
Implementing and Optimizing a GPU-aware MPI
Library for Intel GPUs: Early Experiences

Chen-Chun Chen∗, Kawthar Shafie Khorassani∗, Goutham Kalikrishna Reddy Kuncham∗, Rahul Vaidya∗,
Mustafa Abduljabbar∗, Aamir Shafi∗, Hari Subramoni† and Dhabaleswar K. Panda†

Department of Computer Science and Engineering

The Ohio State University, Columbus, Ohio
∗Email: {chen.10252, shafiekhorassani.1, kuncham.2, vaidya.84, abduljabbar.1, shafi.16}@osu.edu

†Email: {subramon, panda}@cse.ohio-state.edu

Abstract—As the demand for computing power from High-
Performance Computing (HPC) and Deep Learning (DL) appli-
cations increase, there is a growing trend of equipping mod-
ern exascale clusters with accelerators, such as NVIDIA and
AMD GPUs. GPU-aware MPI libraries allow the applications
to communicate between GPUs in a parallel environment with
high productivity and performance. Although NVIDIA and
AMD GPUs have dominated the accelerator market for top
supercomputers over the past several years, Intel has recently
developed and released its GPUs and associated software stack,
and provided a unified programming model to program their
GPUs, referred to as oneAPI. The emergence of Intel GPUs
drives the need for initial MPI-level GPU-aware support that
utilizes the underlying software stack specific to these GPUs and a
thorough evaluation of communication. In this paper, we propose
a GPU-aware MPI library for Intel GPUs using oneAPI and
an SYCL backend. We delve into our experiments using Intel
GPUs and the challenges to consider at the MPI layer when
adding GPU-aware support using the software stack provided
by Intel for their GPUs. We explore different memory allocation
approaches and benchmark the memory copy performance
with Intel GPUs. We propose implementations based on our
experiments on Intel GPUs to support point-to-point GPU-aware
MPI operations and show the high adaptability of our approach
by extending the implementations to MPI collective operations,
such as MPI Bcast and MPI Reduce. We evaluate the benefits
of our implementations at the benchmark level by extending
support for Intel GPU buffers over OSU Micro-Benchmarks. Our
implementations provide up to 1.8x and 2.2x speedups on point-
to-point latency using device buffers at small messages compared
to Intel MPI and a naive benchmark, respectively; and have up
to 1.3x and 1.5x speedups at large message sizes. At collective
MPI operations, our implementations show 8x and 5x speedups
for MPI Allreduce and MPI Allgather at large messages. At the
application-level evaluation, our implementations provide up to
40% improvement for 3DStencil compared to Intel MPI.

Index Terms—oneAPI, Intel GPUs, GPU-aware MPI

I. INTRODUCTION

Graphics Processing Units (GPUs) from various industry

vendors have increasingly become an integral component of

modern High-Performance Computing (HPC) systems [1].

Popular Deep Learning (DL) frameworks like PyTorch and

TensorFlow—as well as traditional scientific applications—are

now capable of exploiting the raw computer power available

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

on these devices. Historically, NVIDIA and AMD GPUs have

dominated the list of accelerators used in HPC systems. The

TOP500 project [1] tracks the 500 fastest supercomputers in

the world twice every year. According to the latest TOP500

list published in June 2022, NVIDIA Ampere and Volta GPUs

hold 26.9% of the overall performance share. The AMD

MI250X occupies 30.2% of the overall performance share.

However, this share is mainly influenced by the #1-ranked

TOP500 system called Frontier at the ORNL.

Despite starting late, Intel is currently actively designing and

developing a range of GPU products and the associated ecosys-

tem. In 2020, Intel launched the new discrete GPU—named

Intel Iris Xe Max [2]—and provided a new platform, called

Intel DevCloud, for developers to access Iris Xe and consumer

laptop grade GPUs for development and testing. Intel’s next-

generation GPUs—called Ponte Vecchio—aim to deliver 2×
higher performance than NVIDIA’s A100 GPUs [3]. The data-

center follow-up GPU named Rialto Bridge is also underway.

The Ponte Vecchio GPUs are planned to power the compute

nodes of the upcoming exascale system “Aurora” at the

Argonne National Laboratory. Figure 1 shows the architectural

overview of the Intel Iris Xe Max, also known as DG1.

This GPU has 1 Slice, and the Slice consists of 6 Subslices.

Each Subslice contains 16 Execution Units (EUs), so there

are 96 EUs in total. Just like NVIDIA and AMD GPUs, the

programmers are responsible for porting their CPU codes to

Intel GPUs by using the associated software ecosystem. An

upfront porting effort is also needed for CUDA and HIP-based

applications.

As the pioneer of the high-performance GPUs market,

NVIDIA came up with its in-house programming toolkit,

Compute Unified Device Architecture (CUDA), to simplify

the development of GPU applications. Inspired by NVIDIA,

AMD also brought Radeon Open Compute (ROCm) software

stacks, and the HIP features allow programmers to develop

portable applications for AMD GPUs. There are almost one-

to-one mappings of CUDA and HIP APIs. Table I summarizes

some common APIs of CUDA and HIP. AMD also provides a

tool, called hipification, for porting CUDA codes to ROCm

applications. Currently, these compute devices—offered by

several vendors—are being programmed using a plethora of

complex programming languages and environments.

131

2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

979-8-3503-0119-9/23/$31.00 ©2023 IEEE
DOI 10.1109/CCGrid57682.2023.00022

20
23

 IE
EE

/A
CM

 2
3r

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Cl
us

te
r,

Cl
ou

d
an

d
In

te
rn

et
 C

om
pu

tin
g

(C
CG

rid
) |

 9
79

-8
-3

50
3-

01
19

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

GR
ID

57
68

2.
20

23
.0

00
22

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture overview of Intel Iris Xe Max, a.k.a. DG1. DG1 has
1 Slice and 6 Subslices, and each Subslice contains 16 EUs, so there are 96
EUs in total. Each EU consists of 7 Threads. The global memory size is 7.53
GB, and the local memory size is 64 KB.

