






ment exerted by the (s,L] section of the flagellum on the [0,s]

section. A viscous force per length fv(s, t) resists the motion of

the flagellum as it sweeps through the fluid, and a viscous mo-

ment per length mv(s, t) resists twisting. Inertia is typically negli-

gible at the microscale, so the conservation of linear and angular

momenta of the flagellum reduce to the local force and torque

balances35

∂sF+ fv = 0, (2a)

∂sM+d×F+mv = 0. (2b)

Introducing the centerline velocity v(s, t) = ∂tx=
∫ s

0 ∂td(u, t)du, we

approximate the viscous force by local resistive-force theory37±40

as fv = −R · v, where R = 8πηξ⊥

(

I−
ξ⊥−ξ∥

ξ⊥
dd

)

is a local resis-

tance tensor (I is the identity). Here, η is the dynamic viscos-

ity of the surrounding fluid, and ξ⊥ = (2logΛ+1)−1 and ξ∥ =
1
2 (2logΛ−1)−1 are dimensionless resistance coefficients, with

Λ = L/a ≫ 141 Eq. (8-178) and (8-179). The viscous moment

per length is similarly approximated as mv = −2πa2η∂tφ3d
42 p.

49.

Following27±29, the internal moment M(s, t) comprises two

components:

M = M
bend +M

slide. (3)

Here, M
bend = B1∂sφ1e1 + B2∂sφ2e2 + J∂sφ3d is the sum of the

bending moment with stiffness coefficients are B1 and B2, and

a twist moment associated with a stiffness J. The sliding moment

M
slide = ∑

N
i=1 ri ×F

slide
i is exerted by the (s,L] section of the flagel-

lum on the [0,s] section due to sliding of the axoneme circumfer-

ence doublets (filaments 1 to 9 in Figure 2) with respect to each

other. Observe that a 5-6 bridge makes rotation about e1 ªstifferº

than that about e2 (Fig. 1, 2B), so we expect B1 > B2. Indeed,43

modeled the ª9+2" structure experimentally with wooden staves

and dowels instead of microtubule doublets and radial spokes,

gluing together staves corresponding to doublet 5 and 6 to repli-

cate the bridge effect, finding that B1/B2 ≈ 2.6.

The sliding force F
slide
i on each filament is determined by the

dynamics of nexins and dynein motors. To model it we first de-

scribe the geometry of flagellum axoneme which comprises N = 9

filaments arranged around the centerline. We express the position

of a point on filament i at a section s as

xi(s, t) = x(s, t)+ ri(s, t), where

ri(s, t) = a(e1(s, t)cosθi + e2(s, t)sinθi) , i = 1, ..,N. (4)

Here, θi = 2π(i−1)/N is an angle (internal to the flagellum) mea-

sured in the cross-sectional plane and is a material quantity at-

tached to filament i. The arclength of filament i from the base up

to the a cross-section s is then si(s, t)≡
∫ s

0 |∂uxi(u)|du. The sliding

displacement of filament i relative to the centerline is therefore

∆i(s, t) = s− si(s, t)≈ a(φ2(s, t)cosθi −φ1(s, t)sinθi) (5)

up to terms quadratic in φi, where we have used the relations

(1a).

We model the nexin linkers as linear springs of stiffness K that

are distributed along the length of filaments. These springs con-

nect neighboring filaments and exert forces in the ±d directions

to restore relative sliding displacements between neighbors, see

Figure 2(c). The restoring spring force per length on filament i

is therefore f
spr
i = −K(∆i −∆i−1)d−K(∆i −∆i+1)d. In addition,

dynein motors are bound to each filament i at a mean number

density per length ρ (assumed constant). A fraction ni(s, t) of

these motors are engaged (that is, bound to filament i+ 1) and

pull filament i towards the base (s = 0) and filament i+1 towards

the tip (s = L) of the flagellum44±47. Denoting the load per motor

on filament i by Wi, the active force exerted on filament i by its

motors is −ρniWid; the same motors exert an opposite force of

the same magnitude on filament i+1. Accounting for the motors

engaging filament i with both its neighbors, the net active sliding

force per length on filament i is f
mot
i = ρ (Wi−1ni−1 −Wini)d. Thus,

the internal sliding force per length on filament i is the sum of a

passive component due to nexin springs and an active component

resulting from dynein motors,

fi(s, t) = {K(∆i−1 −2∆i +∆i+1)−ρ (Wini −Wi−1ni−1)}d. (6)

The sliding force exerted by the (s,L] part of a filament on the

[0,s] part is therefore27,28

F
slide
i (s, t) =

∫ L

s
fi(u, t)du. (7)

Observe that the resultant sliding force vanishes identically at a

section s, (∑
N
i=1 F

slide
i = 0), even though the resultant sliding mo-

ment (M
slide = ∑

N
i=1 ri ×F

slide
i ) is generally nonzero.

