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Abstract

In existing wireless networks, the control programs have been designed man-
ually and for certain predefined scenarios. This process is complicated and
error-prone, and the resulting control programs are not resilient to disrup-
tive changes. Data-driven control based on Artificial Intelligence and Ma-
chine Learning (AI/ML) has been envisioned as a key technique to automate
the modeling, optimization and control of complex wireless systems. How-
ever, existing AI/ML techniques rely on sufficient well-labeled data and may
suffer from slow convergence and poor generalizability. In this article, focus-
ing on digital twin-assisted wireless unmanned aerial vehicle (UAV) systems,
we provide a survey of emerging techniques that can enable fast-converging
data-driven control of wireless systems with enhanced generalization capabil-
ity to new environments. These include simultaneous localization and sens-
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ing (SLAM)-based sensing and network softwarization for digital twin con-
struction, robust reinforcement learning and system identification for domain
adaptation, and testing facility sharing and federation. The corresponding
research opportunities are also discussed.

Keywords: UAV, Digital Twin, Domain Adaptation, Network
softwarization, AI/ML

1. Introduction

Unmanned aerial vehicles (UAVs) have been envisioned as a key enabling
technology for a wide set of new applications because of their unique char-
acteristics such as fast deployment, high mobility, on-board processing ca-
pabilities, and reduced size. This has allowed significant progress in founda-
tional research towards UAV-assisted communication networks, e.g., swarm
UAV networks. Specifically, the high mobility of UAVs can be leveraged
to enable dynamic network area coverage and maximize service capacity at
mobile ground nodes [1]. Furthermore, UAV swarms can serve as MIMO-
enabled self-organizing flying hotspots for terrestrial ad-hoc networks to im-
prove spectral efficiency [2]. In IoT networks, UAVs can be leveraged as
distributed relay nodes to expand coverage area and improve quality of ser-
vice (QoS) [3]. To enable 5G and Beyond network capabilities, UAVs can
provide additional computational resources for offloading and support in mo-
bile edge computing (MEC) networks [4]. UAV swarms are also expected to
enable 5G massive MIMO (MMIMO), serving as dynamic relays to enable
high-throughput communications between MMIMO base stations and ground
users and minimize inter-cell interference [5, 6]. Additionally, future network
architectures, i.e., 6G, are projected to support hybrid aerial-ground commu-
nications, in which terrestrial networks, aerial UAV networks, and satellite
communications are linked hierarchically to further enhance QoS and net-
work flexibility [7].

However, while UAVs can certainly enable a new range of applications, the
challenges are multi-fold. First, the management of UAV-assisted networks
needs to consider the high mobility of all connected nodes, and this requires
new resource orchestration and algorithm designs to anticipate the dynamics
and requirements of each flying node and hybrid link in addition to those
dynamics inherent to the networking environment [8]. The situation will get
even worse when jointly considering the newly emerging sophisticated com-
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munication techniques, such as heterogeneous multi-band communications
9], device-to-device communication links [10], integrated access and backhaul
(IAB) 5G networks [11], non-orthogonal multiple access (NOMA) [12, 13] and
spectrum coexistence [14, 15]. Moreover, in the current practice of wireless
engineering, the networking environments are usually assumed to be known
at design time, and the resulting control programs may fail when encoun-
tering unforeseen conditions. Traditional manual network management has
hindered the adoption of new techniques and the evolution of wireless net-
works, motivating a new paradigm that can enable zero-touch management of
UAV-enabled networks, including planning, design and deployment, service
delivery, resource management, and end-to-end optimization [16].
Data-driven Approaches. Data-driven modeling and decision-making
based on Artificial Intelligence and Machine Learning (AI/ML) are envi-
sioned to be key enablers of zero-touch wireless network management. In
recent years, data-driven approaches based on AI/ML have shown great po-
tential for automating the modeling and control of complicated wireless sys-
tems. Examples of recent efforts include deep learning-based edge computing
for Internet of Things (IoT) [17], multi-label classification for user associa-
tion in mm-wave networks [18], trajectory and passive beamforming design
in UAV-RIS wireless networks based on a decaying deep Q-network [19], and
network slicing for industrial IoT based on deep federated Q-learning [20],



among others. Readers are referred to [21, 22, 23, 24] and the references
therein for a good survey of the main results in this field.

However, the primary challenges with data-driven approaches are their
slow convergence rates and the limited generalization capabilities of the
learned policies when faced with new environments. Specifically, the per-
formance of ML (especially deep learning) algorithms highly relies on the
availability of a sufficient amount of well-labeled contextual data for model
training, leading to slow convergence rates in online applications [21, 25].
Additionally, collecting training data can be too time costly and in some
cases pose safety risks for hardware or network operators. Alternatively, the
models can be trained in an offline manner using data previously collected
or generated by simulators [26]. However, the trained models may suffer
from poor robustness, i.e., it is hard for the models to generalize to new
environments with different transition kernels.

Digital Twin-enabled Data-driven Control. Digital twins (DT) are
envisioned as key enablers of fast-convergent and robust learning for next-
generation intelligent cyber-physical systems, such as smart factories and
manufacturing [27, 28, 29|, smart cities [30, 31|, construction, bio-engineering
and automotive [32, 33], as well as wireless communication networks [34, 35].

With high-fidelity models in the virtual DT environment, the correspond-
ing physical entity can be reconfigured, simulated and tested at a fraction of
the cost and in a fraction of the time of deployment-based configuration test-
ing. By simulating the behaviors of the physical entity in real-time, possible
trajectories of a physical entity’s life-cycle can be generated using physics-
based simulation in order to predict events and conduct root-cause diagnosis.
Further, the resulting data can be used to train AI/ML models to determine
the optimal solutions for complex control problems, while the trained mod-
els can be fine-tuned through real-time feedback from the physical entity.
This has been demonstrated in [28], in which a DT has been implemented
to provide fault monitoring, scenario evaluation, and adaptive data-driven
control for manufacturing systems to improve both safety and productivity.
Furthermore, the authors of [30] show that using a custom protocol stack
for real-time synchronization between physical and virtual entities, city-scale
public services can be managed and optimized using data-driven algorithms
deployed in a DT. While the great potential of DTs has been demonstrated
in various areas such as manufacturing, smart city, and military applications
27, 28, 29], its adoption in wireless communication networks is still in its
early phase.



In this article, we aim to provide a survey of the main results of DT-
enabled machine learning in UAV-assisted wireless networks, and discuss the
research challenges and possible solutions. In existing literature, there are
already a number of surveys and tutorials focusing on DT-enabled wireless
systems [33, 36, 37, 38, 39]. For example, in [33] Minerva et al. discuss
the foundational properties, essential characteristics and business values of
DTs focusing on IoT application domains such as digital patient, digital city
and cultural heritage. The authors of [36] discuss DT-enabled 6G from an
architectural perspective, including the key design requirements in decou-
pling, scalability, security and reliability as well as deployment. The authors
emphasize the use of DT as an enabling technology for ML-enabled wire-
less networking via high-performance mobile edge computing and software-
defined networking. The enabling technologies for DT's are discussed in [38]
for cognizing and controlling the physical world, DT modeling, DT data
management, DT services as well as connections in DTs. In [39], Nguyen
et al. identify the potential benefits of DT for rolling out 5G networks,
including interactive 5G emulation, 5G radio and channel emulation, and
continuous validation and optimization. The design and implementation of
a DT for optical communication systems are presented in [40], and results
are presented to motivate the use of DT systems for hardware configura-
tion, transmission simulation, and fault prediction tasks. The application
of AT/ML techniques in wireless network modeling and control has also at-
tracted significant research attention. Readers are referred to [41, 42, 43, 44]
and references therein for a good survey and tutorial for the main results in
this field. Different from the above surveys and tutorials, in this article we
discuss the challenges and enabling techniques for fast-convergent and robust
learning in DT-assisted wireless UAV systems.

