JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Circular Silhouette and a Fast Algorithm

Yinong Chen, Tathagata Debnath, Andrew Cai, and Mingzhou Song*

Abstract—Circular data clustering has recently been solved exactly in sub-quadratic time. However, the solution requires a given
number of clusters; methods for choosing this number on linear data are inapplicable to circular data. To fill this gap, we introduce the
circular silhouette to measure cluster quality and a fast algorithm to calculate the average silhouette width. The algorithm runs in linear
time to the number of points on sorted data, instead of quadratic time by the silhouette definition. Empirically, it is over 3000 times faster
than by silhouette definition on 1,000,000 circular data points in five clusters. On simulated datasets, the algorithm returned correct
numbers of clusters. We identified clusters on round genomes of human mitochondria and bacteria. On sunspot activity data, we found
changed solar-cycle patterns over the past two centuries. Using the circular silhouette not only eliminates the subjective selection of
number of clusters, but is also scalable to big circular and periodic data abundant in science, engineering, and medicine. The resulting
software package ‘CircularSilhouette’ is open source, freely available at https://cran.r-project.org/package=CircularSilhouette

Index Terms—Circular clustering, silhouette, circular genome, bacterial genome, mitochondria, periodic data, solar cycle

1 INTRODUCTION

IRCULAR and periodic data are abundant. Synthetic
Caperture radar [1], wind direction measurement [2],
and 24-hour emergency room arrival time [3] are sources
of circular data. Bacterial, mitochondrial, and chloroplast
genomes are also circular. Periodic activity is observed
from circadian rhythms of living organisms to solar cycles.
Circular data clustering reveals recurrent patterns. It is
a two-dimensional special case of the spherical k-means
problem using the cosine distance [4]. Its solutions had been
heuristic [5], [6], [7], 18], [9], [10], [11], until Debnath and
Song [12] designed a fast and optimal circular clustering
(FOCCQC) algorithm that exactly solves the problem in time
linear-polylogarithmic to the number of points. The mean
shift-based methods [5], [6] cluster circular data by locating
density function maxima. The solution of Abraham et al. [9]
uses simulated annealing. Lagona et al. [§] employ the
hidden Markov model and the von Mises distribution; they
also optimized mixture probabilistic models of multivari-
ate circular and linear data via expectation maximization
(EM) [7]. Most solutions are based on the EM algorithm
and continue to appear [10], [11]. However, the user is often
required to specify the number of clusters, which can be
subjective. As this figure reveals vital properties about the
grouping patterns in circular data, it is desirable to select
this number objectively, optimally, and quickly.

To our knowledge, the literature lacks any method to
detect the number of clusters in circular or periodic data,
despite many approaches for linear data. Rousseeuw first

e Y. Chen is with Department of Biomedical Engineering, Johns Hopkins
University, Baltimore, MD 21218, United States.

o T. Debnath and M. Song are with Department of Computer Science, New
Mexico State University, Las Cruces, NM 88003, United States.

o A Cai was with School of Electrical and Computer Engineering, Cornell
University, Ithaca, NY 14853, United States. He is currently with Apple
Inc., Austin, TX 78746, United States.

e M. Song is also with Molecular Biology and Interdisciplinary Life Sciences
Graduate Program, New Mexico State University, Las Cruces, NM
88003, United States. E-mail: joemsong@nmsu.edu

*: Corresponding author.

introduced the silhouette, applicable to assessing the cluster
quality of one-dimensional linear data [13]. The number
of clusters can also be detected by elbow methods [14],
penalized likelihood criteria such as AIC, BIC, DIC [15],
information-theoretic approaches [16], and physics-based
models like EF-Index [17]. However, most methods are
not easily applicable to circular data because calculation of
either distance- or density-based criteria will be different on
a circle from along a line.

Here, we introduce the circular silhouette and design a
fast algorithm to calculate the average silhouette width; sub-
sequently we use it to detect the number of circular clusters.
We expand the original silhouette to cover clustered circular
data. The distance between two points on a circle creates
complications for computing the circular silhouette. We
handle them with guaranteed correctness in linear time on
sorted data. We evaluated the algorithm on simulated data
of various distributions in contrast to the elbow method.
Our algorithm, but not the elbow method, correctly returned
numbers of clusters in the simulated data. Next, we applied
it on circular genomes of human mitochondria, Candidatus
Carsonella ruddii, and Lactobacillus curieae. We also applied
the circular silhouette algorithm on sunspot activity data to
estimate the period of solar cycle, traditionally known to be
about 11 years [18]. Our finding suggests that the period
has reduced by about seven months during the past two
centuries. At solar cycle peaks, the sun can radiate energy
that affects lifespan via mutating genomes [19], and a faster
cycle may imply a stronger negative impact on human life in
the foreseeable future. Such examples demonstrate how the
circular silhouette may contribute to scientific discoveries.