TABLE I
THE DIFFERENCE BETWEEN CUDA, ROCM(HIP), AND ONEAPI FOR

DIFFERENT API CALLS

CUDA ROCm(HIP) oneAPI

cudaMemcpy hipMemcpy sycl::queue.memcpy
cudaMalloc hipMalloc sycl::malloc device

cudaFree hipFree sycl::free
cudaStreamCreate hipStreamCreate sycl::queue

cudaDeviceSynchronize hipDeviceSynchronize sycl::queue::wait
cudaMallocHost hipHostMalloc sycl::malloc host

cudaMallocManaged hipMallocManaged sycl::malloc shared
syncthreads syncthreads sycl::nd item::barrier

Intel simplifies the programmer’s task by supporting DPC++

(short for Data Parallel C++), which is an SYCL [4] standard-

compliant programming interface. This support comes along

with a single unified API and associated packages—called

oneAPI [5]—to program the processing elements from multi-

ple vendors to innovate the next generation of DL and HPC

applications. oneAPI supports a variety of hardware archi-

tectures, including CPUs, GPUs, and even FPGAs. oneAPI

[5] includes DPC++ with SYCL and OpenMP for C, C++,

and Fortran. Programmers can utilize oneAPI to develop

their codes with either kernel (DPC++) or directive-based

(OpenMP) style. DPC++ supports the SYCL standard, which

is a cross-platform abstraction layer that builds on OpenCL

for heterogeneous systems. Intel also provides the translation

tool, DPCT, for programmers to easily port their CUDA code

to SYCL/DPC++ code-based and support different hardware,

including Intel GPUs.

A. Motivation

The Message Passing Interface (MPI) [6] is a standard

for developing distributed parallel programs. With the high

demand for GPUs on HPC systems, GPU-aware MPI libraries

play a pivotal role by offering efficient and productive com-

munication between GPU-based processes. Programmers can

pass the device buffer pointers to MPI primitives as they used

to deal with host buffer pointers. The state-of-the-art MPI

libraries, such as MVAPICH2-GDR [7] and Open MPI [8],

have supported NVIDIA GPUs for a long time now. Support

for AMD GPUs has recently been added because of the recent

adoption of these GPUs. With the emergence and the potential

of Intel GPUs on next-generation clusters, communication

libraries need to provide support for these GPUs, too. The
primary motivation of this work is to add support for
Intel GPUs in an MPI library. Intel MPI [9] currently has

support for Intel GPUs using the so-called offloading approach.

We show in this paper that the offloading approach does

not provide the best performance, and our proposed solution

provides an efficient alternative. Also, Intel MPI is closed-

source software, so we, and the community, do not have

any insight into how the MPI library is implemented and

optimized. In order to fulfill the high demand from HPC and
DL applications on the upcoming supercomputers equipped
with Intel accelerators, it is critical to have another high-
performance and efficient GPU-aware support on Intel GPUs.

B. Challenges

We address the following challenges to develop and opti-

mize an efficient GPU-aware MPI library:

• How can we implement and optimize a high-performance

GPU-aware MPI library that supports Intel GPUs and the

other GPU systems in the market?

• How to decide the switching point between using versus

not using pipeline parallelism for the GPU-aware imple-

mentation? And, how to tune the block size for pipeline

stages to reduce latency?

• What are the features and limitations of Intel GPUs for

GPU-to-GPU communication that can benefit or impact

the MPI operations?

• How can we seamlessly design a benchmark to evaluate

the performance of the MPI library on Intel GPUs with-

out breaking the generality of the existing OSU Micro-

Benchmarks (OMB) interface and main code-base?

C. Contributions

This paper makes the following contributions:

1) Implement and optimize a GPU-aware MPI runtime by

adopting the CPU staging approach and extending the

host-based MPI with oneAPI library to support Intel

GPUs. (Section III)

2) Explore the features of Intel GPUs and identify the

challenges of supporting GPU-aware MPI operations.

(Figure 1, Table I)

3) Analyze the different host buffer types to achieve en-

hanced memory copy performance for communication

on Intel GPUs; optimize the implementations with

pipeline techniques, identify the bottleneck, and propose

advanced implementations. (Section IV)

4) Implement benchmarks to evaluate communication per-

formance on Intel GPU buffers with GPU-aware MPI

runtime; implement benchmarks using a naive approach

as the baseline. (Section V-A)

5) Evaluate MPI point-to-point and collective operations

for GPU resident data and compare our proposed im-

plementations with Intel MPI, Intel oneCCL, and naive

approach. The latency of our proposed implementation

is better than Intel MPI’s by 18%, and by 30% for

132

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

the naive point-to-point operations. It reaches up to 8x

improvement for collective operations. (Figures 7 and 8)

6) Demonstrate that our proposed implementations offer up

to 40% improvement for 3DStencil in the application-

level evaluation. (Figure 9)

To the best of our knowledge, our proposed implemen-
tation is the first that offers better performance for both
point-to-point and collective operations against the Intel
MPI library on Intel GPUs.

The rest of the paper is structured as follows. The back-

ground of our work is given in Section II. Section III and

Section IV detail the implementation and optimization of our

designs. The experimental results are presented in Section V.

The related work is discussed in Section VI, and the paper is

concluded in Section VII.

II. BACKGROUND

A. oneAPI
oneAPI [5] provides a ”unified” programming model that

can be used to target multiple hardware architectures, such as

CPU, GPU, FPGA, and other accelerators. It comprises various

toolkits and libraries designed for diverse applications and use

cases. oneAPI simplifies programming on diverse architectures

using the SYCL programming model, which is built on top of

OpenCL [10].

B. SYCL
SYCL [4] is a cross-platform abstraction layer developed by

Khronos Group enables code for heterogeneous systems to be

written in a single-source C++ file. With SYCL, it is possible

to create the software from a single source, allowing C++

template functions to design complicated OpenCL-accelerated

algorithms and reuse those methods throughout their source

code for various forms of data.

C. Intel GPU
Intel launched its new discrete GPU ”Intel Iris Xe Max” [2]

(also known as ”DG1”) in 2020. This GPU has 96 Execution

Units with a maximum clock frequency of 1650 Mhz. It

supports up to three-dimensional work items with a maximum

of 512 work items in each dimension. The maximum work-

group size is 512, the global memory size is 7.53 GB,

the maximum memory allocation is 3.76 GB, and the local

memory size is 64 KB.

D. GPU-aware MPI
MPI [6] is a standardized API for communicating data

and messages across distributed processes. In conventional

MPI implementations, to communicate between two GPUs

on different nodes, developers need to take care of staging
GPU buffers using memcpy. The staging technique refers to
copying source GPU data to host memory to enable host-
to-host transfer using MPI, and finally copy the receive
buffer to destination GPU. However, with GPU-aware MPI,

the MPI library is capable of sending and receiving GPU

buffers directly, without needing to first stage them in host

memory.

