2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) | 978-1-6654-7340-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/ANTS56424.2022.10227763

2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)

Dynamic network simulation using DeepRMSA in
Elastic Optical Networks

Boyang Hu, Mohammad Jafar Majid and Byrav Ramamurthy
School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA
Email: {bhu,mmajid,byrav}@cse.unl.edu

Abstract—In optical networks, simulation is a cost-efficient
and powerful way for network planning and design. It helps
researchers and network designers quickly obtain preliminary
results on their network performance and easily adjust the
design. Unfortunately, most optical simulators are not open-
source and there is currently a lack of optical network simulation
tools that leverage machine learning techniques for network sim-
ulation. Compared to Wavelength Division Multiplexing (WDM)
networks, Elastic Optical Networks (EON) use finer channel
spacing, a more flexible way of using spectrum resources, thus
increasing the network spectrum efficiency. Network resource
allocation is a popular research topic in optical networks. In
EON, this problem is classified as Routing, Modulation and
Spectrum Allocation (RMSA) problem, which aims to allocate
sufficient network resources by selecting the optimal modulation
format to satisfy a call request. SImEON is an open-source sim-
ulation tool exclusively for EON, capable of simulating different
EON setup configurations, designing RMSA and regenerator
placement/assignment algorithms. It could also be extended
with proper modelings to simulate CapEx, OpEx and energy
consumption for the network. Deep learning (DL) is a subset
of Machine Learning, which employs neural networks, large
volumes of data and various algorithms to train a model to solve
complex problems. In this paper, we extended the capabilities
of SIimEON by integrating the DeepRMSA algorithm into the
existing simulator. We compared the performance of conventional
RMSA and DeepRMSA algorithms and provided a convenient
way for users to compare different algorithms’ performance and
integrate other machine learning algorithms.

Keywords—Simulator for elastic optical networks (SimEON),
Deep Reinforcement Learning, Routing, Modulation and Spec-
trum Allocation (RMSA) and Dynamic Network Simulation.

I. INTRODUCTION

Elastic Optical Networks (EON) descend from traditional
Wavelength Division Multiplexing (WDM) networks and pro-
vide better spectrum allocation flexibility and scalability. EON
is designed to handle heterogeneous bandwidth demands. The
resource allocation problems are classified as Routing and
Spectrum Allocation (RSA) and Routing, Modulation and
Spectrum Allocation (RMSA) problems, similar to Routing
and Wavelength Allocation (RWA) in the WDM network.
These problems include finding a suitable route for a network
lightpath to traverse while assigning a sufficient spectrum
based on the selected modulation format. Spectrum allocation
must abide by the spectrum continuity and contiguity con-
straints in EON. The spectrum continuity constraint ensures
that the exact frequency slots of spectrum allocated for a
lightpath must be the same for all network links associated
with the lightpath. As for the spectrum contiguity constraint,

all frequency slots of the spectrum allocated must be adjacent
to the lightpath’s network links. These constraints must be
satisfied to allocate spectrum to a requested lightpath properly,
or the request will be blocked.

Machine Learning techniques have been extensively studied
and applied in different fields and proved efficient in solving
complex problems. Deep learning (DL) is an area of machine
learning that aims to mimic the behavior of the human brain
using neural networks with three or more layers and "learn"
from large quantities of data. At the same time, Reinforcement
Learning (RL) uses agents to interact with the environment
and learn optimal decisions based on continuous feedback
to maximize a reward. Deep Reinforcement Learning (DRL)
combines DL and RL, which leverages deep neural networks
instead of the traditional Q-table used in regular RL to solve
complex problems that cannot be dealt with using classic
RL. Optical network researchers have used ML techniques
in different topics, including optical network control and
resource management, network monitoring and survivability.

