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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heteroge-

neity is thought to be at least partially structured by genetic variation between strains. While

population genomic analyses based on reference genome alignments offer valuable

insights into how gene variants are distributed across populations, these approaches fail to

capture intraspecific variation in genes absent from the reference genome. Pan-genomic

analyses based on de novo assemblies offer a promising alternative to reference-based

genomics with the potential to address the full genetic repertoire of a species. Here, we eval-

uate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a

combination of population genomics, phylogenomics, and pan-genomics. Our results offer a

high-resolution assessment of population structure and recombination frequency, phyloge-

netically structured gene presence–absence variation, evidence for metabolic specificity,

and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses

primarily via asexual conidia, we identified extraordinarily high levels of recombination with

the lowest linkage disequilibrium decay value reported for any fungal species to date. We

provide evidence for 3 primary populations of A. fumigatus, with recombination occurring

only rarely between populations and often within them. These 3 populations are structured

by both gene variation and distinct patterns of gene presence–absence with unique suites of

accessory genes present exclusively in each clade. Accessory genes displayed functional

enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be

stratified by environmental niche specialization. Similarly, the distribution of antifungal resis-

tance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-

genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date

including many genes unrepresented in the Af293 reference genome. These results high-

light the inadequacy of relying on a single-reference genome-based approach for evaluating
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intraspecific variation and the power of combined genomic approaches to elucidate popula-

tion structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.

Introduction

Aspergillus fumigatus is one of the most common etiological agents of human fungal disease

[1,2]. The spectrum of diseases attributed to A. fumigatus is remarkable. In immunocompro-

mised patients, invasive A. fumigatus infection causes up to 90% mortality, even with aggres-

sive treatment [3], an outcome that is further complicated by the increasing presence of

triazole-resistant strains [4]. Phenotypic heterogeneity in growth and virulence is well docu-

mented in A. fumigatus [5–9] and thought to be partially structured by genetic variation

between strains [10]. These intraspecific genetic differences likely represent both gene variants

(insertions/deletions and single nucleotide polymorphisms) [11] and differences in gene pres-

ence–absence, copy number, and structural arrangements [12,13]. While population-genomic

analyses based on reference genome alignment have provided valuable insights into how gene

variants are distributed across populations, these approaches fail to capture intraspecific varia-

tion in genomic regions absent from the reference genome. In contrast to reference-based

genomics, pan-genomic analyses based on de novo assemblies offer the potential to address

the full genetic repertoire of a species. For A. fumigatus pathogenesis and virulence, identifica-

tion of strain-specific genes and alleles is expected to further clarify the role of fungal genetic

variation in disease outcomes.

The concept of a pan-genome, here defined as all genetic elements present across a species

[14], recognizes that while many genes are fixed within a population and present in all individ-

uals (core genes), others display substantial presence–absence variation (dispensable or acces-

sory genes). Core genes are expected to be enriched in housekeeping functions and clustered

in protected areas of chromosomes, where they are conserved by stronger efficiency of purify-

ing selection [15]. Conversely, accessory genes are more likely to encode lineage-specific pro-

teins that facilitate environmental adaptation [16], such as genes involved in secondary

metabolism and niche specificity and tend to be concentrated in highly variable, rapidly evolv-

ing subtelomeric regions and adjacent to transposable elements (TEs) [17–20]. Variation in

the accessory genome is essential to facilitating diversifying selection and adaptation to popu-

lation-specific environmental pressures and may be particularly important for fungal pathogen

adaptation [15,21].

In addition to its importance as a pathogen of humans and other animals [22–24], A. fumi-

gatus is an ubiquitous plant litter saprophyte and plays a substantial ecological role in carbon

and nutrient cycling, enabled by the wide range of carbohydrate-active enzymes encoded in

the genome and involved in the decay of organic matter [2,25]. The fungus primarily repro-

duces asexually, via the production of prolific, stress-resistant, hydrophobic conidia [26]. This

combination of traits contribute to the high dispersibility of the species, where conidia are ren-

dered airborne by the slightest wind currents or easily carried to new locations by water,

swarming soil bacteria, and soil invertebrates [27]. Due to this exceptional dispersibility and

the assumption of extreme substrate generalism, A. fumigatus was originally thought to repre-

sent a single homogenous population [28,29]. However, recent investigations into A. fumigatus

population structure have found mixed evidence for population stratification with results

heavily dependent on the methods used for analysis and the number of isolates under consid-

eration [30–33]. Interestingly, previous studies have shown little to no correlation of
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population structure with geography [32,34], as genetically identical (clonal) isolates collected

from disparate locations across the globe [32]. This lack of geographic structure would seem to

support a model of panmixia, but geography is not the only potential force structuring fungal

populations, which must adapt to a plethora of environmental stressors and niche opportuni-

ties. However, niche specificity and the potential for environmental drivers to structure popu-

lation stratification in A. fumigatus have yet to be investigated. Given its primary ecological

strategy as a plant litter saprophyte, we hypothesized that population structure in A. fumigatus

would be underpinned by metabolic specificity, with population-specific genomic variation

concentrated in genes relevant to nutrient mining. Such metabolic variation may have evolved

to access different plant substrates, but have important implications for human and animal dis-

ease [35].

Because A. fumigatus is thought to reproduce primarily clonally (and rarely sexually) [36],

population structure is likely to be complicated by local clonal population bursts followed by

dispersal. One well-studied example of this is the movement of cyp51A resistance alleles across

the world. The cyp51A gene encodes 14-alpha sterol demethylase and is the primary drug tar-

get for azole antifungals [37]. Environmental pressures for allelic variation at this critical azole

target are hypothesized to come primarily from the widespread use of agricultural antifungals

[38]. Human-to-human transmission was originally thought to represent a dead-end for the

species; however, recent evidence support occasional hospital-related transmission [39,40] and

the possibility for clinical antifungal treatment to represent a secondary source of antifungal

pressure. Although the cyp51Amutation has been found in multiple genetic backgrounds [30],

the distribution of drug-resistant isolates across the phylogeny is nonrandom, with resistant

strains showing low levels of genetic diversity and close genetic relatedness, likely representing

high levels of clonal reproduction and a selective sweep for resistant phenotypes [32,34].

Although cyp51Amutations are the best studied drug resistance mechanism in A. fumigatus,

mutations in cyp51A only account for an estimated 43% of resistant isolates [41]. While many

other genes have been implicated in azole resistance [42], it is unknown whether mutations in

these genes are similarly structured by phylogeny.

A sexual cycle has been documented in A. fumigatus [36]. However, the frequency of

recombination events and their capacity to shape A. fumigatus populations is unknown.

Whereas widely distributed generalist species with large effective population sizes are assumed

to have larger pan-genomes, frequent clonal reproduction is thought to limit pan-genome size

[21,43]. Generally, the evolution of large pan-genomes implies frequent gene flow, which may

take the form of sexual or pseudo-sexual exchange, or significant horizontal gene transfer [44].

In open pan-genomes, the ratio of core/accessory genes is expected to decrease with an

increasing number of genomes analyzed. Conversely, closed pan-genomes will quickly reach a

saturation point at which adding new genomes to the analysis adds few new genes to the total

pool. It is unclear how a species like A. fumigatus, which demonstrates ubiquitous geographic

distribution, assumed substrate generalism, primary clonal reproduction, but potentially high

recombination rates [45], fits into these expectations.

Methods

DNA preparation

All strains sequenced in this project were isolated on Aspergillusminimal medium [46] by

picking single germinated spores after 16 h of growth at 30˚C. Cultures were grown for DNA

extraction in liquid minimal media with 1% (w/v) D-Glucose, 0.5% yeast extract (w/v, Beck-

ton-Dickinson), 20 ml 50× salt solution, 1 ml trace elements solution, 20 mMNaNO3, pH

adjusted to 6.5 using NaOH, and autoclaved for 20 min at 121˚C.

PLOS BIOLOGY Aspergillus fumigatus population structure and lineage-specific diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001890 November 17, 2022 3 / 39

https://doi.org/10.1371/journal.pbio.3001890


Genome sequencing

After 24 h of growth, cultures were lyophilized for approximately 10 h and homogenized using

a bead beater (1 min with 2.3-mm beads). DNA was extracted using a LETS buffer protocol

[47] modified with the addition of a 1-h RNAse treatment prior to phenol–chloroform extrac-

tion. DNA concentration was quantified using a Qubit 2.0 Fluorometer (Invitrogen) with the

Broad Range protocol. Genomic sequencing was carried out on either Illumina NovaSeq 6000

or NextSeq 500 machines. DNA sequencing libraries were prepared using either the NEBNext

Ultra II DNA Library Prep Kit (for NovaSeq 6000 sequenced genomes) or the SeqOnce DNA

library kit utilizing Covaris mechanized shearing (for the NextSeq 500 sequenced isolates),

both following manufacturer recommendations with paired end library construction and bar-

coding for multiplexing. All genome sequencing data generated for this project was deposited

into the NCBI Sequence Read Archive under BioProject no. PRJNA666940.

Strain selection

In addition to the 62 strains newly sequenced for this study, a large library of strains (approxi-

mately 220) previously published by our lab and others were downloaded from NCBI’s SRA.

These strains were initially assessed for genome completeness after de novo assembly (see De-

Novo Assembly and Annotation methods below), using BUSCO v4.0.5 [48] and coverage (read

depth) using BBTools (https://jgi.doe.gov/data-and-tools/bbtools/) as well as phylogenetic

diversity (visual inspection of redundant strains likely to be clonal—see Phylogenomics below

for tree building methods). We then excluded strains with an average read depth<10×, or

BUSCO complete scores<96, or with negligible branch lengths. Out of the approximately 220

strains initially downloaded, 197 strains were retained for analysis (S1 Table). These were com-

bined with the 62 newly sequenced strains and the re-sequenced reference strain AF293, which

was included as a control for variant analysis conducted relative to the Af293 v.55 curated refer-

ence downloaded from FungiDB. This resulted in a total of 260 quality-filtered strains.

De-novo assembly and annotation

To minimize methodological errors introduced by analyzing genomes assembled and anno-

tated using different methods [49], we ensured uniformity by assembling and annotating all

260 strains using a custom pipeline that starts with raw reads, regardless of whether assembly

and annotation data were available for strains with previously released genomes. Genomes

were assembled de novo with the Automatic Assembly For The Fungi (AAFTF) v. 0.2.3

(https://github.com/stajichlab/AAFTF, DOI: 10.5281/zenodo.1620526). The AAFTF filter step

trim and quality filter reads with BBmap (https://sourceforge.net/projects/bbmap) and the

AAFTF assemble step was used to assemble the reads with SPAdes [50]. Resulting contigs were

screened for bacterial contamination using the AAFTF sourpurge step that relies on sourmash

[51] searching a database of Genbank microbial sequence sketches (v.lca-mark2; https://osf.io/

vk4fa/). Duplicates were removed with AAFTF rmdup by aligning contigs to themselves with

minimap2 v. 2.17 [52], and contigs were further polished for accuracy using the AAFTF polish

step that relies on Pilon v. 1.22 [53] and BWA v. 0.7.17 [54] to align raw reads to the contigs

and polish a consensus sequence. Scaffolds from contigs were inferred by aligning to the refer-

ence Af293 genome using ragtag v. 1.0.0 [55]. Scaffolding to Af293 (currently the most com-

plete reference genome for A. fumigatus) was carried out to improve scaffold length, but

contigs failing to map to the reference were retained.