Finally, motor kinetics describe the spatio-temporal evolution

of the motor fractions ni and the load per motor Wi. As noted ear-

lier, motors on filament i move filament i+1 towards the tip and

filament i towards the base with relative velocity vi = ∂t(∆i+1−∆i).

The load carried by motors i decreases with this sliding velocity48.

Following previous work27,48, we assume that this dependence is

linear, so that

Wi = F0 (1− vi/v0) = F0 (1−∂t(∆i+1 −∆i)/v0) , (8)

where F0 is the load at stall and v0 is the zero-load velocity. Motor

kinetics on each filament i are modeled by

∂tni = kb(1−ni)− kuni exp{Wi/Fc}+νi(s, t). (9)

The first term corresponds to binding and the second term to un-

binding, with rate constants kb and ku, respectively. The term

νi(s, t) accounts for biochemical noise in the kinetics through a

white noise that is spatially and temporally decorrelated. The ex-

ponential models the rapid unbinding of motors when the motor

load Wi exceeds a critical value Fc. The above description ac-

counts for the bending elasticity of the flagellum, viscous forces

and torques as well as the internal forces and torques related to

the sliding of the flagellum, which in turn are driven by (and cou-

pled to) motor kinetics.

We now make several simplifications and approximations.

First, we eliminate the velocity v from (2a) by taking an s-

derivative, and noting that ∂sv = ∂td. Then, writing the sliding
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moment in terms of F
slide
i yields (Supplementary Information)

∂ 2
s F−∂sR ·R−1 ·∂sF = R ·∂td (10a)

∂sM
bend +d×F+mv −m

slide +
N

∑
i=1

∂sri ×F
slide
i = 0, where (10b)

m
slide(s, t) =

N

∑
i=1

ri × fi(s, t), (10c)

The last two terms in (10b) together constitute ∂sM
slide. The

quantity m
slide can be interpreted as the internal sliding moment

per length and depends locally on fi, scaling linearly with the

rotation angles φ j for small rotations. By contrast, the term in

(10b) involving F
slide
i depends nonlocally on fi [cf. (7)] and

scales quadratically with φ j. We will retain only the local con-

tribution below, mirroring the local theory used for viscous forces

and torques.

Table 1 Physical parameters and their dimensional values or their ranges,

taken from27,28,49.

Parameter Value/Range Description

L 50 µm flagellum length
a 100 nm axoneme cross-section radius
η 10−3 Pa · s viscosity of surrounding fluid
K 2×103 N ·m−2 elastic spring constant of nexin linkers
ρ 2×103 µm−1 number density of dyneins per length
F0 1−5pN stall load of dynein on microtubule
Fc 0.5−2.5pN motor undinding threshold force
v0 5−7 µm · s−1 zero-load velocity
kb 17.2 s−1 binding rate of dyneins
ku 2.8 s−1 unbinding rate of dyneins
B1 1.5×10−21 N ·m2 bending rigidity normal to major plane
B2 (0.25−1)B1 bending rigidity in major plane
J 3×10−21 N ·m2 twist rigidity
N 9 number of circumference doublets

Finally, we treat θ as continuous to homogenize the 9-filament

structure. Then, the sliding displacement ∆i(s, t) is replaced by

the continuous function of θ ,

∆(θ ,s, t) = a(φ2(s, t)cosθ −φ1(s, t)sinθ). (11)

We define a sliding force per surface area σ i = fi/(aδθ). Using (6)

and approximating differences between neighboring filaments in

terms of derivatives in θ , the continuous analog of σ i is

σ(θ ,s, t) =
1

a

(

Kδθ∂ 2
θ ∆−ρ∂θ (Wn)

)

d. (12)

The sliding moment per length then becomes [cf. (10b)]

m
slide =

∫ 2π

0
r(θ ,s, t)×σ(θ ,s, t)adθ =

2π2Ka2

N
(φ1e1 +φ2e2)

+
∫ 2π

0
ρaWn(e1 cosθ + e2 sinθ)dθ , (13)

The active motor fraction and motor load are similarly mapped to

continuous functions of θ .

