




plan, i.e., a sequence of grounded joint actions S to change

the configurations of the objects to satisfy G.

A task-and-motion plan, is valid iff, at each time step

j: (i) the corresponding multi-robot trajectory Ξj =
⟨ξjR1

, ξ
j
R2

, . . . , ξ
j
RnR

⟩ is collision-free; (ii) the robots can

use the corresponding motion trajectories and grasp poses

to grasp the target objects and place them at their target

poses without collisions; and (iii) all handover actions can be

performed without inducing collisions. The considered col-

lisions include collisions between robots, collisions between

an object and a robot, and collisions between objects.

IV. OUR APPROACH

We present our two-phase MR-GTAMP framework

(Fig. 2) in this section. In the first phase, we compute

the collaborative manipulation information, i.e., the occlu-

sion and reachability information for individual robots and

the potential collaborative relationships between the robots

(Sec. IV-A). In the second phase, we use a Monte-Carlo Tree

Search exploration strategy to search for task-and-motion

plans (Sec. IV-B). The search process depends on a key

component that generates promising task skeletons (Sec. IV-

C) and a key component that finds feasible object placements

and motion trajectories for the task skeletons to construct

executable task-and-motion plans (Sec. IV-D).

A. Computing Collaborative Manipulation Information

Given a MR-GTAMP problem instance and the initial

configurations of all objects and robots, our framework first

computes the occlusion and reachability information for

individual robots, e.g., whether an object blocks a robot from

manipulating another object and whether a robot can reach a

region to place an object there. We also compute whether

two robots can perform a handover action for an object

by computing whether they can both reach a predefined

handover point to transfer the object. In this work, we only

consider handover actions for objects that are named in

goal specification G, because, these actions are critical for

generating feasible and high-quality collaborative task-and-

motion plans. We assume that all robots will return to their

initial configurations after each time step. Inspired by [4], we

use a conjunction of all true instances of a set of predicates

to represent the computed information. To define these pred-

icates, we need to define two volumes of workspace similar

to [4], [8]. The first volume Vpick(M, g,R, ξ) is the volume

swept by robot R to grasp object M with grasp g following

trajectory ξ. The second volume Vplace(M, g,R, P
place
M , ξ)

is the volume swept by robot R and object M to transfer

the object to pose P
place
M after trajectory ξ. Our predicates

are as follows:

• OCCLUDESPICK(M1,M2, g, R) is true iff object M1

overlaps with the swept volume Vpick(M2, g, R, ξ),
where ξ is chosen to be collision-free, if possible;

• OCCLUDESGOALPLACE(M1,M2, Re, g,R) is true iff

M1 is an object that overlaps with the swept volume

Vplace(M2, g, R, P
place
M2

, ξ), where P
place
M2

and ξ are

chosen to be collision-free, if possible, and the pair

⟨M2, Re⟩ is named in goal specification G;

• REACHABLEPICK(M, g,R) is true iff there exists a

trajectory for robot R to pick object M with grasp g;

• REACHABLEPLACE(M,Re, g,R) is true iff there exists

a trajectory for robot R to place object M in region Re

with grasp g; and

• ENABLEGOALHANDOVER(M, g1, g2, R1, R2) is true

iff two robots R1 and R2 can both reach a predefined

handover point for object M with grasps g1 and g2,

respectively, and the object M is named in goal speci-

fication G.

For a predicate instance to be true, the corresponding

trajectories are required to be collision-free with respect

to the given fixed objects. For a predicate instance of

ENABLEGOALHANDOVER to be true, the two robots should

not collide with each other.

The values of all the predicate instances can be computed

with existing inverse-kinematics solvers [22] and motion

planners [23]. Ideally, we wish to find trajectories for the

robots that have the minimum number of collisions with

the given objects, i.e., the minimum constraint removal [24]

trajectories. However, this is known to be very costly. Thus,

we follow previous work [4] and first attempt to find a

collision-free trajectory with respect to the movable and

fixed objects. If we fail, we attempt to find a collision-free

trajectory with respect to only the fixed objects.