The circular silhouette algorithm, together with the
FOCC algorithm [12], can efficiently determine an opti-
mal circular clustering. With manual tuning eliminated, the
clustering process is no longer subjective. This advance in
the capacity of circular data analysis expands the range of
applications to gigantic sample sizes.

https://cran.r-project.org/package=CircularSilhouette

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

2 METHODS
2.1 The circular silhouette

We view circular points as one-dimensional points period-
ically distributed along a line. Let x and y be coordinates
of two points along the circle of circumference L. Assuming
that z and y, modulo L, fall within [0, L), we define the
circular distance between the two points as

d(z,y) = min{ly — x|, L — |y — |} D

The silhouette information [13]] assesses cluster quality
by compactness within and separation between clusters. It
has been widely used to determine the optimal number of
clusters. The silhouette width of object u,, among N objects is
defined as [13]

bn_an

Sn: ’]’L:17...,N (2)

max{ay, by}’

where a,, is the average intra-cluster dissimilarity of object u,,
to all other object u; in the same cluster with m objects:

m—1
1
ay, = — ; d(up,u;), m>1 3)

If m =1, a, = 0. b, is the average inter-cluster dissimilarity
of object u,, to all objects v; in a cluster nearest to w,,:

) 1
" ke{o,...,l?lfl?}f{k(n)} Wi Z

v; € cluster k

d(un7 vi) (4)

where k(n) is the cluster of object u,, and W}, is the number
of objects in cluster k among K clusters. The average silhou-
ette width is defined by

- 1 X

which is a statistic of overall cluster quality, often used to
determine the number of clusters.

We quantify the dissimilarity of two circular points by
their circular distance defined in Eq. (1). To compute a,, and
by, by definition, one needs to go through all other points in
the cluster of point u,, and all points in its nearest cluster.
As a result, it takes linear time of the two cluster sizes to
calculate S, for a single point u,. Overall, to compute all
S, forn=1,..., N takes quadratic time O(N?).

2.2 A fast circular silhouette algorithm

Now we introduce a fast algorithm to calculate circular sil-
houette information in worst-case log-linear time. Instead of
independently computing intra- and inter-cluster distances
for each object, we update the distances of an object based
on those of a neighboring object using respective recurrence
equations. Although one such update may take more than
constant time, our algorithms run in amortized constant
time for each object, attaining overall linear time on sorted
data.

Let O be an array of IV circular data points. Let C' be
the cluster labels of each point in O. Given point n, O, is
its coordinate on the circle and C,, is its cluster label. Let L
be the circumference of the circle. We linearize the original
input data by sorting O to X = (2o, ..., xn_1) with cluster

2

labels C' rearranged accordingly into Y = (yo,...,Yyn—1)-
We calculate intra-cluster distance a,, and inter-cluster dis-
tance b,, for each point and save them in arrays a and b.

Algorithm [1| CIRCULAR-SILHOUETTE is the fast circular
silhouette algorithm. The input is circular data O, cluster
labels C, and circumference L. The output is the average
silhouette width over the N points. It first sorts, extends,
and shifts the original data O and C' into linearized arrays
X and Y. The purpose of lines 7-8 is to shift X to avoid
calculation of the mean for any cluster that crosses the
origin. Then it calls Algorithm [2| to calculate the average
silhouette width over all points.

Algorithm 1 CIRCULAR-SILHOUETTE(O, C, L)

1: N is the number of points in array O
2: O+ O mod L
3: Array I: indices to elements in O, arranged in increasing order
4: Sort O in order of O[I[i]] < O[I[i + 1]] fori =0,...,N —1
5: Linearize: X<O[I[0]],...,O[I[N —1]; Y<«C[I[0]],...,C[I[N—1]]
6: Extend: X < X, X[0]+ L,...,X[N—1]+L;Y «+ Y,Y
7: Find the first point of the first cluster as X [;] = Z.
8 X « (X[i|— Z,X[i+1] - Z,...,X[i+ N —1] — 2)
9: Y « (Y[i|,Y[i+1],...,Y[i+ N —1])
10: S < CIRCULAR-SIL-SORTED(X, Y, L)
11: return average silhouette width S

Algorithm [2| CIRCULAR-SIL-SORTED calculates the av-
erage silhouette width over all sorted and shifted points.
The input includes linearized data X = (xo,...,ZNn_1),
the cluster of each point ¥ = (yo,...,yn—1), and the
circumference L. The output is the average silhouette width
S of the N points. For each cluster k, it calculates intra- and
inter-cluster distances, respectively. Inter-cluster distances
from cluster k to its two neighbor clusters are computed. For
each point in cluster k, the smaller of the two inter-distances
is assigned to b,,. Then it uses the intra- and inter-distances
to calculate the average silhouette width over all points.

Algorithm 2 CIRCULAR-SIL-SORTED(X, Y, L)

1: K: the number of clusters; N: the number of points
2: Wk]: the number of points in cluster k obtained from Y’
3: I[k]: index to the first point of cluster k obtained from Y’
4: p[k]: the mean of cluster k from X and Y
5: Sil <+ 0
6: fork <+~ 0to K — 1 do
7: a < INTRACLUSTERDIST(Points in cluster k, L)
8 k; cluster label to the left side of cluster k
9: kr cluster label to the right side of cluster &

10: b; < INTERCLUSTERDIST(X, L, I, W, p, k, k;)

11: if ky # k; then

12: b, < INTERCLUSTERDIST(X, L, I, W, u, k, k)
13: else

14: b, + b;

15: end if

16: forn < 0to W[k] — 1 do

17: b[n] < min(b;[n], br[n])

18: Sil < Sil + (b[n] — a[n])/ max(a[n], b[n])

19: end for

20: end for

21: S « Sil/N

22: return average silhouette width S

2.3 Calculating intra-cluster distances

Now we calculate intra-cluster distance a,, for all m points
within a given cluster. For clarity, we shift the m points

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

to start at zero represented by u = (uo, ..
up=0. a,, is evidently shift-invariant.

.y Um—1), Where

Let A,, be the sum of distances between u,, and all other
points in the cluster. If the cluster is within half a circle (case
1), one can compute A, using linear distance; otherwise
(case 2), one must use circular distance.