Repeat regions were masked by funannotatemask (https://github.com/nextgenusfs/

funannotate, DOI: 10.5281/zenodo.1134477) using RepeatMasker v. 4-1-1 [56] with repeats

built using RepeatModeler [57] compiled into a custom library (available in this the project’s

PLOS BIOLOGY Aspergillus fumigatus population structure and lineage-specific diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001890 November 17, 2022 4 / 39

https://jgi.doe.gov/data-and-tools/bbtools/
https://github.com/stajichlab/AAFTF
https://doi.org/10.5281/zenodo.1620526
https://sourceforge.net/projects/bbmap
https://osf.io/vk4fa/
https://osf.io/vk4fa/
https://github.com/nextgenusfs/funannotate
https://github.com/nextgenusfs/funannotate
https://doi.org/10.5281/zenodo.1134477
https://doi.org/10.1371/journal.pbio.3001890


GitHub) plus those fungal repeat families curated in RepBase v. 20170127 [58]. The train com-

mand in funannotate was used to run Trinity [59] for transcript assembly and alignments to

generate highly polished gene models based on splice-site aware alignment of the assembled

RNA-Seq of A. fumigatus growth on sugarcane bagasse (PRJNA376829) [60]. Models were fur-

ther refined by PASA v. 2.3.3, and the best set with full open reading frames was chosen for

input in training gene predictors [61]. Gene prediction was carried out using funannotate pre-

dict running Augustus v. 3.3.3 [62] and SNAP v. 2013-11-29 [63] by first training on the evi-

denced-based training models from the train step. Gene prediction was then run with these

trained parameters using exon evidence based on RNA-seq and protein alignments generated

by DIAMOND v. 2.0.2 [64] and polished with Exonerate v. 2.4.0 [65] on the RNA-seq and

Swissprot proteins [66]. Additional ab initio models were predicted using GeneMark v. 4.59

[67], GlimmerHMM v. 3.0.4 [68], and CodingQuarry v. 2.0 [69], the latter also used the raw

RNA-seq evidence for exon prediction directly. A set of consensus gene models were produced

from these predictions with EVidenceModeler v. 1.1.1 [70]. The tool funannotate annotate was

run to annotate protein domains and make functional predictions using sequence similarity

with the databases InterProScan v. 5.45–80.0 [71], eggNOG v. 1.0.3 [72], dbCAN2 v. 9.0 [73],

UniprotDB v. 2020_04, antiSMASH v. 5.1.2 [74], and MEROPS v. 12.0 [75].

Pan-genomics

We used 2 methods to determine pan-genome gene family clusters: OrthoFinder v. 2.5.2 [76]

and Pangenome Iterative Refinement and Threshold Evaluation (PIRATE) v. 1.0.4 [77]. The

decision to assess the A. fumigatus pan-genome twice using 2 different methods was made to

confirm the reproducibility of gene family counts after initial assessment yielded a surprisingly

high number of orthogroups. OrthoFinder was run on protein fastA files with -op option to

run similarity searches as parallel jobs on the HPC and the -S diamond_ultra_sens option for

sequence search using DIAMOND. PIRATE was run on nucleotide fastA files, with parame-

ters: -s “85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100” -k “—cd-low 100 -e 1E-9—hsp-prop

0.5” -a -r. Pan-genome clustering results were analyzed in the R programing environment

using custom scripts (all scripts are available at the DOI listed in the data availability section).

For our analysis, “core” genes were defined as present in>95% of the strains (n> 247), “acces-

sory genes” were defined as present in more than 1, and less than 95% of the strains (n> 1 and

< = 247) and singletons were defined as present in only a single isolate. Singletons and acces-

sory gene families, collectively referred to here as “dispensable genes,” were analyzed separately

to account for the possibility that singletons were more error prone or less likely to contain

functional information. Significant differences in the abundance of accessory and singleton

gene families per clade were assessed using a permutation test implemented in the R package

perm [78] over 9,999 permutations to account for violation of variance assumptions. Gene

family accumulation curves were calculated using the specaccum() function over 100 iterations

in R package vegan v. 2.5.7 [79]. Analysis of clade-specific gene family absence was defined as a

gene family absent in all isolates of that clade, but present in both of the other clades and in

>90% of the isolates from at least one of those clades. Additional screening for clade-defining

gene family absences was also conducted, defined as absent in all isolates of that clade, but

present in>95% of all isolates from both of the other clades. Secreted proteins were predicted

using the programs Signal P5 [80] and Phobius [81]. Phobius predictions were further refined

by both the presence of a signal peptide and the absence of transmembrane domains. Signifi-

cant differences in proportions of secreted gene families relative to all gene families were

assessed using pairwise proportion tests with Bonferroni adjustment for multiple comparisons

using function pairwise.prop.test() in the R stats package at p< 0.05.
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Functional analysis

Gene Ontology (GO) enrichment analysis was performed by assigning Interpro and GO anno-

tations to the longest representative of each gene family clustered in OrthoFinder. GO enrich-

ment analysis was then performed for each clade, on all gene families unique to that clade

using the R package topGO v. 2.42.0 with the functions new() and runTest() with parameters

weight01 and nodeSize = 6 (DOI: 10.18129/B9.bioc.topGO). Significant enrichment was

assessed for each gene count category (core, accessory, singleton) and for clade-specific gene

families relative to the set of all InterPro annotations with associated GO terms in the A. fumi-

gatus pan-genome (n = 32,857), using a Fishers Exact test at p< 0.05. CAZyme (Carbohy-

drate-Active enZyme) annotations were assigned in funannotate that relies on hmmsearch to

search the dbCAN database for HMM profiles [73]. Homogeneity of variance assumptions

were checked using the leveneTest() function from the car package v. 3.0.11 and normalcy

checked using the shapiro.test() function from the stats package v. 4.0.1 in R. Because variance

and normalcy assumptions could not be met, nonparametric Kruskal–Wallis tests were

employed using the kruskal.test() function in the R stats package v. 4.0.1 with Bonferroni

adjustment for multiple comparisons using the p.adjust() function and considered for further

evaluation at p< 0.001. Post-hoc comparisons using Dunn’s test were implemented using the

dunnTest() function with Bonferroni adjustment for multiple comparisons in the R package

FSA v. 0.9.0. CAZymes significantly different between the 3 clades were normalized per

CAZyme family on a 0 to 1 scale for visualization and mapped onto the phylogeny using the

gheatmap() function in the R package ggtree v.3.1.2. To validate our OrthoFinder clustered

gene families, we represented each gene family with the longest sequence and used BLASTP v.

2.12.0 (e-val< 1e-15) to match gene families to their respective genes annotated in the Af293

reference genome. To further investigate the presence–absence distribution of accessory genes

with a role in nitrogen, carbohydrate, and phosphorus metabolism, we extracted all Af293

genes from FungiDB with GO annotations that matched organonitrogen compound metabolic

process (GO: 1901564, n = 1,775 genes), carbohydrate metabolic process (GO: 0005975,

n = 467 genes), or organophosphate biosynthetic process (GO: 0090407, n = 215 genes). We

then examined gene families with orthologues in Af293 to test for presence–absence variation

in these genes between the 3 clades. Significant differences in gene abundance between the 3

clades were evaluated using the same strategy outlined above to evaluate CAZyme abundance.

Spatial enrichment

To identify the location of core accessory and singleton gene families relative to telomeres, we

calculated the enrichment of each gene family abundance category over 50 kb windows First,.

gff files were converted to bed format and filtered to consider only contigs>50 kb in length

and containing telomeric repeats (TAAC or the reverse complement) as developed by [82].

We then calculated the number of gene families contained either within or outside 50 kb of

telomeric repeats using PyBedTools [83]. To test for enrichment of gene family abundance

within 50 kb of telomeres, we checked normalcy assumptions using the shapiro.test() function

in the stats package v. 4.0.1 in R, and as normalcy assumptions could not be met, used a

2-sided Wilcoxon rank sum test implemented in the stats package to test for significance.

Population genomics

The Af293 reference genome was downloaded from FungiDB (v.46) [84]. Sequence reads for

each strain were aligned to Af293 using BWA v. 0.7.17 and the alignment file processed with

samtools v. 1.10 [85], applying the fixmate and sort commands to convert files to the BAM for-

mat. Duplicate reads were removed, and reads were flagged usingMarkDuplicates and indexed
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with Build BamIndex in picard tools v.2.18.3 (http://broadinstitute.github.io/picard). Variants

(SNPs) were called relative to Af293 using HaplotypeCaller in GATK v.4.0 [86] with filtering

accomplished using GATK’s VariantFiltration, with parameters -window-size = 10, -QualBy-

Dept<2.0, -MapQual<40.0, -Qscore<100, -MapQualityRankSum<-12.5,

-StrandOddsRatio> 3.0, -FisherStrandBias>60.0, -ReadPosRankSum<-8.0. Only variants

passing these filers were retained using the SelectVariants tool in GATK. Variants overlapping

TEs were further excluded from the variant pool by testing for overlap with the TE locations

identified in the FungiDB v. 46 release of the Af293 reference genome, using bedtools subtract

[87]. Variants were annotated with snpEff [88] based on the GFF annotation for Af293 v. 46

from FungiDB.

Population structure

Prior to analysis, the presence of clones in the dataset was assessed using the R package poppr

v.2.9.0 [89] with the functions mlg() and clonecorrect(). No clones were detected. Initially, we

assessed broad-scale population structure in A. fumigatus using the Bayesian clustering

approach STRUCTURE implemented in fastStructure v. 1.0 [90] across 361,717 polymorphic

sites (single nucleotide polymorphisms). VCF files were first converted into the plink format

using PLINK v. 1.90b3.38 [91] before running fastSTRUCTURE using the simple prior with K

values ranging from 1 to 15 over 30 independent iterations with specified seed values. For each

independent iteration, marginal likelihood values of K were obtained by employing the choo-

seK.py function in fastSTRUCTURE and assessed for significant increases in marginal likeli-

hood using ANOVA and the R packagemultcomp [92] with post hoc testing using Tukey tests

and Bonferroni correction for multiple comparisons. To further assess population structure,

we used discriminate analysis of principle components (DAPC) [93] and subsequent clade

mapping onto the phylogeny. DAPC was implemented in the R package adegnet v. 2.1.3 [94]

on a random subset of 100 K polymorphic SNP sites. The optimal number of groups (K) was

identified based on Bayesian information criterion (BIC) score using the find.clusters() func-

tion in adegnet, evaluating a possible range of 1 to 15 clusters to identify the elbow of the BIC

curve following [93]. To avoid overfitting, the optimal number of PCs retained in the DAPC

was chosen using the optim.a.score() function and determined to be PC = 3 out of a possible

PC range of 1 to 200. Evaluation of population substructure was carried out by iteratively run-

ning DAPC and fastSTRUCTURE on the 3 primary clades identified above. To do this, clade-

specific VCF files were subset using VCFtools—keep [95], and invariant sites were removed

using the bcftools -view command [96], before running the pipeline as above. To further inves-

tigate the history of gene flow in A. fumigatus, we ran TreeMix [97]. TreeMix was run on a

VCF file containing all strains plus A. fischeri as the outgroup on a VCF file prepared as above

except with the addition of A. fischeri. Initially, the assembly for A. fischeri strain NRRL 181

genome was downloaded from FungiDB v. 55. The assembly was then used to simulate Illu-

mina paired-end reads with the wgsim tool in the samtools package with an error rate of 0 and

to a read depth approximately equal to the average for the A. fumigatus strains, and run as

above. To run TreeMix, we removed invariant sites from the VCF as above, as well as sites

with high LD using Plink v.2 with the parameter—indep-pairwise 50 10 0.2. To determine the

optimal number of migration edges (m), we used the program OptM [98]. First, we prevented

bootstrapped TreeMix runs from having an SD = 0 by down sampling the LD-corrected VCF

file to 80% of total SNP sites, randomly drawn over 10 replicates using the bcftools -view com-

mand. Subset VCF files were converted to TreeMix format and for each down sampled repli-

cate TreeMix was run for all values of m between 1 and 10, and used as input for OptM in R.