Optical networking researchers have had extensive research
on routing and resource management. There are mainly two
types of conventional routing algorithms: adaptive and non-
adaptive. The Minimum Hops (MH) and Shortest Path (SP)
are two examples of non-adaptive algorithms derived from
Dijkstra’s minimum cost algorithm. The route is chosen based
only on the topology (minimum number of nodes/minimum
distance) and does not take into account the network condi-
tions. The adaptive routing algorithms, however, make routing
decisions based on topology and network traffic dynamically.
The authors in [1] proposed an adaptive RSA algorithm that
uses sequential search (sequential fitting) and adaptive routing
to determine the near-optimal use of spectrum based on the
history of established connections. Length and Occupation
Routing (LOR) and Power Series Routing (PSR) proposed
in [2] consider the network load and are capable of load bal-
ancing between the links, which effectively lower the blocking
probability. Similar to RSA algorithms, RMSA algorithms are
proposed to solve the resource allocation problem in an EON
scenario.

SimEON [3] is an open-source EON simulation tool de-
signed to simulate transparent, translucent and opaque elastic
optical networks. It provides different routing and wavelength
assignment algorithms by default and is capable of simulating
the network blocking probability under dynamic traffic condi-
tions with/without regenerators in the network. We intend to
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enable SImEON to implement machine learning algorithms
in simulations and provide an integrated simulation interface
with a seamless experience for users. Researchers can easily
simulate and compare the performance of conventional RMSA
algorithms and machine learning algorithms in one place. Our
contributions are the following. 1) Integration of SImEON and
DeepRMSA algorithm. 2) Provide an option for users to easily
find out the best combination of algorithms for their network
topology and network load in terms of blocking probability. 3)
Run extensive experiments and compare different conventional
and DRL algorithms’ performance and 4) Identify the scenario
where DRL outperforms the traditional algorithm.

The rest of the paper is organized as follows: In Section II,
we provide a background of EON, DL and RMSA problems
and discuss some EON simulators in the community. In Sec-
tion III, we detail how we integrate SImEON and DeepRMSA.
We present our experimental setup in Section IV and the
results on different network scenarios in Section V. Section
VI concludes our work and we discuss our future work in
Section VII.

II. BACKGROUND AND RELATED WORK

Simulation tools play an important role in optical network
design as access to real testbeds is often limited. Building
a physical testbed for experiments usually requires vast in-
vestments, is challenging to adjust and is inconvenient to
test new features or algorithms. Currently, to our knowledge,
no simulator provides both classical methods and machine
learning methods to simulate the RMSA problem in EON.

There are few EON simulators available in the community.
The work in [4] is an elastic networks OMNeT++ based
simulator. The uniqueness of this tool is that it can increase
or decrease the amount of spectrum allocated to a given light
path. The work in [5], can work on both static and dynamic
traffic scenarios. It solves the RSA, RMSA and regenerator
placement problem. The work in [6] is capable of working
with fragmentation and defragmentation in dynamic network
scenarios. Net2Plan [7] is extensively used for WDM optical
networks design and network performance simulation. While
the work in [8] is an extension to Net2Plan, it aims to allocate
resources equitably depending on service data rates, ensuring
a similar blocking performance for different services in the
EON context.

The RMSA algorithm was first presented by [9], which
examined the routing problem in EON and showed the benefits
of incorporating slices’ status and spectral efficiency into
the path computation function. Since then, numerous RMSA
algorithms have been developed to solve the famous problem
from different perspectives. The Joint RMSA algorithm and
Separate RMSA algorithm [10] are proposed to support the
traffic multicasting in EON, based on Integer Linear Program-
ming (ILP) formulation. Though their accuracies are high,
the computational complexities made these approaches not
scalable to large problems. Thus, Heuristic RMSAs [11]-
[13], which are based on a genetic algorithm (GA) [14] was
proposed to make the computation feasible and support both

static and dynamic traffic. The authors in [15] developed
RMSA algorithms that combine the metric of path disaster
availability with the metric of spectrum usage. Simulated
results show that their proposed algorithms provide both
efficient spectrum utilization and resilience in the event of
multiple node failures. DeepRMSA [16] is the first RMSA
framework in EON that leverages deep reinforcement learning.
The Deep neural networks (DNN) in the framework are
trained progressively with experiences from dynamic lightpath
provisioning to learn the optimal online RMSA policies.