Algorithm 1: GPU-aware Implementation in MPI

1 if is device(buf) then
2 void* h buf = malloc host<char>(size, q);
3 q.memcpy(h buf, buf, size).wait();;
4 void* ori buf = buf;
5 buf = h buf;
6 end
7 /* Perform MPI operation for host buffer */
8 if is device(buf) then
9 q.memcpy(ori buf, buf, size).wait();;

10 buf = ori buf;
11 free(h buf, q);
12 end

III. IMPLEMENTATION OF GPU-AWARE MPI LIBRARY

USING ONEAPI

Since Intel is new to developing its accelerators, the existing

advanced techniques, such as RDMA and GPUDirect RDMA

technology, are under development and do not apply to Intel

GPUs currently. Hence. in our early experiment, we utilized

a CPU staging approach to implement the proposed GPU-

aware MPI library. Algorithm 1 reveals how to apply CPU

staging techniques to our implementations. First, the MPI

library should identify whether the buffer pointers passed by

the users are either host buffer or device buffer. If the pointers

are device buffers, create and maintain the host staging buffer

and start data copying. Otherwise, perform the regular host-

based MPI operations.
Existing GPU-aware MPI libraries, such as MVAPICH2-

GDR and Open MPI, have explored NVIDIA and AMD

GPUs for the past decade. They utilize CUDA or ROCm

toolkits to implement their own algorithm over GPUs. Hence,

following a similar idea, we adopt the Intel oneAPI library

to implement our proposed implementations for supporting

Intel GPUs. However, the implementation is more challenging

than people ported design from supporting NVIDIA GPUs to

AMD GPUs. It is because CUDA and ROCm libraries are

nearly 1-to-1 mapping, but this fact does not hold for oneAPI

APIs. Table I summarizes the common GPU library APIs.

We can find corresponding API pairs in CUDA and ROCm

with the prefix cuda or hip, but the API primitives are quite

different for oneAPI. It is to say we have to re-implementation

the code structure and algorithm for oneAPI-based implemen-

tation. Furthermore, CUDA and ROCm have their runtime

libraries called cuda_runtime.h and hip_runtime.h,

which allows users to call the APIs even in C code. However,

oneAPI does not support such runtime libraries. It raises

the difficulty for programmers to integrate oneAPI into their

previous implementation if it was written in C.
We implement both MPI point-to-point operations, in-

cluding blocking calls MPI Send, MPI Recv, and non-

blocking calls MPI Isend, MPI Irecv, and collective op-

erations, MPI Bcast, MPI Reduce, MPI Allreduce, and

MPI Allgather. In this paper, we will focus on discussing

MPI Send and MPI Recv.

A. Buffer Identification
Modern GPU programming interface usually provides

a convenient runtime API for users to identify the

133

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

buffer type. For example, programmers using CUDA can

call cuPointerGetAttribute to get the printer at-

tributes, and attributes.type will tell the printer

type. ROCm programmer can also utilize the correspond-

ing API hipPointerGetAttributes. However, oneAPI

does not provide 1-to-1 mapping APIs, but develop-

ers can use get_pointer_type in SYCL to achieve

the same functionality. This function will return the

buffer type in terms of sycl::usm::alloc::host,

sycl::usm::alloc::device, etc. In our implementa-

tion, we only consider sycl::usm::alloc::device as

the device buffer, so the rest of them return the type of host

buffer.

B. CPU Staging

CPU staging is a well-known and simple approach to

dealing with data in the device memory. It maintains a staging

buffer in host memory so that we can trigger the original CPU-

based MPI algorithm to the host buffer pointer. Algorithm 1

demonstrates how we apply the CPU staging approach to

GPU-aware MPI implementations. To fully provide downward

compatibility to the regular host buffer, we maintain the

original device buffer, as lines 4, 5, and 10 show, before

and after the MPI call. Like CUDA provides cudaMemcpy
interface for programmers to copy data between host and

device, oneAPI offers an easier way. In an SYCL queue,

memcpy allows programmers to copy data without con-

sidering the buffer type. It is to say the programmers do

not have to pass the memory copying kind tag, such as

cudaMemcpyHostToDevice, the oneAPI memcpy will

handle it underlying. Notice that in lines 3 and 9, a wait
function is called after memcpy. It indicates in this algorithm,

we are using synchronous memory copy. It will block the

execution on the host until the data copies completely. The

programmers can perform asynchronous memory copy by

removing the wait function. This technique can be utilized

in our optimized pipeline designs.

C. Extension to Non-blocking Point-to-point MPI Operations

Extending the current CPU staging implementations to non-

blocking MPI operations takes more effort. In blocking MPI

operations, there is only one function to be called and the data

transferring is completed before the function returns. However,

in non-blocking MPI usage, MPI Wait or MPI Waitall is

called after the non-blocking operations to make sure the

message is transferred, which increases the difficulty of main-

taining both the host staging buffer and the original device

buffer pointers. In our implementations, we keep this necessary

information in MPI Request so that we can perform the third

step of CPU staging in MPI Wait or MPI Waitall after the

data transfer between processes is done.

D. Extension to Collective MPI Operations

Extending the current implementations from point-to-point

to collective operations is simple. We take the same idea

of copying data to the host buffer and applying the above

Fig. 2. General timeline view for naive CPU staging and pipeline de-
signs. D2H denotes device-to-host data transferring, MPI denotes CPU-based
MPI Send/MPI Recv operations between processes, and H2D denotes host-
to-device data transferring. The number indicates the index of each message
segment. By earlier triggering the H2D 1, the advanced pipeline design (c)
provides more expected benefits.

techniques to collective implementations. Make sure to copy

only useful data between the host and device buffer, or it

may introduce unnecessary communication and drag down the

performance. For example, in MPI Bcast, only copy the data

in the root buffer to the staging buffer; or in MPIReduce

operation, only copy the data in the root buffer back to the

device side. Also, make sure to allocate a proper size of the

host staging buffer. For example, in MPI Allgather, the recv

buffer size should be the multiplication of recvcountand

the communication size.

IV. OPTIMIZATION OF GPU-AWARE MPI LIBRARY

A. Host Memory Type

The host buffer is allocated and managed by the devel-

opers. The very intuitive idea is to allocate CPU memory

through malloc in the C library. Considering the mem-

ory alignment for better performance, people may apply

posix_memalign to their implementation. Although we

can simply call q.memcpy, (assuming ”q” is a sycl::queue

object belonging to GPU device) for copying data between

the host and device buffer. The device cannot access any host

buffer we pass directly. The data need to be copied to another

staging pinned memory allocated on host memory and then be

moved from the temporary pinned memory to the final device

buffer [11]. Inspired by the fact that using pinned memory

in the CUDA program improves the data-transferring speed,

we explore similar techniques using oneAPI. It may be more

efficient if we can allocate a pre-pinned memory as the host

buffer because it can save the time of copying data from the

host buffer to the temporary pinned memory.