We then re-ran TreeMix at the optimal value of m = 1 using the full LD-corrected VCF file as
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input, with all trees rooted at A. fisheri, using A. fisheri as the outgroup and the A. fumigatus

subpopulations defined by iterative DAPC analysis as described above. The fixation index

(FST) was calculated in the R package hierfstat v.0.5.9 [99] using the dosage format to account

for unequal population sizes [100] and computed with the fst.dosage() function. Pairwise FST
(the between population fixation index) was calculated in hierfstat using the fs.dosage()

$Fst2x2 function. As a second measure of population differentiation, we ran analysis of molec-

ular variance (AMOVA) using the R packages poppr and ade4 [101] with the function poppr.

amova() withmethod = “ade4.” Significant differentiation between populations was evaluated

using a Monte Carlo test with the function randtest() in poppr, over 999 iterations. To distin-

guish introgression from incomplete lineage sorting, we calculated Patterson’s D (ABBA-

BABA) in the program Dsuite using the Dtrios tool [102]. Dtrios was run on all 260 strains, set

to 3 populations, with population membership encodings determined in the previously

reported DAPC analysis, plus A. fischeri as the outgroup. Significance of the deviation of the

D-statistic from zero was determined using a 20 block-jackknife approach with a p-value

<0.05 indicating introgression.

Linkage disequilibrium

To estimate linkage disequilibrium (LD) decay, the VCF SNP files (run without A. fischeri)

generated above were used in conjunction with the clade assignments generated in DAPCA

for K = 3 to assess LD decay using PLINK [91]. LD decay was assessed both for all isolates

together and for all isolates separated by clade. Additionally, we assessed LD decay on a sample

size rarified set of isolates at n = 12 averaged over 20 independent runs. To do this, the samples

were rarefied using a custom BASH script, where for each clade, random draws of 12 isolates

per clade were taken over 20 iterations. Sampling did not allow for the same strain to appear

more than once in a single iteration, but did allow sampling with replacement between itera-

tions. To specifically evaluate the impact of sample size on LD estimates, we also ran the analy-

sis for n = 5, 10, 20, 50, or 100 isolates (averaged over 20 independent runs) randomly drawn

without regard to population structure. For all analyses, strains were subset (when appropriate)

from the VCF file as noted above, using vcftools—keep and bcftools—view before converting

VCF files to PLINK format using PLINK v. 1.90b3.38. LD decay was estimated in PLINK using

the squared genotypic correlation coefficient (r2) over all SNPs present in each group. We con-

sidered up to 99,999 variants per window and all r2 values to ensure fine scale resolution. Pair-

wise distance comparisons were limited to 500 kb (with parameters:—r2 –allow-extra-chr–ld-

window-r2 0 –ld-window 99999 –ld-window-kb 500). Distance matrices were constructed in

BASH and mean r2 for each distance was assessed across each iteration, and then across each

group to generate LD decay curves for each group using ggplot2 [103]. To estimate half-decay

values (LD50) in base pairs (BP) for each dataset, we averaged the r2 for each position across

all replicates in each group and calculated the r2 mid-point as (minimum r2 + (maximum r2 –

minimum r2) / 2). To obtain LD50 in BP, we then calculated the x intercept of the r2mid-

point for each clade using the approx() function in R.

Phylogenomics

The identified alleles for SNP positions from all isolates were used to construct a phylogeny

employing the Maximum Likelihood algorithm IQ-TREE using the +ASC parameter to

account for SNP-based ascertainment bias [104]. The best fit model according to BIC score

was assessed using theModelFinder function in IQ-TREE and was determined to be GTR+F

+ASC that was run over 1,000 rapid bootstrap iterations. Individual branch support values

were assessed using a Shimodaira–Hasegawa approximate likelihood ratio test over 1,000
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iterations. Tree rooting was determined by evaluation of the SNP tree run as above but includ-

ing the outgroup A. fischeri. Based on outgroup position, the root was determined to be at the

basal node separating Clades 2 and 3. Tree visualization and trait mapping was carried out

using the R package ggtree [105].

Distribution of mating type idiomorphs

To identify MAT type for each strain, we downloaded reference CDS DNA sequences for

MAT1-1 (GenBank number AY898661.1 from strain AF250) and MAT1-2 (Afu3g06170,

NCBI number NC_007196.1 from strain Af293) from NCBI. We constructed databases com-

posed of all scaffolds for each genome, and ran BLASTN [106] with the parameters -evalue.

0001 and -word_size 10, against both MAT idiomorphs. BLAST hits were formatted as fastA

files using a custom BASH script and aligned using MAFFT v. 7.471 [107]. To ensure that

strains with significant alignments to both MAT1-1 and MAT1-2 were not artifacts in the de

novo assembled scaffolds, these strains (n = 11) were further evaluated by aligning the raw

reads onto the MAT reference sequences. To accomplish this, reference sequences were

indexed using Bowtie2 v. 2.3.4.1 [108] with the bowtie2-build function, and SAM files created

from alignments generated with the -very-sensitive-local option. SAM files were converted to

BAM using the samtools view function and sorted using the sort function. Depth profiles of

the alignments were created using the samtools depth function and graphed in R using the

package ggplot2. To create fastA files of the alignments, we used the bcftoolsmpileup function

to create VCF files, indexed the VCF files using bcftools tabix, and used samtools faidx to

index the reference sequences. Then, using picard v. 2.18.3, we used the CreateSequenceDic-

tionary function to insert variant information for each strain into the reference MAT

sequences and the bcftools consensus function to insert “N”s for all positions where no align-

ments could be made. To assess the ploidy of these 9 strains, we used whole-genome K-mer

analysis on forward reads implemented in the program Jellyfish [109], and visualized using

GenomeScope [110], at K = 21. To further assess the ploidy of these 9 strains, we conducted

allele frequency analysis on all heterozygous SNP sites aided by the R package vcfR [111]. Iden-

tification and mapping of the MAT1-2-4 gene (Afu3g06160) was conducted using BLASTP

matches to Af293 gene assignments to the orthogroup clusters and mapped onto the phylog-

eny as above.

Presence–absence variance and SNP distribution of antifungal resistance
genes and virulence factors

A database of characterized A. fumigatus antifungal resistance variants was assembled from

the literature and combined with all MARDy database entries for A. fumigatus (http://mardy.

dide.ic.ac.uk) (S2 Table). We analyzed the population frequency of characterized resistance-

related amino acid changes available for 6 genes, as well as surveying all amino acid changing

variants across these 6 genes and an additional 7 genes associated with azole resistance in the

literature, but for which no regulatory amino acid changes have been characterized. Popula-

tion frequency of amino acid changing variants was conducted using custom scripts in R and

mapped onto the phylogeny using the packages ggplot2 and ggtree. We used the BLASTP

matches to Af293 gene assignments to validate the credibility of clade-specific gene family

assignments and to look for presence–absence variation in A. fumigatus secondary metabolite

biosynthetic gene clusters, consisting of 230 genes across 26 clusters as defined in [112]. To

determine the boundary of a large deletion in the gliotoxin cluster covering gliI, gliJ, and gliZ,

in some strains, we extracted the genes up and downstream from the de novo assemblies,

Afu6g09690 and Afu6g09660 (gliP), using genome coordinates as defined for the Af293
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reference genome. These sequences were then aligned onto Af293 using minimap [113]. To

visualize the boundary of the deletion, a truncated example of gliP was extracted using sam-

tools faidx (from AF100-12_9) using the coordinates identified in the alignment, and DNA

was translated for both reference and truncated versions of the gliP gene using exonerate [65].

Architecture was modeled using domain annotations for gliP from the Af293 reference in Uni-

Prot [114] and visualized using the R package drawProteins [115].

Results

Genome sequencing and assembly statistics

Average sequencing depth per strain ranged from 12X coverage (IFM_59356–2) to 359X cov-

erage (MO91298SB) with a mean depth of 75X. BUSCO scores ranged from 96.3%

(MO91298SB) to 99.4% (16 strains) completeness with a mean of 98.9%. The total number of

scaffolds ranged from 38 (Afum_84-NIH) to 872 (AF100-1_3) with a mean of 191. Scaffold

L50 ranged from 3 to 4, with a mean of 3.9. Scaffold N50 ranged from 3.53 Mbp (megabase

pairs) to 4.35 Mbp with a mean of 3.94 Mbp. Genome size ranged from 27.438 Mbp (CM2495)

to 31.568 Mbp (NCPF-7820) with a mean of 29.128 Mbp (S1 Table).

Population structure

To assess population structure and the frequency of recombination overall, within, and

between the clades, we used a combination of fastSTRUCTURE, DAPC, population statistics,

and LD decay analysis. fastSTRUCTURE’s marginal likelihood values increased until K = 5,

but did not increase significantly after K = 4 with a mean marginal likelihood difference of

only 0.0005 between K = 3 and K = 4 (S1 Fig). Because fastSTRUCTURE tends to overestimate

K when K is small [90] and is predicated on the assumption of locus independence due to

recombination, which is violated by clonality, we further defined K using DAPC analysis. The

optimal K was approximately 3 (S2A Fig), using the BIC criteria with 3 principal components

retained (S2B Fig). DAPC supported clear separation of 3 primary clades (Fig 1A). Clade 1 was

the largest with 200 strains, followed by Clade 2 with 45 strains, and Clade 3 with 15 strains (S3

Table). According to DAPC, none of the strains in this study met the criteria for admixture

(membership coefficients<0.85), as membership coefficients were essentially 1 in all cases (S3

Table). While clade assignment to 1 of the 3 clades using fastSTRUCTURE placed all strains in

the same respective clades as DAPC, fastSTRUCTURE membership coefficients were lower

overall than DAPC membership coefficients (Fig 1B and S4 Table) and a total of 8 strains had

membership coefficients<0.85, indicative of admixture or incomplete lineage sorting between

2 or more of the clades (Fig 1C). These included 3 strains (RSF2S8, 12–7505220, and 10-01-02-

27) assigned to Clade 2 but with ancestry from Clade 1 and 5 strains (F7763, CF098, F18304,

CM7632, and the resequenced reference strain AF293) assigned to Clade 1, but with ancestry

from both Clades 2 and 3. To investigate population substructure within the 3 clades, we used

iterative DAPC and fastSTRUCTURE analysis on each clade separately. Subset VCF files

excluding all invariant sites consisted of a total of 61,618 SNPs in Clade 1, 132,130 SNPs in

Clade 2, and 155,585 SNPs in Clade 3. The difference in SNP abundance between the 3 clades

is consistent with the location of the reference Af293 strain in Clade 1. The optimal number of

PCs for the sub-clades was determined to be 5 for the substructure within Clade 1 (S3A Fig)

and 3 for the substructure within Clade 2 (S3B Fig). The optimal number of PCs for Clade 3

was determined to be 1 (S3C Fig) and was therefore not further analyzed with DAPC. Iterative

DAPC analysis supported 5 sub-clades within Clade 1 and 5 sub-clades within Clade 2 (S3D

and S3E Fig and S5 Table). DAPC and fastSTRUCTURE returned slightly different clade

memberships for sub-clades at K = 5 (S5 and S6 Tables). fastSTRUCTURE analysis at K = 5
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Fig 1. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1; 5; S2; andS5:Pleaseverifythatallentriesarecorrect:(A)DAPCA plot depicting 3 primary populations with clear separation between clusters. The x-axis represents the first discriminant function, y axis
represents the second discriminant function, ellipses represent 95% confidence areas. (B) STRUCTURE plots of K = 2 to K = 5 populations support low levels
of admixture between clades at K = 3 (highlighted with triangle). (C) Isolates with<0.85 probability of assignment to a single clade, indicative of admixture or
incomplete lineage sorting between clades. (D, E) LD decay (r2) for all isolates in each respective clade or all isolates across all clades (in gray). (D) Linear–
linear plot of LD decay. (E) Zoomed-in log-linear plot of LD decay, with arrows indicating LD50 (half decay) values. (F, G) LD decay (r2) for sample size
normalized isolates (n = 12 isolates, averaged over 20 draws) in each respective clade or for all isolates across all clades (in gray). (F) Linear–linear plot of LD
decay. (G) Zoomed-in log-linear plot of LD decay, with arrows indicating LD50 values. The data underlying this figure can be found in DOI: 10.5281/zenodo.
5775265. BP, base pair; LD, linkage disequilibrium.

https://doi.org/10.1371/journal.pbio.3001890.g001
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supported frequent introgression between sub-clades in both Clade 1 (87 out of 200 strains)

(S3F Fig) and Clade 2 (7 out of 45 strains) (S3G Fig).