2. Digital Twins for Wireless Systems: A Primer

Digital twins were first introduced in the NASA Apollo program as a
“multi-physics, multi-scale probabilistic simulation” of an object, system, or
process in the physical world, which uses physical parameters, historical data,
and sensor updates to provide an accurate virtual “mirror” of the target
system [45]. As depicted in Fig. 1, a DT system generally consists of three
major components: a physical entity with observable behaviors, a logical (or
virtual) object that represents the physical entity in a simulated environment,
and a bidirectional feedback system between the two entities [27, 29, 46, 47].



Considering modern applications, DT systems can monitor and virtualize
dynamically the behaviors of the physical systems at run-time and further
aid in a zero-touch manner the decision-making in unforeseen situations based
on data-driven modeling and optimization [48].

In order to provide accurate modeling and control decisions in spite of
mathematical generalization, a DT system requires a bidirectional feedback
loop capable of translating observed physical behaviors into a virtual model
and vice versa. This behavioral translation process is termed domain adap-
tation. To broaden the scope of this investigation, we consider a general
theoretical definition of a DT with three critical elements: the physical do-
main, the twin domain, and domain adaptation. We discuss each element
in the context of wireless networks with flying base stations as an example
to motivate the application of DTs for next-generation wireless network op-
timization. A survey of more general DT use cases envisioned to support
6G network capabilities such as high-density deployment configuration and
reflective intelligent surface-enabled terahertz communications can be found
in [49].

Physical Domain. The physical domain is also called the target domain.
This domain encompasses all scenario- and application-specific aspects of
the system, such as basic network functionalities, mobility controls, physical
entities, and other features of the deployment environment. This data can be
collected by the DT through a direct interface with each system component,
as in [30] and [50], or aggregated by a central controller prior to collection [51].
In general, data acquisition is handled in the physical domain and uploaded
to the twin domain in real-time or stored as a dataset for later use, which we
will discuss further in Section 3. Considering the example of UAV-assisted
networking, the physical domain would include UAV hardware, software, and
communication systems used to realize the aerial base station capabilities, all
comparable elements of network end-devices, as well as environmental and
geographical features, such as wind speed, RF interference, and blockages,
that constrain the UAVs’ flight patterns and impact network coverage and
performance.

Twin Domain. The twin domain, aka source domain, encompasses all
exogenous elements of the DT system that are designed to accelerate op-
timization of physical domain applications, facilitate machine learning ap-
plications without impact on real-time system operation, or otherwise im-
prove system performance over what is achievable in a deployment that is
solely in the physical domain. In general, this will include virtualization of

6



the target environment, synthetic data generation for policy convergence,
and feedback with a domain adaptation process for effective policy transfer
across the sim-to-real gap. The sim-to-real gap refers to the discrepancy in
observable performance and behaviors between physical domain entities and
their virtual counterparts. This discrepancy is typically caused by gener-
alizations of unpredictable real-world phenomena present in the simulation.
Experience collected by agents, especially in dynamic or time-varying envi-
ronments, may only be valid temporarily, requiring continuous computation
and re-optimization. Virtualization is a key technique for improving the flex-
ibility and efficiency of zero-touch control for wireless networking systems
[16]. This requires dedicated computational resources and infrastructure to
support synthetic data generation and processing as well as bidirectional
communication between twin and physical domain systems. We will dis-
cuss several methods of target system virtualization and softwarization for
wireless networks Section 4.

A detailed example of source domain design for a coordinated UAV swarm
network is outlined in [52]. This example includes a centralized intelligence
center collecting periodic updates of environment state data, and returning
control directives to the deployed hardware for optimal MAC-layer configura-
tion. The intelligence center contains a simulation of the deployed hardware
capable of generating synthetic data analogous to physical domain experi-
ence, which is in turn used to train a deep neural network to optimize protocol
parameters based on a physical domain scenario. With reliable communica-
tion between the twin (i.e., source) and physical (i.e., the target) domains,
offloaded computation can facilitate accelerated convergence and practical
applications, removing prohibitive resource constraints on physical domain
systems.

Domain Adaptation. This is the process by which experience col-
lected or generated in one domain is translated for use in the complementary
domain. While the addition of resources from the source domain can be
incredibly useful, communication between twin and physical domains may
not always be reliable. In the case of unreliable communication between
domains, the sim-to-real gap may be increased due to the lack of synchro-
nization between physical systems and their virtual counterparts. In such
scenarios, learning conducted in the twin domain must be robust to the dif-
ference between dynamics in the physical domain and generalizations made
in the source domain to enable effective sim-to-real policy transfer. The core
focus of domain adaptation is to modify learning algorithms and source do-
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main parameters to overcome these challenges, and is envisioned as the key to
solving open research challenges associated with robustness and performance
losses in transfer learning applications inherent to DT-enabled systems [53].
In existing literature, domain adaptation for RL applications can be achieved
by modifying observations of the source domain [53], simulation parameters
[54], or the reward function [55] of a well-defined Markov decision process
(MDP). In each of these approaches, a twin domain is constructed for rapid
and efficient training, with the goal of minimizing interaction with the phys-
ical domain hence maximizing communications efficiency while maintaining
effective transfer learning performance between domains. We will discuss
DT testbed development to experimentally evaluate domain adaptation tech-
niques for sim-to-real policy transfer in wireless networks in Section 6.

3. Data Acquisition

In a DT system, the role of data acquisition is to generate and maintain
a virtual environment using ground truth data from the physical domain. In
addition to data required to build the virtual model, timely updates from the
physical domain are necessary to maintain the accuracy of event prediction,
trajectory modeling, and control capabilities in the twin domain. For a DT-
enabled wireless network as outlined in Fig. 1, this time-sensitive information
can include mobile base station and user locations, performance metrics, and
changes to protocol specification such as modulation or bandwidth.

In existing work, especially for physics-based or high-fidelity models, con-
struction of the virtual environment is done manually and prior to simulation
events based on expert understanding of the target environment. The ma-
jority of works discussed in Sections 1 and 2 demonstrate the use of a virtual
environment designed and deployed prior to execution time, and otherwise
do not consider an explicit interactive construction of an environment model.
For example, the authors of [50] propose a graph-based network topology por-
trait (NTP) for optical network which does not rely on environmental data
to simulate network performance, instead relying on synchronization with
hardware. However, especially for dynamic physical environments with low
channel coherence time or mobile nodes such as UAV networks [52], the de-
ployment environment may not be known ahead of time and the DT system
must be able to generate blockage and boundary rules at execution time in
order to provide accurate simulation capabilities.



The authors of [47] describe the virtual environment of a DT system as
a repository of environmental and system signatures. Behavioral or physics-
based modeling is of key importance to ensure accurate decision-making
based on the virtual environment [39], which requires efficient, reliable col-
lection of high-fidelity environmental data. New methods of collecting these
signatures automatically are currently being investigated to accelerate the de-
velopment and deployment of DT systems, especially with the help of robots,
UAVs, or other technology to enable autonomous mapping and unassisted
control.

In the following section, we discuss the enabling technologies for DT con-
struction and deployment and discuss different methods of environmental
data acquisition in this context.

3.1. Enabling Technologies and Techniques

We identify online environment virtualization using various data acqui-
sition techniques as a key enabling technology for real-time and mission-
critical applications of DT in unknown physical environments. These tech-
niques include LiDAR [56, 57], millimeter-wave radar [58], and simultaneous
localization and mapping (SLAM) [59, 60], to quickly and efficiently scan
an environment and build an interactive virtual model. Once an environ-
ment is generated, contextual datasets can be generated using ray tracing
or other simulation methodologies to accelerate optimization tasks as shown
in Fig. 1 [25, 52]. However, the automation of data acquisition to enable
online, on-the-fly DT construction is of critical importance to enabling DT
for zero-touch networking. Online DT construction in general, to the best
of our knowledge, is a challenge that remains unaddressed in existing DT
literature.