In our implementation, we efficiently compute the pred-

icates for individual robots ± with the exception of EN-

ABLEGOALHANDOVER ± in parallel by creating an identical

simulation environment for each robot.

B. Searching for Task-and-Motion Plans

We now describe our search process (Fig. 3) for efficiently

finding high-quality collaborative task-and-motion plans. Our

search process generates a search tree whose nodes, denoted

as D, store sequences of grounded joint actions, denoted as

D.S, and whose edges, denoted as E, store task skeletons,

denoted as E.S̄. At each search iteration, we will select an

task skeleton to ground. We define a reward function, which

will be described in details later, as the optimization target for

task-skeleton selection. The value of an edge is the cumulated

reward it has received since the search starts.

Assume that we have a node Dj and an edge Ei coming

out of node Dj . If we successfully ground task skeleton

Ei.S̄, given a sequence of already grounded joint actions

D.S, with the task-skeleton grounding component (Sec. IV-

D), the resulting executable task-and-motion plan is a se-

quence of grounded joint actions with D.S as postfix.

However, there can be situations, where a task skeleton

cannot be grounded without moving some objects that are

not planned to be moved in that task skeleton (Sec. IV-D).

In these situations, we generate new task skeletons to move

those objects with the task-skeleton generating component

(Sec. IV-C).

We propose a Monte-Carlo Tree Search (MCTS) explo-

ration strategy to balance exploration (exploring different

candidate task skeletons) and exploitation (biasing the search

towards the branches that have received high rewards).
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Fig. 3: Summary of the search process in the second phase of our framework.
Blue arrows represent the workflow for initializing the search tree. Yellow
arrows represent a search iteration that results in an updated set of objects to
be moved and thus a new set of task skeletons to be grounded. Red arrows
represent a search iteration that results in an executable plan.

We first generate an initial set of task skeletons (Sec. IV-

C) for moving a set of objects named in the goal speci-

fication, utilizing the computed collaborative manipulation

information (Sec. IV-A). We then initialize the search tree

by adding a root node D0 for selecting from the initial set of

task skeletons. At each search iteration, we have four phases:

selection, expansion, evaluation and backpropagation.

Notation. We use |S| and |S̄| to denote the number of objects

intended to be moved in sequences of grounded joint actions

S and task skeletons S̄, respectively.

Selection phase. In the selection phase, we start at the root

node and recursively select the edge with the highest Upper

Confidence Bound (UCB) value until we reach an edge Ei

with a task skeleton that has not been grounded yet. We

denote the tail node of edge Ei as Dj . We follow the UCB

value formula used in [25]. The UCB value of the pair of

node Dj and edge Ei is: Q(Dj , Ei) = Ei.value
Ei.visits+1 + c ×

Ei.prior ×
√

Dj .visits

Ei.visits+1 , where Ei.value is the cumulated

reward edge Ei has received so far, Dj .visits and Ei.visits

are the number of times Dj and Ei have been selected, c

is a constant to balance exploration and exploitation, and

Ei.prior is used to bias the search with domain knowl-

edge [25]. In our implementation, we set Ei.prior to 1
|Ei.S̄|

to prioritize grounding the task skeletons with fewer objects

to move. The value of an edge Ei.value is initialized to 0.

Assume that we select edge Ei at node Dj in the selection

phase.

Expansion phase. In the expansion phase, we create a new

node Dj.i as the head node of edge Ei.