Mapping the 3 clades onto the phylogeny was congruent with clade membership, with all

clades demonstrating monophyly, with the exception of all of the Clade 1 strains with signa-

tures of admixture, which clustered on their own branch between Clades 2 and 3. Similarly,

the optimum value of migration edges according to OptM was determined to be 1 (S4A and

S4B Fig), with TreeMix placing the migration vector from Clade 3 to sub-clade Clade 1.1, con-

taining the Clade 1 isolates with signatures of introgression (S4C Fig). Overall, FST was 0.824,

and within population FST was 0.767, 0.825, approximately 0.880 for populations 1, 2, and 3,

respectively. Pairwise (between population), FST was 0.531 between Clade 1 and 2, 0.887

between Clade 2 and 3, and 0.859 between Clade 1 and 3. Similarly, AMOVA supported that

the majority of variation, 69.8%, occurred between populations (σ = 45,009.85, p = 0.001),

whereas differences between individuals in the populations accounted for only 30.2% of the

total variation (σ = 19,482.91). The value of Patterson’s D was 0.135 (Z = 24.32, p< 0.0001,

Dmin = 0.118), indicating introgression over incomplete lineage sorting. LD50 estimates were

extremely low when evaluated without considering clade or sample size (1.97 BP considering

all 260 isolates) and notably higher when taking clade into account (12.79 BP for Clade 1,

1,508.32 BP for Clade 2, and 13,474.24 BP for Clade 3, Fig 1D and 1E). Modeling the influence

of sample size on LD estimates showed a strong inverse relationship between sample size and

LD (S5 Fig). Similarly, sample size normalized LD estimates at n = 12 were notably higher than

without normalization, consistent for the overall LD (LD50 = 308.00 BP) and for the LD of

Clades 1 (LD50 = 1,425.24 BP) and 2 (LD50 = 4,974.58 BP), but not for the smallest and most

closely related clade, Clade 3 (LD50 = 10,096.73 BP) (Fig 1F and 1G).

Pan-genome

In total, we identified 15,309 gene families including 8,866 core genes (57.91% of the total),

4,334 accessory genes (28.31%), and 2,109 singletons (13.78%) using OrthoFinder (Fig 2A),

and a total of 15,476 gene families, including 8,600 core genes (55.57% of the total), 3,618

accessory genes (13.92%), and 3,258 singletons (21.05%) using PIRATE (S6A Fig). The distri-

bution of the number of genomes represented in each gene family was characteristically U-

shaped and ranged between 1 and 260 for both OrthoFinder (Fig 2B) and PIRATE identified

gene families (S6B Fig). Gene accumulation curves yielded conflicting genome structures

where accessory gene families excluding singletons leveled after sampling approximately 150

genomes (suggesting a closed pan-genome) but did not reach saturation (suggesting an open

pan-genome) when considering singletons along with accessory genes for both OrthoFinder

(Fig 2C) and PIRATE identified gene families (S6C Fig). The number of unique accessory

gene families per strain from OrthoFinder identified gene families ranged from 692 in AF100-

12_21 to 1,450 in IFM_60237 with an average of 1,163 per strain (Fig 2D). PIRATE identified

gene families ranged from 665 in AF100-12_21 to 1,376 in IFM_60237 with an average of 974

per strain (S6D Fig). The number of unique singleton gene families per strain ranged from 1

(34 strains) to 130 in the strain AFUG_031815_1869, with an average of 8 per strain. One

strain (AF100_12_23) contained no singleton gene families (Fig 2E). PIRATE identified gene

families supported singleton gene families ranging from 1 (27 strains) to 191 (in

AFUG_031815_1869) with an average of 13 per strain and 45 strains with no singleton gene

families (S6E Fig). Although AFUG_031815_1869 was an outlier in the number of singletons

present in both the OrthoFinder and PIRATE analysis, all AFUG_031815_1869 genome qual-

ity metrics were average relative to the rest of the dataset (200 scaffolds, average depth of 53

BP, and a BUSCO score of 99.3), and it did not appear that accessory genes were being
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miscategorized as singletons, so we elected to include this strain in all downstream analysis.

Overall, both accessory (p = 8.3e-8, R2 = 0.12) and singleton p = 4.9e-5, R2 = 0.06) gene families

were significantly related to genome size, although with low R2 values, particularly for

Fig 2. Pan-genome gene family distribution. (A) The pan-genome of 260 A. fumigatus strains included 15,508 gene families in total, including 8,595 (55.42%)
core genes (present in>95% of strains), 3,660 (23.60%) accessory genes (present in>2 and<248 strains), and 3,253 (20.98%) singletons (present in only 1
isolate). (B) The distribution of the number of genomes represented in each gene family. (C)Gene family accumulation curves, including (green) and
excluding (yellow) singletons. (D) The distribution of unique accessory gene families by strain. (E) The distribution of unique singleton gene families by strain.
The data underlying this figure can be found in DOI: 10.5281/zenodo.5775265.

https://doi.org/10.1371/journal.pbio.3001890.g002
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singleton gene families (S7 Fig). Neither the number of accessory gene families per strain nor

the number of singleton gene families per strain was significantly different between clades,

with means of 1,171, 1,160, and 1,075 accessory gene families per genome in Clades 1, 2, and 3,

respectively, and 9, 4, and 8 singleton gene families per genome for OrthoFinder identified

gene families (p = 0.42 for accessory gene families and p = 0.49 for singleton gene families).

These results were largely consistent for PIRATE identified gene families, with means of 980,

973, and 909 accessory gene families per genome in Clades 1, 2, and 3, respectively, and 14, 6,

and 16 singleton gene families per genome, and no significant differences in gene family abun-

dance between clades. Because of the relatively similar results obtained between OrthoFinder

and PIRATE, we conducted the remainder of the analysis solely on the OrthoFinder identified

gene families (hereafter referred to as just gene families). Clade 1 contained 1,256 unique

accessory gene families (not found in the other 2 clades) (average 6 per strain), Clade 2 con-

tained 95 unique accessory gene families (average 2 per strain), and Clade 3 contained 115

unique accessory gene families (average 8 per strain) (Fig 3A). Clade-defining gene family

gains (defined as present in>90% of strains in the clade, but in 0 strains from the other 2

clades) were 0 for Clade 1, 2 for Clade 2, and 23 for Clade 3. To account for the potential of

introgressed strains to influence the binning of core, accessory, and singleton gene families

and the identification of clade-specific gene families, we removed the 8 strains with evidence

of introgression between the 3 primary clades and re-calculated gene family abundance. We

Fig 3. Distribution of clade-specific gene family gains and absences. (A) The occurrence of clade-specific gene families in that clade (x-axis), defined as genes
that exist in that clade in more than 1 genome (singletons were excluded), by prevalence in that clade (y-axes), and highlights that while many clade-specific
gene families that exist in a low number of isolates, others are present in nearly all the isolates of that clade and in no other isolates. The distribution of
occurrence frequency varies between the 3 clades, due to differences in clade size, with 1,256 accessory gene families exclusive to Clade 1, 95 exclusive to Clade
2, and 115 exclusive to Clade 3. (B) The occurrence of clade-specific gene family absences for clade-defining absences, where each panel depicts the occurrence
of each gene in the 2 clades where the gene is not absent. The distribution of each gene is connected by a gray line. (B1)Gene families lost in all isolates of Clade
1 but present in greater than 90% of the isolates in either Clade 2 or Clade 3 (n = 5). (B2)Gene families lost in all isolates of Clade 2 but present in greater than
90% of the isolates in either Clade 1 or Clade 3 (n = 25). (B3)Gene families lost all isolates of Clade 3 but present in greater than 90% of the isolates in either
Clade 1 or Clade 2 (n = 125). The data underlying this figure can be found in DOI: 10.5281/zenodo.5775265.

https://doi.org/10.1371/journal.pbio.3001890.g003
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found that excluding introgressed strains only slightly changed the overall gene family abun-

dance categories: core gene families = 8,890, an increase of 24; accessory gene families = 4,246, a

decrease of 88; and singleton gene families = 2,081, a decrease of 28. Similarly, excluding intro-

gressed strains resulted in a slight decrease in the number of clade-specific gene families in

Clade 1 (n = 1,248, a decrease of 8 gene families) and a slight increase in Clades 2 and 3 (n = 97

in Clade 2, an increase of 2 and n = 125 in Clade 3, an increase of 10). Analysis of clade-specific

gene family absences identified 24 gene families missing in Clade 1 (with 5 clade-defining

absences, defined as missing in all isolates of Clade 1 but present>90% of all isolates from

Clades 2 or 3) (Fig 3B), as well as 270 gene families absent in Clade 2 (with 25 clade-defining

absences), and 991 gene families absent in Clade 3 (with 125 clade-defining absences).

The proportion of secreted proteins was significantly higher in the core gene families than

for accessory or singleton gene families (pairwise proportion test at p< 0.05). No significant dif-

ferences were observed in the proportion of secreted proteins between the 3 clades (S8 Fig). Sig-

nificant BLASTP hits for representative gene family sequences were found for 9,512 of the 9,840

genes currently annotated in the Af293 reference genome. While 9,299 gene families were rep-

resented by a single BLAST hit to the Af293 reference genome, the remaining 213 gene families

had more than 1 significant hit, suggesting that some closely related gene families may have

been merged into a single orthogroup. To investigate the potential for the over-splitting of gene

families, we conducted a clade-wise test of diversity: Because the Af293 reference strain is a

member of Clade 1, clade-specific gene families in Clades 2 and 3 should not be present in our

BLAST searches if they are truly clade specific. Clade-specific gene families present in Clade 2

had no significant BLAST hits to the reference strain, but Clade 3 specific gene families had 2

gene families with significant matches to genes in the Af293 reference (Afu8g01650 and

Afu3g02860—both encoding proteins of unknown function), indicating low levels of sequence

similarity among genes that our approach classified as unique families. Clade-specific gene fam-

ilies in Clade 1 had 28 gene families that could be assigned an Af293 reference gene ID, all other

Af293 annotated gene families were present in more than 1 clade (S7 Table).

Distribution of mating type idiomorphs

To determine the capacity for sexual recombination across the A. fumigatus phylogeny, we

characterized the mating type of each strain relative to population structure. Whereas the

MAT1-1 idiomorph has a unique sequence structure encoding the α-box domain, MAT1-2

contains both a unique region encoding a high-mobility group (HMG) region and a region

conserved between mating types [116]. Additionally, MAT1-2 strains are expected to contain

the gene MAT1-2-4 (Afu3g06160), essential for sexual recombination [117]. We therefore

expected MAT1-1 strains to have full-length alignments to the MAT1-1 reference and a trun-

cated alignment to the MAT1-2 reference, and MAT1-2 strains to have full-length alignments

to the MAT1-2 reference, no alignment to the MAT1-1 reference, and the presence of MAT1-

2-4. Using these criteria, we identified 144 isolates in our set with the MAT1-1 idiomorph and

105 isolates with the MAT1-2 idiomorph (Fig 4), a ratio of 48:35. Additionally, 11 isolates had

significant alignments to both MAT1-1 and MAT1-2, hereafter referred to as “unknown” mat-

ing type. All unknown mating types also contained the MAT1-2-4 gene. All 3 clades contained

both MAT types, in MAT1-1:MAT1-2 ratios of 107:85 (8 unknown) in Clade 1, 26:16 (3

unknown) in Clade 2, and 11:4 (0 unknown) in Clade 3. The 11 isolates with unknown mating

type were further examined using read mapping and read depth analysis, which confirmed

that for each of the 9 strains, raw reads did indeed map onto the full length of both reference

idiomorphs, however, alignment depths of MAT1-1 relative to MAT1-2 differed among

strains, and only 3 strains displayed relatively equal depth profiles for both MAT-1 and MAT-
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2 (AF100-1_3, IFM_59359, and IFM_61407) (S9 Fig). To investigate the possibility that these

11 strains represented diploids, we first conducted whole-genome K-mer analysis and found

that 9 of the 11 strains had strong single peaks supporting haploidy, while 2 strains, AF100-1_3

and IFM_59359, had moderate secondary peaks, potentially indicative of diploidy (S10 Fig).

