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Abstract

Fungi have evolved over millions of years and their species diversity is predicted to be the second largest on the earth. Fungi 

have cross-kingdom interactions with many organisms that have mutually shaped their evolutionary trajectories. Zygomycete 

fungi hold a pivotal position in the fungal tree of life and provide important perspectives on the early evolution of fungi from 

aquatic to terrestrial environments. Phylogenomic analyses have found that zygomycete fungi diversified into two separate 

clades, the Mucoromycota which are frequently associated with plants and Zoopagomycota that are commonly animal-as-

sociated fungi. Genetic elements that contributed to the fitness and divergence of these lineages may have been shaped by 

the varied interactions these fungi have had with plants, animals, bacteria, and other microbes. To investigate this, we per-

formed comparative genomic analyses of the two clades of zygomycetes in the context of Kingdom Fungi, benefiting from 

our generation of a new collection of zygomycete genomes, including nine produced for this study. We identified lineage- 

specific genomic content that may contribute to the disparate biology observed in these zygomycetes. Our findings include 

the discovery of undescribed diversity in CotH, a Mucormycosis pathogenicity factor, which was found in a broad set of zy-

gomycetes. Reconciliation analysis identified multiple duplication events and an expansion of CotH copies throughout the 

Mucoromycotina, Mortierellomycotina, Neocallimastigomycota, and Basidiobolus lineages. A kingdom-level phylogenomic 

analysis also identified new evolutionary relationships within the subphyla of Mucoromycota and Zoopagomycota, including 

supporting the sister-clade relationship between Glomeromycotina and Mortierellomycotina and the placement of 

Basidiobolus as sister to other Zoopagomycota lineages.
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Significance

Fungal phylogeny and the evolution of their early-diverging lineages have been conundrums. The study presents phy-

logenomic analyses across Kingdom Fungi using the largest collection of zygomycete genomes to date, which identified 

new phylogenetic relationships of the six subphyla. Phylum-specific genome content was also revealed to support the 

independent evolution of the two zygomycete phyla, including the evolution of the CotH, an important pathogenicity 

factor of Mucormycosis. Our work provides a large genomic resource for an understudied fungal group as well as a wide 

spectrum of fundamental views on the evolution of fungal pathogens with the global climate changes.

Introduction

Fungi play diverse ecological roles and interact with various 

organisms in both terrestrial and aquatic environments 

(James, Kauff, et al. 2006; Stajich et al. 2009; Spatafora 

et al. 2017; Fisher et al. 2020). Since their divergence 

from a common ancestor with animals over 1 billion years 

ago, fungi have evolved complex relationships with other 

organisms, including animals, bacteria, plants, protists, 

and other fungi (Currie et al. 2003; Frey-Klett et al. 2011; 

Parfrey et al. 2011; Gruninger et al. 2014; Uehling et al. 

2017; Wang et al. 2018; Chambouvet et al. 2019; Malar 

et al. 2021). As a distinct eukaryotic kingdom, fungi are 

characterized by chitinous cell walls and osmotrophic feed-

ing style, although neither of these characters is diagnostic 

for the kingdom (Richards et al. 2017; James et al. 2020). 

The versatile enzymes secreted by fungi facilitate their suc-

cess in utilization of diverse polysaccharides and are key 

members of ecosystems supporting nutrient cycling pro-

cesses (Hori et al. 2013; Chang et al. 2015; Solomon 

et al. 2016; Richards and Talbot 2018; Chang et al. 

2022). Zygomycete fungi are a historically enigmatic group 

as their diversity and phylogenetic placement on the fungal 

tree of life remained somewhat cryptic based on morpho-

logical characters alone. The lineages emergence coincides 

with major transition of fungi from aquatic environment to 

terrestrial ecologies, which was characterized by the evolu-

tionary loss of the flagellum (James, Kauff, et al. 2006; 

James, Letcher, et al. 2006; Chang et al. 2021). The zygo-

mycete fungi are recognized by their gametangial conjuga-

tion, production of zygospore, and coenocytic aseptate or 

septate hyphae (White et al. 2006; Hibbett et al. 2007; 

Spatafora et al. 2017; Naranjo-Ortiz and Gabaldón 2020). 

Nevertheless, zygospore structures have not been observed 

for most members of zygomycete fungi due to their cryptic 

sexual stage or lack of appropriate culture approaches. 

Zygomycete fungi were found to be paraphyletic based 

on genome-scale evidence; as a result, two new phyla 

(Mucoromycota and Zoopagomycota) were established to 

accommodate the current members (Spatafora et al. 

2016). However, incomplete sampling of zygomycete 

lineages has made resolution of the origin of terrestrial fun-

gi difficult to resolve with standard phylogenetic ap-

proaches (Chang et al. 2021; Li et al. 2021).

Mycological and fungal cell biology research has been his-

torically biased in favor of members of the Dikarya. Several 

established research model organisms have advanced fields 

of cell biology including the brewer’s yeast Saccharomyces 

cerevisiae, the fission yeast Schizosaccharomyces pombe, 

the red bread mold Neurospora crassa, and the filamentous 

mold Aspergillus nidulans. These model organisms contribu-

ted to an expansion in the understanding of eukaryotes. 

Fungi were among the some of the first sequenced eukary-

otic genomes (Goffeau et al. 1996; Wood et al. 2002; 

Galagan et al. 2003; Galagan et al. 2005). However, genom-

ic research on zygomycete fungi had to wait for the first 

Mucoromycotina genome to be sequenced in 2009 (Ma 

et al. 2009). The majority of our existing knowledge of 

zygomycetes has come from studies of arbuscular mycor-

rhizae (Glomeromycotina) or saprophytes classified in 

Mucoromycota, such as the black bread mold Rhizopus sto-

lonifer. Studies on the other zygomycete phylum, 

Zoopagomycota, are still rare, and the biodiversity of 

Zoopagomycota fungi is likely greatly underestimated and 

the research progress is largely hindered by the lack of axenic 

cultures. Culture independent studies have identified mul-

tiple zygomycetes as amplicon-based operational taxonomic 

units (OTUs) in unexplored ecological sites (Metcalf et al. 

2016; Picard 2017; Pombubpa et al. 2020; Reynolds et al. 

2021) and many “unknown” fungal OTUs will likely to be 

identified with the help of increasing fungal genomes, espe-

cially more representatives in the sparsely sequenced zygo-

mycete lineages.

To fill this gap, our recent emphasis on sequencing zygo-

mycete genomes through the ZyGoLife project (Spatafora 

et al. 2016; https://zygolife.org) has produced over a hundred 

genomes. The output has become the largest collection of 

genomic information for this fungal clade. Various techni-

ques were also developed and employed to obtain genome 

sequences of the uncultured zygomycete species. The break-

throughs include the single-cell genomics as well as 

fungus-host co-culture techniques (Ahrendt et al. 2018) 

and sequencing of metagenomes of sporocarps (Chang 

et al. 2019). Progress on genomics and related multi-omics 

has greatly expanded our knowledge on zygomycetes. This 

includes the identification of a mosquito-like polyubiquitin 

gene in a zygomycete fungus inhabiting the gut of 
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mosquitoes (Zancudomyces culisetae, Zoopagomycota) 

(Wang et al. 2016), the discovery of a photosynthetic myce-

lium using algal symbionts (Linnemannia elongata, 

Mortierellomycotina) (Du et al. 2019; Vandepol et al. 