According to the Intel Developer Guide [12], SYCL USM

host allocations may use pre-pinned memory by calling

q.malloc_host. We also find that we can allocate aligned

host pinned memory by calling q.aligned_alloc_host.

134

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

1 4 16 64 256 1K 4K 16K 64K256K 1M 4M
Message Size (Bytes)

10−1

100

101

102

103

104

B
a
n
d
w
id
th

(M
B
/s
)

Device to Host

CPU-based MPI

Send/recv

Host to Device

Fig. 3. Individual bandwidth of device-to-host, CPU-based
MPI Send/MPI Recv, and host-to-device data transferring using Intel
GPU on 1 machine. There is overhead for small messages, and the trend of
bandwidth becomes smooth after 64KB. Also, host-to-device data transferring
has the lowest bandwidth, which indicates it can be the bottleneck of the
whole flow.

As a result, we explore 4 different types of memory allocation

({C, oneAPI} x {malloc, aligned malloc}), evaluate the mem-

ory transferring time between host and device, choose the best

one and use it in our implementations.

B. Pipeline Design

Algorithm 1 shows the idea of implementing a GPU-aware

MPI using CPU staging techniques. This naive approach

provides good productivity but poor performance because we

do not fully utilize all communication channels. Specifically,

the communication between the host and device memory can

be overlapped with the communication between processes.

Part A of figure 2 depicts this naive approach. It is clear

that at any given time, there is no overlapping of any 2

channels. The CPU-based MPI does not start transferring

data between processes until the data is entirely copied to

the host staging buffer. In the meantime, there is no data

copied back to the device buffer until the whole data is

entirely transferred through CPU-based MPI communication.

However, because the message segments are independent, we

can separate the entire message into pieces and send it using

pipeline techniques. It provides the potential for overlapping

communication among different channels.

Part B of figure 2 demonstrates a timeline profiling result

using pipeline designs. The original array of messages is

divided into 4 pieces. The CPU-based MPI operation (marked

as MPI 1) can start transferring data once the 1st piece of

message copied to the staging buffer (marked as D2H 1).

Similarly, H2D 1 can be triggered once MPI 1 is done. In the

meantime, a similar data-transferring process for the 2nd piece

of a message can be triggered once the 1st D2H step is done.

Although there are more steps for more message segments, the

total elapsed running can be saved because of the overlapping

of different communication channels.

Despite the potential for overlapping, the pipeline strategy

is unlikely to overlap the communication, especially in the

beginning stage fully. Ideally, we can divide the message

block very small and try to trigger the following step earlier

for more overlapping. However, there are overheads for each

step. Figure 3 shows the device-to-host (D2H), CPU-based

MPI send-recv (MPI), and host-to-device (H2D) bandwidth

Listing 1. Pseudo code of MPI Send for the advanced pipeline designs.
1 /* Allocate & maintain the host/device buffer */
2 for (int i = 0; i < pipeline_length; i++) {
3 if (pipeline_length > 1) {
4 /* Use the advanced pipeline designs */
5 if (i == 0) {
6 /* the 1st block */
7 offset = i*block_size;
8 block_size = block_size - block_size/2;
9 } else if (i == pipeline_length - 1) {

10 /* the last block */
11 offset = i*block_size - block_size/2;
12 block_size = block_size*1.5;
13 } else {
14 /* the other blocks */
15 offset = i*block_size - block_size/2;
16 block_size = block_size;
17 }
18 } else {
19 /* Without using pipeline approach */
20 offset = i*block_size;
21 block_size = block_size;
22 }
23 oneapi_memcpy(buf + offset, block_size, ...);
24 MPI_Isend(buf + offset, block_size, ...);
25 }
26 for (int i = 0; i < pipeline_length; i++) {
27 MPI_Wait(request[i], ...);
28 }
29 /* Deallocate & maintain the host/device buffer */

of all message sizes. Unfortunately, the bandwidth for small

messages is quite low, indicating it requires more time to

transfer the same amount of data using a smaller block size.

Hence, we are not going to use the pipeline strategy for small

message transferring. The bandwidth trend becomes smooth

after 64K, which hints that we can set a threshold here for

applying the pipeline designs.

The poor performance for small messages hampers us from

adopting a more fine-grained pipeline strategy. Figure 2 shows

there are serial parts in the timeline, especially at the beginning

and before the end of execution. Figure 3 also shows the

host-to-device has the worst performance for large messages

compared to the previous 2 steps, which indicates it will

leave a longer ”tail” that cannot be overlapped at the end.

From figure 2 and figure 3, we know that host-to-device

data transferring almost dominates the total running time

because it is the most time-consuming step, and it can only be

triggered after the CPU-based step of the 1st message block

is finished. Hence, we propose advanced pipeline designs that

aim to trigger the host-to-device data transfer earlier. In the

naive pipeline designs, the message block size is even over

all blocks. However, the advanced pipeline designs reduce

the block size of the first block of the message for sooner

device-to-host and CPU-based MPI running time and expect

the earlier host-to-device data transferring starting time that

benefits the total ending time of the last message block. In

the advanced designs, the amount of diminished data in the

first message block will be handled in the last message block

to ensure all data are transferred. As a result, the proposed

designs have lower total running time compared to the naive

CPU staging pipeline designs.

We have decided where to start using pipeline designs,

135

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

but how many blocks we should take is still challenging.

A higher granularity allows more overlapping but introduces

more overhead, and vice versa. Evaluation V-D shows the

trend that the block size could be half of the message size.

Hence, we design a tunable parameter to let users assign

the proper number of blocks value based on their machine

architecture. In our implementations, we set the default value

to 2.

Listing 1 illustrates the pseudo-code of the MPI Send part

for the proposed advanced pipeline designs. It modifies the

message sizes of different blocks and intends to trigger the

first block of device-to-host data transferring earlier. Line 4 to

6 demonstrates we shrink the block size to half of the normal

size, and line 7 to 9 show we add the remaining message size

to the last block. Moreover, we need to modify the offset of

each buffer pointer by shifting half of the block size. SYCL

memory copy and non-blocking send are called after the block

size and offset modifications. This mechanism allows the first

block to send the message sooner than the regular pipeline

designs.