A. SimEON

SimEON [3] is a simulator for elastic optical networks
written in C++. It generates dynamic traffic following Poisson
process and builds physical device models including optical
fibers, optical amplifiers, electronic regenerators, splitters and
switching components. Physical impairments, capital expen-
diture (CapEx), operational expenditure (OpEx) and energy
consumption are also considered in the network simulation.

SimEON is designed to simulate transparent, translucent
and opaque elastic optical networks. The transparent optical
networks do not involve electronic regenerators. The translu-
cent optical networks mean some nodes can convert an optical
signal to an electronic domain and back to the optical domain
after re-amplifying and reshaping. Opaque implies all network
nodes have plenty of electronic regenerators. The transparent
network scenario involves having one transparent segment
route for all network links associated with the lightpath. The
same principles of RMSA along with other functionality apply
to the one segment used for the lightpath. A translucent optical
network breaks the route into multiple transparent segments.
In this case, each segment route conducts RMSA and other
functionalities in the simulation.

SimEON is a versatile simulation tool which can be used
for designing routing, spectrum assignment, regenerator place-
ment and regenerator assignment algorithms. In addition, it
can investigate the impacts of several network parameters on
the network performance.

During a simulation, a call request will be blocked if
there is a lack of resources or if the quality of transmission
is deficient. The amount of call requests is defined by the
user. SINEON’s modular architecture design facilitates the
process of extending its capabilities. Fig. 1 shows the original
SimEON command line interface.

B. DeepRMSA

DeepRMSA [16] is the first RMSA algorithm that leverages
deep reinforcement learning to solve the resource allocation
problem in EON. It utilizes powerful DRL techniques upon
a software-defined networking architecture. DRL employs
agents and DeepRMSA uses actor-learners related to the
agents used in DRL. Actor-learners interact with the envi-
ronment and make decisions based on the policy generated
by the Deep neural networks (DNN). DNN plays a significant
role in DRL as it takes in input data featured engineered.
The input data traverses through the hidden layers of the
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1 3 tests from TransmittanceTest (@ ms total)

1 test from SpectralDensityTest
] SpectralbDensityTest.Constructors
| SpectralDensityTest.Constructors (@ ms)
] 1 test from SpectralDensityTest (8 ms total)

--] Global test environment tear-down

==] 42 tests from 16 test suites ran. (82 ms total)
ED ] 42 tests.

* % * STMULATOR OF SLICE OPTICAL NETWORKS * * *

-> Define a simulation to run.

(0) Evolutionary First Fit Optimization
(1) Transparency Analysis

(2) MORP-30 Regenerator Placement

(3) Network Load Variation

(4) Power Series Routing PSO Optimization
(5) Number of Regenerators

(6) Power Ratio Threshold Vvariation

(7) Statistical Trend Analysis

Fig. 1: The Original Menu Option of SIimEON interface

neural networks, where it would then output a policy. The
policy is a probability distribution of an action given by
the state. Policies dictate what action an actor-learner should
take. The goal of DeepRMSA is to find the most efficient
RMSA policy for each requested lightpath and maximizes
the overall rewards received. The actor-learner continues to
learn through a reward system. The modeling components
of DeepRMSA include the state, action, reward and training.
The state includes all the information related to a request and
the current network environment; for example, the amount
of spectrum frequency slots a request needs, the amount
available, its position, possible routing paths, etc.