Case 1. The cluster range is less than L /2. By definition,

n—1 m

Ap = (up —w) + Y (wi —up)

=0 i=n+1
m—1 n—1
=@n—m+Lu,+ Y wi—Y u (n>0) (6)
i=n-+1 =0

with 4¢ = Z?;Bl(uz — up). Equivalently, A,, can be com-
puted from A,,_; in constant time by recurrence equation:

An = An—l + (271 - m)(un - un—l) (7)

which is derived in Supplementary Materials 1.1.

Case 2. The cluster range is at least L/2. We cut points
before and after L/2 + u,, by a line into two groups. The
two points bordering the cut line can be progressively
updated. Using both points, A,, can be updated from A,,_;
in amortized constant time, instead of going over all the
points, as illustrated in Fig.

An1 Aq

Fig. 1: Updating intra-cluster distance sums. Four points
(yellow) are in a cluster on a circle of circumference L = 10.
Green arcs are the distance from current point to other
points. At u,_; = 0.5, the corresponding A,_; is the
length sum of all green arcs in the left circle. Moving from
Uy—1 = 0.5 to u,, = 2, we can calculate the distance sum A,,
from A,,_1 instead of going over all four points. In the right
circle, the cut line (red dashed) from u,, to u, + L/2 (blue
point) divides the points to two sides. Within each side, the
distance sum can be updated consistently. Going from n — 1
to n, the blue point will move and some yellow points (e.g.,
6) may change side, which is accounted for in recurrence
equation (10).

Here is a summary of the main steps:

1) Append u + L to u to have an array of 2m points:
(wos -+« s Um—1,u0 + L, ..., um—1 + L). h(n) is the halfway
index between n and n +m such that uy,(,)—1 < up,+L/2 <
Up(n)- There are h(n) — n points from wu,, to up(,)—1 and
m — h(n) + n points from) t0 Upnjp—1.

3

2) Calculate intra-cluster distance sum A for point u,, = 0
by the circular distance definition in Eq. (1):

h(0)—1 m—1
Ao = Z u; + Z (L — i)
i=0 i=h(0)
h(o)*l m—1 (8)
- hOJLE Y e Y u
i=0 i=h(0)

3) Calculate intra-cluster distance sum A,, for other points
Uy, (n > 0) within the cluster:

h(n)—1 n+m—1
Ap= Y (wi—uw)+ > L—(ui—u,) (9
i=n i=h(n)

Equivalently, A,, can be computed from A,,_; by

h(n)—1
Ay =An_1+ |2 Z u; | + [2n +m — 2h(n)]u,
i=h(n—1)
+ [2h(n — 1) —m — 2n]uy—1 + [h(n — 1) — h(n)]L
(10)

which is derived in Supplementary Materials 1.2.

Next, we calculate the intra-cluster distance a, =
A, /(m — 1) for every point in the cluster for both cases.

These steps give rise to Supplementary Algorithm S1
INTRACLUSTERDIST to calculate intra-cluster distances of
points in a given cluster. The input is shifted points in
the cluster u = (0, uy, ..., u,_1) and the circumference L.
The output a = (ag, .. .,an—1) is the average intra-cluster
distances from every u,, to all other points in the cluster. The
intra-cluster distance is calculated in two cases as discussed
above. Under each case, the intra-cluster distance for each
point is calculated based on the previous point in amortized
constant time. The overall runtime is thus linear to the
number of points in the cluster.

2.4 Calculating inter-cluster distances

Now, we calculate inter-cluster distances. Let u contain all m
points in cluster k: u = (ug, ..., Um—1), where ug = 0. For
point u,, let cluster k" contain ¢ points v = (vo,...,v4-1),
where v > 0. We precompute the means of each cluster as
pi fork =0,..., K — 1. Let B, be the inter-cluster distance
sum for u,,. We draw a cut line from u,, to u,,+L/2 to divide
points in v into two sides, each inside half a circle (Fig. [2).
We consider the inter-cluster distance in two cases:

Case 1. If cluster k" points are all on one side of the cut line
from wu,, by, = min{|u, — pg|, L — |uy — pgr|}—the circular
distance between u,, and py, the mean of cluster k', derived
in Supplementary Materials 2.1.

Case 2. If some points in cluster k£’ are on the opposite sides
of the cut line, we will calculate B,, by updating from B,,_;.

We summarize the algorithm into four steps:

1) Let h(n) be the halfway index between 0 to ¢ — 1 such
that vj,(n)—1 < Up +L/2 < vp(py. There are h(n) points from
Vg to Vp(ny—1 and ¢ — h(n) points from vy (,,) to vy_1.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

’ 0(10)
6
9 /’ 9
v ,
u,+L/2 7
,

Bnt B,

Fig. 2: Updating inter-cluster distance sums. A current
cluster (two yellow points) and another cluster (three green
points) are on a circle of circumference L = 10. For the
left circle, B,,_; is the inter-cluster distance sum from point
up—1 = 0.5 to all green points, as indicated by the green
arcs. Moving from u,_; = 0.5 to u,, = 2, we can calculate
the distance sum B,, from B,,_; instead of going over all
three points. For the right circle, the cut line (red dashed)
from u,, to u, + L/2 (blue point) divides the green points
to two sides. Within each side, the distance sum can be
updated quickly. Going from n — 1 to n, the blue point
will move and some yellow points (e.g., 6) may change side
and others stay (e.g., 5 and 9), which are accounted for in
recurrence equation .