2020), the isolation of cicada behavior modifying 

alkaloids from Massospora (Entomophthoromycotina) 

(Boyce et al. 2019), and the expansion of secondary metabol-

ite genes of amphibian gut fungi (Basidiobolus, 

Entomophthoromycotina) via Horizontal Gene Transfer 

from bacteria co-existing in the gastrointestinal tract 

(Tabima et al. 2020). However, a conundrum remains as to 

the evolutionary history of the zygomycete fungi. What evo-

lutionary processes were associated with the divergence of 

the ancestors of Mucoromycota and Zoopagomycota into 

species which primarily associate with plants and plant ma-

terial or animal and fungal hosts, respectively. We hypothe-

size that comparisons of gene content will enable 

identification of genetic elements that have contributed to 

their success in these ecologies and their reproductive strat-

egies and may be reflected in lineage-specific genes, those 

with expanded copy number or enrichment in specific 

pathways or processes that underpin adaptations to these 

hosts and environments. In addition, the construction of a 

well-resolved phylogenetic tree incorporating the expanded 

collection of zygomycete genomes is an important 

framework to consider the complex natural history and 

relationships among these diverse fungi. Our work has con-

tributed to the generation of 131 recent zygomycete gen-

omes (supplementary table S1, Supplementary Material

online), which were used to investigate the evolution and 

cryptic genetics behind the biology of these early diverging 

fungi.

The focus on these phyla is motivated by not only under-

standing their ecological roles and history, but also in the 

context of the increase in Mucormycosis, a deadly 

human-infectious disease, that has risen in prevalence 

and public attention due to high infection rates and co- 

morbidity during the COVID-19 pandemic (Garg et al. 

2021; Revannavar et al. 2021). Mucormycosis is caused 

by members of Mucoromycotina, in particular many genera 

of the Mucorales fungi (Soare et al. 2020). We cataloged 

the prevalence of Mucormycosis pathogenicity factors 

across Mucorales genomes and profiled their evolutionary 

conservation among members of the Fungal Kingdom. 

We identified the genes for the Mucormycosis invasin fac-

tor in three Mortierellomycotina species as well 

(Dissophora ornate, Lobosporangium transversale, and 

Mortierella species), which all share a highly similar protein 

motif associated with the disease caused by Mucorales fun-

gi indicating that these fungi may have additional potential 

for mammalian infection and the more ancient nature of 

this factor within these fungi. Our study highlights the im-

portance of research on zygomycetes to characterize the 

unique and shared molecular components of their biology 

that can be examined as more genome sequences become 

available. The phylogeny with improved resolution will en-

hance the study of the evolutionary relationships for both 

organismal and molecular genetics of these important 

fungi.

Results

Phylogenetic Relationships and Genome Statistics of 
Zygomycete Fungi

Collaborative efforts to sequence fungi have generated the 

131 zygomycete genomes presented in this study and the 

relationships among these species have remained an 

open research question. Most of the assembled zygomy-

cete genomes were assessed to have BUSCO scores higher 

than 80% (fig. 1a, supplementary table S1, Supplementary 

Material online). The phylogenetic analysis using all avail-

able zygomycete genomes and 50 additional representa-

tives from other fungal clades (fig. 1a and supplementary 

fig. S1a, Supplementary Material online) provided an up-

dated species tree representing the placement of these fun-

gi in the kingdom. At the phylum level, the reconstructed 

phylogeny exhibits the same topology as presented in 

Spatafora et al. (2016). That is, Zoopagomycota forms a sis-

ter group to the clade comprising Mucoromycota and 

Dikarya, and the traditional zygomycete fungi 

(Mucoromycota and Zoopagomycota) remain paraphyletic. 

The increased sampling size and new set of phylogenetic 

markers provide additional confidence in these arrange-

ments. This is in contrast to a kingdom-wide study that 

also uses protein-coding genes from BUSCO data sets sug-

gests that zygomycetes could still be monophyletic with a 

different sampling strategy (Li et al. 2021). It should be 

noted that the marker sets used in this study (fungi_odb10 

with 758 markers) and Li et al. (fungi_odb9 with 290 mar-

kers) differ, as well as the strategies to extract the hits—pro-

tein searches against genome annotations in this study and 

BUSCO predicted gene models in Li et al. Regardless of 

whether zygomycetes are paraphyletic or monophyletic, it 

is not controversial that Mucoromycota and 

Zoopagomycota are monophyletic phyla. At the subphylum 

level, however, new phylogenetic relationships were recov-

ered with consistency in both the comprehensive tree (fig. 

1a and supplementary fig. S1a, Supplementary Material on-

line) and the backbone tree (fig. 2a and supplementary fig. 

S1b, Supplementary Material online). For example, 

Glomeromycotina grouped with Mortierellomycotina in-

stead of being the earliest branch within Mucoromycota 

(Spatafora et al. 2016). Basidiobolus members were found 

grouped within Entomophthoromycotina (Spatafora et al. 

2016); however, they were found as a sister lineage to 

the rest of the Zoopagomycota in this study (figs. 1a and 

2a, and supplementary fig. S1, Supplementary Material on-

line). The present subphylum-level classification received 

Genome Biol. Evol. 15(4) https://doi.org/10.1093/gbe/evad046 Advance Access publication 17 March 2023                                      3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
b
e
/a

rtic
le

/1
5
/4

/e
v
a
d
0
4
6
/7

0
7
9
9
6
4
 b

y
 g

u
e
s
t o

n
 2

3
 S

e
p
te

m
b
e
r 2

0
2
3

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad046#supplementary-data
https://doi.org/10.1093/gbe/evad046


Wang et al.                                                                                                                                                                      GBE

full bootstrap supports (100/100) in the comprehensive tree 

(fig. 1a), although gene/site concordance factors are rela-

tively low (supplementary fig. S1a, Supplementary 

Material online). Tree topologies are identical in both the 

comprehensive (fig. 1a) and the backbone tree (fig. 2a). 

Two nodes within Zoopagomycota clade received relatively 

low support values in the backbone tree (82/100, fig. 2a); 

however, both were fully supported by bootstrap values 

in the comprehensive tree (supplementary fig. S1a, 

Supplementary Material online).

(a)

(b)

FIG. 1.—Phylogenetic relationships and genome statistics of zygomycete fungi. (a) The maximum-likelihood tree was inferred from a phylogenomic data 

set of 617 protein sequences identified in the included 181 genomes. Branches of Mucoromycota and Zoopagomycota were colored in green and red sep-

arately, while tip labels were in the color scheme according to the subphyla information. The bootstrap supports are indicated on each node relatively. Tracks 

from the inside to outside are mapped based on the BUSCO scores, protein-coding gene numbers, and genome size of included zygomycete fungi (detailed 

bootstrap values, concordance factors, and branch lengths are shown in supplementary fig. S1a, Supplementary Material online). (b) The density of protein- 

coding genes in each genome was plotted using genome sizes on the x-axis against the gene counts on the y-axis. Each dot was colored based on their phylo-

genetic placement shown in the legend.
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Our results suggest that the saprobe, Calcarisporiella 

thermophila, is sister to the rest of the Mucoromycotina. 

Plant symbionts like Bifiguratus, Endogone, and 

Jimgerdemannia form a monophyletic clade which was 

placed between C. thermophila and Mucoromycotina (fig. 

1a). Members of saprobes, pathogens, and mycoparasites 

were joined in more derived groups of Mucoromycotina.

In the Kickxellomycotina clade, the mycoparasite, Dimargaris 

cristalligena, is sister to the other members. Ramicandelaber 

brevisporus follows and leads to two separate monophyletic 

clades composed of insect symbionts (e.g., Furculomyces and 

Smittium) and soil saprobes (e.g., Coemansia, Kickxella, and 

Martnesiomyces). Both clades (insect symbionts and soil sap-

robes) are on relatively long branches implying early divergent 

evolution and underexplored biodiversity (fig. 2a and 

supplementary fig. S1, Supplementary Material online). Insect 

pathogens were grouped together on a separate lineage, 

Entomophthoromycotina, forming a sister clade to 

Kickxellomycotina (figs. 1a and 2a). The three included 

Conidiobolus species support a paraphyletic genus with the C. 

coronatus monophyletic with C. incongruus, while C. throm-

boides was more closely related to Zoophthora radicans and 

Entomophthora muscae. Zoopagomycotina is monophyletic 

and sister to the joined group of Entomophthoromycotina (ex-

cluding Basidiobolus) and Kickxellomycotina (figs. 1a and 2a).