DeepRMSA will perform a specific action based on the
received state data. The goal of the action is to satisfy the
RMSA properties generated for a lightpath. The reinforcement
framework allows actor-learners to learn by a reward received
based upon the particular action taken. Rewards will enable
actor-learners to make more suitable decisions. These model-
ing components have a significant role in the training phase.
Essentially, the training phase improves the performance of
DeepRMSA by tuning the DNN. The outcomes of the model-
ing components are all stored in a buffer. Once the experience
buffer reaches a certain threshold, it uses the experience from
previous sample requests, train the DNN further and improves
the overall policy in a window-based method. The policy will
continue to be optimized as more data from the experience
buffer is applied to the DNN. When the experience buffer
relinquishes the data, the process starts again.

III. INTEGRATION OF SIMEON AND DEEPRMSA

In this section, we discuss how we integrate the DeepRMSA
algorithm into SImEON and other features that we provide to
enhance the user experience.

SimEON is written in C++ and engineered modularly,
simplifying our process of extending its capabilities. Figure 2
shows the new menu options we created in SimEON. The new
menu is engrained in SImEON and its compilation is adjusted
to be the same as the previous menu options. The first new
menu option (8) is the integration with DeepRMSA algorithm.
We leverage the EON environments created by Optical-RL-
Gym [17] and incorporated its DRL algorithms into SimEON.

The components related to this new feature, such as the classes
and functions we created for it are modified to undergo the
DRL simulation. In order to use the enhanced SimEON tool,
users need first to download the Optical-RL-Gym and install
the necessary dependencies.

In our integration process, the initial challenge is to ensure
that both SIMEON and DeepRMSA utilize the same topology.
SimEON and Optical-RL-Gym use different formats for the
network topology files. To smooth the user experience, we
created a script that allows users to define their network
topology (nodes and links information) and automatically
convert it into two topology files that SImMEON and Optical-
RL-Gym would understand. Since SImEON and Optical-RL-
Gym use the same dynamic traffic generation method, there is
no need to make changes. A sample DeepRMSA simulation
output is shown in Fig. 3.

Another feature we added to SimEON is named Retrieve
Combination of Algorithms based on the user-defined network
topology, network load and the number of calls. The simulator
will automatically try all the combinations of conventional
routing and spectrum assignment algorithms and provide users
with the best and worst possible combinations in terms of
the blocking probability. Such an option enhances the user
experience by saving the experiment setup time, organizing
the results in structured folders and providing the users with
the most interesting results at one time.

| TransmittanceTest.GaussianPassbandFilterTest (0 ms)
] TransmittanceTest.GaussianStopbandFilterTest

| TransmittanceTest.GaussianStopbandFilterTest (@ ms)
| 3 tests from TransmittanceTest (@ ms total)

] 1 test from SpectralDensityTest

| spectralbensityTest.Constructors

| SpectralDensityTest.Constructors (0 ms)

] 1 test from SpectralDensityTest (6 ms total)

| Global test environment tear-down
==] 42 tests from 16 test suites ran. (50 ms total)
SE ] 42 tests.
* * % STMULATOR OF SLICE OPTICAL NETWORKS * * *

-> Define a simulation to run.