2) Calculate inter-distance sum By from ug = 0, the first
point in cluster %, to all points in cluster &':

h(0)—1 q—1
By = Z v; + Z L—w
i=0 i=h(0)
h(0)—1 q—1 (11)
=p—hOL+ Y vi— Y v
i=0 i=h(0)

which is calculated regardless of ug being case 1 or case 2.
3) Calculate inter-cluster distance sum B,, from u,, (n > 0)
to cluster k’. Rather than by definition—linear time in ¢:

h(n)—1

Z (v; —up) + Z L—(vi—u,) (12

i=0 i=h(n)

B, =

we compute B, from B,_; in amortized constant time
iteratively as derived in Supplementary Materials 2.2:
h(n)—1
Bn = Bn—l + 12 Z v | + [q - 2h(”)]un
i=h(n—1)
+ [2h(n —1) = glup—1 + [A(n — 1) — h(n)]L

4) Calculate inter-cluster distance b,, = B,,/q for each point
in cluster k.

(13)

These steps constitute Supplementary Algorithm S2 IN-
TERCLUSTERDIST that computes the inter-cluster distance
from each point in cluster & to cluster &’. The input includes
linearized data X = (zg,...,2n—_1), the circumference L,
cluster start index I, cluster size W, cluster means p, and
cluster labels k£ and k’. The output b = (bg,...,bp—1) is
average inter-cluster distances from wu,, in cluster k to all
points in cluster k’. Each inter-cluster distance is calculated
in two cases aforementioned: either directly or based on the
previous point in amortized constant time. Case 1, a special

4

situation of case 2, is included for a lower overhead than
using case 2. A cluster can have both case 1 and case 2
points. Upon encountering a case 2 point for the first time,
By must be calculated.

2.5 Time complexity

We have argued that computing the silhouette by definition
takes O(N?) time in the end of section 2.1. In contrast, the
fast circular silhouette algorithms reduce the runtime to be
sub-quadratic in V.

Theorem 1. Algorithm CIRCULAR-SILHOUETTE takes
O(Nlog N) time on unsorted data; Algorithm [2| CIRCULAR-
SIL-SORTED takes O(N) time on sorted data.

Proof. Supplementary Lemma S1 shows that the intra-
cluster distance calculation by Alg. S1 takes ©(m) time
for a cluster of m points, or amortized constant time O(1)
for each point. In Supplementary Lemma S2, we derive
O(gq+m) time for Alg. S2 to compute inter-cluster distances
between two given clusters of m and ¢ points, respectively,
with amortized constant time O(1) for each point in the two
clusters. Then we establish the stated runtime for Alg. [[jand
Alg.PJin Supplementary Materials section 3.3. O

3 RESULTS

To demonstrate the effectiveness of circular silhouette and
the efficiency of the fast algorithm, we show empirical
runtime, number-of-cluster selection correctness, and an
application in period finding. First we will compare the run-
time of the algorithm with the algorithm using the circular
silhouette definition on both simulated and real data. Then
we will examine the correctness of the detected number
of clusters by maximizing the average circular silhouette
width on simulated data. We also apply the algorithms to
identify molecular events on circular genomes. Lastly, we
will estimate the period of solar cycle using the circular
silhouette.

3.1 Empirical runtime

Here, we evaluate the runtime of the fast circular silhouette
algorithm along side the silhouette algorithm by definition.
Both are implemented in the function circular.sil()
in the R package ‘CircularSilhouette’, where the former
algorithm is specified by setting the method argument to
"linear" and the latter by "quadratic". The latter im-
plementation does not exhaustively find the minimum inter-
cluster distance as given in Eq. (4). Instead, it used only
the two clusters immediately adjacent to the current cluster,
theoretically having the same worst-case runtime with but
practically faster than using the definition in Eq. (4).

We simulated circular data from a Gaussian mixture
model wrapped around a circle with a circumference of
1000. The model has five components with means of 0, 200,
400, 600, and 800 and a variance of 1. We used the rnorm ()
function in R to generate data points for each component,
merged the data points, and performed an operation of
modulo 1000 to derive circular data. Each point is assigned
a cluster label by the component it originated from.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

We compared the runtime of the two algorithms on five
sets of simulated data of 200,000, 400,000, 600,000, 800,000,
and 1,000,000 points, respectively. We used a computer with
AMD Ryzen 7 5800H with Radeon Graphics at 3.20 GHz
and 16 GB RAM. Figure Bp shows the runtime as a function
of the number of points with fixed five clusters. The runtime
of the fast algorithm grows slowly, while the silhouette-by-
definition algorithm becomes much slower with increasing
numbers of points. At one million points, the fast algorithm
took 0.3291 second; the algorithm by definition spent 1051
seconds. So the fast algorithm achieved a speedup of 3,193
times. Figure [3b displays the runtime as a function of the
number of clusters for the two algorithms, at fixed 102,400
points. Both algorithms ran faster as the number of clus-
ters increased. This counter-intuitive saving is because the
number of point pairs involved in computing both intra-
and inter-cluster distances is likely to decrease as the num-
ber of clusters increases. For example, computing circular
silhouette on two clusters took 0.32 second but only 0.029
second on 1024 clusters using the fast algorithm. Between
the two algorithms, the fast algorithm’s time saving is most
pronounced at smaller numbers of clusters. In summary, the
fast circular silhouette algorithm is at an evident advantage
on large datasets.