LiDAR. In recent literature, LIDAR has demonstrated excellent promise
for generating high-fidelity environmental models. LiDAR systems detect
surface points in an environment by emitting light in the form of pulsed laser
and calculating the time-of-flight based on reflections [56]. These points
are aggregated in the form of a point cloud highlighting key features in an
environment, which is then converted into a representative mesh by a central
controller (typically via numerous filtering and reconstruction steps).

Currently, some visual sensor based autonomous vehicles use simplified
LiDAR sensors to accurately measure the distance between the vehicle and
obstacles, then fuse the LiDAR’s data with other sensors’ data to make a
more robust map. Some LiDAR-based autonomous vehicles, especially UAV
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systems, will use high-accuracy LiDAR as a primary sensor to generate the
ambient environment’s map. In addition, most vacuum robots use a simpli-
fied LiDAR system to build the map of the user’s house for path planning,
collision avoidance, and localization. A LiDAR-equipped UAV is used in
[56] to construct an interactive virtual model of an environment in the Unity
gaming engine. The Unity engine was selected to maintain the 3D envi-
ronment model due to its high-quality visualization and integrated physics
capabilities. While gaming engines such as Unity are typically optimized for
rendering and visualization with user interactivity, they are not generally
capable of rendering dynamic meshes from data acquired in real-time.

In general, LiDAR sensors, especially high-fidelity long-range sensors, can
be very expensive, ranging from hundreds to tens of thousands of dollars [57].
The sensing range of high-accuracy LiDAR systems can reach more than 400
meters, with an accuracy of 1 cm. However, a high-accuracy LiDAR system is
heavy (5 kg+) and expensive ($10,000+), while low-cost, simplified LiDAR
systems’ scanning frequencies are too low. As a result, high-end LiDAR
systems may not be the best choice to enable large-scale aerial mapping,
where the weight of sensors must be minimized. Instead, low-cost short-range
LiDAR systems can take advantage of the high mobility of UAV systems to
map larger areas more effectively, using the UAV flight path to improve area
coverage without adding significant weight. For example, the authors of [61]
demonstrate the capability of a lightweight (< 1 kg) LiDAR sensor with a
range of 200 m deployed on a UAV at an altitude of 10-20 meters to perform
large-scale mapping of a 1.7 km coastline.

Mm-Wave Radar. In addition to optical measurement methods, the
use of millimeter-wave (mm-wave) radar has attracted attention in recent
literature as a method of mapping a physical environment based on mea-
sured backscattering and time-of-flight of emitted high-frequency RF signals.
Specifically, the use of Y-band (215 GHz) radar for indoor navigation and
mapping is demonstrated in [58]. In this work, a portable mm-wave radar
system is assembled using commercial-off-the-shelf RF components interfaced
with a vector network analyzer to collect range information. The system was
mounted on a turntable to enable full rotational scanning, and a LabView in-
terface was developed to control the radar position and data collection. Data
was collected by emitting RF signals at 215 GHz with 1 GHz bandwidth at
four different types of polarization - HH, HV, VH, and VV - for performance
comparison. The reflected signal response was measured at 220 GHz over 5
GHz bandwidth and processed using Hough transform, ghost image elimi-
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nation, and false blockage elimination techniques to extract a 2D model of
the local environment, providing up to 15 ¢m resolution when scanning in
HH polarization. Since this method supports real-time map generation, it
is considered a viable method for simultaneous localization and mapping of
DT environments. Towards this goal, the authors of [62] present integrated
sensing and communication (ISAC) techniques for UAV-based environment
exploration using mm-wave massive MIMO antenna arrays.

The authors of [63] introduce the M-Cube, an experimental software-
defined millimeter-wave radio system which is constructed using a low-cost
802.11ad radio and a programmable baseband module. This system can
provide full control over MIMO beamforming, providing up to 256 antenna
elements across 8 reconfigurable arrays, and has been experimentally vali-
dated for both mm-wave (60 GHz) communication at up to 325 Mbps as well
as mm-wave radar based on AoA estimation for object detection at a range of
1 m with 8 cm resolution. This system represents a very interesting enabling
technology that improves accessibility of experimental mm-wave approaches,
reducing the overall cost and complexity of applications and providing sup-
port for new sensing-based virtualization techniques.

SLAM. SLAM is the method of creating a feature map of an unknown
physical environment while tracking the location of an agent traversing through
the environment at the same time, using monocular, stereo, RGB-D, or other
visual sensing methods. SLAM requires sensors to detect the environment’s
features, track specific features then calculate the shape of the physical en-
vironment, the carrier’s movements, and its relative location. While SLAM
systems can leverage a variety of sensor input types, including LiDAR and
mm-wave sensors, visual SLAM (V-SLAM) is very popular among different
SLAM techniques because it only requires a camera as the input sensor.

SLAM is critical to the process of autonomous virtual environment con-
struction. The authors of [64] propose ORB-SLAM3, an open-source, exten-
sible visual SLAM framework library that supports monocular, stereo and
RGB-D cameras for data collection. In general, most SLAM algorithms are
executed following three steps: tracking, local mapping, and loop closure. In
the tracking phase, points in the environment are used to generate represen-
tative images of the environment called keyframes. During local mapping,
keyframes are inserted into a local model of the environment. Finally, the
loop closure process detects and manages redundant points based on existing
keyframes, integrates new information with the global model, and performs
bundle adjustment (BA) to estimate camera trajectory. A more detailed
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Figure 2: General diagram of ORB-SLAM3 mapping process.

overview of the processes involved in each step of this method is shown in
Fig. 2. In ORB-SLAMS3, the camera’s image input will be fused with accel-
eration data from an inertial measurement unit (IMU) as shown in Fig. 2.
This can significantly improve the mapping accuracy and make the track-
ing continuous even if visual tracking is lost. The IMU fusion of V-SLAM,
deployed in the Tracking and Local Mapping modules in Fig. 2, has been
shown to surpass other state-of-the-art SLAM methods on existing datasets
collected using stereo and monocular cameras. Additionally, this framework
library supports data collection and processing in real time, which is critical
for online DT creation and can be leveraged for simultaneous virtualization
and interaction.

The authors of [57] compare V-SLAM with LiDAR mapping using low-
cost sensors for environmental mapping and mesh generation. The explored
sensors include the Intel RealSense ZR300, which leverages stereo IR vision
and visual-inertial odometry to perform 3D scanning and localization; the
Microsoft Kinect V2, which leverages time of flight of emitted light for 3D
sensing, similar to LiIDAR; and the Asus ZenFone AR, which leverages a
camera, a motion tracking camera, and an IR depth sensor to collect envi-
ronmental signatures. These three approaches were compared to the ZEB-
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LiDAR | mm-Wave | Monocular Camera | Stereo Camera | RGBD Camera | Monocular Camera-IMU
Range 160m 300m Relative 35m Sm Need Further Research
Accuracy | 1.5mm 20mm Relative 20mm 3.7mm Need Further Research
Cost $10000 $600 $40 $75 $200 $40

Table 1: Mapping metrics for SLAM systems.

REVO handheld LiDAR system. Each sensor was mounted on an Intel Aero
UAV, which navigated around a facility controlled by the native autopilot
to collect environmental data. The environmental datasets collected by each
sensor were loaded into the Unity game engine for offline visualization, ob-
served in virtual reality using the Oculus Rift headset, and evaluated in
terms of accuracy to the modeled environment and resolution of the selected
hardware. It was shown that while the ZEB-REVO LiDAR sensor outper-
formed the other selected options, competent modeling performance can still
be achieved for DT environment virtualization using cheaper visual sensor-
based methods. Additionally, most modern passenger cars use visual SLAM
for Lane Centering Control (LCC) and Adaptive Cruise Control (ACC).

3.2. Research Opportunities and Challenges

The adoption of these methods for DT construction provides the following
key research opportunities towards enabling DT in the wireless domain.