To further assess strain ploidy, we conducted allele frequency analysis on all heterozygous

SNPs and found that 3 strains (AF100-1_3, IFM_59359, and IFM_61407) displayed notable

peaks at 1/2 frequency, lending further support to the potential for diploidy (S11 Fig). Three

strains (08_36_03_25, NCPF_7816, and SF2S9) had no significant peaks at 1/2 allele frequency,

but did display moderate shoulders sloping down from 1 (representing SNPs with base calls

different than the Af293 reference) and up to 0 (representing SNPs with the same base call as

the reference) potentially indicative of noise in the sequencing (miscalls, contamination, or tag

Fig 4. Phylogeny of A. fumigatusmapped against pan-genome distribution andMAT type.Overall abundance of
accessory and singleton gene families was not structured by clade. The distribution of MAT type was random across
the phylogeny, with both mating types present in all 3 clades. MAT idiomorphs were not present in equal proportion,
with 144 strains containing the MAT1-1 idiomorph, 105 containing MAT1-2, and 11 strains presenting significant
alignments to both MAT1-1 and MAT1-2. All strains with the MAT1-2 idiomorph also contained the MAT1-2-4 gene,
including the 11 strains with alignments to both MAT1-1 and MAT 1–2. Strain names with the ��� suffix denote the 8
strains demonstrating significant admixture between 2 or more clades. The data underlying this figure can be found in
DOI: 10.5281/zenodo.5775265.

https://doi.org/10.1371/journal.pbio.3001890.g004
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switching), low levels of copy number variation, or segmental duplication. The remaining 5

strains (AF100-1_18, AF100_12_5, Afu_343_P_11, B7586_CDC_30, and AF100_12_7G) dis-

played only low levels of 1/2 allele frequency but did display paired peaks below 1/4 and above

3/4, indicative of haploidy with large-scale copy number variation or segmental duplication in

these strains [118].

Functional analysis

To investigate the functional implications of pan-genomic variation across the 3 clades, we

performed enrichment analysis both de novo and relative to the Af293 reference genome.

While only 1.75% of core gene families were unable to be assigned with any functional annota-

tion, this number was greater for accessory (20.52%) and singleton (18.73%) gene families.

The percent of gene families unable to be assigned functional annotation was similar between

Clades 1 and 2 (18.47% and 18.95%, respectively) but higher for Clade 3 (39.13%). GO enrich-

ment analysis of gene families found exclusively in the core, accessory, and singleton categories

identified significant GO terms in all 3 categories. The same analysis targeting clade-specific

gene accessory gene families, identified terms significantly enriched in Clades 1 and 3 (Fig 5).

Fig 5. GO enrichment. Significantly enriched Biosynthetic Process GO terms associated with accessory gene families present exclusively in different A. fumigatus pan-
genome categories (A–C) and clades (D, E). Enrichment analysis was conducted for each experimental set against a background of all GO terms for all gene families in
the A. fumigatus pan-genome; p-values represent results of Fisher’s exact test of the top 10 most significantly enriched terms (for terms enriched at p< 0.05) (A) core,
(B) accessory, (C) singleton, (D) Clade 1, (E) Clade 3. Clade 2 had no significantly enriched terms. The data underlying this figure can be found in DOI: 10.5281/
zenodo.5775265. GO, Gene Ontology.

https://doi.org/10.1371/journal.pbio.3001890.g005
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Clade 2 was not significantly enriched for any GO terms. Core gene families were generally

enriched for terms related to housekeeping functions like transport, signal transduction, and

general cellular processes (Fig 5A). Accessory gene families were enriched in terms for nitro-

gen, carbohydrate, and phosphorus metabolic processes, with a small number of terms associ-

ated with molybdoprotein metabolic processes (Fig 5B). Singleton gene families were enriched

for terms relating to carbohydrate and nitrogen metabolism, as well as primary metabolism

and transcriptional regulation (Fig 5C). The most significantly enriched terms in Clade 1 also

included terms associated with metabolism, including carbohydrate and nitrogen processing,

as well as gene families associated with transmembrane transport and vesicle mediated trans-

port (Fig 5D). There was only 1 term significantly enriched in Clade 3, also for carbohydrate

metabolism (Fig 5E).

To further investigate metabolic genes differentially abundant between the 3 clades, we

used gene families with Af293 reference annotations that fell into GO categories for nitrogen,

carbohydrate, and phosphorus metabolism. We identified 25 genes with Af293 GO annota-

tions for the term organonitrogen compound metabolic process that were significantly differ-

ently abundant between the 3 clades (S12A Fig). Additionally, there were 7 genes with

differential abundance for the term carbohydrate metabolic process (S12B Fig) and 5 genes dif-

ferentially abundant for the term organophosphate biosynthetic process (S12C Fig).

Distribution of CAZymes

To further investigate the role of carbohydrate processing in clade-specific metabolic function,

we annotated and assessed the identity and abundance of CAZymes. In total, 139 different

CAZyme classes were identified across the A. fumigatus pan-genome. The CAZyme counts per

genome averaged 460 (sd = 7.7, min = 422 in F21732, max = 478 in IFM_59361) (S8 Table).

Twenty-eight of these CAZyme classes displayed patterns of differential abundance between

the clades (Fig 6A and S9 Table). These abundance profiles represented both copy number var-

iation and clade-specific gene gains and absences in families of auxiliary activities (AAs, n = 4),

carbohydrate-binding modules (CBMs, n = 3), carbohydrate esterases (CEs, n = 3), glycoside

hydrolases (GHs, n = 13), glycosyl transferases (GTs, n = 4).

Presence–absence variance and SNP distribution of antifungal resistance
genes and virulence factors

To assess how characterized antifungal resistance genes varied across the phylogeny, we used a

combination of reference-based SNP evaluation and de novo gene presence-absence assess-

ment. Across the six genes previously associated with antifungal drug resistance, all were core

and present in all isolates—however, the gene family containing cyp51A also yielded significant

BLAST hits to cyp51B, suggesting the possible merger of these closely related genes into a sin-

gle orthogroup. Because variants were called using reference-based rather than de novo clus-

tering, cyp51A and cyp51B could however be analyzed separately for the variant analysis. Of

the 27 characterized amino acid changing mutations across 6 genes associated with antifungal

resistance, we identified functionally characterized variants only in the cyp51A gene. In

cyp51A, a total of 7 resistance variants were identified occurring in a total of 34 strains (Table 1

and Fig 6). The most abundant of these was the TR34/Leu98His genotype (no strains with

TR46/Tyr121Phe/Thr289Ala genotype were found). All strains with the TR34/Leu98His geno-

type, as well as all strains containing the azole resistant variant encoding Gly138Cys, were

found exclusively in Clade 2. Other low abundance variants representing characterized

cyp51A-mediated azole resistance were scattered throughout Clade 1 (Pro216Leu, Met220Val)

or Clade 2 (Gly448Ser, His147Tyr), or represented in both Clade 1 and Clade 2 (Gly54Glu).
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Fig 6. Distribution of CAZymes and occurrence of cyp51Amutations across the A. fumigatus phylogeny. (A) CAZyme profiles display patterns of both
clade-specific gene gains and clade-specific gene absences across 28 CAZyme classes. CAZyme classes with differential abundance between the 3 clades were
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No characterized cyp51A resistance variants were found in Clade 3. An additional scan for all

non-synonymous cyp51A variants revealed 11 additional sites with unknown functional

impacts. Two of these sites occurred frequently across the phylogeny and represented changes

in a single branch containing Af293 and the other introgressed isolates in Clade 1 (Glu255Asp,

Thr248Asn), while 3 were absent from both the Af293 branch and all Clade 3 isolates (Lys427-

Glu, Val172Met, Tyr46Phe). Six additional sites occurred in low abundance and were either

exclusive to Clade 1 (Ala9Thr, Lys427Arg, Ile242Val, Ala284Thr) or Clade 2 (Ser297Thr,

Phe495Ile). Other amino acid changing variants in genes associated with resistance, but where

the functional consequence of these variants has not been characterized, were found in all

other genes investigated, including AFUA7G01960, artF, cdr1B/abcC, cox10, cyp51B, fks1,

hapE, hmg1,mdr1,mdr2,mdr3, andmdr4 (S13 Fig). Similarly, these variants of unknown con-

sequence at times represented the dominant allelic state (where the Af293 reference is not rep-

resentative of the population) and were at other times structured by clade (such as the

AFUA7G01960 Leu76Phe variant occurring almost exclusively in Clade 2 or the multiple

clade-specific variants inmdr4 in Clade 3 isolates).

We further used the Af293 gene annotations assigned to gene families to investigate gene

presence–absence variation across 26 notable A. fumigatus secondary metabolite biosynthetic

gene clusters (BGC, as defined in [112]) (S14 Fig). Out of the 230 genes investigated, 7 were

convoluted with one other gene in the same cluster, where both genes clustered into the same

gene family. These included Afu3g13700/Afu3g13690 in BGC 10, Afu4g00220/Afu4g00210 in

BGC 13, Afu4g14560/Afu4g14550 in BGC 14, Afu6g09730/Afu6g09720 in BGC 20,

Afu6g13980/Afu6g13970 in BGC 22, Afu8g00490 Afu8g00480 in BGC 25, and Afu8g02380/

Afu8g02360 in BGC 26. Three genes (Afu1g10275 in BGC 2, Afu7g00140 in BGC 23, and

Afu8g00450 in BGC 25) could not be confidently assigned to a gene family. We found substan-

tial variation in conservation across the 26 clusters, with the lowest conservation in BGC 1

(Uncharacterized polyketide—with 259 strains missing at least 1 gene), BGC 12 (Uncharacter-

ized non-ribosomal peptide, 240 strains missing at least 1 gene), BGC 16 (Uncharacterized

non-ribosomal peptide-like, 134 strains missing at least 1 gene), and BGC 13 (Endocrocin, 112

strains missing at least 1 gene). Additionally, Afu8g00400 in cluster 25 could only confidently

determined by Kruskal–Wallis tests at p< 0.001 after Bonferroni adjustment for multiple comparisons. Gene counts are normalized on a 0–1 scale (by
CAZyme class) for visualization. (B) Identification of non-synonymous variants in the cyp51A gene across the phylogeny demonstrated structured occurrence
of both known resistance variants (framed in pink) and variants with unknown functional impacts (framed in orange). Reference strain Af293 is highlighted in
gray and with triangle. While the Leu98His variants (corresponding to the azole resistant TR34/Leu98His genotype) as well as azole resistant variant Gly138Cys
were found exclusively in Clade 2, other characterized variants were scattered in low abundance throughout Clade 1, 2, or both. No characterized resistance
variants were found in Clade 3. While some non-synonymous variants with unknown functional impacts occurred frequently in cyp51A and represented
changes in a single branch leading to the reference strain Af293 (Glu255Asp, Thr248Asn), others were absent form this branch and absent in Clade 3
(Lys427Glu, Val172Met, Tyr46Phe), while others were low abundance and exclusive to Clade 1 (Ala9Thr, Lys427Arg, Ile242Val, Ala284Thr), or Clade 2
(Ser297Thr, Phe495Ile). The data underlying this figure can be found in DOI: 10.5281/zenodo.5775265.

https://doi.org/10.1371/journal.pbio.3001890.g006

Table 1. Occurrence summary of cyp51A variants by clade.

