
—_— "
3
& 75 3 3
- = %
50 — @107t @ 107!

N
%

S}

1 2 4 8 16 32 64128256512 1K 2K 4K
Message Size (Bytes)

(a) Latency - Small Messages

B Proposed Advanced Design
B Intel MPI 2021.6

1 2 4 8 16 32 64128256512 1K 2K 4K

(b) Bandwidth - Small Messages

2
10° Proposed Advanced Design

B Intel MPI 2021.6

1 2 4 8 16 32 64128256512 1K 2K 4K
Size Size

(c) Bi-Directional Bandwidth - Small Messages

104

104

3000{ —— Proposed Advanced Design B Proposed Advanced Design B Proposed Advanced Design
200 —— Intel MPI 2021.6 = Intel MPI 2021.6 m Intel MPI 2021.6
Proposed Naive Approach - = Proposed Naive Approach @ = Proposed Naive Approach
@ a @
22000 =10° =
> < <10
21500 B 3
3 g
~ 1000 5 <
o 102 o
500
10?
0
8K 16K 32K 64K 128K256K512K 1M 2M 4M 8K 16K 32K 64K 128K256K512K 1M 2M 4M 8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes) Size Size

(d) Latency - Large Messages

(e) Bandwidth - Large Messages

(f) Bi-Directional Bandwidth - Large Messages

Fig. 7. Comparison of MPI point-to-point operations between proposed GPU-aware MPI library, Intel MPI 2021.6, and naive approach using osu_latency,
osu_bw, and osu_bibw. The advanced proposed implementations have the lowest latency and highest bandwidth over all ranges of message sizes.

ROCm can be compared to CUDA and described their ex-
periences while porting Classical Molecular Dynamics (MD)
applications from CUDA to ROCm using the HIP framework.
Kondratyuk et al. [21] analyzed the performance of MD
applications on NVIDIA and AMD GPUs. Kawthar et al. [22]
designed the state-of-the-art ROCm-aware MPI runtimes for
the MVAPICH2-GDR library. Their proposed design demon-
strated higher bandwidth when compared to OpenMPI + UCX
for inter-node and intra-node communication on AMD GPU
clusters.

In the context of SYCL and Intel GPUs, Zhai et al. [23]
designed SYCL-based GPU backend for Microsoft SEAL
(Homomorphic Encryption (HE) library) APIs. Their proposed
solution to optimize the NTT Key algorithm for HE achieved a
speedup of 9.93x compared to the naive GPU implementation.
Deakin et al. [24] studied the performance of HPC-based
SYCL Applications and compared it with OpenCL and other
programming models. Cardoso da Silva et al. [25] compared
SYCL with OpenCL and OpenMP and concluded that SYCL’s
performance was not on par with OpenCL and OpenMP.
Kuncham et al. [26] evaluated the performance of SYCL and
CUDA on NVIDIA GPUs.

VII. CONCLUSION

As the upcoming HPC supercomputers are equipped with
Intel GPUs and more applications are ported to SYCL-based
implementation and run on the next-generation accelerators, it
is critical to have an MPI-level middleware to support highly
efficient communication for these DL and HPC applications.
In the past decade, GPU-aware libraries such as MVAPICH2-
GDR and Open MPI have enhanced the support for NVIDIA
and AMD GPUs through CUDA and ROCm toolkits. The suc-
cess of the previous GPU-aware designs triggers the expecta-

tion to have support and optimizations for data transfer on Intel
GPUs using state-of-the-art MPI libraries. In this paper, we ex-
plored the features of Intel GPUs and took up the challenges of
implementing and optimizing a GPU-aware MPI library using
the oneAPI library. We adopted the CPU staging approach
and optimized the memory copy speed and flow by choosing
the host staging buffer type and advanced pipeline designs.
We evaluated the performance of point-to-point and collective
operations with our proposed GPU-aware MPI library at the
benchmark level using OMB compared to Intel MPI and the
naive approach. We observed about 2x lower latency and 1.4x
and 1.6x increased bandwidth and bi-directional bandwidth,
respectively. We also demonstrated up to 8x improvement of
latency for MPI_Allreduce. In application-level evaluation, our
proposed implementations reach up to 40% improvement for
3DStencil. In the future, we intend to continue this work to
extend the proposed implementations to more variety of MPI
operations and evaluate the performances in multi-GPU and
multi-node environment.

VIII. ACKNOWLEDGEMENT

We would like to thank Dr. Sameer Shende (University of
Oregon) for providing access to the HPC systems used in the

paper.

REFERENCES

[1]1 E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP 500
Supercomputer Sites,” http://www.top500.org, 1993.

[2] Intel, “Intel Iris X MAX Graphics,”
https://www.intel.com/content/www/us/en/products/sku/211013/intel-
iris-xe-max-graphics-96-eu/specifications.html.

[3] H. Jiang, “Intel’s ponte vecchio gpu : Architecture, systems & software,”
in 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, pp. 1-29.