The density of genes arranged in the genome of zygomy-

cete fungi exhibited varying patterns among subphyla 

which was observed in plots of gene counts against genome 

sizes (fig. 1b). Most zygomycete fungi have genome sizes 

ranging from 20 to 100 Mb and gene counts range from 

5 to 20 k. The Mucoromycotina fungi have relatively similar 

genome sizes with an average of 39 Mb, ranging from 19 to 

75 Mb (excluding Endogone and Jimgerdemannia due 

to genome incompleteness), but gene counts vary from 

6 to 21 k. The soil saprobes in Kickxellomycotina and the 

small animal associates in Zoopagomycotina have small gen-

ome sizes (10–20 Mb) and gene counts (4–8 k). On the other 

hand, Glomeromycotina fungi tend to have large genome 

sizes (>100 Mb) with the most abundant gene numbers 

(20–30 k) in all zygomycete fungi, which are among the lar-

gest fungal genome sizes sequenced to date. As an extreme 

case, the genome sizes of Entomophthoromycotina mem-

bers exhibit the widest range and can be as large as 1.2 Gb 

according to the existing genome assemblies; however, their 

gene counts (9–23 k) are more modest. One recent genome 

announcement of Entomophthoromycotina members, 

Massospora cicadina, presents a large genome size (1.5 Gb) 

dominated by transposable elements and with fewer genes 

(7,532) (Stajich et al. 2022).

Orthologous Gene Families and Pfam Domains in 
Zygomycete Fungi

The 80 species used for the backbone tree were examined 

for orthologous gene families across the Kingdom Fungi. 

(a) (b) (c) (d) (e)

FIG. 2.—Phylogenetic backbone and highlighted genome content in zygomycete fungi. Zygomycete genomes that are well assembled (BUSCO score 

above 80%) and represent unique phylogenetic positions were selected to reconstruct the backbone phylogenomic tree. (a) The backbone phylogenomic 

tree of zygomycetes includes 80 taxa (rooted with Drosophila melanogaster). All bootstrap values (out of 100) were labeled on the branches (concordance 

factors are shown in supplementary fig. S1b, Supplementary Material online). (b–e) Protein family domains found with striking patterns in zygomycete fungi 

are plotted with the copy numbers individually.
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We identified 8,208 orthologous families which had genes 

from at least 11 of the 80 genomes. These gene families 

were subjected to more focused analyses to examine the 

presence/absence pattern of genome contents across the 

Kingdom Fungi, with a special attention on the divergent 

evolution between Mucoromycota and Zoopagomycota 

(fig. 3). The Mucoromycota members harbor 171 phylum- 

specific gene families that are present in at least two of 

the three Mucoromycota subphyla and absent in all other 

fungal lineages, while Zoopagomycota only have nine 

such gene families (table 1). At the subphylum level, there 

were considerably more lineage-specific gene families, ran-

ging from 1,186 (in Zoopagomycotina) to 7,779 (in 

Mucoromycotina) (table 1).

We used protein domains cataloged in the Pfam data-

base as an additional means to catalog unique and shared 

content. A total of 7,616 Pfam models had at least one simi-

lar sequence in the examined 80 genomes. Mucoromycota 

members possess two unique Pfam domains, with the 

CheR (PF01739) found in all three subphyla and the 

C9orf72-like (PF15019) in Mucoromycotina and 

Mortierellomycotina, while no phylum-specific Pfam do-

mains were identified in the Zoopagomycota. At the sub-

phylum level, a range of unique Pfam domains were 

observed, with 11 to 32 in the three subphyla of 

Mucoromycota and 0–5 in the ones in Zoopagomycota 

(table 1 and supplementary table S3, Supplementary 

Material online). Interestingly, the CotH domain 

(PF08757), a potential invasin factor of Mucormycosis, 

was found in Mortierellomycotina, Basidiobolus, and 

Neocallimastigomycota genomes (fig. 2b), but had previ-

ously only been described in the Mucoromycotina 

(Chibucos et al. 2016). In addition, the oxidation resistance 

protein domain (TLD, PF07534) has greatly expanded in 

copy number in the Glomeromycotina with up to 400 cop-

ies (fig. 2c). Kickxellomycotina and Zoopagomycotina 

members lacked Biotin and Thiamin synthesis associated 

domain (BATS, PF06968) and mycobacterial membrane 

protein large transporter domain (MMPL, PF03176) 

(fig. 2d and 2e). Interestingly, Basidiobolus meristosporus 

is the only Zoopagomycota member that maintains at least 

one copy of every examined domain (fig. 2b–e), including 

CotH and MMPL that are absent in all other 

Zoopagomycota members.

To identify Pfam domains that may contribute to the 

divergent evolution between Mucoromycota and 

Zoopagomycota, we calculated the relative abundance of 

each Pfam domain in their genomes. In total, 285 Pfam do-

mains were present at least 4-fold differences (i.e., absolute 

value of the binary logarithm >2) between the two phyla 

with 243 of them in higher abundance in Mucoromycota 

while 42 in Zoopagomycota (fig. 4 and supplementary 

table S4, Supplementary Material online). Without consid-

eration of nonzygomycete lineages, we found 70 Pfam 

domains in Mucoromycota that are completely missing in 

Zoopagomycota, whereas no such Pfam domains can be 

identified in Zoopagomycota. Zoopagomycota is a historic-

ally understudied fungal clade with few representative gen-

omes until our recent studies. As a result, the lack of 

Zoopagomycota specific Pfam domains may be an artifact 

of insufficient sampling before domain curation in Pfam. 

To overcome this possibility, we examined the orthologous 

gene family data set to calculate the relative abundance of 

gene families to test for differences between the two phyla. 

This revealed 22 gene families in Zoopagomycota that were 

absent in all Mucoromycota members (supplementary fig. 

S3, Supplementary Material online and supplementary 

File 1, Supplementary Material online). Gene Ontology ana-

lysis shows that more than 50% of these genes are involved 

in binding, catalytic activity, cellular process, and metabolic 

process (supplementary fig. S4, Supplementary Material

online). Finer scales of examination suggest they are closely 

related to nitrogen compound, organic substance, and pri-

mary metabolic process (supplementary fig. S5, 

Supplementary Material online).

We found that many phylum-level distinct Pfam domains 

were favored unevenly in each subphylum group (fig. 5). 

For example, both Pil1 (PF13805) and SUR7 (PF06687) do-

mains are eisosome components and are involved in the 

process of endocytosis. They are missing entirely from the 

Zoopagomycota but are encoded in the genomes of all 

(Pil1) or a majority (SUR7, except for Mortierella multidivar-

icata and Gigaspora rosea) of Mucoromycota members 

(figs. 4, 5a, and 5b). Interestingly, the Pil1 domain was en-

riched in copy number in the Mortierellomycotina (fig. 5a), 

and SUR7 domain has the largest copy number in 

Mucoromycotina (fig. 5b). The SMG1 domain (PF15785), 

a phosphatidylinositol kinase-related protein kinase, is a 

key regulator of growth. The Mucoromycota members 

maintain a single-copy SMG1 domain (except for 

Cunninghamella bertholletiae with 3 copies, and none in 

Mucor circinelloides, Phycomyces blakesleeanus, and 

Syncephalastrum monosporum), which is absent in 

Zoopagomycota species (fig. 5c). There are 67 additional 

Pfam domains including DENN (PF02141), uDENN 

(PF03456), dDENN (PF03455), and Pox_ser-thr_kin 

(PF05445) (supplementary table S4, Supplementary 

Material online) with a similar presence/absence pattern 

and may be important components to better understand 

and characterize the Mucoromycota fungi.

In contrast, while there are no Zoopagomycota-specific 

Pfam domains, there are some domains that exhibit copy 

number variance at the subphylum level. For example, the 

Tyrosinase domain (PF00264) is an important enzyme that 

controls the production of melanin and parasite encapsula-

tion, especially in insects. It is also suggested that Tyrosinase 

may be involved in the host-microbe defensive mechanism. 