O

L T T T T T 7T
’—-—The fast circular silhouette algorithm|
|-e—By definition H

T T T T
| [—=— The fast circular silhouette algorithm
| |—e— By definition

3

8

SN

s 8 R

]
=

Run time (sec)

3

@

0 200000 400000 600000 800000 1000000 1 2 4
Number of points

o

Number of clusters

Fig. 3: The runtime of the fast algorithm versus the
algorithm by circular silhouette definition. (a) With an
increasing number of circular data points in five clusters,
the runtime of the fast algorithm grows sub-quadratically,
whereas the growth rate of the slow algorithm is quadratic.
(b) At fixed 102,400 points, the runtime of both algorithms
decreases with increasing numbers of clusters, with the fast
algorithm being quicker to complete.

3.2 Selecting the number of clusters on simulated data

We evaluate the performance of the fast circular silhouette
algorithm on three simulated datasets where the numbers
of circular clusters are known. To select an optimal number
of clusters on a given dataset, we run FOCC and then
calculate the circular silhouette on the resulting clustering
for each given k. The k that maximizes the average circular
silhouette width is declared as an optimal number of clus-
ters for the given dataset. The algorithm is implemented as
R function find.num.of.clusters () in the ‘CircularSil-
houette” package. We also used the elbow method to select
the number of clusters based on the within-cluster sum of
squared distances (WSS) on linearized circular data. The
knee point is determined by the ‘kneedle” algorithm [20], as
implemented in R package ‘etam4260/kneedle’ on GitHub.

5

We evaluate their performance by comparing detected num-
bers of clusters with ground-truth numbers of clusters.

The first dataset was manually created with nine well-
separated clusters (Fig. [#h). The maximum silhouette width
is achieved at K =9 clusters (Fig. EH), but the elbow method
incorrectly detected 5 clusters (Fig. [4g).

The second simulated dataset includes five clusters of
points (Fig. [4b) randomly generated from five von Mises
distributions. The circumference is 360. The means of each
cluster are 0, 72, 144, 216, 288, respectively. The correct
number of clusters (5) is successfully detected by both the
circular silhouette (Fig. i) and the elbow method (Fig. [4h).

The third dataset has 17 clusters (Fig. Ek). Clusters 4, 6, 9,
and 13 are normally distributed. Clusters 3, 5, 14, and 17 are
gamma distributed. Clusters 1, 2, and 12 are exponentially
distributed. Clusters 8, 15, and 16 are beta distributed. Clus-
ters 7 and 11 are Student’s t¢-distributed. The points were
transformed to be circular by modulo the circumference of
600. Using the circular silhouette, we properly identified the
number of clusters (Fig. E]f), but the elbow method failed
again (Fig. [4).

Therefore, we conclude that the circular silhouette can
be properly used to select numbers of clusters on data with
well-separate clusters and is a better option than the elbow
method especially for large numbers of clusters.

Average silhouette =—h

06 07 08 09

05 06
L
Average sihouette ()
06 07 08 09
I I

5 10 15 20 25 30

Number of clusters Number of clusters Number of clusters

«
>

wss
46405 8e+05
L
wss
0.0e400 1.0e407 2.0e+07
TR
R
wss
1.0e+08
L L

0.0e+00
L

5 10 15 20 25 30

Number of clusters Number of clusters Number of clusters

Fig. 4: Circular silhouette versus an elbow method to select
number of clusters. (a) A toy example with 9 clusters. (b)
Simulated data from 5 von Mises distributions. (c¢) Simu-
lated data from a mixture with 17 components. (d—f) The
average silhouette width is maximized (red vertical lines) at
(d) 9 clusters for the toy example, (e) 5 clusters for the von
Mises data, and (f) 17 clusters for the mixture data. (g-i) The
elbow method detected knee points at (g) 5 (wrong), (h) 5,
and (i) 7 (wrong) clusters for each dataset, indicated by the
red lines.

3.3 Cluster patterns in round genomes

Next, we use the fast circular silhouette algorithm to dis-
cover patterns in round genomes. We first studied the CpG

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

sites on the human mitochondrial genome [21] and the
Candidatus Carsonella ruddii strain BT chromosome. Their
respective clusters are shown in Fig. |5} It is apparent that the
435 CpG sites are quite scattered on human mitochondria,
falling into 70 clusters; in contrast, the 524 CpG sites along
the BT chromosome are concentrated in 16 clusters.

a. Human mitochondrial genome D Homo sapiens mitochondrion

\

W

0.54 0.58 0.62

Average silhouette

0.50

0 50 100 150

Number of clusters
Optimal K = 70

C. Candidatus Carsonella ruddii 0 candidatus Carsonella ruddii
. strain BT chromosome
strain BT chromosome N
. 8]
- . S
i,
g // g 3
= o
= s °] A/
g g | Ve
< o
3
S T T T T
0 20 40 60 80
Number of clusters
Optimal K = 16

Fig. 5: CpG-site clusters around two circular genomes. (a)
CpG sites group into 70 clusters in the human mitochondrial
genome. (b) Average silhouette width, as a function of
number of clusters, is maximized at 70 clusters (red line). (c)
CpG sites on chromosome BT of the Candidatus Carsonella
ruddii strain form 16 clusters. (d) The estimated number of
clusters 16 maximizes average silhouette width (red line).

We also examined the start locations of 232 genes along
the Candidatus Carsonella ruddii strain BT chromosome [22]
and 2010 genes along the bacterium Lactobacillus curieae
genome [23]. Although both have similar numbers of gene
clusters (38 versus 39), the gene clusters are more uneven
in the former genome than the latter genome (Fig. [6). The
cluster unevenness can also be indicated by the sharp peaks
in the curve that shows the average silhouette width as a
function of number of clusters.