[4] Khronos, “SYCL 2020 Specification Revision 5, https://registry.
khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html, 2022.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

70001 Proposed Advanced Design —— Proposed Advanced Design —— Proposed Advanced Design
6000 Intel MPI 2021.6 2500 Intel MPI 2021.6 14 Intel MPI 2021.6
—— Intel oneCCL 2021.6 —— Intel oneCCL 2021.6
5000 2000 12
)) m
34000 = 510
3 21500 g
& 3000 2 L8
© © ©
~ 2000 —1000 =
6
1000 500
4
0
1 4 16 64 256 1K 4K 16K 64K256K 1M 4 16 64 256 1K 4K 16K 64K 256K 1M 1 4 16 64 256 1K 4K 16K 64K 256K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
(a) MPI_Bcast (b) MPI_Reduce (a) 3DStencil 4PPN
30000 45 .
175001 —— Proposed Advanced Design —— Proposed Advanced Design —— Proposed Advanced Design
15000 Intel MPI 2021.6 25000 Intel MPI 2021.6 40 Intel MPI 2021.6
—— Intel oneCCL 2021.6 35
5 12500 G 20000 I
2 2 230
10000
9 315000 o
c < $25
8 7500 2 s
i} 5 10000 S
~ 5000 - ~20
2500 ‘/ 5000 15
0 0 10
4 16 64 256 1K 4K 16K 64K 256K 1M 1 4 16 64 256 1K 4K 16K 64K256K 1M 1 4 16 64 256 1K 4K 16K 64K 256K

Message Size (Bytes)

(c) MPI_Allreduce

Message Size (Bytes)

(d) MPI_Allgather

Fig. 8. Comparison of MPI collective operations between proposed GPU-aware MPI library,
Intel oneCCL 2021.6 and Intel MPI 2021.6 on 1 node, 8 PPN. The advanced proposed

Message Size (Bytes)

(b) 3DStencil 8PPN

Fig. 9. Performance comparison of 3DStencil
using 4 PPN and 8 PPN on 1 node.

implementations have the lowest latency over all ranges of message sizes in all 4 collective

operations.

[5] Intel, “Intel oneAPL” https://www.oneapi.io/, 2022.

[6] Message Passing Interface Forum, “MPI: A message-passing interface
standard version 4.0,” Jun. 2021. [Online]. Available: https://www.mpi-
forum.org/docs/mpi-4.0/mpi40-report.pdf

[71 D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour,
“The mvapich project: Transforming research into high-
performance mpi library for hpc community,” Journal of
Computational ~Science, p. 101208, 2020. [Online]. Available:

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

http://www.sciencedirect.com/science/article/pii/S1877750320305093

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97-104.

Intel, “Intel Message Passing Interface (MPI) Library,”
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-
library.html.

Khronos, “OpenCL 3.0 specification,” https://registry.khronos.org

/OpenCL/specs/3.0-unified/html/OpenCL_APLhtml, 2022.

NVIDIA, “How to Optimize Data Transfers in CUDA C/C++,”
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/,
2012.

Intel, “FPGA Optimization Guide for In-
tel® oneAPI Toolkits - Prepinning Memory,”
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-
fpga-optimization-guide/top/optimize-your-design/throughput-
1/host/prepinning-memory.html, 2022.

D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda, “OMB-
GPU: A Micro-benchmark Suite for Evaluating MPI Libraries on GPU
Clusters,” in Proceedings of the 19th European Conference on Recent
Advances in the Message Passing Interface (EuroMPI), 2012, pp. 110—
120.

D. Jacobsen, J. Thibault, and I. Senocak, “An mpi-cuda implementation
for massively parallel incompressible flow computations on multi-gpu
clusters,” Inanc Senocak, vol. 16, 2010.

H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda,
“Mvapich2-gpu: Optimized gpu to gpu communication for infiniband
clusters,” Comput. Sci., p. 257-266, 2011.

H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda, “GPU-
Aware MPI on RDMA-Enabled Clusters: Design, Implementation and
Evaluation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595-2605, Oct 2014.

140

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient Inter-node MPI Communication Using GPUDirect RDMA
for InfiniBand Clusters With NVIDIA GPUs,” in Parallel Processing
(ICPP), 2013 42nd International Conference on. IEEE, 2013, pp. 80—
89.

H. Subramoni, S. Chakraborty, and D. K. Panda, “Designing Dynamic
and Adaptive MPI Point-to-Point Communication Protocols for Efficient
Overlap of Computation and Communication,” in High Performance
Computing, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds.
Cham: Springer International Publishing, 2017, pp. 334-354.

K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Per-
formance Evaluation of MPI Libraries on GPU-enabled OpenPOWER
Architectures: Early Experiences,” in International Workshop on Open-
POWER for HPC (IWOPH 19) at the 2019 ISC High Performance
Conference, 2018.

E. Kuznetsov and V. Stegailov, “Porting cuda-based molecular dynamics
algorithms to amd rocm platform using hip framework: Performance
analysis,” in Supercomputing, V. Voevodin and S. Sobolev, Eds. Cham:
Springer International Publishing, 2019, pp. 121-130.

N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “Gpu-
accelerated molecular dynamics: State-of-art software performance and
porting from nvidia cuda to amd hip,” The International Journal of High
Performance Computing Applications, vol. 35, no. 4, pp. 312-324, 2021.
K. Shafie Khorassani, J. Hashmi, C.-H. Chu, C.-C. Chen, H. Subramoni,
and D. K. Panda, “Designing a ROCm-Aware MPI Library for AMD
GPUs: Early Experiences,” in High Performance Computing: 36th Inter-
national Conference, ISC High Performance 2021, Virtual Event, June
24 — July 2, 2021, Proceedings. Springer-Verlag, 2021, p. 118-136.
Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and
A. Lyashevsky, “Accelerating encrypted computing on intel gpus,” in
2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). 1EEE, 2022, pp. 705-716.

T. Deakin and S. McIntosh-Smith, “Evaluating the performance of hpc-
style sycl applications,” in Proceedings of the International Workshop
on OpenCL, 2020, pp. 1-11.

H. C. Da Silva, F. Pisani, and E. Borin, “A comparative study of sycl,
opencl, and openmp,” in 2016 International Symposium on Computer Ar-
chitecture and High Performance Computing Workshops (SBAC-PADW).
IEEE, 2016, pp. 61-66.

G. K. R. Kuncham, R. Vaidya, and M. Barve, “Performance study of
gpu applications using sycl and cuda on tesla v100 gpu,” in 2021 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2021, pp. 1-7.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