Online DT Construction: The construction of a DT is broadly defined as
the process by which spatial and temporal data is collected from the physi-
cal domain and used to generate a virtual environment in the twin or source
domain. Online DT construction implies that data collection and virtual
environment construction are parallel complementary processes: as the en-
vironmental data is collected, the virtual model is updated faster than the
physical environment can transit to the next observable state. For example,
the sensing system in [60] updates a local map of the environment roughly
every 300 ms. In order for this system to support an accurate real-time rep-
resentation of the environment for online DT, a physical entity observed by
this system cannot generate more than one set of data points in a period
shorter than 300 ms. This can be appropriate for wireless applications which
observe networking performance over a period seconds or minutes, such as
node location optimization [65] or delay-tolerant 5G network services includ-
ing background file transfer or cloud synchronization [66], but cannot provide
sufficient time granularity for tasks such as predictive channel modeling, in
which channel coherence time can be <20 ms [67]. While [58] and [60] discuss
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the potential for online environment construction and virtualization, the ef-
ficiency of simultaneous exploration and virtualization of an environment for
use in an online DT-enabled wireless simulation remains an open problem.

Continuous SLAM is a special case of online DT construction in which
3-D environmental data is collected continuously via SLAM to update the
virtual model in the twin domain. In general, this process will run in parallel
with behavioral or analytical simulations in order to maximize spatial virtu-
alization accuracy. An accurate DT simulation relies on the maintenance of
the virtual model, and requires constant updates to track or model environ-
mental dynamics in real-time. This is required for intelligence in the source
domain to provide timely, adaptive support to agents in the physical domain.
Continuous SLAM poses a unique challenge within the scope of online DT
construction due to the amount of end-device resources, especially computa-
tional capacity and link bandwidth, required to simultaneously virtualize an
environment and begin behavioral modeling. Furthermore, behavioral mod-
eling, based on mobility models or historical data, may generalize too much
or provide only temporarily valid solutions. Online, continuous generation
of an interactive model presents a research opportunity which can signifi-
cantly improve the state-of-the-art for next-generation wireless networks in
dynamic, non-stationary environments.

Large Scale Sensing: Current approaches to environment virtualization
pose several limitations when considering sensor accuracy range, especially
above 100 m. The price, range, and accuracy of several sensor types are
compared in Table 1. The authors of [57, 68] explore the use of UAVs in ex-
panding sensing range for environment data collection, which provides clear
advantages in terms of observable area and flexibility compared to manual
measurement or static sensing approaches. However, this approach poses sev-
eral tradeoffs of its own: UAVs are limited in battery life, which inherently
limits functional range and on-board hardware; LiDAR systems capable of
collecting data at long ranges without loss of fidelity can be prohibitively ex-
pensive; and cheaper optical/ RGB-D cameras suffer at long ranges (typically
> 100 m).

For LiDAR-based SLAM systems, LiDAR tracking is based on time-of-
flight measurements, and LiDAR can only measure the distance between the
carrier vehicle and landmarks. If there is a moving obstacle between the
carrier vehicle and the landmark, LiDAR tracking may be lost. For optical-
camera-based SLAM systems, camera tracking is based on angle changes.
If the ambient light or viewing angle changes rapidly, then camera tracking
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Platform Fidelity Accessibility Type Physics Interface
NS-3 High Free, Open-source | Simulation Single (RF) C++, Python
EMANE Low Free, Open-source Emulation Multi (RF, mobility) | C++, Python, XML
InSite High Paid, proprietary Simulation Single (RF) Software GUI
Colosseum High Free, proprietary Emulation | Multi (RF, mobility) Linux VM
EXata High Paid, proprietary Emulation Single (RF) Software GUI
UBSim Low Free, Open-source | Simulation | Multi (RF, mobility) Python

Table 2: Wireless network virtualization platforms.

may be lost. In either case, the relocalization process is time consuming and
significantly increases computational complexity of SLAM systems.

In order to prevent tracking loss, multi-sensor fusion can be leveraged to
significantly increases the robustness and mapping accuracy of the SLAM
system. During continuous tracking, the SLAM system could use movement
data of the carrier vehicle to correct the motion-caused deviation and improve
tracking accuracy. If the tracking is lost, the SLAM system will still be able
to keep updating the map with movement data acquired from the carrier
vehicle GPS data or IMU unit.

We envision one possible solution for large-scale DT construction is
monocular-IMU data fusion. Traditional monocular camera mapping is a
low-cost, low-complexity method for large-scale, low-resolution sensing. How-
ever, a monocular camera can only measure the relative distance between
objects instead of the absolute distance. Additionally, the point cloud gen-
erated by a monocular system is far less dense than other visual methods.
To address these challenges in a UAV-based monocular-SLAM system, the
camera frame can be fused with the UAV’s IMU data to improve monocular
mapping accuracy without additional hardware. Furthermore, if the UAVs
use accurate GPS service, such as RTK differential GPS, the camera frame
can also be integrated with absolute coordinates to further improve map-
ping accuracy by integrating collected data with geographical information
system (GIS) mapping in the DT. However, the application of this approach
to enable large-scale environment sensing and virtualization remains an open
research challenge in this area.

4. Network Softwarization and Virtualization

In the context of wireless networking research, the benefits of DT have
attracted research attention as a key technology towards enabling highly
anticipated intelligent networking tasks. The use of high-fidelity simulation
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in DT leveraging full environmental modeling for system monitoring and
control is the most widely-discussed implementation observed across several
industries [29, 69].

Applications of machine learning, especially reinforcement learning and
deep learning applications, require significant amounts of time and data to
generate and employ optimal control parameters for a given scenario. A
source domain containing both simulation and optimization in a centralized
intelligence center or edge server allows the synthesis of training data in place
of experience which may be otherwise challenging or costly to obtain in the
physical domain [53]. This generation of contextual data by a virtual entity,
termed “synthetic sensing” [47], is considered a key feature of high-fidelity
DT. Specifically, synthetic sensing has been shown to reduce the time cost
of dataset generation associated with ML applications to enable intelligent
wireless network functionality, such as data collection and reliability, com-
putational capability requirements of end-devices, among others [21]. The
fidelity /accuracy of synthetic data available in a DT is directly correlated to
the quality and quantity of available data for a physical context [70], as well
as the capabilities of the DT platform to process this data. Due to the grow-
ing prevalence of software-defined networking (SDN) and virtual network
control, virtualization fidelity can vary widely based on the requirements
of the application and the tools leveraged to create a virtual environment
[38]. We have identified several state-of-the-art network virtualization and
softwarization platforms that have demonstrated promising synthetic sens-
ing capabilities to address this challenge, which we will introduce later in
this section. In addition to accurate network simulation, we identify sev-
eral frameworks that have been developed for establishing accurate virtual
models of physical scenarios. While supporting experimental literature using
these tools for DT development in the wireless domain remains a key open
challenge in this area, these tools offer support for the future value of DT for
enabling ML applications in the wireless domain.

4.1. State of the Art

We have identified several network simulators that have immediate po-
tential for advancing research into DT for the wireless domain, including
NS-3 [71], Colosseum [72], EMANE [73], and Remcom Wireless InSite [74],
among others. Refer to Table 2 for a comparison of several key aspects of
these platforms in the context of DT system design.
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Figure 3: Architecture of Colosseum [78]

NS-3: NS-3 [71] is a popular open-access, open-source network modeling
tool in both industry and academia, providing high-fidelity wireless network
simulation. NS-3 simulation is built around three major elements: nodes,
which serve as basic computing device abstractions on which to run applica-
tions and install network devices; packets, which provide data flow between
applications; and channels, which are used to connect nodes via installed
network devices [71]. All elements in a simulation are constructed from be-
havioral models written in C++4 based on explicit protocol definition at each
layer of the network stack [75], with simulation control provided via C++
and Python APIs. Simulated network traffic can be monitored and analyzed
using standard network observation software, such as Wireshark [76]. This
tool can be directly interfaced with radio hardware such as USRP to perform
network emulation as well, improving accuracy of modeled networks.