The Tyrosinase domains are found on average with 48 

6 Genome Biol. Evol. 15(4) https://doi.org/10.1093/gbe/evad046 Advance Access publication 17 March 2023
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copies in the Entomophthoromycotina members but ab-

sent in nearly all Mucoromycotina (except for 

Calcarisporiella thermophila with 7 copies) and 

Mortierellomycotina (except for Mortierella verticillata 

with 1 copy) (fig. 5d). Similarly, Trypsin domain 

(PF00089), serine protease found in the digestive system 

of many vertebrates, was also enriched in copy number in 

the Entomophthoromycotina with 80 copies on average 

(fig. 5e). The domain LPMO_10 (PF03067) is found in lytic 

polysaccharide monooxygenases which can cleave glyco-

sidic bonds in chitin and cellulose and is significantly en-

riched in Zoopagomycota (fig. 5f). All three examples 

(Trypsin, Tyrosinase, and LPMO_10) are related to animal- 

fungus interactions in the degradation of protein, chitin, 

and cellulose.

Discovery of CotH in Early-Diverging Fungi

The CotH domain as characterized in Mucorales fungi has 

positive correlations with the clinical pathogenesis of 

Mucormycosis (Chibucos et al. 2016). In our kingdom-wide 

study, we found additional copies of the CotH domain in a 

broader collection of fungi. Other than in Mucorales fungi, 

CotH was also found in Basidiobolus, Mortierellomycotina, 

FIG. 3.—Absence and presence of orthologous gene families across the Kingdom Fungi. Orthologous gene families were examined in the genomes in-

cluded in the backbone tree. The 8,208 gene families were found present in at least 10 of the 80 taxa and thus included to examine the absence/presence 

pattern of genome content among different fungal lineages (a complete map showing the unfiltered 62,689 gene families was included in supplementary fig. 

S2, Supplementary Material online).
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and Neocallimastigomycota. The presence of this domain 

could indicate the potential of these fungi to support 

pathogenic interaction with animal hosts (fig. 2b). A total 

of 846 CotH copies were identified in 34 zygomycete gen-

omes and two Neocallimastigomycota representatives 

(contributing 348 of the copies). Five CotH families (CotH 

1–5) that were previously classified in Rhizopus oryzae 

were included in our phylogenetic analysis and helped us 

categorize the newly identified CotH copies (fig. 6a). 

Zygomycete CotH copies formed four distinct clades. 

ZyGo-A clade includes CotH families 1–3 that maintain 

true invasin motifs and are restricted to only 

Mucoromycotina and Mortierellomycotina members. 

ZyGo-B clade includes CotH families 4–5 with copies from 

Mucoromycotina. ZyGo-C clade is grouped with ZyGo-B 

with low support (34/100) and includes copies from 

Mortierellomycotina, and Basidiobolus. ZyGo-D clade has 

the largest number of members among the four but only in-

cludes copies from Mucoromycotina. Both ZyGo-C and 

ZyGo-D clades represent new families of CotH not previ-

ously described. Interestingly, the distantly related anaer-

obic gut fungi (AGF, Neocallimastigomycota) have 

homologs of the CotH domain and copies are found in sev-

eral distinct clades. In total, 311 duplications, zero trans-

fers, and 106 losses were identified along the evolution 

of CotH families in Kingdom Fungi. Six nodes were asso-

ciated with more than one duplication event (fig. 6b). The 

absence of CotH in the most recent common ancestor of 

fungi was also inferred by Notung reconciliation analysis.

Discussion

Genome Evolution of Zygomycete Fungi

Zygomycetes are important members of early diverging 

fungi and studying their evolutionary history can help us 

better understand the eukaryotic transition to terrestrial ha-

bitats. Zygomycete fungi are ubiquitous and can live as ar-

buscular mycorrhizae, ectomycorrhizae, saprobes, or 

symbionts of various organisms, including animals, bac-

teria, plants, and fungi. During the evolutionary adaptation 

and diversification of zygomycetes, many associated organ-

isms (hosts, symbionts, etc.) may have mutually shaped the 

structure and content of their genomes. Mucoromycotina 

members have served as exemplars to investigate various 

evolutionary events at the genome-scale. For example, 

whole-genome duplications have been identified repeated-

ly in Mucoromycotina (Ma et al. 2009; Corrochano et al. 

2016), which contributed to the large expansion of gene 

counts (5–20 k) among some Mucoromycotina members 

(fig. 1b). Phylogenomic analyses suggest that an early split 

of Mucoromycotina involved the evolution of thermophily 

(i.e., Calcarisporiella thermophila) (figs. 1a and 2a), which 

is followed by various lineages containing members of T
a
b
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ectomycorrhizae, mycoparasites, plant, and animal patho-

gens. In addition, some genomes have been colonized to 

varying degrees by transposable elements (TEs) in some 

Mucoromycotina taxa, including Rhizopus oryzae (=R. de-

lemar) (Ma et al. 2009) and Endogone sp. (Chang et al. 

2019). The high proportion of TEs was also evident in other 

lineages of zygomycete fungi, like Gigaspora members 

(Morin et al. 2019) and Basidiobolus meristosporus 

(Muszewska et al. 2017). It has been suggested that TEs 

may have played a role in shaping transcriptional profiles, 

helped fungi adapt to different ecological niches, and con-

tributed to the current fungal biodiversity (Castanera et al. 

2016; Muszewska et al. 2017). It is still unclear what 

roles TE might have played in the evolution of 

Entomophthoromycotina members that exhibit the widest 

span of genome sizes (25–1,200 Mb) in Kingdom Fungi 

and what resulted in the gigantic size of Entomophthora 

muscae and Massospora cicadina. More samples from 

this and related lineages (e.g., Batkoa, Eryniopsis, Furia) 

may help us reconstruct the evolutionary history for the ob-

served genome size modification in zygomycete fungi.

Phylogenomics of Zygomycetes and Basidiobolus

Zygomycete fungi hold important phylogenetic placement 

on the fungal tree of life. The former taxonomic unit, 

Zygomycota, has been recognized paraphyletic and thus 

been abandoned and replaced by Mucoromycota and 

Zoopagomycota to accommodate the six major lineages— 

Glomeromycotina, Mortierellomycotina, Mucoromycotina, 

Entomophthoromycotina, Kickxellomycotina, and 

Zoopagomycotina (James, Kauff, et al. 2006; White et al. 

2006; Hibbett et al. 2007; Spatafora et al. 2016). Since 

the loss of flagella, the first evolutionary split of terrestrial 

fungi leads to Zoopagomycota and the clade of 

Mucoromycota and Dikarya (Chang et al. 2021). 

Mucoromycota is the sister clade of the subkingdom 

Dikarya clades (Ascomycota and Basidiomycota) (figs. 1a

FIG. 4.—Protein family (Pfam) domains with differentiated enrichment in Mucoromycota or Zoopagomycota. Each dot represents a Pfam domain found in 

zygomycete fungi. The x-axis is the binary logarithm of the Pfam copy ratios between Zoopagomycota and Mucoromycota, and the y-axis is used to rank the 

Pfam domains in alphabetical order. The Pfam domains enriched in Mucoromycota are shown on the left side in cyan color, and the Zoopagomycota-enriched 

ones are on the right side in red color. The bubbles (Pfam domains) with bigger sizes are shared by more zygomycetes members. The Pfam domains aligned on 

the left edge are domains only found in Mucoromycota and absent in Zoopagomycota. The domains discussed in the text were labeled with the Pfam name. A 

detailed chart including the names and ratios of all Pfam domains is also provided (supplementary table S4, Supplementary Material online).
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and 2a), and analysis of zygomycete fungi is essential to ac-

curately reconstruct the evolutionary events that led to ma-

jor lineages of terrestrial fungi. The arbuscular mycorrhizal 

fungi of Glomeromycotina with their distinct ecology 

formed a monophyletic clade with the soil saprobes and 

root endophytes of Mortierellomycotina (figs. 1a and 2a). 

Mucoromycota members are mostly associated with plants 

or more commonly as decomposers of plant carbohydrates. 