Evaluation phase. In the evaluation phase, we use the task-

skeleton grounding component (Sec. IV-D) to ground task

skeleton Ei.S̄ associated with Ei to compute reward r for

selecting edge Ei. There are three possible outcomes: (i)

If we fail at grounding, we set r to 0. (ii) If we obtain a

sequence of grounded joint actions S
∗, then we found an

executable task-and-motion plan. In this case, we set r to

1 + α 1
|S∗| , where α is a constant hyperparameter used to

balance the two terms of the reward and is set to 1 in our

experiments (Sec. V). The first term of the reward motivates

the search algorithm to select branches where more actions

have been grounded, and the second term motivates the

search algorithm to select branches that will move fewer

objects. (iii) If we obtain a sequence of grounded joint

actions S
′ and a set of objects M

∗, then we have to move

objects M∗ to transport the already grounded joint actions S′

into an executable task-and-motion plan. In this case, we call

the task-skeleton generating component (Sec. IV-C) to move

M
∗. If we can not find any task skeleton to move M

∗, then

we set r to 0. However, if we find a set of task skeletons {S̄},

then we set r to S
′.length

S′.length+S̄∗.length
+α 1

|S′|+|S̄∗|
, where S̄

∗ is

the task skeleton with the minimum number of time steps in

{S̄}, S′.length and S̄
∗.length represent the number of time

steps of S′ and the number of time steps of S̄∗, respectively.

We use node Dj.i to store the returned grounded joint

actions S
′ as Dj.i.S. In the third scenario, if we find new

task skeletons we create new edges to store them for node

Dj.i. If no new edge is created, we mark node Dj.i as a

terminal node.

Backpropagation phase. In the backpropagation phase, we

update the cumulated reward of the selected edges {Esel}
with the computed reward r according to Esel.value =
Esel.value+ r. We also increment the number of visits of

the selected edges and nodes by 1.

In our implementation, we keep tracking the grounding

failures for different task skeletons similar to [26], so that

we can efficiently skip over those branches where grounding

their task skeletons is known to be infeasible.

C. Key Component 1: Generating Promising Task Skeletons

One key component in the second phase (Sec. IV-B) of our

framework is to generate promising task skeletons {S̄}, i.e.,

sequences of actions without the placement and trajectory

information, for moving a set of objects M∗ given a sequence

of already grounded joint actions S
′. It will be called at

the initialization stage of the search process, where S
′ is

empty and M
∗ is the set of objects named in the goal

specification of the problem instance. It will also be called

during the search process when the third scenario happens in

the evaluation phase. The task-skeleton generating algorithm

is designed in a way such that we can utilize the computed

collaborative manipulation information from the first phase

(Sec. IV-A) to eliminate task plans that include infeasible

actions and prioritize motion planning for high-quality task

plans that have a small number of time steps and a small

number of objects to be moved.

Notation. Assume that we want to generate task skeletons

to move objects M
∗ given a sequence of grounded joint

actions S′. The set of objects included in S
′ cannot be moved

again because of the monotone assumption. For simplicity

of presentation, we slightly abuse M to denote the movable

objects not included in S
′.

Building the collaborative manipulation task graph. To

reason about the collaborative manipulation capabilities of

the individual robots, we encode the computed information

as a graph. We build a collaborative manipulation task graph

(CMTG) to capture the precedence of the manipulations of
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Fig. 4: (Left) An example scenario where we want to generate task
skeletons to move object M1 given an empty sequence of grounded joint
actions. (Right) The corresponding collaborative manipulation task graph

for moving object M1. The rounded rectangular nodes are action nodes. The
circular nodes are object nodes. The red circular nodes represent objects that
are specified to be moved. The yellow arrows represent action edges. The
purple arrows represent block-place edges, and the blue arrow represents a
block-pick edge.

different objects, i.e., we can only move an object after we

move the obstacles that block the pick-and-place action we

are going to execute, based on the computed information

from the first phase (Sec. IV-A). Since we only compute

occlusion information for placing objects named in the goal

specification, the precedences encoded in the CMTG lack

occlusion information for relocating objects that are not

named in the goal specification. Instead, we assume that

we will always find the feasible places to relocate these

objects. We determine the exact object placements during

task-skeleton grounding (Sec. IV-D).