3.4 Estimating the period of sunspot activity

Although the period of sunspot activity was estimated to be
about 11 years [18], we used circular silhouette to identify an
optimal period from public data with a higher precision and
also studied the trend of any change in the period. The algo-
rithm is implemented as R function estimate.period ()
in the ‘CircularSilhouette’ package. Using this algorithm, we
have estimated the average period of sunspot activity to be
about 10 years and 313 days in the past 200 years. Most
strikingly, we find that the period reduced by about seven
months over the past two centuries.

Daily numbers of sunspots recorded from 1818 to
2019 [24] were used in our analysis (Fig. [7h). We converted
the longitudinal sunspot activity data to circular data using
a range of circumferences, between 2x10 and 2x12 years to
include at least two sunspot activity peaks on the circle.
Given a circumference, we use the FOCC algorithm and

a. Candidatus Carsonella ruddii b
strain BT chromosome

S

Candidatus Carsonella ruddii
strain BT chromosome

3 J\/Wx\

T T T T T
[20 40 60 80

Average silhoustte

Number of clusters
Optimal K = 38

d Lactobacillus curieae

RSP

Average silhouette

Number of clusters
Optimal K = 39

Fig. 6: Gene clusters by start locations in two circular
bacterial genomes. (a) The gene locations of the Candidatus
Carsonella ruddii strain BT chromosome. (b) The number of
clusters that maximizes silhouette width is 38 (red line). (c)
Gene locations in the Lactobacillus curieae genome. (d) The
optimal number of clusters is 39 (red line).

circular silhouette to find the optimal number of clusters in
the range of 2-12. For a given number of clusters, we tried
circumferences between 20 and 24 years at a resolution of
0.2 year. Figure [7p identified the maximum silhouette width
at two clusters. So, we estimated the sunspot activity period
by dividing the optimal circumference by two.

Using the same range of 10 to 12 years for the period, we
increased the circumference resolution to 0.1 year to get an
optimal period of 10.85 years (Fig. [8p). To further improve
the precision, we used an even higher circumference resolu-
tion of 0.02 year in the range between 10.70x2 and 11x2 in
Fig. [8p. Then we obtained a more precise period estimate of
10.857 years, which is about 10 years and 313 days.

To examine the cluster qualify, we superpose the sunspot
data over two periods of the estimated solar cycle. Figure
shows a histogram of the data in a 1D Cartesian coordinate
system; Figure [8d shows a circular histogram of the data in
a polar coordinate system. Evidently, the clusters are well
overlapped within and separate inbetween, suggesting a
strong periodic signal of sunspot activity.

Next, we studied the sunspot activity trend by 100-year
sliding windows. Specifically, we estimated the periods of
sunspot activity in the early, middle, and late 100 years to
be 11.239 (Fig.[8k), 10.814 (Fig.[8), and 10.632 (Fig.[8p) years,
respectively. The reduction in period from the early to late
100 years is 221 days, more than seven months, or 5.4% of
the period of the early 100 years. As the last sunspot peak
was observed in April 2014, our finding suggests that it is
possible that the next peak would occur in 2024, instead of
July 2025—the forecast by National Weather Service.

4 DISCUSSION

Only until recently, a sub-quadratic-time exact solution to
circular data clustering becomes available [12]. The circular

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

a
600
| middle 100 years
early 100 years Iate 100 years
3
@ 400
5
@
S
2
£
3 200
16’20 18‘40 18’50 1880 19'00 19'20 19'40 19'60 19'80 QD'UO 20'20
Time (Year)
(¢
Period = 10.857 x 2 (years)

o 0
53 2
3 . 75000~
c s}
> 250000 -

o 2
“ o -
58 3 25000 \
=3 —
QS o 0
oF s
= @
5 £ 15
z =]
=z
o
[T T T 1
0 5 10 15 20 10

Period Years

Fig. 7: Sunspot activity data, circular silhouettes using
various periods and numbers of clusters, and optimal
clusters. (a) Numbers of sunspot activity as a function of
date. (b) The heat map shows silhouette widths correspond-
ing to combinations of number of clusters (horizontal axis)
and period (vertical axis). The color gradient legend maps
to silhouette width. (c) Evident periodic sunspot signals
as shown by a 128-bin histogram of the data in a one-
dimensional Cartesian coordinate system in two solar cycles
(10.857x2 years). (d) A strong circular sunspot signal cap-
tured by a 128-bin circular histogram in a polar coordinate
system with a circumference of 10.857x2 years.

silhouette and the fast algorithm described here further ex-
pand optimal solutions related to circular clustering. These
solutions together open the door to applications in circular,
periodic, angular, looped, and phase data analysis.

Although we can exactly and efficiently solve both lin-
ear [25] and circular [12] clustering problems, it is unclear
if clustering points on a cylindrical surface is efficiently
solvable by combing the linear and circular algorithms.

The original silhouette is undefined for data with only
one cluster. This is also the case for circular silhouette. If
one cluster is a valid option, some amendments will be
necessary. One possible solution is the Bayesian informa-
tion criterion, which promotes likelihood penalized by the
number of clusters.