Zoopagomycota members are mostly animal associated (ei-

ther as commensals or pathogens) or mycoparasites. The 

Entomophthoromycotina clade presents several interesting 

patterns. For example, our phylogenomic results confirm 

the nonmonophyly of Conidiobolus and encourage further 

work to reclassify this genus (Nie et al. 2020). Based on a 

four-gene phylogeny, three new genera (Capillidium, 

Microconidiobolus, and Neoconidiobolus) were proposed 

to delimitate the paraphyletic Conidiobolus. Conidiobolus 

thromboides has been renamed as a member of the 

Neoconidiobolus genus (Nie et al. 2020). In addition, our re-

sults suggest Basidiobolus, a traditional member of 

Entomophthoromycotina, as the earliest diverging lineage 

within Zoopagomycota (figs. 1a and 2a; supplementary 

fig. S1, Supplementary Material online).

Basidiobolus has been characterized as a “rogue” taxon 

and is often found with conflicting phylogenetic place-

ments. Using nuclear rRNA genes (18S + 28S + 5.8S genes), 

Basidiobolus, Olpidium brassicae (a plant pathogen), and 

Schizangiella serpentis (a snake pathogen) were grouped 

together and placed at the earliest diverging branch within 

Zoopagomycota (White et al. 2006). In a separate study 

using four genes (nuclear 18S and 28S rDNA, mitochondrial 

16S, and RPB2), Basidiobolus was interpreted as the earliest 

diverging member of Entomophthoromycotina (Gryganskyi 

et al. 2012). A genome-scale study based on 192 conserved 

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5.—Subphylum-level distribution of six Pfam domains that may contribute to the divergent evolution of zygomycete fungi. The scales on each axis of 

the radar plots indicate the average copy number of the domain in each subphylum. (a–c) Pfam domains shared in all Mucoromycota subphyla and absent in 

the entire Zoopagomycota. (d–f ) Distinct Pfam domains in Zoopagomycota subphyla and largely missing in Mucoromycota.
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FIG. 6.—Phylogenetic analysis and evolution of CotH in Kingdom Fungi. (a) The 754 fungal CotH copies were identified from Mortierellomycotina (brown), 

Mucoromycotina (black), Basidiobolus (blue), and Neocallimastigomycota (red). The CotH phylogenetic tree was midpoint rooted and reconstructed using the 

maximum likelihood method with bootstrap supports (out of 100) labeled on each branch. The analysis included previously classified CotH families 1–5 (pink) to 

help categorize newly identified fungal CotH. (b) Reconstruction of CotH evolution in Kingdom Fungi with Notung. CotH copies identified in each genome were 

plotted at tree tips with proportional sizes. Nodes with more than one duplication event were highlighted with red bubbles and labeled with duplication (“D”) 

and loss (“L”) events. Node abbreviation: Muco, Mucoromycotina; Mort, Mortierellomycotina; Zoop, Zoopagomycotina.
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orthologous proteins favored the Basidiobolus placement 

in Entomophthoromycotina as well (89/100 bootstrap sup-

port) (Spatafora et al. 2016). Interestingly, another 

genome-scale phylogenetic study examining the entire 

Kingdom Fungi found that Basidiobolus formed a sister 

clade to Mucoromycota instead of joining 

Zoopagomycota (Li et al. 2021) using the BUSCO fun-

gi_odb9 marker set. In the present study, we included the 

largest collection of zygomycete genomes to date and em-

ployed the newly released 758 “fungi_odb10” markers. 

The results suggested that Basidiobolus is a distinct lineage 

within Zoopagomycota and is interpreted as the earliest di-

verging lineage (with 100/100 bootstrap, supplementary 

fig. S1, Supplementary Material online). The complex mixed 

history observed in the genomes of Basidiobolus is evi-

denced by their enriched secondary metabolite genes 

many of which are result of horizontal gene transfer from 

Bacteria, regionally duplicated genomes, and the broad 

range of animal hosts it can be found to inhabit including 

insects, amphibians, reptiles, and human beings (Henk 

and Fisher 2012; Tabima et al. 2020). This may explain 

the sources of phylogenetic conundrums that we have en-

countered in the last decades using different molecular 

markers. The phylogenetic and natural history of 

Basidiobolus may not be easily resolved until an appropriate 

approach can be carried out to parse their complex genome 

composed of redundant genes from various sources, such 

as large-scale gene duplications or horizontal gene trans-

fers. In addition, the kingdom-wide comparison has helped 

discover many unique genome components in 

Basidiobolus, including the genes shared with the 

Mucoromycota clades (e.g., CotH and MMPL), which will 

be discussed in the following sections.

Divergent Evolution of Zygomycete Fungi

We identified gene content and Pfam domains favored by 

each of the zygomycete phyla, which can be interpreted to 

correspond to their disparate lifestyles (figs. 3 and 4). As sug-

gested by the presence of both Pil1 and SUR7 domains, 

eisosome-mediated endocytosis and related active 

transportation are important facilitators to saprotrophic 

Mucoromycota fungi (Walther et al. 2006). Among the 70 

Mucoromycota-featured domains (fig. 4 and supplementary 

table S4, Supplementary Material online), DENN, uDENN, 

and dDENN also serve as regulators during eukaryotic mem-

brane trafficking events (Zhang et al. 2012). This implies 

that Mucoromycota fungi are able to transport particles via 

membrane trafficking domains, while Zoopagomycota fungi, 

as animal-associated microbes, may use different mechan-

isms. Noteworthy, the Pfam domain Pox_ser-thr_kin, a pox-

virus serine/threonine protein kinase, specifically identified 

in Mucoromycota genomes (fig. 4 and supplementary table 

S4, Supplementary Material online) suggest that remnants 

of large DNA viruses are embedded in Mucoromycota gen-

omes (Jacob et al. 2011). Mycoviruses have been extensively 

studied in Dikarya fungi, especially for plant pathogens 

(Ghabrial et al. 2015; Marzano et al. 2016). The existence of 

mycoviruses among early diverging fungi has not been exam-

ined until recently, which led to the discovery of Narnaviruses 

as members of fungal-bacterial–viral system in the plant 

pathogenic Rhizopus microsporus (Espino-Vázquez et al. 

2020) and RNA mycoviruses in roughly one fifth laboratory 

cultures of early diverging fungal lineages (Myers et al. 

2020). Our preliminary analyses suggest that 

Mucoromycota members contain genomic hallmarks that 

interact with both bacteria (MMPL domain, fig. 2e) and viruses 

(Pox_ser-thr_kin domain, supplementary table S4, 

Supplementary Material online). The “mycobacterial mem-

brane protein large transporter” domain is well represented 

in all three subphyla of Mucoromycota as well as 

Basidiobolus (fig. 2e) consistent with the observations of fun-

gal–bacterial interactions documented in these lineages 

(Uehling et al. 2017; Desirò et al. 2018; Chang et al. 2019; 

Bonfante and Venice 2020; Tabima et al. 2020). Although 

the TLD domain is universally present in almost all fungal 

lineages (except Wallemia ichthyophaga), the exceptionally 

large number of TLD domains identified in 

Glomeromycotina members is unusual (fig. 2c). It implies 

that TLD and related oxidation resistance proteins could pro-

vide protection of these arbuscular mycorrhizal fungi from re-

active oxygen species (Blaise et al. 2012).

Zoopagomycota, on the other hand, lack exclusive Pfam 

domains, even though many domains are highly enriched 

suggesting important functions. One example is Tyrosinase 

which synthesize melanin via the amino acid L-tyrosine in mel-

anosomes. Melanin is an important natural product and poly-

mer that can protect organisms from diverse biotic and abiotic 

factors, including helping microbes counteract the attacks 

from host immune systems by neutralizing reactive oxygen 

species or other harmful molecules (Cordero and Casadevall 

2020). As such, it is not surprising to find that 

Zoopagomycota fungi, especially the insect-associated ones, 

maintain a large number of melanin synthetic enzymes pre-

sumably helping them evade host immune responses. 