A CMTG (Fig. 4) has two types of nodes: An object node

represents an object M ∈ M; and an action node represents

a partially grounded pick-and-place action ā, i.e. a pick-and-

place action without placement information. A CMTG has

three types of edges: An action edge is an edge from an

object node to an action node. It represents moving the object

represented by the object node with the action represented

by the action node. A block-pick edge is an edge from an

action node to an object node. It represents that the object

represented by the object node obstructs the pick action of

the action represented by the action node. A block-place edge

is an edge from an action node to an object node. It represents

that the object represented by the object node obstructs the

place action of the action represented by the action node.

All block-place edges are connected to the action nodes that

move the objects named in the goal specification. A CMTG

has a set of object nodes that represents the input objects

M
∗ that must be moved.

Given the computed collaborative manipulation informa-

tion and a set of objects M
∗ to move, we incrementally

construct a CMTG by iteratively adding object M ∈ M
∗ to

the CMTG with Alg. 1. Given the CMTG C built so far and

an object M to add, we first add an object node representing

M to C (Alg. 1, line 3). Then, for each pair of a robot

R ∈ R and its grasp gM,R ∈ GrM,R, we find all partially

grounded pick-and-place actions ā that move object M to its

target region ReM with R as the pick robot (Alg. 1, line 4-

18). For each partially grounded pick-and-place action ā, we

find all movable objects that block the pick action of ā and

add the corresponding block-pick edges (Alg. 1, line 26-29).

If M is named in goal specification G, then we also find

all movable objects that block the place action of ā and add

the corresponding block-place edges (Alg. 1, line 30-34). We

Algorithm 1 ADDOBJECT(M,C)

1: if M ∈ C.object nodes then

2: return

3: C.object nodes.add(M)
4: if M is named in goal specification G then

5: ReM = GETGOALREGION(M )

6: else

7: ReM = GETCURRENTREGION(M )

8: for Rpick ∈ R do

9: for g
M,Rpick ∈ Gr

M,Rpick do

10: ā = {}
11: if REACHABLEPICK(M, g

M,Rpick , R
pick) then

12: if REACHABLEPLACE

(M,ReM , g
M,Rpick , R

pick) then

13: ā.add((M,ReM , Rpick, Rpick,

g
M,Rpick , gM,Rpick ))

14: if M is named in goal specification G then

15: for Rplace ∈ R \ {Rpick} do

16: for g
M,Rplace ∈ Gr

M,Rplace do

17: if ENABLEGOALHANDOVER

(M, g
M,Rpick , gM,Rplace , R

pick, Rplace) and

REACHABLEPLACE

(M,ReM , g
M,Rplace , R

place) then

18: ā.add((M,ReM , Rpick, Rplace,

g
M,Rpick , gM,Rplace ))

19: for ā ∈ ā do

20: R
pick
ā is the robot to pick M in ā

21: g
pick
ā is the grasp used by R

pick
ā in ā

22: R
place
ā is the robot to place M in ā

23: g
place
ā is the grasp used by R

place
ā in ā

24: C.action nodes.add(ā)
25: C.action edges.add(M, ā)
26: for Mj ∈ M do

27: if OCCLUDESPICK

(Mj ,M, g
pick
ā , R

pick
ā ) then

28: ADDOBJECT(Mj ,C)

29: C.block pick edges.add(ā,Mj)
30: if M is named in goal specification G then

31: for Mj ∈ M do

32: if OCCLUDESGOALPLACE

(Mj ,M,ReM , g
place
ā , R

place
ā ) then

33: ADDOBJECT(Mj ,C)

34: C.block place edges.add(ā,Mj)

recursively add the blocking objects in a similar way (Alg. 1,

lines 28 and 33).

Mixed-integer linear program formulation and solving.

Given a CMTG C, we find a set of task skeletons that

specify which robot will move which object at each time

step. We assume that each object will be moved at most once,

i.e., we assume that the problem instances are monotone.