5 CONCLUSION

The presented circular silhouette and the fast algorithm pro-
vide a foundation to choose the optimal number of clusters
automatically for circular or periodic data. It guarantees
the optimality at a runtime linear to the input size on
sorted data. We demonstrated its usage on simulated and
real data. We found optimal clusters in circular genomes.
Most interestingly, we found that the solar-cycle period
is reducing in the last 200 years. As the methodology is
unbiased, optimal, and fast, it has now enabled a scale-up

a 1818-2019 Sunspot period b 1818-2019 Sunspot period

0.670
|

0.60
|
0.660
|

Silhouette
Silhouette

0.650
|

10.0 10.5 11.0 1.5 12.0 10.70 10.80 10.90 11.00

period(year) period(year)

1919-2019 Sunspot period

C 1818-1918 Sunspot period d 1869-1969 Sunspot period e

/N

T T T
100 105 110 115 120

\

Silhouette
Silhouette
Silhouette

055 060 065
L

055 060 065
L

055 060 065
L

T T T T T T T T T
100 105 110 115 120 100 105 110 115 120

period(year) period(yean) periodi(year)

Fig. 8: Estimating the period of sunspot activity over
the last two centuries from 1818 to 2019. (a) Maximum
silhouette widths as a function of period between 10 and
12 years at a circumference resolution of 0.1 year obtained
on data from 1818 to 2019. (b) Zooming into the peak
region between 10.70 and 11 years in (a), we calculated
maximum silhouette widths at a circumference resolution
of 0.02 year on the same 200-year data. (c) The sunspot
activity period detection for the first 100 years (1818-1918),
giving the largest silhouette width at a period of 11.2 years.
(d) The sunspot activity period detection for the middle
100 years (1869-1969), giving the largest silhouette width
at 10.8 years. (e) The sunspot activity period detection for
the last 100 years (1919-2019), giving the largest silhouette
width at 10.6 years. For (a—e), dots represent sampled period
values. Dashed lines indicate the optimal period among
those sampled.

of applications, such as circadian rhythm characterization,
Internet traffic analysis by periods of day, week, or month,
abnormal climate change detection, and pattern discovery
in circular DNA and RNA molecules. We anticipate fast
circular data analysis to play a wide range of roles in pattern
discovery for science, engineering, and medicine.

Software and data availability

Circular silhouette algorithms are implemented in C++ and
R in package ‘CircularSilhouette” via https:/ /cran.r-project.
org/package=CircularSilhouette. Supplementary Materials
contain code and data to reproduce result figures.

ACKNOWLEDGMENTS

The reported work is partially funded by US National
Science Foundation grant 1661331.

REFERENCES

[1] L.Perlovsky, R. Ilin, R. Deming, R. Linnehan, and F. Lin, “Moving
target detection and characterization with circular SAR,” in 2010
IEEE Radar Conference, 2010, pp. 661-666.

[2] A. Obermann, S. Bastin, S. Belamari, D. Conte, M. A. Gaertner,
L. Li, and B. Ahrens, “Mistral and Tramontane wind speed and
wind direction patterns in regional climate simulations,” Climate
Dynamics, vol. 51, no. 3, pp. 1059-1076, 2018.

https://cran.r-project.org/package=CircularSilhouette
https://cran.r-project.org/package=CircularSilhouette

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

A. Choudhury and E. Urena, “Forecasting hourly emergency
department arrival using time series analysis,” British Journal of
Healthcare Management, vol. 26, no. 1, pp. 34-43, 2020.

K. Hornik, I. Feinerer, M. Kober, and C. Buchta, “Spherical k-
means clustering,” Journal of Statistical Software, vol. 50, no. 10,
pp. 1-22,2012.

S.-J. Chang-Chien, M.-S. Yang, and W.-L. Hung, “Mean shift-based
clustering for directional data,” in Third International Workshop on
Advanced Computational Intelligence, 2010, pp. 367-372.

S.-J. Chang-Chien, W.-L. Hung, and M.-S. Yang, “On mean shift-
based clustering for circular data,” Soft Computing, vol. 6, no. 6,
pp. 1043-1060, 2012.

F. Lagona and M. Picone, “Model-based clustering of multivariate
skew data with circular components and missing values,” Journal
of Applied Statistics, vol. 39, no. 5, pp. 927-945, 2012.

——, “A Gaussian-von Mises hidden Markov model for clustering
multivariate linear-circular data,” in Statistical Models for Data
Analysis, P. Giudici, S. Ingrassia, and M. Vichi, Eds. Heidelberg:
Springer International Publishing, 2013, pp. 171-179.

C. Abraham, N. Molinari, and R. Servien, “Unsupervised clus-
tering of multivariate circular data.” Stat Med, vol. 32, no. 8, pp.
1376-1382, Apr 2013.

A. Roy, S. K. Parui, and U. Roy, “SWGMM: a semi-wrapped
Gaussian mixture model for clustering of circular-linear data,”
Pattern Analysis and Applications, vol. 19, no. 3, pp. 631-645, 2016.
A. Roy, A. Pal, and U. Garain, “JCLMM: A finite mixture model
for clustering of circular-linear data and its application to psoriatic
plaque segmentation,” Pattern Recognition, vol. 66, pp. 160-173,
2017.

T. Debnath and M. Song, “Fast optimal circular clustering and
applications on round genomes,” IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, vol. 18, no. 6, pp. 20612071,
2021.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, pp. 53-65, 1987.

F. Liu and Y. Deng, “Determine the number of unknown targets in
open world based on elbow method,” IEEE Transactions on Fuzzy
Systems, vol. 29, no. 5, pp. 986-995, 2021.

K. P. Burnham and D. R. Anderson, “Multimodel inference: Un-
derstanding AIC and BIC in model selection,” Sociological Methods
& Research, vol. 33, no. 2, pp. 261-304, 2004.