Trypsin is another Pfam domain featured in Zoopagomycota 

(fig. 4) which catalyzes the hydrolysis of peptide bonds to 

break proteins into smaller pieces and is extremely active in 

animal digestive systems. We discovered up to 59 copies (in 

Smittium culicis) of Trypsin domain in the insect gut-dwelling 

fungi (Harpellales, Kickxellomycotina). Interestingly, insect 

pathogenic species in Entomophthoromycotina were found 

heavily relying on hydrolases with 204 copies of Trypsin do-

mains in Zoophthora radicans alone (43–138 copies in other 

Entomophthoromycotina members), while other zygomycete 

lineages maintain 0–18 copies variously (fig. 5e). Trypsin and 

Trypsin-like proteases have been studied in insects and ento-

mopathogenic fungi for decades (Paterson et al. 1993; 
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Dubovenko et al. 2010; Lazarević and Janković-Tomanić 
2015). Results suggest that the Trypsin and Trypsin-like pro-

teins are important for nutritional uptake and pathogenic pro-

cesses of insect-associated fungi, which was also suggested 

with the potential to help develop new agents to control 

pest insects (Borges-Veloso et al. 2015; Lazarević and 

Janković-Tomanić 2015). The abundance of Trypsin domains 

identified in Zoopagomycota suggests that the expansion of 

Trypsin across fungal tree of life have occurred more than 

once (e.g., Ascomycota and Zoopagomycota) (Dubovenko 

et al. 2010). In addition, the emergence and detailed evolu-

tionary patterns of Trypsin and Trypsin-like proteins in 

Ascomycota, Zoopagomycota, and insects deserve further 

examination. Many polysaccharides and protein degrading 

enzymes were also found expanded in Zoopagomycota, 

such as LPMO_10, Glyco_hydro_72 (PF03198), and 

Peptidase_M36 (PF02128) (fig. 4), suggesting their important 

functions during the interactions of Zoopagomycota fungi 

with small animals or other fungi. The fungalysin metallopep-

tidase (Peptidase_M36) and the associated fungalysin/ther-

molysin propeptide motif (FTP, PF07504) were both found 

expanded in the obligate mycoparasite Syncephalis (Lazarus 

et al. 2017). Both domains may help mycoparasites inhibit 

peptidases produced by the hosts, but their exact function 

has not been clearly known (Markaryan et al. 1996; Finn 

et al. 2016). Interestingly, the BATS domain involved in the 

biotin and thiamin synthesis is found absent in 

Kickxellomycotina and Zoopagomycotina members (fig. 2d). 

Both subphyla are short for available cultures, which is espe-

cially the case for the animal associated species. The inability 

to synthesize biotin and thiamin may be one of the culprits 

for the unsuccessful culture establishment in the lab. 

Supplementary biotin and thiamin could be suggested for fu-

ture efforts on development of new cultures in these fungal 

lineages.

Human Infectious Diseases Caused by Zygomycete Fungi

Mucormycosis is a deadly human-infectious disease usually 

caused by Rhizopus, Mucor, and Lichtheimia. The current 

COVID-19 pandemic has triggered multiple cases of 

Mucormycosis in susceptible patients (Garg et al. 2021; 

Revannavar et al. 2021). The CotH was originally identified 

in bacteria as a spore-coat protein. It was later found in 

Mucorales fungi and identified as a potential invasin factor 

of the human-infectious Mucormycosis. The CotH was sug-

gested to be directly involved in interactions between 

Mucorales pathogens and human endothelial cells 

(Chibucos et al. 2016). Our comparative genomic analyses 

provided a broader survey of CotH leading to discoveries of 

novel CotH families in Mucoromycotina strains and unexpect-

ed fungal lineages (Basidiobolus, Mortierellomycotina, and 

Neocallimastigomycota). CotH was maintained by almost 

every member of Mucoromycotina except the early diverging 

taxa—Calcarisporiella thermophila and Bifiguratus adelaidae. 

Unexpectedly, all members of Mortierellomycotina were also 

able to code CotH domains with the same or highly similar 

pathogenic motif “MGQTNDGAYRDPTDNN,” which was 

proposed as a key factor for Mucormycosis. This implies that 

the included Mortierellomycotina taxa (Dissophora ornate, 

L. transversale, and Mortierella species) may be facultative 

pathogens or have the potential to cause Mucormycosis or re-

lated human-infectious diseases if treated without caution. 

The results are informative to guide clinical practice as 

Mucormycosis may arise from many previously less documen-

ted situations, including the injuries during the natural disas-

ters, unconscious contact, and triggered by other diseases 

like Novel Coronavirus Pneumonia (caused by COVID-19) 

(Neblett Fanfair et al. 2012; Revannavar et al. 2021). 

Basidiobolus is the only Zoopagomycota member that en-

codes CotH, albeit the copy number is low. On the other 

hand, Neocallimastigomycota members produce surprisingly 

high numbers of CotH domains with the largest duplication 

event (fig. 6b). It is not clear why anaerobic gut fungi maintain 

so many CotH copies since they serve as primary plant polysac-

charide degraders and do not pose any identifiable harm to 

their mammal hosts. Phylogenetic analyses suggest that 

CotH domains in fungi can be classified into at least seven ma-

jor groups (ZyGo-A, B, C, D, and three AGF groups; fig. 6a). 

The ZyGo-A is the only clade containing all known 

Mucormycosis invasin factors (i.e., CotH 2 and CotH 3) where 

Mortierellomycotina members are tightly clustered (Chibucos 

et al. 2016). The members in ZyGo-A, Mucoromycotina and 

Mortierellomycotina, should both have the potential to cause 

Mucormycosis.

There are additional emerging pathogens in 

Zoopagomycota. For example, members of the ento-

mophthoralean fungi can cause infection in both insects 

and mammals, not only in immunocomprised patients, 

but also reported from immunocompetent individuals due 

to insect bites or other undetermined environmental con-

tacts, especially in tropical and subtropical regions (Vilela 

and Mendoza 2018). Basidiobolus and Conidiobolus are 

two additional agents of human skin, subcutaneous, and 

gastrointestinal infections (Khan et al. 2001; Shaikh et al. 

2016). Basidiobolus can be isolated from various types of 

environments, including soils or leaf litters, dung of frogs 

or lizards, and various insects (e.g., mosquitoes, mites, 

and springtails) (Lyon et al. 2001; Garros et al. 2008; 

Manning and Callaghan 2008; Werner et al. 2012). 

Recently, people also found that Basidiobolus can infect hu-

man eyes (Tananuvat et al. 2018; Vilela and Mendoza 

2018). The two CotH copies identified in Basidiobolus gen-

omes may be involved in the pathogenic processes. 

Conidiobolus, however, do not maintain CotH copies, sug-

gesting that Conidiobolus may take different strategies to 

infect mammalian hosts. Our comparative genomic ana-

lyses provided a broader view regarding the molecular 
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mechanism of human-infectious zygomycete fungi. As the 

quick accumulation of genomic resources for this fungal 

lineage, a detailed natural history and complete pathogenic 

pathways should be revealed in the near future.

Our combination of phylogenomic and comparative gen-

omic study of zygomycete fungi provided a perspective on 

the phylogenetic relationships within the group. The identi-

fication of lineage-specific genome contents provides new 

understanding of their cryptic ecology and relationships 

with other organisms in the environment. The unexpected 

findings of the broad distribution of the CotH domain be-

yond the Mucorales fungi and in Mortierellomycotina, 

Basidiobolus, and Neocallimastigomycota give new clues 

to the evolution of this potentially important 

host-interaction factor. The application of comparative gen-

omics in these zygomycete fungi helps further predict novel 

and unique biology of understudied fungi to aid study of 

their interactions with animals, plants, and ecosystems 

which appears to be altered in the era of global climate 

change. These presented results may further help mitigate 

damage and improve avenues of therapeutic research for 

the treatment and prevention of diseases caused by the 

human-infectious Mucormycosis.

Materials and Methods

Fungal Taxa and Genome Sampling

In total, 181 fungal genome sequences were analyzed in 

this study. Nine genomes were generated in this study 

and 172 were obtained from GenBank or the Joint 

Genome Institute MycoCosm portal (Grigoriev et al. 