Given a time step limit T , we cast the problem of finding

a task skeleton that has a minimum number of objects to

be moved as a mixed-integer linear program (MIP). We

encode the precedence of manipulating different objects as

formal constraints in the MIP such that we can generate task

skeletons that are promising to be successfully grounded. We

incrementally increase the time step limit T . In our imple-

mentation, the maximum time step limit is a hyperparameter.

For simplicity of presentation, we slightly abuse M again

to denote the objects in C. We use M
∗ ⊆ M to denote the

objects that are intended to be moved. We slightly abuse ā to

denote the set of partially grounded pick-and-place actions

in C. We use Eā = {(M, ā)} to denote the set of action

edges in C. We use E
pick
B = {(ā,M)} to denote the set

of block-pick edges and E
place
B = {(ā,M)} to denote the

set of block-place edges in C, EB = E
pick
B ∪E

place
B , where

M ∈ M and ā ∈ ā. We define the binary variables Xt
M,ā

and Xt
ā,M , where t ∈ [1, . . . , T ], (M, ā) ∈ Eā and (ā,M) ∈

EB . Xt
M,ā = 1 implies that action ā is executed at time



step t′ s.t. t′ ≥ t. Xt
ā,M = 1 implies that object M can be

considered for being moved at time step t since it blocks

action ā which is executed at or after time step t.
Our MIP model is shown in the following. The implica-

tions in constraint (11) and constraint (12) are compiled to
linear constraints using the big-M method [27]:

minimize
∑

(M,ā)∈Eā

X
1
M,ā

X
t
M,ā ≥ X

t+1
M,ā, ∀(M, ā) ∈ Eā, t ∈ [1, T − 1] (1)

X
t
M,ā = X

t
ā,M′ , ∀(M, ā) ∈ Eā, (ā,M

′
) ∈ EB , t ∈ [1, T ] (2)

X
t
M,ā′ ≤

∑
(ā,M)∈EB

X
t
ā,M , ∀M ∈ M \ M

∗
, (M, ā

′
) ∈ Eā,

t ∈ [1, T ] (3)∑
(M,ā)∈Eā s.t. R in ā

X
T
M,ā ≤ 1, ∀R ∈ R (4)

∑
(M,ā)∈Eā

X
T
M,ā ≥ 1 (5)

∑
(M,ā)∈Eā s.t. R in ā

X
t
M,ā ≤ 1 +

∑
(M,ā)∈Eā s.t. R in ā

X
t+1
M,ā,

∀R ∈ R, t ∈ [1, T − 1] (6)∑
(M,ā)∈Eā

X
t
M,ā ≥ 1 +

∑
(M,ā)∈Eā

X
t+1
M,ā, t ∈ [1, T − 1] (7)

∑
(M,ā)∈Eā

X
1
M,ā = 1, ∀M ∈ M

∗
(8)

∑
(M,ā′)∈Eā

X
1
M,ā′ ≥ X

1
ā,M , ∀(ā,M) ∈ EB (9)

∑
(M,ā)∈Eā

X
1
M,ā ≤ 1, ∀M ∈ M (10)

X
1
ā,M = 1 =⇒

∑
t∈[1,...,T ]

X
t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T ]

X
t
M,ā′ ) + 1, ∀(ā,M) ∈ E

pick

B (11)

X
1
ā,M = 1 =⇒

∑
t∈[1,...,T ]

X
t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T ]

X
t
M,ā′ ), ∀(ā,M) ∈ E

place

B (12)

Constraint (1) enforces that Xt
M,ā indicates whether we

have selected ā at or after time step t. Constraint (2) enforces

that, if an action is selected, then the objects that obstruct

it are also moved. Constraint (3) enforces that, besides the

objects in M
∗, we only move objects that obstruct the actions

we have selected. Constraints (4 − 7) enforce that, at each

time step, we select at least one action, while each robot

executes at most one action. Constraint (8) enforces that the

objects in M
∗ are moved. Constraint (9) enforces that all

obstacles for the selected actions are moved, while constraint

(10) enforces that each object is moved only once. Constraint

(11) enforces that each object is moved after the obstacles

for its pick action have been moved. Constraint (12) enforces

that each object is moved after the obstacles for its place

action have been moved. The objective function represents

the number of moved objects.