Leu98His Gly138Cys Pro216Leu Gly54Glu Gly448Ser Met220Val His147Tyr

Clade 1 0 0 4 1 0 1 0

Clade 2 19 7 0 1 1 0 1

Clade 3 0 0 0 0 0 0 0

Total 19 (7.25%) 7 (2.67%) 4 (1.52%) 2 (0.76%) 1 (0.38%) 1 (0.38%) 1 (0.38%)

Seven non-synonymous variants associated with antifungal drug resistance were identified in the cyp51A gene, representing 34 isolates. Percentages represent the total

number of a given amino acid change across all 3 clades out of 261 isolates scanned.

https://doi.org/10.1371/journal.pbio.3001890.t001
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be called in 1 isolate (AF100-1_24). Eleven BGCs demonstrated high levels of conservation,

with less than 10 strains missing any gene in the cluster. The most conserved was BGC 24

(Fumitremorgin) for which all genes were present in all strains, followed by BGC 8 (Fusarine

C) with genes missing in only 3 strains, BGC 11 (Uncharacterized polyketide) with genes miss-

ing in only 4 strains, BGCs 21 (Fumiquinozalines) and 3 (Ferricrocin), with genes missing in

only 5 strains, BGC 7 (Uncharacterized polyketide) missing genes in only 6 strains, BGCs 6

(Fumigaclavine), 9 (Hexadehydroastechrome), and 19 (Uncharacterized non-ribosomal pep-

tide), all missing in only 7 strains, BGC 5 (DHNMelanin) missing in only 8 strains, and BGC

23 (Neosartoricin) missing in 9 strains. We further investigated the likely implications of gene

loss in the 13 genes encoding the gliotoxin cluster (BGC 20) across the A. fumigatus phylogeny.

These 13 genes were assigned to 12 gene families (with gliF and gliN both assigned to the same

family). All 12 were highly conserved with low levels of gene absences. An exception to this

finding was the wholesale loss of gliI, gliJ, and gliZ from 8 strains clustered in Clade 1 (S14 Fig).

All strains represent isolates from a long-term infection of a cystic fibrosis patient [119].

Because gliI, gliJ, and gliZ are immediately adjacent in the Af293 reference genome, we further

investigated the boundaries of this deletion and found that it encompasses a total 18,261 BP,

spanning Chr6 2336977..2355238 in Af293 reference coordinates. This deletion included 454

BP of the gene Afu6g095906, whole gene losses of the genes Afu6g09600, Afu6g0910,

Afu6g09620, Afu6g09630 (gliZ), Afu6g09640 (gliI), Afu6g09650 (gliJ), and 2619 BP of

Afu6g09660 (gliP) (S16B Fig).

Spatial enrichment

To identify differential spatial distribution in core, accessory, and singletons gene families

across each genome, we performed enrichment analysis of each gene category relative to the

distance to chromosome ends. We identified significant depletion of core gene families

(W = 51,142,943, p< 0.001, S15A and S15B Fig), and significant enrichment of both accessory

(W = 16,070,357, p< 0.001, S15C and S15D Fig) and singleton (W = 3850, p< 0.001, S15E

and S15F Fig) gene families within 50 kb of telomeres.

Discussion

Population structure and recombination rate

Due to the high dispersibility and assumed substrate generalism, A. fumigatus was originally

thought to represent a single homogenous population [28,29]. However, recent investigations

have found mixed evidence for both population stratification and recombination frequency

[30,32,33]. Importantly, tests for recombination that do not take population structure into

account, or incorrectly infer the number of underlying populations, can bias estimates of

recombination rate [120]. Contrary to models of panmixia, we found strong evidence for 3 dis-

tinct populations of A. fumigatus, with secondary population structure in both Clade 1 and

Clade 2 (Figs 1A and S3). We identified only 8 strains with mixed ancestry between the 3 pri-

mary clades (Fig 1B and 1C). These included 3 strains assigned to Clade 2 and 5 strains

assigned to Clade 1—including the Af293 reference strain. All 5 strains with mixed ancestry

assigned to Clade 1 clustered together on the same branch that was situated apart from the rest

of Clade 1 and between Clades 2 and 3, an arrangement typical of mixed ancestry (Fig 4). As

shared genetic variation between clades could be indicative of either the retention of ancestral

polymorphisms associated with incomplete lineage sorting during speciation or introgression

(hybridization) events between clades, we attempted to distinguish between these 2 scenarios

using TreeMix. We found that the best migration model supported gene flow from Clade 3 to

the 5 introgressed isolates in Clade 1 (S4 Fig). Similarly, Patterson’s D supported introgression
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over incomplete lineage sorting. Taken together, these results indicate that the branch contain-

ing Af293 is the result of a hybridization event, rather than a speciation event, and substantiate

its membership in Clade 1 over elevating this branch to a fourth clade. Overall, we found that

genetic differentiation was lower between Clades 1 and 2, with Clade 3 more divergent. While

Clade 3 contained no population substructure, Clades 1 and 2 each contained approximately 5

sub-clades (S3D and S3E Fig). Interestingly, while evidence for introgression between the 3

primary clades was limited to a few strains, within-clade introgression appeared to be common

(S3F and S3G Fig). To investigate further, we quantified recombination frequency using LD

decay (a pairwise site comparison of the decrease in LD across genome space) and found that

LD50 was startlingly low (1.97 BP) when assessed across all isolates (Fig 1D–1G). Because LD

estimates can be biased by ignoring population structure, we also conducted LD assessments

for each clade individually and overall for different values of n-samples. We found that sam-

ple-size normalization greatly increased the overall LD estimates (from 1.97 BP to 308.08 BP

across all isolates), and that while LD varied for each clade (lowest for Clade 1 and highest in

Clade 3), LD values remained extremely low, indicating exceptionally high levels of recombina-

tion in A. fumigatus. For comparison, Candida albicans (considered to be obligately asexual)

has a reported LD50 of 162,100 [121]. Conversely, A. flavus, which demonstrates relatively fre-

quent outcrossing, has an LD50 value estimated between 1,000 to 12,300 [122]. The exceptional

level of recombination identified here brings up important questions about the mechanisms

facilitating the generation of genetic diversity in organisms that disperse using primarily asexual

means. Recent estimates of recombination rate have singled out A. fumigatus as potentially hav-

ing a higher number of crossovers per meiotic event than any eukaryotic species investigated to

date [45]. Extremely high recombination rates would help explain the extremely low LD decay

values and exceptionally large pan-genome size observed in A. fumigatus. Given that LD estima-

tion is often carried out without regard to population parameters or sample size, these results

also highlight the sensitivity of LD estimates to cofounding variables and the importance of pop-

ulation structure and normalization in the interpretation of LD decay.

Although sexual recombination has been documented to occur in A. fumigatus [36], the fre-

quency of these recombination events in natural populations is unknown. One indicator of

sexual recombination is the population frequency of MAT-type idiomorphs, where ratios close

to 1:1 are indicative of randommating [123]. We found MAT1-1:MAT1-2 ratios in of approxi-

mately 7:5, with both mating types present in each primary clade, congruent with ongoing sex-

ual recombination in natural populations. Unexpectedly, we identified 11 strains with both

mating type idiomorphs. To further investigate these strains, and the potential for low levels of

diploidy in A. fumigatus, we first analyzed the read depth profiles of the full-length alignments

to both MAT1-1 and MAT1-2. We found that within a single strain, each idiomorph displayed

differing sequencing depth profiles in all but 3 cases (AF100-1_3, IFM_59359, and

IFM_61407) (S9 Fig), suggesting the potential for different underlying causes of the double

mapping to both MAT loci in these strains. Interestingly, one of these strains, Afu_343_P_11,

was previously identified as an outlier [30], for its exceptional genetic diversity. Similarly, K-

mer ploidy analysis supported haploidy in 7 of the 9 strains, but diploidy for AF100-1_3 and

IFM_59359 and allele frequency analysis was in agreement with the depth analysis, supporting

diploidy for AF100-1_3, IFM_59359, and IFM_61407, and haploidy for all others. Taken

together, while at least 6 of the 9 strains with double MAT alignments may represent either

partial duplications, or low levels of noise (culture contamination or tag switching during the

sequence process), others provide evidence for low levels of diploidy in the A. fumigatus popu-

lation. The diploid state is a signature of parasexual recombination and low incidence of A.

fumigatus diploid strains have been previously found in A. fumigatus lung isolates from cystic

fibrosis patients [124]. While AF100-1_3 is a clinical cystic fibrosis lung isolate [119],
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IFM_59359 is a clinical isolate taken from a patient with pulmonary aspergilloma, and

IFM_61407 is a clinical isolate from a patient with chronic necrotizing pulmonary aspergillosis

[125]. Thus, all 3 of these strains had the potential to be in the human lung environment for a

long period of time. Overall, the impact and relative frequency of sexual versus parasexual

recombination in A. fumigatus is unclear and a critical topic for future research.

Pan-genome diversity

The A. fumigatus pan-genome contained 5,180 more gene families than there are genes cur-

rently predicted in the Af293 reference genome (15,309 identified here versus 9,840 protein

coding genes, and 289 noncoding RNA genes currently predicted in Af293 in FungiDB as of

October 2021). Because gene families represent clusters of homologues, including both ortho-

logues and paralogues, genes and gene families are not expected to correlate in a one-to-one

ratio, and the number of true genes in the A. fumigatus pan-genome is likely even higher than

the number of gene families reported here. Method validation for our pipeline for de novo

assembly and pan-genomic clustering identified 10,167 genes (in 10,005 gene families) in the

re-sequenced reference strain AF293, 38 more than are currently predicted in the curated

Af293 reference strain. The small discrepancy between the number of genes identified in the

pan-genomic analysis over those currently annotated in the reference highlights the high fidel-

ity of the methods used here, where the additional genes identified for AF293 may represent

either low levels of error in gene calling, or genuine variation between the reference Af293 iso-

late and the re-sequenced “AF293” isolate [126].

While the majority of gene families identified were part of the core genome of A. fumigatus

(57.9%) (Fig 2A), substantial numbers of gene families were identified as accessory (28.3%) or

singleton genes (13.8%). While the total abundance of singleton and accessory gene families

were not structured by phylogeny or enriched by clade (Fig 3), we found that accessory genes

were more evenly distributed than singletons and that high average numbers of singletons

were driven by a relatively small number of strains with high gene diversity (Fig 2B–2D). The

high number of genes appearing in only a single isolate might suggests that these genes are

more likely to be error prone or less likely to contain functional information. However, we

were able to assign functional annotations to the vast majority of both accessory (79.48%) and

singleton (81.27%) gene families, suggesting that singletons are likely functional and not arti-

facts of the pipeline. Similarly, although singleton gene families may represent overly strin-

gent-binning of accessory gene families, the similar prevalence of singleton gene families

between OrthoFinder and PIRATE defined homologues, leads us to conclude that these fami-

lies represent substantial genetic diversity in gene families that occur only rarely in the greater

population. Given that core gene families are considerably more likely to be present in refer-

ence strains, and therefore more likely to be characterized, the high annotation frequency in

core genes (98.25%) is to be expected. The absence of functional annotation for approximately

20% of the dispensable genome highlights the shortcomings of single reference-based

approaches for investigating population-wide genetic diversity.

Despite our ability to assign functional annotations to the majority of the dispensable

genome, the distribution of accessory and singletons gene families should be considered sepa-

rately. Gene accumulation curves demonstrated a closed pan-genome structure when consid-

ering only accessory gene families, but an open pan-genome structure with unsaturated

genetic diversity when singletons were included (Fig 2C). The diversity of singleton genes in

A. fumigatus suggests both a mechanism for the generation of substantial genetic diversity,

and a mechanism for the purging of much of this diversity before these novel singleton genes

become fixed in the population.
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Our results suggest that A. fumigatus has a pan-genome size of approximately 67.2:32.8

core:accessory gene families excluding singletons and 57.9:42.1 core:accessory gene families

including singletons. This ratio signifies an exceptionally large dispensable genetic repertoire

and represents one of the largest fungal pan-genomes ever reported. Pan-genome size is influ-

enced by population size, outcrossing frequency, and niche specificity [21,43], where species

with large populations, frequent gene flow, and substrate heterogeneity are associated with

larger pan-genomes. For example, Zymoseptoria tritici is a highly outcrossing, widely distrib-

uted wheat pathogen with an estimated ratio of 60:40 core:accessory [127]. For comparison,

Saccharomyces cerevisiae is also widely distributed, but rarely outcrossing, and has a ratio of

93.4:6.6 core:accessory genes [128]. Previous pan-genomic analysis of A. fumigatus have found

ratios of core:accessory genes ranging from 83.29:16.71 core:accessory using 12 isolates [129]

to 69:31 core:accessory using 300 isolates [31]. Ecologically, the exceptional diversity observed

in the pan-genome of A. fumigatus is likely driven by the massive population size and global

distribution of the species, coupled to environmental heterogeneity, and possibly by cryptic

adaptation and yet undiscovered niche specificity.