All physical parameters of the model are listed in Table 1. As

noted earlier, the ª5-6 bridgeº favors bending about the e2 axis

over that about the e1 axis, so B2 ≤ B1. We non-dimensionalize

the problem by scaling lengths with the flagellum length L, time

by the motor kinetic timescale τ0 = (kb +ku)
−1,27,28 and the force

by B2/L2. This choice of scales identifies several dimensionless

parameters that are defined in Table 2. We then project the force

and torque balances onto the basis (e1, e2, d). This yields a system

of partial differential equations for φ1, φ2, φ3, F1, F2, F3 and n,

F ′′
1 −2φ ′

3F ′
2 +(1+χ)φ ′

2F ′
3 −

(

χ
(

φ ′
2

)2
+
(

φ ′
3

)2
)

F1

+
(

χφ ′
1φ ′

2 −φ ′′
3

)

F2 +(φ ′
1φ ′

3 +φ ′′
2 )F3 = Sp4∂tφ2, (14a)

F ′′
2 +2φ ′

3F ′
1 − (1+χ)φ ′

1F ′
3 +(χφ ′

1φ ′
2 +φ ′′

3 )F1

−
(

χ
(

φ ′
1

)2
+
(

φ ′
3

)2
)

F2 +
(

φ ′
2φ ′

3 −φ ′′
1

)

F3 =−Sp4∂tφ1 (14b)

F ′′
3 −

1+χ

χ
φ ′

2F ′
1 +

1+χ

χ
φ ′

1F ′
2 +

(

1

χ
φ ′

1φ ′
3 −φ ′′

2

)

F1

+

(

φ ′′
1 +

1

χ
φ ′

2φ ′
3

)

F2 −
1

χ

(

(

φ ′
1

)2
+
(

φ ′
2

)2
)

F3 = 0 (14c)

Bφ ′′
1 − (1−J )φ ′

2φ ′
3 −F2 −µKφ1

−µa

(

nc
1 +ζ

(

nc
+∂tφ1 +ns

2∂tφ2

))

= 0 (14d)

φ ′′
2 +(B−J )φ ′

1φ ′
3 +F1 −µKφ2

−µa

(

ns
1 +ζ

(

ns
2∂tφ1 +nc

−∂tφ2

))

= 0 (14e)

J φ ′′
3 +(1−B)φ ′

1φ ′
2 =

Sp4a2

4ξ⊥L2
∂tφ3, (14f)

∂tn = β (1−n)− (1−β )nexp{αW (θ ,s, t)}+ΛN (θ ,s, t) (14g)

W = 1+2ζ (∂tφ1 cosθ +∂tφ2 sinθ), (14h)

where primes denote partial derivatives with respect to s and we

have defined

nc
k = 2⟨ncos(kθ)⟩θ , ns

k = 2⟨nsin(kθ)⟩θ , nc
± = nc

0 ±nc
2. (15)

Here, the notation ⟨g⟩θ =
1

2π

2π
∫

0

g(θ)dθ stands for averaging with

respect to θ . The quantity ΛN in (14g) represents the derivative

of white noise with (dimensionless) variance Λ2 and is drawn

from a normal distribution with zero mean.

Table 2 Non-dimensional parameters of computational model (14).

Parameter Definition Representative value(s)

Sp L{8πηξ⊥/(B2τ0)}
1/4

10

µK 2π2Ka2L2/(NB2) 100

µa πρaF0L2/B2 104

ζ πa/(Nv0τ0) 0.2
β kbτ0 0.14
α F0/Fc 2
χ ζ⊥/ζ∥ 2

B B1/B2 1−10
J J/B2 2−5

These equations are subject to the conditions that the base
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of the flagellum (s = 0) is stationary (v = 0 =⇒ ∂sF = 0) and

clamped (without loss of generality, φi(0, t) = 0) and that the tip

s = L is force- and torque free (F = M = 0). Separating these

conditions into components yields

φi = F ′
i + εi jkφ jFk = 0, at s = 0, (16a)

∂sφi = Fi = 0 at s = L, (16b)

where εi jk is the Levi-Civita symbol, subscript indices take values

in {1,2,3} unless otherwise specified, and we use Einstein’s sum-

mation convention for repeated indices. The system (14) subject

to (16) form the coupled 3D flagellum model, which we solve

subject to initial conditions that remain to be specified.

All non-dimensional parameters are listed in Table 2. We distin-

guish three main non-dimensional parameters: (i) Sperm num-

ber Sp which is essentially the relative contribution of bending

forces to viscous forces, (ii) µa which measures activity of dynein

motors relative to bending forces, and (iii) bending anisotropy

B = B1/B2. We focus on the effects of these parameters on the

dynamics, while keeping the other quantities fixed.

3 Results and discussion

We solve the system (14) numerically with boundary conditions

(16) for Fi(s, t), φi(s, t) and n(θ ,s, t); the numerical implemen-

tation is detailed in the Supplementary Information. We use

these solutions to integrate (1a) and obtain the basis vectors

(e1,e2,d), which then yields the centerline of the flagellum as

x(s, t) =
∫ s

0 d(u, t)du. We also define a global coordinate system

(x,y,z) such that the local and global frames coincide at the base

s = 0.