While NS-3 can provide high-accuracy network simulation, this tool does
not support explicit modeling of a physical networking environment. Ad-
ditionally, NS-3 provides very limited native infrastructure for simulation
visualization and data processing and analysis, which necessitates the use
of 3rd-party software for these tasks. While its accuracy is still limited by
generalizations inherent to model-based simulation [77], this tool is expected
to play a significant role in the development of DT-enabled systems in the
future due to its high fidelity, accessibility, and large community support.

Colosseum: Colosseum [72] is the world’s largest network emulator, com-
prised of 256 software-defined radios (SDR) to provide a wide variety of
emulated RF propagation scenarios. The architecture of Colosseum is shown
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in Fig. 3 [78]. Each of the 256 SDR nodes (SRN) is made up of a software
container that specifies physical, link, and network layer protocol, as well as
a USRP X310 SDR which transmits data generated in the traffic generator
(TGEN) based on this protocol stack. The generated signals are transmit-
ted through an FPGA fabric in the massive channel emulator (MCHEM),
which is configured to apply channel effects by emulating predefined scenar-
ios stored on the RF scenario server. The platform is accessed, managed,
and maintained using a management network connected to all constituent
elements.

Similar to NS-3, it is considered an open-access tool, and provides support
for a variety of different protocols including 4G/5G and IoT-type protocols
with spectrum sharing. While there are many different predefined physical
networking scenarios available, current support for custom scenarios is very
limited, reducing its flexibility in the context of DT-enabled network deploy-
ments. We identify the need for an expansion of this framework to include
user-definable networking scenarios with complete control over both network
topology and communications protocol and agent mobility and behavioral
modeling.

EMANE: The Extendable Mobile Ad-Hoc Network Emulator [73], or
EMANE;, is an open-source real-time framework for highly flexible simulation
of mobile network systems. Modular network development allows for inde-
pendent physical-layer modeling of each network element, providing accurate
virtualization of system performance by considering signal propagation, an-
tenna profile effects and interference sources between each emulated wireless
link. In general, each emulator instance is comprised of a physical layer model
instance paired with one or more radio waveform models, which are designed
in C++ and configured using XML. Similar to the Colosseum MCHEM, em-
ulation instances are linked to a shared multicast channel which generates
over-the-air network behaviors such as signal propagation, antenna effects,
and interference. Additionally, EMANE provides radio waveform model plu-
gins compatible with SDR hardware to enable shared-code emulation, which
is comparable to NS-3 emulation capabilities. While EMANE is limited to
emulation of PHY and MAC layers, emulation of NET layer and above pro-
tocols is typically handled in practice through integration with the Common
Open Research Emulator (CORE) [79].

Wireless InSite: Remcom Wireless Insite [74] is a proprietary electromag-
netic (EM) propagation modeling tool for wireless networking, which can be
leveraged for MIMO dataset generation [25] via ray tracing as discussed in

18



Section 1. The propagation behaviors are designed around several model-
ing theories such as Shooting Bouncing Ray (SBR), Adjacent Path Genera-
tion (APG), and Finite Difference Time Domain (FDTD), considering envi-
ronmental reflection behaviors based on the Uniform Theory of Diffraction
(UTD) [80]. From these models, this tool can recover significant receiver-
side information such as received power, path loss, direction of arrival, delay
spread, and interference estimates. Due to its high-fidelity modeling ca-
pabilities, this tool provides significant potential for accurate physics-based
network event simulation based on signal behaviors within the propagation
environment. However, this level of fidelity comes at a significant time cost.
While APG with GPU can accelerate some scenarios, in general this tool will
require several minutes to calculate network performance for a given deploy-
ment, preventing faster-than-real-time applications [80]. Additionally, each
scenario will need to be fully re-calculated in the case of mobile transmitter,
and partially re-calculated in the case of mobile receiver, further increasing
this time cost in mobile networking scenarios.
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Figure 4: Expansion of UBSim to include OSWireless as a physical domain framework,
considering accelerated control algorithm convergence and practical system identification.

ANSYS Twin Builder: The ANSYS Twin Builder [81] presents an open
platform for DT development, with a set of built-in tools for physical and
behavioral modeling of physical objects. This platform supports multiple
modeling domains and languages, enabling multi-physics simulation and het-
erogeneous data fusion for operation [39]. Specifically, the core capabilities
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of Twin Builder rely on two key elements: a multi-domain systems mod-
eler, which can simulate interactions between synchronous modeled systems
based on model libraries such as mechanical, hydraulic, and electronic com-
ponents, logic blocks, and characterized manufacturer’s components; and a
multi-domain systems solver, which uses existing physics libraries for hy-
draulics, electronics, pneumatic systems, and thermodynamics to simulate
model behaviors. While the platform itself is not immediately optimized for
the wireless domain, its use for simulation of hardware within an IoT net-
work, without explicit wireless network dynamics, is discussed in [38]. Twin
Builder supports integration of third-party platforms as well, which implies
compatibility with other tools capable of explicitly modeling wireless network
behaviors.

Spirent 5G DT: The Spirent 5G Digital Twin [82] presents a very robust
platform for emulating a full end-to-end 5G network. Various 5G network
elements, including independent channel emulation, virtual EPC and gNB,
and full-stack end-device emulation, are virtualized with very high fidelity in
order to generate cost-effective accurate behavioral analysis, enable evalua-
tion of new security protocols, as well as other “testing on demand” services.
The authors of [39] outline several key functionalities of this platform, in-
cluding wireless network automation and optimization, network slicing via
SDR and network functions virtualization (NFV), and accelerated 5G net-
work planning and validation, among others.

Pavatar: In the context of the Internet-of-Things (IoT), intelligent on-
line monitoring systems envisioned for smart cities, Industrial IoT (IIoT),
and other next-generation IoT systems are anticipated to play a key role
in supporting virtual environments constructed to support a high degree of
virtualization [83]. A key example of the capability of high-fidelity DT sup-
ported by distributed heterogeneous sensor networks is the Pavatar system
[84]. Pavatar collects data at multiple system layers simultaneously in order
to conduct comprehensive sensing of all system components and human ac-
tivities in the operation environment. This heterogeneous data, which is in
excess of 1 TB per day, is used to construct a VR representation of every
system element for human interfacing, as well as conduct error prediction,
anomaly detection, and root-cause diagnosis [84]. The use of different types
of data sources (e.g. RF, optical, temporal) to construct a robust system
virtualization, termed “data fusion”, is necessary to provide accurate sim-
ulation of physical system behaviors [33]. In [85], emphasis is placed on
detailed modeling of end-device behavior and dynamic agent-based interac-
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tions in the virtual space as an integral component of DT for distributed or
decentralized networks.

Keysight EXata: EXata [86] is a network digital twin development and
analysis tool which uses network emulation and simulation for network vir-
tualization. The platform is based on a software virtual network (SVN) to
generate each protocol layer, antenna, and device in the twin domain. This
SVN is stated to be interoperable with real radio hardware and capable of in-
teracting with real applications. Additionally, the simulation kernel leverages
parallel discrete-event drivers during runtime, which can enable faster-than
real-time processing necessary for improved real-time ML algorithm training
and deployment.

UBSim: UBSim is a custom hybrid network simulator designed for use
in DT research. It is capable of simulating microwave, millimeter-wave, and
terahertz-band communications in terrestrial, aerial, or hybrid aerial-ground
networking scenarios deployed in a fully configurable physical networking
area. It is fully open-source and open-access, written in Python for flexibility,
and ease-of-use. It is comprised of three core elements: the network element
module, which provides behavioral definitions of all available simulation ele-
ments; the network control module, which provides control over all deployed
network elements; and the discrete event module, which schedules simula-
tion events. To facilitate ease of use, three sets of APIs have been designed:
the environment definition API, which coordinates all environmental fea-
tures and blockages; the network configuration API, which specifies network
topology and communications parameters; and the custom algorithm API,
which provides templates for data-driven algorithm deployment. Each UB-
Sim instance also provides a feedback tunnel, as indicated in Fig. 4, to enable
socket communications with external software. In order to enable research
into key technologies for comprehensive DT as outlined in Section 2, UBSim
supports parallel learning across multiple simulation instances, configurable
sim-to-sim policy transfer® for rapid evaluation of domain adaptation algo-
rithms such as robust learning and system identification, and is currently
being modified to enable online DT construction using SLAM. UBSim has
been leveraged for experiments in domain adaptation [87], UAV network vir-
tualization and optimization [88], and acceleration of machine learning for

3Sim-to-sim policy transfer is similar to sim-to-real policy transfer, but the policy is
transferred to another simulation environment instead of the real environment.
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wireless [65], among others. While the simulation fidelity of UBSim is low,
its flexibility is intended to enable integration with high-fidelity platforms
such as NS-3 or RF-SITL [89] to enable rapid design and evaluation of DT
systems through multi-fidelity, multi-physics experimentation.