2014; https://mycocosm.jgi.doe.gov), with 136 produced 

by the ongoing 1,000 Fungal Genome Project (1KFG: 

http://1000.fungalgenomes.org/) and Zygomycetes 

Genealogy of Life Project (ZyGoLife: http://zygolife.org/). 

The data set includes 131 zygomycete genomes 

(supplementary table S1, Supplementary Material online), 

with 97 sampled from Mucoromycota clade and 34 from 

Zoopagomycota. In addition, we included 43 Dikarya gen-

omes and seven representatives (supplementary table S2, 

Supplementary Material online) from other early diverging 

fungal lineages to enable kingdom-wide comparative ana-

lyses. The following nine genomes were produced for this 

study: Amylomyces rouxii NRRL 5866, Benjaminiella poitra-

sii RSA 903, Fennellomyces sp. ATCC 46495, Lichtheimia 

hyalospora FSU 10163, Mucor mucedo NRRL 3635, 

Parasitella parasitica NRRL 2501, Radiomyces spectabilis 

NRRL 2753, Spinellus fusiger NRRL 22323, and 

Piptocephalis tieghemiana RSA 1565.

Genome Sequencing and Assembly

The genome sequencing of S. fusiger NRRL 22323, 

Radiomyces spectabilis NRRL 2753, Mucor mucedo NRRL 

3636, Benjaminiella poitrasii RSA 903 and Fennellomyces 

sp. ATCC 46495, was performed from 5 µg of genomic 

DNA, which was sheared to >10 kb using Covaris 

g-Tubes. The sheared DNA was treated with exonuclease 

to remove single-stranded ends and DNA damage repair 

mix was followed for end repair and ligation of blunt adap-

ters using SMRTbell Template Prep Kit 1.0 (Pacific 

Biosciences). The library was purified with AMPure PB 

beads. PacBio Sequencing primer was then annealed to 

the SMRTbell template library and Version P6 sequencing 

polymerase was bound to them for S. fusiger, R. spectabilis, 

and Fennellomyces sp. ATCC 46495. The prepared 

SMRTbell template libraries were then sequenced on a 

Pacific Biosciences RSII sequencer using Version C4 chemis-

try and 1 × 240 sequencing movie run times. For B. poitrasii 

and M. mucedo, sequencing polymerase was bound to 

them using the Sequel Binding kit 2.1 and then the pre-

pared SMRTbell template libraries were sequenced on a 

Pacific Biosystems’ Sequel sequencer using v3 sequencing 

primer, 1 M v2 SMRT cells, and Version 2.1 sequencing 

chemistry with 1 × 360 sequencing movie run times. 

Filtered subread data were then used to assemble all 

lineages using Falcon (version 0.4.2 for S. fusiger and R. 

spectabilis, version 1.8.8 for M. mucedo and B. poitrasii, 

and version 0.7.3 for Fennellomyces sp. ATCC 46495). 

Spinellus fusiger and R. spectabilis were then further im-

proved using finisherSC version 2.0 (Lam et al. 2015). All as-

semblies were then polished using either Quiver version 

smrtanalysis_2.3.0.140936.p5 (S. fusiger, R. spectabilis 

and Fennellomyces sp. ATCC 46495) or Arrow version 

SMRTLink v5.1.0.26412 (M. mucedo and B. poitrasii).

Parasitella parasitica NRRL 2501, Piptocephalis tieghemi-

ana, and Lichtheimia hyalospora were sequenced using the 

Illumina platform. For P. parasitica and P. tieghemiana, 

100 ng of DNA was sheared to 300 bp using the Covaris 

LE220 and size selected using SPRI beads (Beckman 

Coulter). The fragments were treated with end-repair, 

A-tailing, and ligation of Illumina compatible adapters 

(IDT, Inc) using the KAPA-Illumina library creation kit 

(KAPA biosystems). Additionally, a 4-kb mate pair library 

was constructed for P. parasitica. For this, 5–10 µg of 

DNA was sheared using the Covaris g-TUBE(TM) and gel 

size selected for 4 kb. The sheared DNA was treated with 

end repair and ligated with biotinylated adapters contain-

ing loxP. The adapter ligated DNA fragments were circular-

ized via recombination by a Cre excision reaction (NEB). The 

circularized DNA templates were then randomly sheared 

using the Covaris LE220 (Covaris). The sheared fragments 

were treated with end repair and A-tailing using the 

KAPA-Illumina library creation kit (KAPA biosystems) fol-

lowed by immobilization of mate pair fragments on strepa-

vidin beads (Invitrogen). Illumina compatible adapters (IDT, 

Inc) were ligated to the mate pair fragments and eight cy-

cles of PCR were used to enrich for the final library (KAPA 
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Biosystems). The prepared libraries were quantified using 

KAPA Biosystems’ next-generation sequencing library 

qPCR kit and run on a Roche LightCycler 480 real-time 

PCR instrument. The quantified libraries were then pre-

pared for sequencing on the Illumina HiSeq sequencing 

platform utilizing a TruSeq paired-end cluster kit, v4. 

Sequencing of the flowcell was performed on the Illumina 

HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing 

kits, v4, following a 2 × 150 indexed run recipe. Each fastq 

file was QC filtered for artifact/process contamination and 

subsequently assembled together with AllPathsLG version 

R49403 (Gnerre et al. 2011).

Piptocephalis tieghemiana is an obligate mycoparasite and 

was maintained as co-culture with Umbelopsis sp. nov. 

AD052. The P. tieghemiana contigs required further process-

ing to separate these two assemblies. First, metagenomic scaf-

fold sequences were binned into two groups using metabat 

(v2.12.1). The filtered reads were mapped to the sequences 

of the two bins and split into two separate data sets corre-

sponding to each bin using bbsplit.sh in bbtools(ambiguous  

= all). The two data sets were then re-assembled separately. 

Scaffolds with length less than 2 kb were excluded. Then, 

four closely related genomes were used for reference genome 

to classify and filter re-assembled scaffolds based on BLASTN 

similarity (evalue < 1e−30). One included Piptocephalis related 

genome was Piptocephalis cylindrospora, and the others were 

Umbelopsis related genomes, Umbelopsis sp. AD052, 

Umbelopsis isabellina AD026, and Umbelopsis sp. PMI 123. 

If the scaffolds were covered more by Piptocephalis main gen-

ome than Umbelopsis main genomes, it would be classified to 

P. tieghemiana, and vice versa. The scaffolds without any simi-

larity to the four genomes were discarded.

For L. hyalospora, 500 ng of DNA was sheared to 270 bp 

using the Covaris E210 (Covaris, Woburn, MA) and size se-

lected using SPRI beads (Beckman Coulter, Brea, CA, USA). 

The fragments were treated with end-repair, A-tailing, and 

ligation of Illumina adapters using the TruSeq Sample Prep 

Kit (Illumina, San Diego, CA, USA), followed by quantifica-

tion of libraries using KAPA Biosystem’s next-generation se-

quencing library qPCR kit and run on a Roche LightCycler 

480 real-time PCR instrument. The quantified libraries 

were multiplexed and the pools were then prepared for se-

quencing on the Illumina HiSeq sequencing platform utiliz-

ing a TruSeq paired-end cluster kit, v3, and Illumina’s cBot 

instrument to generate a clustered flowcell for sequencing. 

Sequencing of the flowcell was performed on the Illumina 

HiSeq2000 sequencer using a TruSeq SBS sequencing kit 

200 cycles, v3, following a 2 × 150 indexed run recipe. 

Genomic reads were QC filtered for artifact/process con-

tamination and subsequently assembled with Velvet. The 

resulting assembly was used to create a simulated 3-kbp in-

sert long mate-pair library, which was then assembled to-

gether with the original Illumina library with AllPathsLG 

release version R42328.

Transcriptome Sequencing and Assembly

For all lineages except L. hyalospora, stranded cDNA libraries 

were generated using the Illumina Truseq Stranded RNA LT 

kit. mRNA was purified from 1 µg of total RNA using mag-

netic beads containing poly-T oligos. mRNA was fragmen-

ted and reversed transcribed using random hexamers and 

SSII (Invitrogen) followed by second strand synthesis. 