C. CPU Mapping

Because our algorithm relies on a significant amount of

data transferring between the host and device buffer, finding

the shortest and most efficient path between CPU and GPU

memory is essential. Typically, we prefer the GPU to be bound

to the CPU in the same socket and NUMA node. In a multi-

node cluster system, we will also consider the HCA (Host

Channel Adapter) location and try to bind it with the nearest

HCA.

V. EVALUATION

A. Experimental Setup

We conducted the following evaluations on our in-house

systems. The compute node is equipped with 4 Intel® Xeon®

Gold 6348H CPUs (96 physical cores in total), 376GB mem-

ory, and Intel Iris Xe MAX Graphics card (DG1 as the code

name) [2]. The Intel DG1 GPU contains 96 EUs and 7.53 GB

of device memory with 68 GB/s memory bandwidth.

To evaluate the basic performance metrics of Intel GPUs,

we developed micro-benchmarks using DPC++ to compare the

elapsed time for memory copying between buffers. To evalu-

ate the MPI-level performance with GPU-aware support, we

implemented and added Intel GPU buffer support to existing

benchmarks based on OSU Micro-Benchmarks (OMB) [13]

suite version 5.8. It utilizes oneAPI to allocate the device

buffer and directly passes device buffer pointers to MPI calls.

We only modified and enhanced the backend part of OMB so

all the benchmarks, including point-to-point and collective, can

benefit without code changes. We also implemented a latency

benchmark using a naive approach based on osu_latency
to simulate the condition that people do not use GPU-aware

MPI libraries. We call it the ”proposed naive approach” in the

following figures.

We use 3DStencil in the application-level evaluation. 3DS-

tencil uses plenty of MPI Isend and MPI Irecv pairs to com-

municate. We ported a previous CUDA version of 3DStencil to

SYCL-based code with Intel DPCT tool and manually edited

the code fragments which were not ported by Intel DPCT.

We report the mean values of 5 runs for the following

benchmark and application-level evaluations. We use Intel

MPI Library version 2021.6 and Intel oneCCL Library version

2021.6 as the baseline and Intel oneAPI DPC++/C++ version

2022.1.0 as the oneAPI library.

B. Basic Memory Copy Evaluation for Intel GPUs

To have a comprehensive understanding of the feature of

new-coming Intel GPUs, we develop a benchmark to evaluate

the basic metrics, including host-to-device (H2D) and device-

to-host (D2H) memory copy latency. We allocate the host

or device buffer at the beginning and perform memory copy

operations through q.memcpy using oneAPI. We take two

numbers from the mean value of 1000 iterations after 200

warmups.

We evaluate the memory copy speed between the device and

different types of host buffers. The host buffer types include

memory and aligned memory allocated using C and oneAPI li-

brary. In particular, we use malloc and posix_memalign
in C and use malloc_host and aligned_alloc_host
in SYCL. We fix the alignment value to 4KB. Figure 4 depicts

the results of H2D and D2H memory copy latency from 1

byte to 4MB. We notice that the numbers for malloc and

aligned malloc are almost identical for both C and SYCL type

of buffer, so we only consider aligned memory numbers in

the following discussion. The H2D and D2H memory copy

latencies with SYCL malloc host buffer are as low as 24.8

μs and 28.4 μs for 16 bytes in figure 4(a) and figure 4(c).

Compared to the numbers with C malloc host buffer, which

are 54.1 μs and 54.8 μs shown in, it is approximately 2x faster.

For large message at 4M shown in figure 4(b) and figure 4(d),

the numbers with SYCL malloc host buffer are 1140 μs and

773 μs, which is 1.3x and 1.2x faster compared to 1492 μs and

1249 μs using a C malloc host buffer. The results suggest using

pinned host buffer has significant performance improvement

compared to a regular host buffer, and the improvement is

more pronounced for small messages. Moreover, we notice

the D2H latency is lower than the H2D latency for large

messages. For example, the D2H speed is 1.5x faster than

the H2D speed at 4MB. These evaluation results suggest our

proposed implementation to use SYCL malloc to allocate the

host staging buffer. We need to be aware that host-to-device

memory copy can be a bottleneck in the staging flow.

C. Different Memory allocation Approaches for CPU Staging
Technique

We implement GPU-aware MPI point-to-point operations

(MPI Send and MPI Recv) with a naive CPU staging ap-

proach (without pipeline design) and evaluate the perfor-

mance with different types of host staging buffer through

136

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

1 2 4 8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

20

30

40

50

60

L
a
te
n
c
y
(μ
s
)

C malloc

C aligned malloc

SYCL malloc

SYCL aligned malloc

(a) Host to Device - Small Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

0

250

500

750

1000

1250

1500

L
a
te
n
c
y
(μ
s
)

C malloc

C aligned malloc

SYCL malloc

SYCL aligned malloc

(b) Host to Device - Large Messages

1 2 4 8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

30

35

40

45

50

55

L
a
te
n
c
y
(μ
s
)

C malloc

C aligned malloc

SYCL malloc

SYCL aligned malloc

(c) Device to Host - Small Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

0

200

400

600

800

1000

1200

L
a
te
n
c
y
(μ
s
)

C malloc

C aligned malloc

SYCL malloc

SYCL aligned malloc

(d) Device to Host - Large Messages

Fig. 4. Comparison of D2H and H2D memcpy latency using different host buffer allocation
approaches: malloc and aligned malloc (with alignment set to 4KB) using C and SYCL. The
memory copy speed using SYCL malloc is about 2x compared to the memory copy speed using
C malloc. It suggests utilizing the SYCL malloc memory space as the host staging buffer.

1 2 4 8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

50

60

70

80

90

100

110

L
a
te
n
c
y
(μ
s
)

MPI w/ C malloc

MPI w/ C aligned malloc

MPI w/ SYCL malloc

MPI w/ SYCL aligned malloc

(a) Small Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

0

500

1000

1500

2000

2500

3000

L
a
te
n
c
y
(μ
s
)

MPI w/ C malloc

MPI w/ C aligned malloc

MPI w/ SYCL malloc

MPI w/ SYCL aligned malloc

(b) Large Messages

Fig. 5. Comparison of osu_latency using
different host buffer allocation approaches: mal-
loc and aligned malloc (with alignment set to
2K) using C and SYCL.

osu_latency in modified OMB. We extend the OMB back-

end to support memory allocation and data validation on the

device buffer. This evaluation demonstrates that our proposed

implementation can carry out GPU-aware MPI operations and

we can utilize different types of host staging buffers in our

implementation. Figure 5 shows the latency of our proposed

naive implementation with different types of buffers indicated

in the previous evaluation. The trend is also very similar

to figure 4, which means the latency numbers for using C

malloc staging buffer is higher than the ones using SYCL

malloc buffer, and there is not much difference between regular

memory and aligned memory. The latency of naive GPU-aware

MPI implementation using C malloc is 107.3 μs at 16 bytes,

which is 2.1x slower compared to 50.0 μs, the one using

the SYCL malloc approach. For large messages at 4 MB,

the SYCL malloc approach can achieve 1.3x faster latency

compared to the C malloc approach from 3126 to 2406.5 μs.