4.2. Research Opportunities

The tools discussed in this section provide an interesting scope of cus-
tomizable, potentially interoperable network simulation at varying levels of
fidelity for network virtualization as introduced in Section 1. However, very
few tools have been accepted to be individually suitable for full DT imple-
mentation following the interdisciplinary feature set shown in Figure 1. Addi-
tionally, due to the lack of open-source and community support, they may not
provide the level of accessibility required for rapid experimental development
in this area. The contribution of a readily available, community-oriented DT
platform for the purpose of ML-based wireless network experimentation re-
mains a significant open challenge. It is expected that a combination of these
tools, combined with data fusion [16] and platform integration [90], can be
leveraged for a widely available, high-fidelity DT toolchain optimized for use
in the wireless domain.

Multi-fidelity Simulation: While data-driven methods can provide signif-
icant improvements to network performance and services, they can be very
time-consuming and data-expensive, and may require re-training if the target
environment changes over time. To balance the tradeoff between optimiza-
tion time and algorithm accuracy, we identify multi-fidelity simulation as an
important element of future DT-enabled wireless networking systems. Low-
fidelity simulation can be used for time-sensitive tasks, such as rapid con-
trol decisions, by leveraging an approximation of wireless network behaviors
based on observable performance statistics, while high-fidelity models can be
used to maximize network performance in stable environments, or leverage
offline optimization algorithms for event prediction.

Standardization: Generating a standardized framework to facilitate high
degrees of virtualization in the wireless domain presents many challenges, in-
cluding simulation for highly complex and volatile networking environments
[70], support for dynamic, heterogeneous, and distributed network archi-
tectures [39], and ready integration with machine learning and model-based
network control [22]. Specifically, we identify the need for an open, accessible
DT framework that supports configurable network virtualization at multiple
levels of fidelity. The authors of [88] demonstrate preliminary work in this
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area, by designing middleware between a high-fidelity UAV network virtu-
alization platform for environmental definition with a low-fidelity network
simulator for accelerated convergence of control algorithms. The continued
development and distribution of such a framework would enable many con-
tributions in this area, providing a stronger definition of the capabilities of
DT technology for use in next-generation wireless networks [49].

Faster-than-real-time Optimization: As part of the envisioned model for
6G network architecture, DT is expected to play a large role in the real-time
or faster-than-real-time optimization of network deployments. In order to
provide high-fidelity simulation — hence accurate control directives — proto-
cols designed for UAV-assisted communications will require support in virtual
environments. Generalizable support for custom wireless protocols is possi-
ble on SDR hardware, and can be enabled based on integration of UBSim
with OSWireless [91]. OSWireless is a wireless network operating system ca-
pable of decomposing operator intent to explicit network control algorithms
in a zero-touch manner. Towards practical sim-to-real experimentation, we
envision an expansion of UBSim to support integration with OSWireless, as
detailed in Fig. 4. Specifically, OSWireless can serve as a physical domain
control system to decompose operator intent into custom control algorithms.
These control algorithms can be uploaded to UBSim, along with network
state data from the Wireless Network Abstraction Specification (WiNAS)
Subplane, for faster-than-real-time policy training based on low-fidelity sim-
ulation. UBSim will return the optimized control policy to OSWireless for
deployment on hardware nodes. To address the sim-to-real gap, UBSim will
leverage the WiNAS Subplane data to perform system identification, im-
proving fidelity by tuning parameters to match simulation performance to
physical domain observations.

5. Domain Adaptation Techniques

As discussed Section 4, synthetic sensing is a useful method to accelerate
ML algorithm convergence for practical real-world applications [33, 92]. In
general, synthetic data is unable to fully represent all system behaviors in
the physical domain, and thus introduces some inaccuracy during algorithm
training. Many works seek to minimize this by leveraging high-fidelity mod-
els to improve accuracy of synthetic data [93, 94]. These models achieve high
fidelity through methods such as ray tracing [95], hardware-in-the-loop em-
ulation [78, 96|, or component-level modeling [75, 79]. However, processing
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high-fidelity behavioral models can be quite time-consuming, taking possibly
several minutes to render a single environment [80]. This trade-off between
simulation fidelity and processing time may be problematic for time-critical
applications. Domain adaptation seeks to minimize the need for this trade-off
by improving the capability of simulation-accelerated learning frameworks to
generalize from simulation in the source domain to real-world deployment in
the physical domain.

5.1. State of the Art

Instead of seeking a tradeoff between simulation fidelity and operation
time, domain adaptation seeks to improve the generalization capability of
low fidelity simulation. The ideal domain adaptation system seeks to mini-
mize the importance of simulation fidelity on the accuracy of the resulting
control policy in the physical domain, instead focusing on solving the con-
textual mismatch between domains and overcoming inherent simulation gen-
eralization to make sure the resulting control policy works. We introduce
three representative examples of this line of research as system identification
97, 98], domain-agnostic feature extraction [99, 100], and robust learning
(87, 101, 102]. In system identification, source domain simulation param-
eters are adapted based on feedback from the physical domain to improve
behavioral accuracy. In domain-agnostic feature extraction, contextual fea-
tures are identified from low-level data to generate a shared observation space
across domains. In robust learning, the gap between source and physical do-
mains is estimated through feedback and considered during training in the
source domain. Readers are referred to [103] and references therein for a
survey of robust reinforcement learning specifically and [104, 105] for other
general domain adaptation techniques.

System Identification. System identification is the most established ap-
proach to domain adaptation in existing literature [55]. In practice, system
identification seeks to iteratively improve behavioral parameters in a source
domain simulation based on feedback from the physical domain. An outline
of the general premise of system identification is depicted in Fig. 5. While
there are many application-specific variants of system identification, this ap-
proach faces some challenges in general. Primarily, a significant amount of
feedback is required from the target system to validate source domain per-
formance. Additionally, some virtualization platforms such as Colosseum
and InSite introduced in Section 4 may not be fully open-source or parame-
terized to support system identification. Such simulation platforms that are
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Figure 5: General outline of system identification.

configurable and offer full control of behavioral parameters are termed hybrid
simulators, due to their analytical and behavioral modeling capabilities.
The authors of [97] explore sim-to-real transfer learning using robot nav-
igation tasks, in which it was noticed that learners in the source domain are
capable of exploiting a given simulation to perform tasks beyond capabilities
in the real world. By modifying the simulator based on this feedback, the
source-to-target gap was reduced and the similarity between simulated and
real robot performance was improved. Similar to system identification, the
use of domain-agnostic features can be used to enable domain adaptation.
Instead of converging simulation parameters to maximize behavioral similar-
ity, source domain observations can be adapted to extract high-level features
common to both the source and physical domains, minimizing the impact of
domain-specific dynamics on transfer learning performance. The authors of
[99] and [106] demonstrate this practice using pixel-level observation adap-
tation for policy transfer in tasks related to computer vision.
Domain-Agnostic Feature Ezxtraction. This method seeks to reduce the
effect of the source-to-target gap by finding commonality between each do-
main. Specifically, this approach seeks to align behavioral inferences made in
each domain through extraction of high- or low-level features that can min-
imize domain-specific phenomena. For example, the approach to semantic
image segmentation outlined in [99] leverages pixel-level segment representa-
tion and classification to improve unsupervised adversarial domain adapta-
tion for computer vision. The authors of [100] propose transfer component
analysis, which seeks a set of features, termed transfer components, to min-
imize the difference in data distributions between domains. By projecting
transfer components onto a shared latent space and applying standard ma-
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chine learning models for classification or regression tasks.