From a MIP solution, we construct a task skeleton which

is grounded later. Moreover, we want to construct multiple

task skeletons since some task skeletons may be impossible

to ground. Every time we obtain a solution, we add a con-

straint to the MIP model to enforce that we find a different

solution from the existing ones until we collect enough task

skeletons [28]. In our implementation, the maximum number

of task skeletons is a hyperparameter that varies for different

problem instances.

D. Key Component 2: Task-Skeleton Grounding

The second key component in the search phase (Sec. IV-

B) is to ground the task skeletons, i.e., to find the object

placements and motion trajectories for the partially grounded

pick-and-place actions. We use a reverse search algorithm

inspired by [8] since forward search for continuous parame-

ters of long-horizon task skeletons without any guidance is

very challenging [2]. The insight behind the reverse search

strategy is to use the grounded future joint actions as the

artificial constraints to guide the grounding for the present

time step.

The input to this component is a task skeleton S̄ of T time

steps and a sequence Sfut of future grounded joint actions.

We denote the volume of work space occupied by grounded

joint actions Sfut as Vfut. We denote the set of movable

objects that will be moved by grounded joint actions Sfut

as Mfut. We denote the set of movable objects that will

not be moved by task skeleton S̄ and grounded joint actions

Sfut as Mout. For time step t ∈ [1, . . . , T ], we denote the

set of objects that are planned to be moved as M
t and the

set of robots that are planned to move them as R
t. Recall

that we denote the goal specification and the set of movable

objects as G and M, respectively.

The grounding starts at the last time step T . For time

step t, we first sample placements for objects M
t that are

collision-free with respect to objects Mout ∪ Mfut, fixed

objects F and volume Vfut. The sampled placements should

not collide with volume Vfut, because, otherwise, they will

prevent the execution of future grounded joint actions that

occupy Vfut.

Given the placements, we plan pick trajectories and place

trajectories for objects M
t and robots R

t that are collision-

free with respect to objects F∪Mfut∪Mout. We note that,

in addition to the fixed objects F and the objects Mout, the

planned trajectories should not collide with the objects Mfut

that are moved in future grounded joint actions.

Since we may move multiple robots and objects con-

currently, we do not allow collisions between the robots,

collisions between the moved objects and collisions between

a robot and a moved object that is not intended to be

manipulated by that robot. If we succeed in grounding the

joint action at time step t, then we expand volume Vfut with

the volume occupied by the newly planned robot and object

trajectories, expand the set Mfut with the moved objects Mt

and expand the grounded joint actions Sfut with the newly

grounded joint action. We then start to ground the joint action

at time step t−1. If we succeed in grounding the joint actions

at every time step, we return an executable task-and-motion

plan S
∗ = Sfut. However, if we fail at grounding the joint

action at time step t, we relax the collision constraints by

allowing the sampled placements and trajectories to collide

with the objects Mout since we can generate new skeletons to

move them later. If we succeed after relaxing the constraints,

then we terminate the grounding and return the sequence of

the grounded joint actions S
′ = Sfut and a set of objects

M
∗. The set of objects M

∗ consists of the objects that are

named in the goal specification G but have not yet been

moved and the movable objects in the environment that

occlude the grounded joint actions S
′. During the search

process (Sec. IV-B), the returned S
′ and M

∗ are then used

as input to the first key component (Sec. IV-C) to generate

new task skeletons. If, after relaxing the collision constraints,

we still cannot find feasible placements and paths, then we

simply return failure.