The evaluations show better performance and support the

assumption that we should adopt the SYCL malloc approach

to allocate host staging buffer. Therefore, we choose to utilize

SYCL aligned malloc approach in the following implementa-

tions and evaluations.

D. Pipeline Threshold selection for Advanced Proposed De-
signs

As described in section IV-B, there is an overhead for

transferring small messages. Hence, it is unlikely to divide the

messages into smaller block sizes and expect highly efficient

overlapping and good performance without any restriction.

Figure 6 demonstrates the latency for large messages (from

64KB to 4MB) using the advanced pipeline design with

different block sizes. We normalize the latency values to the

one with block size 1, which indicates no pipeline executing.

We see obvious benefits from using our advanced pipeline

design. For example, we observe 12.5%, 9.3%, and 5.5% of

improvements with block sizes 2, 4, and 8 at 4MB. However,

the performance decreases for smaller messages if it uses more

pipeline blocks. For instance, we get 8.3% improvement at 512

KB using 2 pipeline blocks, but the latency grows 34% if it

adopts block size 8, which is even worse than the baseline.

We notice that pipeline design has no benefit if the message

size is lower than 64 KB. The overhead becomes extremely

large, so we set a threshold at 64 KB and apply the pipeline

design techniques after 64 KB.

In the meantime, we also observe the best block size is

usually 2 for most message sizes, which suggests that message

sizes greater than the 64 KB threshold, we should use 2 blocks

to design our advanced pipeline approach.

E. Point-to-point Communication Evaluations

We integrate our findings from the pipeline CPU stag-

ing approach and implement a high-performance GPU-aware

MPI Send and MPI Recv operations, and extend the imple-

mentations to MPI Isend and MPI Irecv. We also implement

a naive approach based on osu_latency, osu_bw and

osu_bibw as the baseline to simulate the condition that

users do not utilize a GPU-aware library to transfer messages

between device buffers. Users have to maintain and operate the

host staging buffer by themselves. On the other hand, compile

and run the Intel GPU buffer-supported point-to-point bench-

marks in OMB using Intel MPI 2021.6 as another baseline. It

is the same version that we evaluated for our proposed imple-

mentation. Figure 7 shows the latency and bandwidth of the 3

designs. We see the proposed implementation reports as low as

137

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

64K 128K 256K 512K 1M 2M 4M
Message Size (Bytes)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

N
o
rm

a
li
z
e
d
L
a
te
n
c
y

Block Size 8

Block Size 4

Block Size 2

Block Size 1

Fig. 6. Normalized latency over different pipeline block sizes. The numbers
are normalized to ”block size 1” (serial). In most message sizes, block size
2 can deliver the lowest latency. There are no benefits for message sizes less
than 64 KB. Note that the figure is clipped at the top at normalized latency
of 1.5.

51.0 μs latency at 16 bytes in figure 7(a). Compared to 91.5 μs

and 108.0 μs using Intel MPI and naive approach, our proposed

implementation achieves 44.2% and 52.8% improvements. For

the large message, the proposed implementation continues

to stay ahead. Figure 7(d) shows 2196 μs for our proposed

implementation compared to 2688 μs and 3168 μs for Intel

MPI and naive approach, respectively. In figure 7(b), 7(e), 7(c)

and 7(f), we see the bandwidth of proposed implementations

is 0.2x to 1.4x higher than the bandwidth of Intel MPI and

1.6x higher for bi-directional bandwidth. In this range, the

proposed implementations deliver 1.76 GB/s bandwidth and

1.82 GB/s bi-directional bandwidth at 4 MB. The evaluation

results verify that our proposed implementation provides the

GPU-aware MPI support for point-to-point operations with the

best performance at all message sizes compared against Intel

MPI and the naive approach.

F. Collective Communication Evaluations

We extend our proposed implementation to MPI col-

lectives operations, including MPI Bcast, MPI Reduce,

MPI Allreduce, and MPI Bcast. We evaluate the latency

performance of the proposed implementation, Intel oneCCL

and Intel MPI on 8 MPI processes over 1 GPU in fig-

ure 8. For oneCCL version, we use ccl::allreduce,

ccl::reduce, and ccl::broadcast to implement the

benchmarks. Note that there is no ccl::allgather in Intel

oneCCL library, so we just compare the results of 3 collectives.

For MPI Bcast results shown in figure 8(a), our proposed

implementation is 2.3x and 4x faster for small messages.

The latency is as low as 128.0 μs compared to 299.2 μs

and 523.0 μs for Intel MPI and Intel oneCCL at 16 bytes.

For larger messages, we see 878.7 μs at 512 KB for our

proposed implementation compared to 4981.9 μs and 951.2

μs for Intel MPI and Intel oneCCL. We notice there is a

step for Intel MPI at 8 KB, but our proposed implementation

depicts a smooth trend there, which is the key to having a

much better performance for larger messages. In the meantime,

there is no such step or Intel oneCCL, so the latency for

large messages is even better than Intel MPI. However, our

implementation still performs the best among all sizes and

designs. Figure 8(b) shows a similar trend for MPI Reduce,

our proposed implementation achieves 188.9 μs and 1129.5

μs latency at 16 bytes and 512 KB, which is 1.8x and 1.6x

faster compared to the 337.8 μs and 1789.4 μs latency for

Intel MPI, and 3.6x and 1.5x faster compared to the 671.5

μs and 1638.5 μs latency for Intel oneCCL. We see a similar

trend for MPI Allreduce and MPI Allgather comparisons in

figure 8(c) and 8(d). our proposed implementations have 4x

to 8x lower latency for MPI Allreduce and 5x lower latency

for MPI Allgather.