The fragmented cDNA was treated with end-pair, 

A-tailing, adapter ligation, and eight cycles of PCR. For 

L. hyalospora, plate-based RNA sample prep was 

performed on the PerkinElmer Sciclone NGS robotic liquid 

handling system using Illumina’s TruSeq Stranded mRNA 

HT sample prep kit utilizing poly-A selection of mRNA fol-

lowing the protocol outlined by Illumina in their user guide, 

https://support.illumina.com/sequencing/sequencing_kits/ 

truseq-stranded-mrna.html, and with the following condi-

tions: total RNA starting material was 1 µg per sample and 

eight cycles of PCR were used for library amplification. The 

prepared libraries were then quantified using KAPA 

Biosystems’ next-generation sequencing library qPCR kit 

and run on a Roche LightCycler 480 real-time PCR instru-

ment. The quantified libraries were then prepared for se-

quencing on the Illumina HiSeq sequencing platform 

utilizing a TruSeq paired-end cluster kit, v4. Sequencing of 

the flowcell was performed on the Illumina HiSeq2500 se-

quencer using HiSeq TruSeq SBS sequencing kits, v4, follow-

ing a 2 × 150 indexed run recipe (2 × 100 for L. hyalospora).

Filtered fastq files were used as input for de novo assembly of 

RNA contigs. For all lineages except L. hyalospora and P. parasi-

tica, reads were assembled into consensus sequences using 

Trinity version 2.1.1. Trinity was run with the −normalize_reads 

(in silico normalization routine) and –jaccard_clip (minimizing fu-

sion transcripts derived from gene dense genomes) options. For 

L. hyalospora and P. parasitica, Rnnotator version 2.5.6 or later 

was used. Parasitella parasitica was further improved using eight 

runs of velveth (v. 1.2.07) performed in parallel, once for each 

hash length for the De Bruijn graph. Minimum contig length 

was set at 100. The read depth minimum was set to 3 reads. 

Redundant contigs were removed using Vmatch (v. 2.2.4) and 

contigs with significant overlap were further assembled using 

Minimus2 with a minimum overlap of 40. Contig postproces-

sing included splitting misassembled contigs, contig extension, 

and polishing using the strand information of the reads. Single 

base errors were corrected by aligning the reads back to each 

contig with BWA to generate a consensus nucleotide sequence. 

All nine new genomes in this study were annotated using the 

JGI Annotation pipeline (Grigoriev et al. 2014).

Phylogenomic Analyses

A set of 758 phylogenetic markers, “fungi_odb10”, from 

the Benchmarking Universal Single-Copy Orthologs 

(BUSCO) v4.0.5 was employed for the kingdom-wide phy-

logenomic analyses (Seppey et al. 2019). We used the 
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PHYling pipeline (DOI: 10.5281/zenodo.1257002) to ex-

tract best hit copies using hmmsearch v3.3.2 (cutoff =  

1E−10) from the genes predicted in each species against 

the marker set. A total of 617 (out of 758) well-conserved 

markers were identified as the best hit from the 181 fungal 

genomes. A backbone tree including 80 genomes, sub-

sampled based on BUSCO scores and phylogenetic place-

ment on the 181-taxon tree (except for the outgroup 

Drosophila melanogaster), recovered 604 orthologs. All 

orthologs were aligned separately using hmmalign v3.3.2 

to the marker profile-HMM and then concatenated into a 

super-alignment with partitions defined by each marker. 

The best phylogenomic tree was searched and identified 

using the super-alignment file and partition scheme as 

the input with the best-fit model option for maximum like-

lihood analyses implemented in IQ-TREE v.1.5.5 (Nguyen 

et al. 2015; Kalyaanamoorthy et al. 2017). Branch supports 

were evaluated using 1,000 ultrafast bootstrap replicates 

(Hoang et al. 2017). Concordance factors were calculated 

as additional support for each branch using single gene 

alignments and concatenated tree file as instructed in the 

IQ-TREE package (v1.7-beta9).

Identification of Lineage-Specific Genes and Pfam 
Domains in Zygomycete Fungi

All orthologous groups of the 80 genomes included in the 

backbone tree were identified using a comparative genomic 

pipeline that utilized all-vs-all BLASTp search v2.6.0 (cutoff  

= 1E−5) (DOI: 10.5281/zenodo.1447224) (Altschul et al. 

1990). Orthagogue v1.0.3 was used to infer putative ortho-

logs and Markov-Clustering Algorithm v14-137 (MCL, infla-

tion value of 1.5) was utilized to generate disjoint clusters 

(Van Dongen 2000; Ekseth et al. 2014). Shared genome 

components were counted using a permissive strategy 

that a gene family shared by at least 11 of the 80 included 

taxa was retained. Zygomycetes-specific genes are the 

ones that only exist in zygomycete fungi (Mucoromycota 

and Zoopagomycota) and are absent in all other lineages. 

The absence-presence pattern of gene families across the 

Kingdom Fungi was plotted using the “aheatmap” function 

in R package “NMF” (Gaujoux and Seoighe 2010). Protein 

domains coded by the 80 taxa were examined in a similar 

way. Each Protein Family (Pfam) entry in the Pfam database 

v31.0 was searched against the predicted proteomes of all 

included 80 taxa (using the threshold of 1E−3 with >50% 

overlap percentage). The Pfam domains dominated in either 

Mucoromycota or Zoopagomycota were inferred by the ra-

tios of their copy numbers in Zoopagomycota and 

Mucoromycota. The disproportion was visualized by plot-

ting the binary logarithm of the ratio for each Pfam entry 

so that dominated Pfam domains in each phylum will be iso-

lated on the edge. The figure was plotted using R package 

“ggplot2” (Wickham 2016). Subphylum-level distribution 

of each discussed Pfam domain was plotted using the “ra-

darchart” function implemented in R package “fmsb”. All 

lineage-specific genome content was summarized in table 

1 (with detailed Pfam names listed in supplementary table 

S3, Supplementary Material online). Gene Ontology (GO) 

terms of Zoopagomycota “unique” genes were inferred 

and annotated using InterProScan v5.54 and WEGO v2.0 re-

spectively (Jones et al. 2014; Ye et al. 2018).

Phylogenetic Analysis of the Spore Coating Protein 
(CotH) in Fungi

A total of 846 protein sequences that contain at least one 

CotH domain were identified in the 80 genomes included 

in the backbone tree. Absent in all Dikarya species, CotH 

genes were largely found in zygomycetes (all included 6 

Mortierellomycotina members, 27 Mucoromycotina taxa, 

and 1 Basidiobolus) and in Neocallimastigomycota (includ-

ing 2 taxa). Previously classified CotH families 1–5 (CotH 1– 

5) from Rhizopus oryzae were included in our phylogenetic 

analyses to categorize the newly identified CotH copies. 

Highly similar CotH sequences (>90%) were removed using 

CD-HIT v4.6.4 and poor-quality ones were manually ex-

cluded from the multiple sequence alignment using 

MUSCLE v3.8.31 (Edgar 2004; Fu et al. 2012). We em-

ployed IQ-TREE v1.5.5 to identify the most appropriate sub-

stitutional model and to reconstruct the phylogenetic tree 

of all fungal CotH copies with ultrafast bootstraps (1,000 

replicates) (Nguyen et al. 2015; Hoang et al. 2017; 

Kalyaanamoorthy et al. 2017). The final input includes 

754 sequences with 230 distinct patterns for CotH classifi-

cation. Species-gene tree reconciliation analysis was con-

ducted with Notung v3.0 BETA using the 80-taxa 

backbone tree as the species tree (Stolzer et al. 2012). 

We followed the phylogenomic workflows as recom-

mended in the Notung v3.0 BETA manual to generate a 

summary report of gain, transfer, and loss events of CotH 

families in Kingdom Fungi. A threshold of 90% was applied 

to the rearrangement step to accommodate the ambigu-

ities in the species tree and CotH gene tree.

Supplementary Material

Supplementary data are available at Genome Biology and 

Evolution online (http://www.gbe.oxfordjournals.org/).
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