TABLE I: Comparison of the proposed method with two baseline methods in the two benchmark domains regarding the success rate, planning time,
makespan and motion cost. The numbers in the names of the problem instances indicate the numbers of the goal objects and the movable objects besides
the goal objects. In PA5, PA7 and PA10, each problem instance has 3 goal objects. We omit the planning time and solution quality results for Ap2 on
PA10 because its success rate is significantly lower than those of the other two methods.

Problem Instance Success rate % Planning time (s) Makespan Motion cost

Ap1 Ap2 Ours Ap1 Ap2 Ours Ap1 Ap2 Ours Ap1 Ap2 Ours

PA5 100.0 85.0 100.0 5.6 (±1.3) 4.7 (±0.7) 2.4 (±0.2) 3.0 (±0.2) 3.1 (±0.2) 2.8 (±0.2) 3.8 (±0.2) 3.6 (±0.2) 3.6(±0.2)

PA7 80.0 40.0 100.0 39.8 (±12.8) 5.8 (±2.0) 4.0 (±0.9) 3.7 (±0.3) 2.8 (±0.4) 3.1 (±0.2) 4.8 (±0.3) 3.8 (±0.3) 4.1 (±0.2)

PA10 55.0 25.0 90.0 129.2 (±58.2) N/A 19.6 (±6.1) 4.6 (±0.6) N/A 4.2 (±0.3) 5.6 (±0.6) N/A 5.2 (±0.4)

BO8 70.0 N/A 95.0 466.8 (±91.0) N/A 104.3 (±14.6) 4.6 (±0.1) N/A 3.5 (±0.3) 7.2 (±0.2) N/A 5.5 (±0.5)

V. EXPERIMENTS

We empirically evaluate our framework in two challenging

domains and show that it can generate high-quality col-

laborative task-and-motion plans more efficiently than two

baselines.
A. Baselines

We compare our framework with two state-of-the-art

TAMP frameworks. We provide both baseline planners with

information about the reachable regions of each robot.

Ap1 is a multi-robot extension of the RSC algorithm [8]

by assuming that the robots form a single composite robot.

The action space includes all possible combinations of the

single-robot actions and collaboration actions.

Ap2 is a general MR-TAMP framework [11] that is

efficient in searching for promising task plans based on

the constraints incurred during motion planning. We imple-

mented the planner in a way such that geometric constraints

can be utilized efficiently, e.g., the planner can identify that

it needs to move the blocking objects away before it can

manipulate the blocked objects.
B. Benchmark Domains

We evaluate the efficiency and effectiveness of our method

and the two baselines in the packaging domain shown in

Fig. 1 (left) and the box-moving domain shown in Fig. 1

(right).

Packaging (PA): In this domain, each problem instance

includes 2 robots, 3 to 5 goal objects, 2 to 13 movable objects

besides the goal objects, 1 start region and 3 goal regions. As

in [4], we omit motion planning and simply check for colli-

sions at the picking and placing configurations computed by

inverse kinematics solvers in this domain, because collisions

in this domain mainly constrain the space of feasible picking

and placing configurations. We use Kinova Gen2 lightweight

robotic arms. For each benchmark problem instance, we

conduct 20 trials with a timeout of 1, 200 seconds.

Box-moving (BO): In this domain, each problem instance

includes 2 robots, 2 goal objects, 6 movable objects besides

the goal objects, 1 start region and 1 goal region. We use PR2

robots. In this domain, we do not consider handover actions,

because, they do not contribute significantly to generating

feasible and high-quality plans for MR-GTAMP problems

with mobile robots in synchronous setups. For each bench-

mark problem instance, we conduct 20 trials with a timeout

of 1, 200 seconds. In this domain, we compare our method

only with Ap1, since Ap2 is restricted to manipulators.