Signatures of clade-specific genetic diversity were evident in all 3 primary clades, with each

containing numerous clade-specific gene families (Fig 3A). While the total number of unique

gene families in each clade was intrinsically influenced by differences in clade size, we can gen-

eralize about the distribution of these gene families within clades. For example, while many

clade-specific gene families were present in only a minority of isolates, others were present in

all or nearly all of the isolates in a given clade. Presence–absence analysis also identified gene

families that were uniquely absent among a single clade (Fig 3B), including multiple clade-

defining absences, where gene families were missing in all isolates of that clade, but present in

nearly all isolates of the other 2 clades. Here, absence could represent either gene loss in the

clade of interest or gene gains in the other 2 clades. Overall, fewer absences were identified in

Clade 1 than for the other 2 clades, with no gene families making our cutoff to define the loss

as a clade-defining feature. Conversely, clade-defining absences were present in both Clade 2

(n = 2 absences) and Clade 3 (n = 23 absences).

Although the mechanisms facilitating the remarkable genetic diversity observed in A. fumi-

gatus are unknown, the generation of novel dispensable genes may be associated with genomic

region, such as distance to chromosome ends [15]. Subtelomeric regions undergo rapid expan-

sion and contraction events and increased rates of evolution and recombination during both

meiosis and mitosis [18,130,131], generating genomic diversity that may particularly impact

genes needed for rapid adaptation such as those involved in pathogenicity [5,19] and metabo-

lism [18]. In accordance, we found significant enrichment of both singleton and accessory

genes in subtelomeric regions, along with significant depletion of core genes in these regions

(S15 Fig). Despite strong enrichment for dispensable genes at chromosome ends relative to

internal regions, it should be noted that the majority of dispensable genes were found distal to

telomers. This dichotomy suggests a possible mechanism for the generation of genomic diver-

sity in subtelomeric regions, followed by the subsequent translocation of these genes to regions

internal to chromosomes, a model that has been proposed for the generation of metabolic

diversity in Cryptococcus [132].

Functional enrichment

Whereas core gene families were enriched for GO terms related to expected essential functions

such as transcription, translation, and transport, we found that the dispensable genome was

enriched for terms related to metabolism—particularly terms related to nitrogen, carbohy-

drate, and phosphorus processing (Fig 5A–5C). Enrichment of clade-specific gene families

PLOS BIOLOGY Aspergillus fumigatus population structure and lineage-specific diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001890 November 17, 2022 24 / 39

https://doi.org/10.1371/journal.pbio.3001890


echoed these results, with various metabolic processes enriched in clade-specific gene families

in Clades 1 and 3 (Fig 5D and 5E). To further investigate the potential for differential meta-

bolic capacity across the phylogeny, we first annotated CAZyme encoding genes across all iso-

lates and identified clade-wise differential abundance in 28 CAZyme families (Fig 6A). These

CAZymes represent diverse metabolic activities including carbohydrate-binding modules, car-

bohydrate esterases, glycoside hydrolases, glycosyl transferases, and auxiliary activities. These

gene families are associated with diverse roles in colonization, nutrient utilization, and sub-

strate specificity [133]. We further looked for evidence of substrate specificity using gene fam-

ily homology to Af293 annotations to identify clade-specific patterns in gene presence–

absence variation in genes associated with nitrogen, carbohydrate, and phosphorus metabo-

lism. We found evidence for significant clade-wise presence–absence variation in all 3 gene

categories (S12A–S12C Fig). For example, Afu6g14620, which has been largely lost in Clade 2,

but not Clades 1 and 3, encodes a putative Alpha-L-arabinofuranosidase, an enzyme that

hydrolyzes arabinose side chains, and is known to be substrate specific [134].

Clade-specific differences in genes involved in primary metabolism are likely driven by eco-

logical and evolutionary factors relevant to environmental systems, such as niche occupation

and subtle substrate specificity on various plant biomass materials. However, genetic differ-

ences driven by environmental ecological factors may also have clinical implications. For

example, GH135 (sph3, with an additional copy in Clade 3) is involved in the production of

galactosaminogalactan (GAG), a critical component of A. fumigatus biofilms [135]. GH16 and

GH55 (both with 1 less copy in Clade 3) are essential for proper A. fumigatus conidial morpho-

genesis [136,137]. AA3 (with an additional copy in Clade 2, and AA7 (with 1 less copy in

Clade 2, and 2 less copies in Clade 3) likely serve as oxidases with a role in the production of

H2O2 for lignin depolymerization [138]. However, differences in the production of H2O2 may

require corresponding differences in detoxification ability and could impact interactions with

host leukocytes that employ oxidative antifungal killing mechanisms [139–143]. Metabolic

specificity may also represent the possibility for niche preadaptation in clinical settings, as

nutritional landscapes may not be uniform in clinical environments. For example, the cystic

fibrosis lung environment is characterized by the impaired clearance and increased viscosity of

mucins [144]. These mucins represent unique carbon and nitrogen sources that act as sub-

strates for diverse microbial communities [145] with the potential for both direct and syn-

trophic interactions between colonizing fungi and bacteria.

Genes involved in secondary metabolism may also underlie clade-specific niche occupation,

as the expression of biosynthetic clusters is tied to differential nutrient access and nutrient

sensing [146]. Here, we found substantial presence–absence variation in BGCs encoding

diverse secondary metabolites (S14 Fig), and these too may have human disease implications.

For example, the genes Afu3g13730, Afu3g13720, and Afu3g13710, which are lost in Clade 3

but present in nearly all other isolates, are part of the same uncharacterized biosynthetic

NRPS-like gene cluster [112]. Also coded under the GO terms for organonitrogen and organo-

phosphorus metabolism, this cluster is preferentially expressed during the initial 4 h of infec-

tion in-vivo [112].

Another example with potential impacts on virulence and pathogenesis is the discovery of

isolates lacking part of the gliotoxin BGC (S14 Fig). Gliotoxin is a powerful mycotoxin and vir-

ulence factor in A. fumigatus infection [147]. A large deletion in 8 strains, covering 8 genes on

Chromosome 6 (relative to Af293), included the tailoring and structural genes gliI and gliJ, the

transcription factor gliZ, and a partial deletion in the NRPS gene gliP. Among these, gliI and

gliP are considered essential to gliotoxin biosynthesis [148,149]. Whereas the full gliP protein

contains 2 sets of canonical NRPS A-T-C modules plus a tailing T (thioesterase), the truncated

gene is predicted to encode a single A-T-C module and a tailing A, making peptide formation

PLOS BIOLOGY Aspergillus fumigatus population structure and lineage-specific diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001890 November 17, 2022 25 / 39

https://doi.org/10.1371/journal.pbio.3001890


unlikely (S16 Fig). As the production of gliotoxin is thought to impart enhanced survival and

infection persistence [150], the presence of this large deletion in 8 strains representing a persis-

tent lineage present in a cystic fibrosis patient with long-term aspergillosis [119] hints that glio-

toxin production is not necessary for persistence in patients with cystic fibrosis and highlights

possible alternative/adaptive roles for the functional loss of this cluster under some conditions.

Although the results presented here identify an intriguing direction for future study, functional

work is needed to clarify realized differences in substrate usage and any potential links between

ecological niche occupation and realized differences in pathogenesis and virulence traits.

Antifungal resistance genes

To test if clinically relevant alleles were also biased in their distribution across the 3 clades, we

conducted variant scans on a set of 13 genes associated with antifungal drug resistance. These

included targeted analysis of 6 functionally characterized amino acid changes available for 6

genes (cyp51A, cyp51B, hapE, hmg1, cox10, and fks1) (S2 Table), as well as surveying all amino

acid changing variants across these 6 genes and an additional 7 genes associated with azole

resistance, but lacking functional characterization of specific amino acid changes. Targeted

scans only identified previously characterized mutations only in the cyp51A gene (Fig 6B).

While the azole resistant TR34/Leu98His and Gly138Cys genotypes were found exclusively in

Clade 2, other characterized variants in cyp51A-mediated azole resistance were scattered in

low abundance throughout Clade 1 (Pro216Leu, Met220Val) or Clade 2 (Gly448Ser, His147-

Tyr), or represented in both Clade 1 and Clade 2 (Gly54Glu). Conversely, no characterized

cyp51A resistance variants were found in Clade 3. An additional scan for all non-synonymous

variants in cyp51A found 11 amino acid changes that occurred frequently across the phylog-

eny. Interestingly, 2 of these changes (Glu255Asp and Thr248Asn) are variants that map to a

monophyletic branch containing the Af293 reference Clade 1 isolates with signs of introgres-

sion, making the Glu255Asp and Thr248Asn genotypes the rule rather than the exception and

highlighting the potential problems associated with defining mutations relative to a single ref-

erence. Similarly, 3 variants (Lys427Glu, Val172Met, and Tyr46Phe) were absent only from

the monophyletic branch containing the reference and from all Clade 3 isolates. Finally, 6

additional variants were present only in low abundance and exclusive to Clade 1 (Ala9Thr,

Lys427Arg, Ile242Val, Ala284Thr) or Clade 2 (Ser297Thr, Phe495Ile). While the functional

impacts of these low abundance amino acid changes are unknown, the frequency of uncharac-

terized cyp51A amino acid changes deserves future consideration. Additionally, while the

genes scanned did not contain characterized drug resistance alleles, they all contained multiple

uncharacterized amino acid changing variants (S13 Fig). Several of these changes demon-

strated phylogenetic structure, such as the Leu76Phe change in AFUA7G01960, which was

both prevalent and nearly exclusive to Clade 2 isolates. As cyp51Amutations in A. fumigatus

only account for an estimated 43% of resistant isolates [41], the distribution of non-synony-

mous variants in other genes associated with resistance highlight the importance of future

research on the functional impact and population distribution of alternative drug resistance

mechanisms in A. fumigatus.

Conclusion

The availability and continued improvement of high-quality reference genomes has enabled

insights into the evolution and variation of fungal genome structure [151], intragenomic evo-

lutionary rates [152,153], and how intraspecific genetic variability is structured across fungal

populations [154,155]. However, there is growing appreciation that a single reference genome

is incapable of capturing the genetic variation present across a species. Whereas genes absent
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in the reference genome are likely to be ignored using reference-based alignment, de novo

strategies for genome assembly offer the possibility of capturing the full repertoire of genetic

diversity [156]. Here, we used a combined genomics approach to leverage both reference-

based and de novo strategies to illuminate population structure, recombination frequency, and

genetic diversity across the A. fumigatus pan-genome. These populations, subdivided into 3

primary clades, are characterized by exceptionally high gene diversity and substantial pres-

ence–absence variation, representing one of the largest fungal pan-genomes ever reported.

Our results suggest that recombination occurs at strikingly high rates in A. fumigatus, but that

the frequency of these recombination events happens primarily within-clade and only rarely

between clades. Laboratory studies are needed to confirm the recombination rate, frequency

of mating, and mating compatibility within and between isolates from the 3 primary lineages.

We found that the 3 primary clades are defined by genes encoding diverse metabolic functions,

hinting that population structure may be shaped by environmental niche occupation or sub-

strate specificity. If niche occupation translates to realized differences in nutrient usage or

stress tolerance, it may have implications for disease initiation and/or progression [35]. Finally,

as evidenced by the numerous gene families identified here which have no homologue in

Af293, the under-characterization and inability to assign annotations to approximately 20% of

the dispensable genome, and variant profiles that identified clear cases where Af293 was the

exception, rather than the rule for the population (and therefore inappropriate to define muta-

tions against), this work highlights the inadequacy of using single reference-based approaches

to capture the genetic variation across a species, and the power of combined genomics

approaches to elucidate intraspecific diversity. As this study can only represent conclusions

based on the data available, we anticipate that as additional genome sequences become avail-

able, novel genomic and phylogenetic diversity will continue to be discovered in A. fumigatus.