C. A. Sugar and G. M. James, “Finding the number of clusters in
a dataset,” Journal of the American Statistical Association, vol. 98, no.
463, pp. 750-763, 2003.

M. K. Bhowmik, T. Debnath, D. Bhattacharjee, and P. Dutta, “EF-
index: Determining number of clusters (K) to estimate number of
segments (S) in an image,” Image and Vision Computing, vol. 88,
pp. 29-40, 2019.

A. K. Srivastava, S. W. McIntosh, N. Arge, D. Banerjee, M. Dikpati,
B. N. Dwivedi, M. Guhathakurta, B. Karak, R. J. Leamon, S. K.
Matthew, A. Munoz-Jaramillo, D. Nandy, A. Norton, L. Upton,
S. Chatterjee, R. Mazumder, Y. K. Rao, and R. Yadav, “The ex-
tended solar cycle: Muddying the waters of solar/stellar dynamo
modeling or providing crucial observational constraints?” Fron-
tiers in Astronomy and Space Sciences, vol. 5, 2018.

W. E. Lowell and G. E. Davis, “The light of life: Evidence that the
sun modulates human lifespan,” Medical Hypotheses, vol. 70, no. 3,
pp. 501-507, 2008.

V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a
"kneedle’ in a haystack: Detecting knee points in system behav-
ior,” in 2011 31st International Conference on Distributed Computing
Systems Workshops. Minneapolis, MN, USA: IEEE, 2011, pp. 166—
171.

R. M. Andrews, 1. Kubacka, P. E. Chinnery, R. N. Lightowlers,
D. M. Turnbull, and N. Howell, “Reanalysis and revision of the
Cambridge reference sequence for human mitochondrial DNA,”
Nature Genetics, vol. 23, no. 2, pp. 147-147, 1999.

L. Katsir and O. Bahar, “Genome sequence of ‘Candidatus Car-
sonella ruddii,” strain BT from the psyllid Bactericera trigonica,”
Genome Announcements, vol. 06, no. 4, pp. e01 466-17, 2018.

Y. Wang, Y. Wang, C. Lang, D. Wei, P. Xu, and]. Xie, “Genome
sequence of Lactobacillus curieae CCTCC M 2011381T, a novel
producer of gamma-aminobutyric acid,” Microbiology Resource An-
nouncements, vol. 3, no. 3, pp. e00 552-15, 2015.

8

[24] SILSO World Data Center. (1818-2019) The international sunspot
number. Royal Observatory of Belgium, avenue Circulaire 3, 1180
Brussels, Belgium. [Online]. Available: http:/ /www.sidc.be/silso/

[25] M. Song and H. Zhong, “Efficient weighted univariate clustering
maps outstanding dysregulated genomic zones in human can-
cers,” Bioinformatics, vol. 36, no. 20, pp. 5027-5036, 2020.

Yinong Chen received the Bachelor of Engi-
neering degree in agricultural engineering from
Zhejiang University in 2022. She is pursuing an
MS degree focusing on neuroengineering in the
Department of Biomedical Engineering at Johns
Hopkins University. Her research interests are
brain-computer interface (BCI), electrode and
sensor fabrication, and pattern recognition algo-
rithms.

Tathagata Debnath received the Bachelor of
Technology degree in computer science and en-
gineering from the National Institute of Technol-
ogy, Agartala, Tripura, India. He completed the
Masters of Technology degree in computer sci-
ence and engineering from Tripura University, a
central university in India with the highest scores.
He is pursuing a PhD degree from the Depart-
ment of Computer Science at New Mexico State
University (NMSU), USA. He has received a PhD
tuition scholarship and Biopattern scholarship at
NMSU. His research interests include genomics, proteomics, proteoge-
nomics, bioinformatics, biological network analysis, computer vision, im-
age processing, and machine learning including deep neural networks.

Andrew Cai is a former undergraduate student
at Cornell University studying electrical and com-
puter engineering as well as computer science,
primarily interested in computer architecture. He
is currently working in design verification at Ap-
ple Inc.

Mingzhou Song received the BS degree in elec-
trical engineering from the Beijing University of
Posts and Telecommunications, and the MS and
PhD degrees from the Department of Electrical
Engineering, University of Washington at Seat-
tle. He was an assistant professor in the De-
partment of Computer Science, Queens College
of City University of New York. Later, he joined
New Mexico State University, where he is a pro-
fessor in the Department of Computer Science
and a faculty member in the Graduate Program
in Molecular Biology and Interdisciplinary Life Sciences. In 2019, he
received a Fulbright scholar award and visited Charles University and
Czech Technical University in Prague, Czech Republic. His research
interests include statistical foundations for pattern discovery, data sci-
ence algorithms for network inference, and applications to molecular
biological systems. His lab has released eight standalone software
packages, all open-source and freely available to the public; the two
most popularly downloaded are ‘Ckmeans.1d.dp’ and ‘FunChisq’.

http://www.sidc.be/silso/

	Introduction
	Methods
	The circular silhouette
	A fast circular silhouette algorithm
	Calculating intra-cluster distances
	Calculating inter-cluster distances
	Time complexity

	Results
	Empirical runtime
	Selecting the number of clusters on simulated data
	Cluster patterns in round genomes
	Estimating the period of sunspot activity

	Discussion
	Conclusion
	References
	Biographies
	Yinong Chen
	Tathagata Debnath
	Andrew Cai
	Mingzhou Song