Robustness Mechanisms. Robust learning aims to mitigate the effect of
environmental perturbances, such as modeling errors, time-varying dynam-
ics, or unreliable data, on the resulting control policy. This can be typically
accomplished by applying a random or adversarial noise process to a system
during policy training. Defined in the scope of the DT framework outlined
in Fig. 1, this noise is generated by the source domain during policy train-
ing to mitigate the effect of the source-to-target gap during policy transfer
(87,101, 102, 107]. In many cases, the noise is added in the form of training
samples manually selected from worst-case scenarios or an average of po-
tential environmental anomalies. This is intended to generate a policy that
will provide better generalization than non-robust policies when faced with
unexpected, unknown, or adversarial physical domain dynamics, at the cost
of reduced maximum achievable performance.

An effective approach to applying this policy noise to generate a robust
policy is the R-contamination model [101]. Leveraged in [101] and [87] to
implement model-free robust reinforcement learning, the R-contamination
model is used to probabilistically alter, or “contaminate,” observations made
by the agent with random or worst-case dynamics to encourage conservative
policy learning. Instead of an agent following a deterministic transition kernel
p? for a given state s and action a, this contamination probabilistically cause
an arbitrary state transition ¢, selected from an uncertainty set P, which is
comprised of all possible transitions in an environment. In order to model
contaminated agent trajectories, the R-contamination model generates a sub-
set P¢ of P for each s and a pair according to P¢ = (1—-R)pi+Rq?, 5 € Ajs),
where Ajs| is the simplex of state space S, and R represents the probability
of state transition according to q.

It is shown in [87] that the selection of random parameters from the
environment can improve policy transfer performance when the source and
physical domains have different transition kernels due to differences in the
environment dynamics. Both [87] and [101] demonstrate the requirement
for careful parameter selection prior to training, highlighting a key limita-
tion of robust learning in the context of domain adaptation. While robust
learning can provide very conservative policies, the authors of [107] propose
soft-robust learning, which takes an average over the uncertainty set instead
of selecting worst-case scenarios to reduce the conservative nature of the re-
sulting policy. This yields a model capable of generalization while limiting
performance degradation.

26



5.2. Research Opportunities

Ezxpertise Incorporated Learning: In order to advance the use of domain
adaptation for wireless networks, we consider constraint sampling reinforce-
ment learning (CSRL) [108] as a promising method to quantify the reality gap
using domain expertise. In this way, expert knowledge of the networking en-
vironment can be integrated during the training process via sensing [56, 60]
to enable effective policy transfer in unknown environments with minimal
human interaction. Additionally, the authors of [109] underscore the impor-
tance of expert knowledge in guaranteeing both the overall accuracy as well
as the safety of agents during state space exploration in RL scenarios. So-
phisticated applications of this approach, especially in the wireless domain,
remain an open challenge in this area.

Reality Gap: The mathematical generalizations present in all simula-
tions make sim-to-real transfer a persistent challenge due to the inherent
non-linearities of natural phenomena. Sim-to-sim experiments can be used
to estimate the domain transfer performance of new algorithms for domain
adaptation, but even high-fidelity models of physical domain hardware are
incapable of predicting performance exactly. Additionally, while synthetic
sensing can help accelerate convergence of data-driven models, synthetic data
will introduce inaccuracies to the learning model based on generalization [98].

To overcome the reality gap between simulation results and physical sys-
tem behaviors, the authors of [103] discuss different applications of robust
learning to provide performance guarantees in the presence of environment
uncertainties. While some contributions address challenges associated with
the reality gap [53, 97], sim-to-real adaptation in the wireless domain remains
an open research area.

Real-time Training: In ML applications, especially methods that leverage
neural networks, the training process is generally time-consuming. Even con-
sidering faster-than-real-time training capabilities provided by a DT system,
significant system or environmental changes may require re-training some or
all of a learned policy. In time-critical applications, this may require interim
behavioral models to be leveraged during policy re-training. As such, the
complexity of ML algorithms require careful consideration of the long con-
vergence times when deployed in an online DT system. The authors of [22]
explore the integration of low-complexity inference models with ML algo-
rithms to reduce the impact of long training times on system performance
in such scenarios. Similarly, the authors of [110] demonstrate an example
of real-time training of a DL-enabled routing algorithm, leveraging standard
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non-DL routing algorithms such as round-robin during operation until the
DL model can provide improved performance, and continually improving the
DL model in the background during online operation. As mentioned in Sec-
tion 3, implementing this method of real-time ML training in a DT-enabled
system requires the update period of the DT to be shorter than the observa-
tion period (i.e. data generation rate) of the target environment. To address
the case of incomplete data collection due to environmental variance, the
authors of [109] investigate the combination of direct environmental obser-
vation with a convolutional long short-term memory (ConvLSTM) network
for the prediction of missing values to guarantee online performance, with a
fixed data collection period proportional to the estimated observation period
of the environment.

When simultaneously optimizing multiple agents, as in multi-agent rein-
forcement learning (MARL), the computation complexity and communica-
tion overhead increase exponentially due to the additional problem dimen-
sionality. This may further exaggerate the sim-to-real gap based on the
aggregate generalizations made across multiple agent representations in the
twin domain. In the example of a self-coordinating swarm UAV network,
each agent may be required to relay significant state information including
location, speed, height, and network status of itself and other agents to the
twin domain in each training step to avoid collisions, reduce interference,
and take actions without loss of information. Collecting this information
from all agents in each timestep can cause significant communications over-
head increasing latency and, as a result, algorithm convergence time [111].
Additionally, as the number of agents increase, the amount of information
required by the twin domain to maintain an accurate model of the physical
domain system increases as well, which further increases network resource
consumption. The complexity of algorithm design and deployment can be
further increased when considering a decentralized scenario, in which a twin
domain model needs to be maintained at each agent instead of a central
controller.

The Advantage Actor-Critic (A2C) algorithm [112] has been demon-
strated as an effective tool to minimize policy training times considering
high-dimensional state and action spaces. A2C uses the estimated optimal
state-action value to update the policy, of which the gradient can be calcu-
lated as follows:

Vo J(0) = E,,[Vologmy(s,a)Ax(s, a)] (1)
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where A, (s,a) = Qr,(s,a) — Vg, (s) is termed the Advantage function, in
which Qr,(s,a) is the action-value function and V;,(s) is the state-value
function. With this advantage function, variance of the gradient can be
reduced which improves model training stability. It is very time consuming to
find hyperparameters that stabilize the learning process, since A2C relies on
the initial estimation of values, therefore A2C algorithms can be challenging
to design or further time-consuming for real-time training scenarios.

To further accelerate policy convergence, an Asynchronous Advantage
Actor-Critic (A3C) [113] can be used. Similar to A2C, A3C uses an advan-
tage function to reduce variance and improve training stability. The only
difference is that A3C allows agents to interact with the environment in par-
allel. In A3C, virtual agents work individually in multiple instances of the
same environment to update a global policy asynchronously. This parallelism
can significantly reduce policy convergence times.

To reduce the communication overhead of both centralized and decen-
tralized MARL scenarios, the Lazily Aggregated Policy Gradient (LAPG)
method [111] can be used to reduce the frequency of communication. Most
information related to collision avoidance and task completion does not need
to be exchanged in every time period, e.g., sensor malfunctions, low battery
states, and obstacle detection. LAPG sets a trigger condition for this kind of
information to reduce the exchange frequency, which can reduce the overall
network communication overhead and computational complexity. The lower
bound of the trigger condition for LAPG can be written as:

D
VIR > o S0 — 8P 4 602, )
@ d=1

where 6@’& represents the importance of updating the information, which is
calculated by the difference between previous and current policy parameters.