Additionally, the methodological hurdles associated with assessing population structure and

recombination frequency in organisms with complex clonal-sexual life cycles is significant and

highlights the need for the further development of computational tools capable of addressing

issues specific to fungi.

Supporting information

S1 Fig. fastSTRUCTURE marginal likelihood values.Marginal likelihood increased until

K = 5, with the largest increase occurring between K = 1–3. The data underlying this figure can

be found in DOI: 10.5281/zenodo.5775265.

(TIF)

S2 Fig. Statistical standards for A. fumigatus population structure. (A) BIC score vs. num-

ber of clusters, with elbow of the curve at K = 3 clusters, (B) choice of PCs for DAPCA was

found to be optimal at PC = 3 according to a-score. The data underlying this figure can be

found in DOI: 10.5281/zenodo.5775265. BIC, Bayesian information criterion; DAPC, discrim-

inate analysis of principle component.

(TIF)

S3 Fig. Investigation of population substructure. Population substructure within the 3 clades

was investigated using iterative DAPC and fastSTRUCTURE analysis of vcf SNP sites subset

by clade. (A) The optimal number of PCs for the sub-clades was determined to be 5 for the

substructure within Clade 1. (B) The optimal number of PCs for the sub-clades was deter-

mined to be 3 for the substructure within Clade 2. (C) The optimal number of PCs for Clade 3

was determined to be 1 and was therefore not further analyzed with DAPC. (D) Iterative

DAPC analysis supported 5 sub-clades within Clade 1. (E) Iterative DAPC analysis supported
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5 sub-clades within Clade 2. (F) Iterative fastSTRUCTURE at K = 5 supported frequent intro-

gression between sub-clades in Clade 1 (87 out of 200 strains). (G) Iterative fastSTRUCTURE

at K = 5 supported frequent introgression between sub-clades in Clade 1 (7 out of 45 strains).

Sub-clade designations were not consistent between DAPC and fastSTRCTURE (i.e., DAPC

sub-clade 1.1 is not equivalent to fastSTRUCTURE sub-clade 1.1). The data underlying this

figure can be found in DOI: 10.5281/zenodo.5775265.

(TIF)

S4 Fig. TreeMix results. TreeMix was run on a VCF file containing all strains plus A. fischeri

as the outgroup with the optimal number of migration edges determined using the program

OptM, using 10 independent iterations of m ranging from 1–10. (A)Variance explained across

different values of m and (B) delta m spike supporting the optimal migrations at m = 1. (C)

TreeMix graph supporting gene flow from Clade 3 to sub-clade 1.1, containing 5 introgressed

isolates with majority ancestry in Clade 1 and including the reference strain Af293. The data

underlying this figure can be found in DOI: 10.5281/zenodo.5775265.

(TIF)

S5 Fig. The influence of sample size on LD decay. To investigate the influence of sample size

on LD decay, we iteratively sampled n = 5, 10, 20, 50, or 100 isolates without regard to popula-

tion structure (each n averaged over 20 independent iterations) and calculated LD50 in BPs.

The influence of sample size on LD estimates showed a strong inverse relationship between

sample size and LD decay, with an LD50 of 1,489.55 BP at n = 5, 308.80 BP at n = 10, 5.02 BP

at n = 20, 4.7 BP at n = 50, and 2.76 BP at n = 100. (A) Linear–linear plot. (B) Zoomed in log-

linear plot, with arrows denoting LD50 at each n. The data underlying this figure can be found

in DOI: 10.5281/zenodo.5775265. BP, base pair; LD, linkage disequilibrium.

(TIF)

S6 Fig. Pan-genome gene family distribution using PIRATE. (A) The pan-genome of 260 A.

fumigatus strains included 15,476 gene families in total, including 8,600 (55.57%) core genes

(present in>95% of strains), 3,618 (13.92%) accessory genes (present in>2 and<248 strains),

and 3,258 (21.05%) singletons (present in only 1 isolate). (B) The distribution of the number

of genomes represented in each gene family. (C) Gene family accumulation curves, including

(green) and excluding (yellow) singletons. (D) The distribution of unique accessory gene fami-

lies by strain. (E) The distribution of unique singleton gene families by strain. The data under-

lying this figure can be found in DOI: 10.5281/zenodo.5775265.

(TIF)

S7 Fig. Relationship between genome size and number of gene families. Both (A) accessory

gene families and (B) singleton gene families were significantly related to predicted genome

size, although this relationship yielded low R2 values, particularly for singleton gene families.

The data underling this figure can be found in https://github.com/MycoPunk/Afum_PopPan.

(TIF)

S8 Fig. Proportion of secreted proteins across the pan-genome by frequency and clade.

Secreted proteins were predicted using the programs Signal P and Phobius. In most cases, Pho-

bius predicted a slightly greater number of secreted proteins than Signal P. Both Signal P

(lightest shading) and Phobius (mid-level shading) contained proteins not annotated by the

other program, but most individual proteins called as secreted overlapped between the 2 pre-

diction programs (darkest shading). (A) Proportion of gene families predicted to represent

secreted proteins out of all gene families by frequency (core, accessory, and singleton) and (B)

by clade for clade-specific gene families. In Clade 3, only 2 categories are depicted as all
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secreted proteins predicted by Signal P were also predicted by Phobius. Significant differences

were assessed using Pairwise proportion tests with Bonferroni adjustment for multiple com-

parisons at p< 0.05. Letters (lowercase) in common, indicate no significant difference

between groups. Significance results were consistent across Signal P, Phobius, and Consensus

inferred secreted proteins. The data underlying this figure can be found in DOI: 10.5281/

zenodo.5775265.

(TIF)

S9 Fig. Depth profiles of MAT idiomorph alignments for the 9 isolates with significant

alignments to both MAT1-1 and MAT1-2, plus positive controls. All strains had alignments

over the entirety of the MAT region for both idiomorphs, but these alignments different in

depth, suggesting different underlying explanations. For MAT1-2 alignments, the trailing

approximately 270 BP region that is conserved between MAT1-1 and MAT1-2 is visible here

in the control as well as in several of the isolates that mapped to both idiomorphs. While

MAT1-2 idiomorph strains have a full alignment over the (approximately 1,078 BP) MAT1-2

reference, MAT1-1 idiomorph strains only align over the approximately 270 BP conserved

region of the MAT1-2 reference. The data underlying this figure can be found in DOI: 10.

5281/zenodo.5775265.

(TIF)

S10 Fig. K-mer profiles of strains with alignments to both MAT1-1 and MAT1-2 while 7 of

the 9 strains display single peaks indicative of haploidy, 2 strains, AF100-1_3 and

IFM_59359 display low secondary peaks, potentially indicative of diploidy. The data under-

lying this figure can be found in DOI: 10.5281/zenodo.5775265.

(TIF)

S11 Fig. Allele frequency profiles of strains with alignments to both MAT1-1 and MAT-2

plots indicate genome-wide allelic ratios across all SNPs for each genome, where 1 or 0

indicates homozygosity (1 indicating a polymorphism and 0 matching the reference allele

of Af293). Although homozygous positions are expected to dominate the data (outer graph),

diploids are expected to have an additional peak at an allele frequency of 1/2, visible when 1

and 0 are removed from the graph space (inner plot). While 6 of the 9 strains display no nota-

ble peaks at 1/2, 3 strains (AF100-1_3, IFM_59359, and IFM_61407) do show peaks at 1/2.

Four other strains, while likely haploid, display significant areas of copy number variation as

evidenced by additional peaks just below 1/4 and just above 3/4. The data underlying this fig-

ure can be found in DOI: 10.5281/zenodo.5775265.

(TIF)

S12 Fig. Presence–absence variation in metabolic genes. Gene family clusters with signifi-

cant homology to annotated genes the Af293 reference genome were assigned using BLASTP

(e-value< 1e-15). Using these annotated clusters, we identified differential abundance in clus-

ters with Af293 annotations between the 3 clades, for Af293 genes in FungiDB under the GO

terms (A) organonitrogen compound metabolic process (GO: 1901564, n = 25 significantly

differentially abundant genes; only the first 7 are depicted for visualization), (B) carbohydrate

metabolic process (GO: 0005975, 7 significantly differentially abundant genes), and (C) organ-

ophosphate biosynthetic process (GO: 0090407, 5 significantly differentially abundant genes).

Genes denoted with � are shown grouped with GO: 1901564, but are also annotated in GO:

0090407. The data underlying this figure can be found in DOI: 10.5281/zenodo.5775265.

(TIF)
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S13 Fig. Distribution of non-synonymous variants in non-cyp51A genes associated with

fungal drug resistance. In addition of cyp51A, a database of other genes known to be associ-

ated with antifungal drug resistance was assembled (S2 Table), and all isolates were scanned

for non-synonymous variants in these genes. Four genes, Cyp51b, cox10, mdr2, and AFUA

7G01960 contained uncharacterized non-synonymous amino acid changes, several of which

demonstrated phylogenetic structure. The data underlying this figure can be found in DOI: 10.

5281/zenodo.5775265.

(TIF)

S14 Fig. Presence–absence variation in secondary metabolite biosynthetic gene clusters.

Gene family clusters with significant homology to annotated genes the Af293 reference

genome were assigned using BLASTP (e-value< 1e-15) and genes in gene clusters encoding

notable A. fumigatus secondary metabolites (as defined in [112]) were mapped onto the phy-

logeny in R. Out of 230 genes in 26 clusters, 7 were convoluted with one other gene in the clus-

ter, where both genes clustered into the same gene family (in these cases, both genes are listed

separated by /). Three genes (Afu1g10275 in cluster 2, Afu7g00140 in cluster 23, and

Afu8g00450 in cluster 25) could not be confidently assigned to an Orthofinder gene family

and are not displayed. The data underlying this figure can be found in DOI: 10.5281/zenodo.

5775265. BGC, biosynthetic gene cluster.

(TIF)

S15 Fig. Enrichment of gene families relative to telomeres. The relative abundance of core,

accessory, and singleton gene families was calculated over 50 kb windows for all contigs>50

kb in length and containing a telomeric repeat. Possible enrichment of each abundance cate-

gory was then tested using a 2-sided Wilcoxon rank sum test implemented in the stats package

in R, showing significant depletion of core genes and significant enrichment of singleton and

accessory genes within 50 kb of telomere ends. The data underlying this figure can be found in

DOI: 10.5281/zenodo.5775265.

(TIF)

S16 Fig. Presence–absence variation in gliotoxin cluster genes. The boundaries of the dele-

tion were the same for all 8 strains and included the partial truncation of gliP, covering 1

A-T-C module. The data underlying this figure can be found in DOI: 10.5281/zenodo.

5775265.

(TIF)

S1 Table. Accession numbers and strain information.

(XLSX)

S2 Table. Database of characterized antifungal resistance mutations in A. fumigatus.Data-

base was assembled from the literature and supplemented with search results from the

MOADy antifungal drug resistance database.

(XLSX)

S3 Table. DAPCA clade assignments, including posterior probabilities for each strain used

in this study.

(XLSX)

S4 Table. fastSTRUCTRE clade assignments, including posterior probabilities for each

strain used in this study.

(XLSX)
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S5 Table. DAPC sub-clade assignments, including posterior probabilities for each strain.

(XLSX)

S6 Table. fastSTRUCTURE sub-clade assignments, including posterior probabilities for

each strain.

(XLSX)

S7 Table. Abundance and annotation of clade-specific gene families.

(XLSX)

S8 Table. CAZyme gene counts for all A. fumigatus isolates.

(XLSX)

S9 Table. CAZyme enrichment stats table.Mean gene counts and post-hoc results for the 28

CAZymes with significantly different abundance between the 3 clades. Letters (in parenthesis)

in common indicate no significant difference in abundance.

(XLSX)
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