We use bidirectional rapidly-exploring random trees [23]

for motion planning and IKFast [22] for inverse kinematics

solving. All methods share the same grasp sets, the same

sets of single-robot actions, and the same sets of collabora-

tion actions. All experiments were run on an AMD Ryzen

Threadripper PRO 3995WX Processor with a memory of

64GB.
C. Results

We refer to the number of time steps as makespan and the

number of moved objects as motion cost.

Planning time and success rate. Table I shows that our

method outperforms both baseline methods on all problem

instances with different numbers of goal objects and movable

objects with respect to both the planning times and success

rates. Ap1 and our method achieve higher success rates on

all problem instances than Ap2 because the reverse search

strategy (Sec. IV-D) utilized in Ap1 and our method finds

feasible object placements much more efficiently than the

forward search strategy used in Ap2. Moreover, Ap2 can

generate task plans that includes irrelevant objects while

Ap1 and our method focus on manipulating the important

objects, like blocking objects for necessary manipulation or

goal objects. Our method achieves higher success rates with

shorter planning times than Ap1 on the difficult problem

instances PA7, PA10 and BO8 because our method first

generates promising task skeletons (Sec. IV-C) that use the

information about the collaborative manipulation capabilities

of the individual robots to prune the task plan search space,

which can be extremely large when there are many objects

and multiple robots [11]. The main cause of failure of

our method is running out of task skeletons which can

be addressed by incrementally adding more task skeletons

during the search process.

Solution quality. Table I shows that our method can generate

high-quality task-and-motion plans with respect to the mo-

tion cost and the makespan. Our method first generates task

skeletons with short makespans by incrementally increasing

time step limit and with low motion costs by incorporating

the motion cost into the objective function of the MIP

formulation (Sec. IV-C). On the other hand, our MCTS

exploration strategy motivates the planner to search for high-

quality plans with small numbers of moved objects. It should

be noted that, although Ap2 generates plans with lower

motion costs and shorter makespans for PA7, it has lower

success rates than our method. Also, Ap1 generates plans

that move significantly more objects for PA7, PA10 and BO8

than our method because it uses a depth-first search strategy

for finding feasible plans [8].
TABLE II: The results of the proposed method in domain PA regarding the
success rate, planning time, makespan and motion cost. The numbers in the
names of the problem instances indicate the numbers of the robots.

Problem Instance Success rate % Planning time (s) Makespan Motion cost

2 robots 60.0 148.4 (±36.8) 6.1 (±0.4) 8.9 (±0.4)

3 robots 80.0 99.0 (±48.6) 4.9 (±0.3) 8.2 (±0.5)

4 robots 85.0 109.1 (±33.6) 4.7 (±0.3) 8.2 (±0.4)

Scalability evaluation. We evaluate the scalability of our



method in the PA domain with 18 movable objects, including

5 goal objects, and 2 to 4 robots. Table II shows that our

method can solve these large problem instances. Moreover,

for problem instances with 3 and 4 robots, it achieves

higher success rates, shorter makespans and lower motion

costs compared to the problem instances with 2 robots. This

shows that our method can generate intelligent collaboration

strategies for multiple robots.

VI. CONCLUSION

In this paper, we presented a framework for MR-GTAMP

problems by proposing a novel MIP formulation to utilize

information about the collaborative manipulation capabil-

ities of the individual robots to generate promising task

skeletons for guiding the planning search. We proposed an

efficient task-skeleton grounding algorithm inspired by the

previous work on MAMO [8]. The proposed components

are integrated via a Monte-Carlo Tree Search exploration

strategy that searches for high-quality task-and-motion plans.

We showed that our framework outperforms two baselines

on two challenging MR-GTAMP problems with respect to

the planning time and success rates, can generate high-

quality plans with respect to the resulting plan length and the

number of objects moved, and can scale up to large problem

instances.

While we have assumed full observability of the scene,

we plan to account for sensing limitations in the future [29],

[30]. Future work also includes using learning to improve

the planning efficiency [4] and extending the developed

techniques to more general MR-TAMP problems [3] and

more diverse environments [31].
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