G. Application-level Evaluations

We evaluate our implementations at the application level

with 3DStencil. It uses lots of non-blocking point-to-point

MPI Isend and MPI Irecv pairs to commute data. Figure 9

demonstrates the performance results using 4 PPN (process

per node) and 8 PPN on 1 node. In figure 9(a), the latency of

our proposed implementations is 39% better than Intel MPI at

16 bytes, and have 16% improvement at 256 KB. Figure 9(b)

shows a trend similar to 8 PPN. The proposed implementations

have approximately 40% improvement from 1 byte to 64 KB,

and stay ahead up to 256 KB. The trend of this evaluation is

quite similar to the bandwidth evaluations in figure 7. That is

because both benchmarks consist of many non-blocking point-

to-point operations.

VI. RELATED WORK

Over the past decade, GPUs have gained significant pop-

ularity in performing compute-intensive tasks and are widely

used in many modern-day clusters. Therefore, it is pertinent

to have robust communication between GPUs as well as

across GPU and host memory for optimal performance. In

the early works, Jacobsen et al. [14] have overlapped GPU

data movement and MPI communication with computation to

simulate computational fluid dynamics (CFD) using MPI and

CUDA. Wang et al. [15] came up with an optimal CUDA-

based design to achieve GPU-GPU communication for Infini-

Band clusters. Their proposed solution integrated GPU data

movement with MPI interfaces and achieved inter-node GPU

communication using host-based pipelining techniques. Wang

et al. [16] have also proposed novel research to improve data

transfers between GPUs in RDMA-enabled clusters without

the involvement of the CPU. Potluri et al. [17] utilized the

GPUDirect RDMA feature in CUDA to improve MPI-based

inter-node GPU-GPU communication. They proposed a hybrid

design that incorporated host-based pipelining and GPUDirect

RDMA. Subramoni et al. [18] proposed designs capable of

dynamically adapting to the communication characteristics of

processes at runtime. Their proposed solution can make the

transition from one eager threshold to another without any

impact on the throughput. Kawthar et al. [19] analyzed the

performance of various CUDA-aware MPI libraries such as

MVAPICH2-GDR, Spectrum MPI, and Open MPI + UCX by

comparing their point-to-point performance.

While most of the research has been focused on NVIDIA

GPUs/CUDA, few researchers have made use of AMD

GPUs/ROCm. Kuznetsov et al. [20] investigated whether

138

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

1 2 4 8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

0

25

50

75

100

125

150

175

200
L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

Proposed Naive Approach

(a) Latency - Small Messages

1 2 4 8 16 32 64 128256512 1K 2K 4K
Size

10−2

10−1

100

101

102

B
a
n
d
w
id
th

(M
B
/s
)

Proposed Advanced Design

Intel MPI 2021.6

Proposed Naive Approach

(b) Bandwidth - Small Messages

1 2 4 8 16 32 64 128256512 1K 2K 4K
Size

10−2

10−1

100

101

102

B
a
n
d
w
id
th

(M
B
/s
)

Proposed Advanced Design

Intel MPI 2021.6

Proposed Naive Approach

(c) Bi-Directional Bandwidth - Small Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Message Size (Bytes)

0

500

1000

1500

2000

2500

3000

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

Proposed Naive Approach

(d) Latency - Large Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Size

102

103

104

B
a
n
d
w
id
th

(M
B
/s
)

Proposed Advanced Design

Intel MPI 2021.6

Proposed Naive Approach

(e) Bandwidth - Large Messages

8K 16K 32K 64K 128K256K512K 1M 2M 4M
Size

102

103

104

B
a
n
d
w
id
th

(M
B
/s
)

Proposed Advanced Design

Intel MPI 2021.6

Proposed Naive Approach

(f) Bi-Directional Bandwidth - Large Messages

Fig. 7. Comparison of MPI point-to-point operations between proposed GPU-aware MPI library, Intel MPI 2021.6, and naive approach using osu_latency,
osu_bw, and osu_bibw. The advanced proposed implementations have the lowest latency and highest bandwidth over all ranges of message sizes.

ROCm can be compared to CUDA and described their ex-

periences while porting Classical Molecular Dynamics (MD)

applications from CUDA to ROCm using the HIP framework.

Kondratyuk et al. [21] analyzed the performance of MD

applications on NVIDIA and AMD GPUs. Kawthar et al. [22]

designed the state-of-the-art ROCm-aware MPI runtimes for

the MVAPICH2-GDR library. Their proposed design demon-

strated higher bandwidth when compared to OpenMPI + UCX

for inter-node and intra-node communication on AMD GPU

clusters.

In the context of SYCL and Intel GPUs, Zhai et al. [23]

designed SYCL-based GPU backend for Microsoft SEAL

(Homomorphic Encryption (HE) library) APIs. Their proposed

solution to optimize the NTT Key algorithm for HE achieved a

speedup of 9.93x compared to the naı̈ve GPU implementation.

Deakin et al. [24] studied the performance of HPC-based

SYCL Applications and compared it with OpenCL and other

programming models. Cardoso da Silva et al. [25] compared

SYCL with OpenCL and OpenMP and concluded that SYCL’s

performance was not on par with OpenCL and OpenMP.

Kuncham et al. [26] evaluated the performance of SYCL and

CUDA on NVIDIA GPUs.

VII. CONCLUSION

As the upcoming HPC supercomputers are equipped with

Intel GPUs and more applications are ported to SYCL-based

implementation and run on the next-generation accelerators, it

is critical to have an MPI-level middleware to support highly

efficient communication for these DL and HPC applications.

In the past decade, GPU-aware libraries such as MVAPICH2-

GDR and Open MPI have enhanced the support for NVIDIA

and AMD GPUs through CUDA and ROCm toolkits. The suc-

cess of the previous GPU-aware designs triggers the expecta-

tion to have support and optimizations for data transfer on Intel

GPUs using state-of-the-art MPI libraries. In this paper, we ex-

plored the features of Intel GPUs and took up the challenges of

implementing and optimizing a GPU-aware MPI library using

the oneAPI library. We adopted the CPU staging approach

and optimized the memory copy speed and flow by choosing

the host staging buffer type and advanced pipeline designs.

We evaluated the performance of point-to-point and collective

operations with our proposed GPU-aware MPI library at the

benchmark level using OMB compared to Intel MPI and the

naive approach. We observed about 2x lower latency and 1.4x

and 1.6x increased bandwidth and bi-directional bandwidth,

respectively. We also demonstrated up to 8x improvement of

latency for MPI Allreduce. In application-level evaluation, our

proposed implementations reach up to 40% improvement for

3DStencil. In the future, we intend to continue this work to

extend the proposed implementations to more variety of MPI

operations and evaluate the performances in multi-GPU and

multi-node environment.