(0) Evolutionary First Fit Optimization
(1) Transparency Analysis

(2) MORP-30 Regenerator Placement

(3) Network Load Variation

(4) Power Series Routing PSO Optimization
(5) Number of Regenerators

(6) Power Ratio Threshold variation

(7) Statistical Trend Analysis

(8) Run Machine Learning in EON

) Retrieve Combination of Algorithms

Fig. 2: New SimEON command line interface

IV. EXPERIMENT

In this paper, we consider two well-known network topolo-
gies depicted in Fig. 4 and Fig. 5. These refer to the 14-node
NSF network topology and 11-node COST239 topology. For
both SimEON and Optical-RL-Gym, we applied the same
network settings and set the OSNR threshold to 14 dB.
Each fiber link could accommodate 100 frequency slots (FS).
For other network parameters, we use the default settings in
DeepRMSA paper. In order to study the performance between
different RMSA algorithms, we run extensive experiments
with different number of call requests using the two topologies
with different network loads (10,000 and 1,000,000 calls,
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ailable on your machine and could speed up CPU computations.
2021-08-15 14:46:15.088708: W tensorflow/core/platform/cpu_feature guard.cc:45]
The TensorFlow library wasn't compiled to use AvVX2 instructions, but these are a
vailable on your machine and could speed up CPU computations.
Starting agent @
Starting agent_1
Starting agent_2
/home /mohammad /Desktop/SimEON_Simulator /build-adamant-broccoli-Desktop-Debug/Dee
pRMSA_Agent.py:249: VisibleDeprecationWarning: Creating an ndarray from ragged n
ested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with di
fferent lengths or shapes) is deprecated. If you meant to do this, you must spec
ify 'dtype=object' when creating the ndarray
espisode buff = np.array(espisode buff)
Blocking Probability = ©.286
Mean Resource Utilization = 0.3677781818181818
Blocking Probability = 0.291
Mean Resource Utilization = 0.3681488636363637
Blocking Probability = ©.279
Mean Resource Utilization = 8.365525
Blocking Probability = 0.291
Mean Resource Utilization = ©.3662929545454546
Blocking Probability = ©.292
nean Resource Utilization = 0.37187613636363637

Fig. 3: Running DeepRMSA algorithm in SimEON

respectively). Regenerator placement algorithms are also in-
vestigated to understand their impact in an optical network.
The corresponding results are presented in the next Section.

Fig. 4: 14-node NSFNET Topology (link length in kilometers)

Fig. 5: 11-node COST239 Topology (link length in kilometers)

V. RESULTS AND DISCUSSION

In this section, we discuss our findings when comparing the
different RMSA algorithms in SimEON.

A. Comparison between conventional RMSA algorithms

We leverage our combination experiments feature to run
different RMSA algorithm combinations simultaneously. We
aim to find the overall best algorithm combination for our net-
work topology. Fig. 6 and Fig. 7 show the blocking probability
of different RMSA algorithms with 1,000,000 call requests,
using COST239 topology and Dijkstra/BellmanFord algorithm
fixed, respectively. We can see a clear performance distinction
between different conventional algorithms. Furthermore, the
FirstFit, ExactFit and BestFit algorithms seem to have the
same level of performance in blocking probability. There is
not much difference in using Dijkstra or Bellman-Ford for
the routing algorithm for our experiment. Thus we consider
these two have the same performance. As the network load
increases, the blocking probability increases as well.

Dijkstra and Spectrum Allocation Algorithms (COST239 Topology)

0.06 4 — Dijkstra BestFit
- Dijkstra ExactFit
—— Dijkstra FirstFit
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Fig. 6: Blocking probability of different RMSA algorithms
(with Dijkstra algorithm fixed, COST239 topology, 1,000,000
calls)

B. Comparison between conventional RMSA and DeepRMSA
algorithms

Fig. 8 shows the DeepRMSA agent training process. We
use the same network parameter settings in the [16]. We
can see that the blocking probability of the DeepRMSA
algorithm is around 0.35 at the beginning and keeps dropping
as the training process continues. After training with 500,000
requests, the DeepRMSA blocking probability is relatively
stable and stays around 0.02. In our experiments that compare
different conventional algorithms and DeepRMSA algorithms,
we average the last 100 blocking probability results from
DeepRMSA for different network loads and use that to plot
our results. We run our experiments with the two topologies
mentioned in Section IV.
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Bellman-Ford and Spectrum Allocation Algorithms (COST239 Topology)
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Fig. 7: Blocking probability of different RMSA algorithms
(with BellmanFord algorithm fixed, COST239 topology,
1,000,000 calls)

DeepRMSA Training Process COST239 Topology
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Fig. 8: Blocking probability of DeepRMSA algorithms
(COST239 topology, first 2,00,000 calls in our experiment)