In the absence of noise (Λ = 0), the system (14), (16) admits

the steady-state solution

φ
(eq)
i = F

(eq)
i = 0, n(eq) =

β

Γ
, where Γ = β +(1−β )eα . (17)

This static equilibrium corresponds to a straight flagellum whose

centerline coincides with the x axis. Noise in the motor kinetics

(14g) perturbs this equilibrium. We study conditions under which

these perturbations grow, and the beating patterns that emerge

as a consequence. We use the equilibrium solution (17) as the

initial condition for the results presented here, though we also

explore the sensitivity of the numerical solutions to initial condi-

tions (Supplementary Information section 3).

Below, we first discuss beating behaviors observed from numer-

ical solutions. In Sec. 3.2 we will then develop a linear stability

analysis, and obtain an analytic estimate of the threshold for the

onset of instability away from the equilibrium state.

3.1 Numerical results

At a fixed Sp, we find from numerical solutions that the static

equilibrium is robust to perturbations by noise for sufficiently

small motor activity µa. For µa beyond a Sp-dependent thresh-

old value, the static equilibrium becomes unstable and gives way

to periodic beating patterns. Beating patterns persist and change

as µa is increased further. Some of these features are qualita-

tively similar to observations in the 2D model of28, but in our 3D

model, they depend strongly on the new parameters B = B1/B2

and J = J/B2, giving rise to greater variety of beating patterns,

which we discuss below.

3.1.1 Isotropic flagella exhibit helical beating

We first consider an isotropic flagellum, that is, the bending stiff-

ness is identical along both bending axes: B1 = B2 (B = 1).

Unsurprisingly, the flagellum relaxes to its static equilibrium for

small motor activity µa. At sufficiently large µa, the flagellum

exhibits self-sustained beating, indicated by Figure 3 for two dif-

ferent combinations of Sp and µa. These beating patterns take the

form of helical traveling waves that propagate either from tip-to-

base (retrograde; Fig. 3A) or from base-to-tip (anterograde; Fig.

3B). The projections of the 3D waveforms onto different planes

make the direction of wave propagation more evident, and qual-

itatively resemble the results of the 2D model developed by28.

The chirality of the helical waves is not inherently biased in the

model and is set by noise in the motor kinetics.

Figure 4 shows the projection of the trajectory traced by the tip

of an isotropic flagellum in the yz plane for different combinations

of Sp and µa. The tip traces out mostly circular curves in the yz

plane reflecting the bending isotropy in both directions. The beat

amplitude (tip trajectories in Fig. 4 are drawn to scale) and the

direction of wave propagation depends on Sp and µa. The Sp-µa

space can be divided into four domains depending on the beating

dynamics. For low dynein activity (small µa) or a stiff flagellum

(large Sp), the flagellum relaxes to its equilibrium state over time,

as noted earlier (Figure 4, no move black dots). As µa increases

past a first threshold at a fixed Sp, the flagellum oscillates spon-

taneously with waves propagating from tip to base (retrograde)

(Figure 4, red circles in the tip-to-base domain). This first thresh-

old (Figure 4, black solid curve) is identified as a Hopf bifurcation

by a linear stability analysis (detailed later in section 3.2) and is

in good agreement with the computed patterns. Further increas-

ing µa at constant Sp yields a second threshold (Figure 4, red

dashed line) where a transition from retrograde (tip-to-base) to

anterograde (base-to-tip) (Figure 4, green circles in the base-to-

tip domain) wave propagation occurs. These behaviors are qual-

itatively similar to the 2D model results of28, though they are

quantitatively different since bending modes in either direction

are nonlinearly coupled to each other in our 3D model.

We observe that the beating amplitude (represented by the

radii of the circular tip trajectories in Fig. 4) increases with µa

in the tip-to-base regime after passing the stability threshold, for

each Sp. Crossing the second threshold between the tip-to-base

and base-to-tip domains causes a drop in amplitude, and then a

gradual increase again with increasing µa.

Finally, for the combination of small Sp and large µa (very flex-

ible flagella with high motor activity), we find that the beating

pattern is sensitive to initial conditions. Within this ªinitial condi-

tion (IC)-sensitiveº domain, applying different initial conditions

(for example, initially stretching or compressing the flagellum)

leads to either base-to-tip or tip-to-base beating dynamics that are

stable against noise; see supplement figure S1. This region also

contains a few parameter combinations with a large-amplitude
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a model may deepen our understanding of the swimming dynam-

ics of eukaryotic microorganisms.
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