Another strategy that can be used to reduce the per-update communi-
cations overhead of a distributed network is by using a Partially Observable
Markov Decision Process (POMDP) [114]. Instead of requiring the agents
to fully observe the environment in each time step, action selection for each
agent is based on a probability distribution given by the model instead of
directly observing the underlying state. In this case, each agent has less
information to maintain in the local twin domain model and the required in-
formation to be shared between agents per network update can be reduced.
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6. Physical Scenarios Development

While several works have proposed DT framework concepts to support
adoption of DT-enabled technologies at scale [36, 39, 83|, the state of the
art in this area generally relies on performance inference based on sim-to-sim
experimentation, inflexible virtualization of pre-defined physical scenarios, or
small-scale sim-to-real experiments with numerous experimental constraints.

6.1. State of the Art

Scenario development is a key consideration for high-quality wireless ex-
perimentation platforms, which must support user-defined network topolo-
gies, protocols, and control problems in order to provide accurate validation
for use in a practical DT system. The NSF PAWR platforms, including
POWDER, COSMOS, AERPAW and ARA, represent the state-of-the-art
for wireless network scenario development and experimentation, consider-
ing scale, accessibility, and capability. For UAV-enabled wireless networking
research, AERPAW [115] provides a large-scale experimentation platform
comprised of static nodes, mobile ground nodes, and UAV systems equipped
with SDR hardware. The goal of AERPAW is to provide a general platform
to develop and evaluate new capabilities for UAV-enabled wireless networks,
and is envisioned to enable research into scalable zero-touch control systems
for hybrid aerial-ground networks. POWDER [116] is a city-scale wireless
networking research testbed in Salt Lake City, Utah, specializing in top-
ics such as 5G O-RAN, massive MIMO, and spectrum sharing in the sub-6
Ghz band. COSMOS [117] is a testbed deployed in an ultra-dense area of
New York City, specializing in research for ultra-high-bandwidth, low-latency
wireless communications, millimeter-wave MIMO and beamforming, and ad-
vanced edge computing scenarios. Finally, ARA [118] is a wireless living
laboratory focused on enabling research into rural broadband wireless con-
nectivity by connecting an open-access software-defined virtual infrastructure
with a heterogeneous mesh of terrestrial radio hardware and LEO satellite
communication terminals, capable of providing 600 square miles of contigu-
ous wireless coverage.

In addition to AERPAW, the UB NeXT testbed [65] provides a com-
prehensive framework for network virtualization and domain adaptation re-
search in integrated aerial-ground wireless networking. We have included a
picture and topology diagram of the UB NeXT testbed in Fig. 6. The NeXT
testbed platform is part of the UB indoor autonomy research facility, and is
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Figure 6: (a) Snapshot of the UB NeXT testbed; (b) UB NeXT testbed topology.

comprised of 21 USRP N210 SDRs, 6 USRP B210 SDRs, and two millimeter-
wave routers, with mobility support provided by three ground robots with
22 kg payload capacities and a netted UAV enclosure for safe aerial network
testing. The testbed networking environment has been fully virtualized in
UBSim, which has been demonstrated in [87]. This testbed can enable rapid,
small-scale experimentation to address existing challenges in DT research
such as evaluation of the sim-to-real gap, integrated optimization-learning
algorithm design for efficient ML, and virtual network self-configuration via
system identification.

6.2. Research Opportunities

Scenario development is at the core of validating DT-enabled experimen-
tal frameworks for the wireless domain. We identify several key research
opportunities for expanding the scope and depth of continued research in
this direction.

Sim-to-real gap FEstimation: In general, domain adaptation methods seek
to bridge the gap between physical and DT domains. However, especially
in the case of robust learning, estimation of the sim-to-real gap may not
guarantee optimal performance if the gap between physical and DT domain
behaviors is large or unknown. Furthermore, since there is no unifying frame-
work for sim-to-real gap measurement, methods that seek to reduce the sim-
to-real gap may require manual tuning in the case of multi-physics optimiza-
tion. System identification has shown promise in reducing the performance
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gap between physical and DT domains for physical scenarios regarding me-
chanical or robotic systems [98], but there is insufficient investigation into
how to quantify the sim-to-real gap between different physical scenarios for
other methods of domain adaptation. Further research into the measurement
or estimation of the sim-to-real gap induced by various physical networking
scenarios is expected to accelerate design of domain adaptation schemes and
advance the state-of-the-art of practical DT-enabled wireless networking.

Portable environments for UBSim: We demonstrate in [87, 119] the
need for multiple environmental models to enable experimentation in do-
main adaptation, with specific attention to both sim-to-sim and sim-to-real
gaps. Specifically, more virtual models will be made available for future work
to build on the contributions in [87], enabling rapid and repeatable experi-
mentation for domain adaptation in the wireless domain through sim-to-sim
experimentation. By virtualizing real testbeds, as done in [87], this will pro-
vide preliminary benchmark results required to motivate continued research
for sim-to-real transfer.

Building on the sim-to-sim framework outlined in [87], we identify the
need for a flexible sim-to-real domain adaptation framework that can accom-
modate different environmental models based on the physical domain specifi-
cation. This will enable the design of new domain adaptation algorithms for
the wireless domain as well as adaptation of existing algorithms. Using the
same simulation platform as [87] and [119], as well as the indoor autonomy
research facility and UB SOAR facility at University at Buffalo, many net-
work configurations can be observed, including heterogeneous aerial-ground
networks and UAV-to-UAV networks. To achieve the short-term goal of
sim-to-real experimentation, we plan direct integration with the UB NeXT
testbed platform [65]. In preliminary sim-to-sim experiments, we have vir-
tualized the NeXT testbed [87] and will use this DT environment to better
understand the sim-to-real gap through rigorous sim-to-real experimentation
and domain adaptation algorithm design.

Testbed Sharing and Remote Access: Considering the need for open, ac-
cessible DT experimentation platforms, we believe it is of critical importance
to facilitate remote access and control for a fully realized DT-enabled wire-
less networking testbed. There remains a lack of testbeds and networking
environments to enable validation of Al integration and further research into
virtualization for network autonomy [16], especially to support advancement
towards zero-touch networking. To address this challenge, we emphasize the
contributions made in [90] as discussed in Sec. 4, and propose an expansion
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Figure 7: Overview of UnionLabs testbed federation.

of the supported framework to include simulation/emulation capabilities.
We envision a new framework referred to as UnionLabs for testbed shar-
ing and federation. As illustrated in Fig. 7, the architecture of UnionLabs
consists of three planes, connected by the internet: the User Plane, which
handles user/operator interactivity, registration, and management; the Fed-
eration Plane, which coordinates testbed access and stores experimental code,
datasets, and virtual machines; and the Testbed Plane, which is comprised
of all federated testbeds connected through institutional gateways. This ini-
tiative will provide a platform to share code, data, and software/hardware
resources across a federation of cloud-enabled heterogeneous testbeds dis-
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tributed throughout the country, with an emphasis on the advancement of
research topics related to NextG wireless networks, zero-touch and network
automation, and the wireless Internet of Things.

7. Conclusions

In this work, we reviewed existing literature regarding the use of DT's for
ML-enabled wireless networks with an emphasis on UAV-enabled networking,
and discussed the open research challenges in the area. DT for the wireless
domain is a particularly important open research area, and can serve as an
enabling technology for practical applications of data-driven network self-
optimization such as UAV network self-coordination and autonomous net-
work control. Domain adaptation, a key element to bridge the gap between
simulations and real network deployments, requires further investigation in
the wireless domain. Several methods of domain adaptation, including sys-
tem identification, domain-agnostic feature extraction, and robust learning
have been evaluated for use in a DT system, focusing on limiting interactions
between domains to improve data efficiency. However, a comprehensive ex-
ploration of the reality gap present in DTs remains an open challenge in this
area, as well as accelerating real-time training using domain adaptation in
multi-agent systems such as UAV swarm networks. In order to further iden-
tify the reality gap across domains, the topic of physical scenario development
also needs to be further explored especially for wireless UAV networks.
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