For COST239 topology, Fig. 9 and Fig. 10 show the block-
ing probability of different RMSA algorithms with 100,000
call requests and Dijkstra/BellmanFord algorithm fixed, re-
spectively. We can see that the FirstFit and ExactFit algorithms
work best for the conventional algorithms and the RandomFit
and LeastUsed algorithms perform worst in terms of blocking
probability. For all conventional algorithms, the blocking
probability increases as the network load increases from 100
to 500 erlangs. On the other hand, the blocking probability
of the DeepRMSA algorithm is around 0.035 regardless of
the network load and it outperforms all the conventional
algorithms when the network load is heavy.

For NSFNET topology, Fig. 11 and Fig. 12 show very
similar trends as we get from COST239 topology. The FirstFit
and ExactFit algorithms still perform best and the RandomFit
and LeastUsed algorithms perform worst in terms of blocking

Dijkstra, DeepRMSA, and Spectrum Allocation Algorithms (COST239 Topology)

0.06 1 — Beliman-Ford BestFit

- Bellman-Ford ExactFit
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Fig. 9: Blocking probability of different RMSA algorithms
(with Dijkstra algorithm fixed, COST239 topology, 100,000
calls)

Bellman-Ford, DeepRMSA, and Spectrum Allocation Algorithms (COST239 Topclogy)
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Fig. 10: Blocking probability of different RMSA algo-
rithms (with BellmanFord algorithm fixed, COST239 topol-
ogy, 100,000 calls)

probability. The blocking probability increases dramatically
as the network load increases. The difference between these
two topology results is that the overall blocking probability
is much higher in the NSFNET topology. This is mainly
because the NSFNET topology contains more nodes. The
blocking probability of the DeepRMSA algorithm is around
0.05 regardless of the network load. It outperforms all the
conventional algorithms when the network load is around
300 erlangs, which shows the superiority of the DeepRMSA
algorithm for more complex topologies and heavy network
loads.

VI. CONCLUSIONS

Our work enhances SimEON by integrating it with the
DeepRMSA algorithm. We also provide a convenient way for
users to test out different algorithms and get the best and
worst algorithm combinations in terms of blocking probability.
Such options allow users to evaluate different RMSA algo-
rithms and create new reinforcement learning environments
and algorithms for EON by leveraging the functionality pro-
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Dijkstra, DeepRMSA, and Spectrum Allocation Algorithms (NSFNET Topology)
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Fig. 11: Blocking probability of different RMSA algorithms
(with Dijkstra algorithm fixed, NSFNET topology, 100,000
calls)

Bellman-Ford, DeepRMSA, and Spectrum Allocation Algorithms (NSFNET Topology)
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Fig. 12: Blocking probability of different RMSA algo-
rithms (with BellmanFord algorithm fixed, NSFNET topology,
100,000 calls)

vided by the Optical-RL-Gym tool. Our experimental results
show that for the conventional algorithms, the FirstFit and
ExactFit algorithms perform best in blocking probability based
on our network settings and the RandomFit and LeastUsed
algorithms perform worst. The blocking probability increases
dramatically as the network load increases. The DeepRMSA
algorithms outperform the conventional algorithms when the
network load is high, showing deep reinforcement learning’s
superiority in solving complex problems.

VII. FUTURE WORK

The current DeepRMSA simulation does not consider phys-
ical devices such as amplifiers and regenerators in the envi-
ronment like SImEON does. Therefore, in our future work,
we would like to create different environments for EON in
the Optical-RL-Gym tool and propose our own DRL-enabled
RMSA algorithm for further evaluation. We also want to use
machine learning techniques to solve the regenerator place-
ment problem in EON and compare the performance between
the conventional algorithms and ML-enabled algorithms in

the SIMEON tool. Thus, users would have more freedom to
choose from different RMSA algorithms and test their own
topologies in different settings.
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