VIII. ACKNOWLEDGEMENT

We would like to thank Dr. Sameer Shende (University of

Oregon) for providing access to the HPC systems used in the

paper.

REFERENCES

[1] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP 500
Supercomputer Sites,” http://www.top500.org, 1993.

[2] Intel, “Intel Iris Xe MAX Graphics,”
https://www.intel.com/content/www/us/en/products/sku/211013/intel-
iris-xe-max-graphics-96-eu/specifications.html.

[3] H. Jiang, “Intel’s ponte vecchio gpu : Architecture, systems & software,”
in 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, pp. 1–29.

[4] Khronos, “SYCL 2020 Specification Revision 5,” https://registry.
khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html, 2022.

139

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

1 4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)

0

1000

2000

3000

4000

5000

6000

7000

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

Intel oneCCL 2021.6

(a) MPI Bcast

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

500

1000

1500

2000

2500

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

Intel oneCCL 2021.6

(b) MPI Reduce

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

0

2500

5000

7500

10000

12500

15000

17500

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

Intel oneCCL 2021.6

(c) MPI Allreduce

1 4 16 64 256 1K 4K 16K 64K256K 1M
Message Size (Bytes)

0

5000

10000

15000

20000

25000

30000

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

(d) MPI Allgather

Fig. 8. Comparison of MPI collective operations between proposed GPU-aware MPI library,
Intel oneCCL 2021.6 and Intel MPI 2021.6 on 1 node, 8 PPN. The advanced proposed
implementations have the lowest latency over all ranges of message sizes in all 4 collective
operations.

1 4 16 64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

4

6

8

10

12

14

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

(a) 3DStencil 4PPN

1 4 16 64 256 1K 4K 16K 64K 256K
Message Size (Bytes)

10

15

20

25

30

35

40

45

L
a
te
n
c
y
(μ
s
)

Proposed Advanced Design

Intel MPI 2021.6

(b) 3DStencil 8PPN

Fig. 9. Performance comparison of 3DStencil
using 4 PPN and 8 PPN on 1 node.

[5] Intel, “Intel oneAPI,” https://www.oneapi.io/, 2022.
[6] Message Passing Interface Forum, “MPI: A message-passing interface

standard version 4.0,” Jun. 2021. [Online]. Available: https://www.mpi-
forum.org/docs/mpi-4.0/mpi40-report.pdf

[7] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour,
“The mvapich project: Transforming research into high-
performance mpi library for hpc community,” Journal of
Computational Science, p. 101208, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877750320305093

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[9] Intel, “Intel Message Passing Interface (MPI) Library,”
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-
library.html.

[10] Khronos, “OpenCL 3.0 specification,” https://registry.khronos.org
/OpenCL/specs/3.0-unified/html/OpenCL API.html, 2022.

[11] NVIDIA, “How to Optimize Data Transfers in CUDA C/C++,”
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/,
2012.

[12] Intel, “FPGA Optimization Guide for In-
tel® oneAPI Toolkits - Prepinning Memory,”
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-
fpga-optimization-guide/top/optimize-your-design/throughput-
1/host/prepinning-memory.html, 2022.

[13] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda, “OMB-
GPU: A Micro-benchmark Suite for Evaluating MPI Libraries on GPU
Clusters,” in Proceedings of the 19th European Conference on Recent
Advances in the Message Passing Interface (EuroMPI), 2012, pp. 110–
120.

[14] D. Jacobsen, J. Thibault, and I. Senocak, “An mpi-cuda implementation
for massively parallel incompressible flow computations on multi-gpu
clusters,” Inanc Senocak, vol. 16, 2010.

[15] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda,
“Mvapich2-gpu: Optimized gpu to gpu communication for infiniband
clusters,” Comput. Sci., p. 257–266, 2011.

[16] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda, “GPU-
Aware MPI on RDMA-Enabled Clusters: Design, Implementation and
Evaluation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595–2605, Oct 2014.

[17] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,
“Efficient Inter-node MPI Communication Using GPUDirect RDMA
for InfiniBand Clusters With NVIDIA GPUs,” in Parallel Processing
(ICPP), 2013 42nd International Conference on. IEEE, 2013, pp. 80–
89.

[18] H. Subramoni, S. Chakraborty, and D. K. Panda, “Designing Dynamic
and Adaptive MPI Point-to-Point Communication Protocols for Efficient
Overlap of Computation and Communication,” in High Performance
Computing, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds.
Cham: Springer International Publishing, 2017, pp. 334–354.

[19] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Per-
formance Evaluation of MPI Libraries on GPU-enabled OpenPOWER
Architectures: Early Experiences,” in International Workshop on Open-
POWER for HPC (IWOPH 19) at the 2019 ISC High Performance
Conference, 2018.

[20] E. Kuznetsov and V. Stegailov, “Porting cuda-based molecular dynamics
algorithms to amd rocm platform using hip framework: Performance
analysis,” in Supercomputing, V. Voevodin and S. Sobolev, Eds. Cham:
Springer International Publishing, 2019, pp. 121–130.

[21] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “Gpu-
accelerated molecular dynamics: State-of-art software performance and
porting from nvidia cuda to amd hip,” The International Journal of High
Performance Computing Applications, vol. 35, no. 4, pp. 312–324, 2021.

[22] K. Shafie Khorassani, J. Hashmi, C.-H. Chu, C.-C. Chen, H. Subramoni,
and D. K. Panda, “Designing a ROCm-Aware MPI Library for AMD
GPUs: Early Experiences,” in High Performance Computing: 36th Inter-
national Conference, ISC High Performance 2021, Virtual Event, June
24 – July 2, 2021, Proceedings. Springer-Verlag, 2021, p. 118–136.

[23] Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and
A. Lyashevsky, “Accelerating encrypted computing on intel gpus,” in
2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2022, pp. 705–716.

[24] T. Deakin and S. McIntosh-Smith, “Evaluating the performance of hpc-
style sycl applications,” in Proceedings of the International Workshop
on OpenCL, 2020, pp. 1–11.

[25] H. C. Da Silva, F. Pisani, and E. Borin, “A comparative study of sycl,
opencl, and openmp,” in 2016 International Symposium on Computer Ar-
chitecture and High Performance Computing Workshops (SBAC-PADW).
IEEE, 2016, pp. 61–66.

[26] G. K. R. Kuncham, R. Vaidya, and M. Barve, “Performance study of
gpu applications using sycl and cuda on tesla v100 gpu,” in 2021 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2021, pp. 1–7.

140

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 05:36:22 UTC from IEEE Xplore. Restrictions apply.

