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ABSTRACT

Reduced-order modeling (ROM) of fluid flows has been an active area of research for several decades. The huge computational cost of direct
numerical simulations has motivated researchers to develop more efficient alternative methods, such as ROMs and other surrogate models.
Similar to many application areas, such as computer vision and language modeling, machine learning and data-driven methods have played an
important role in the development of novel models for fluid dynamics. The transformer is one of the state-of-the-art deep learning architectures
that has made several breakthroughs in many application areas of artificial intelligence in recent years, including but not limited to natural lan-
guage processing, image processing, and video processing. In this work, we investigate the capability of this architecture in learning the dynam-
ics of fluid flows in a ROM framework. We use a convolutional autoencoder as a dimensionality reduction mechanism and train a transformer
model to learn the system’s dynamics in the encoded state space. The model shows competitive results even for turbulent datasets.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151515

I. INTRODUCTION
The physics of fluid flows is generally governed by nonlinear par-

tial differential equations (PDEs) with no known analytical solution.
That is why computational methods have been the dominant
approach in studying fluid mechanics among scientists and engineers.1

There are countless applications for fluid mechanics motivating
researchers and industries to invest in advancing the computational
tools for studying them, such as aerodynamics,2–5 air conditioning,6–8

bio-fluids,9–11 and heat transfer.12–14 These classical approaches, how-
ever, come with a well-known trade-off between computational cost
and accuracy. If traditional computational fluid dynamics (CFD)
methods can be accelerated or replaced with faster and more efficient
approaches, it can lead to a great step forward in any application rely-
ing on fluid flow simulations.

With the emergence of powerful data-driven methods and
machine learning algorithms, as well as the increase in data available
from experiments and numerical simulations, a new line of research
now focuses on data-driven approaches to move toward this goal.15–19

Some remarkable examples of such methods are spatiotemporal
super-resolution of flow data,20,21 modal decomposition and analy-
sis,22–24 turbulence modeling,19,25,26 reduced-order modeling (ROM)
of fluid flows,27–30 and flow control.31,32

These techniques can also be accompanied by traditional numeri-
cal methods in order to accelerate them.33,34 However, such models

are still based on traditional CFD methods with the same trade-off,
but faster with the aid of machine learning. Data-driven models can
also leverage analytical knowledge about the physics of the system,35,36

but these methods face serious challenges when dealing with high-
dimensional data and higher-order derivatives.37 Neural operators are
another novel class of methods that use deep learning to learn the
solution operator of partial differential equations.38–40 These methods
have a different perspective as they treat the problem as finding the
mapping between infinite-dimensional function spaces and have
achieved outstanding performance and have desirable properties such
as being mesh-agnostic.

This work focuses on reduced-order modeling (ROM), which is
basically approximating the evolution of physical systems in time in
terms of coherent patterns and structures.27 A reduced-order model
generally consists of a dimensionality reduction mechanism and a
dynamical model in the reduced state space. Proper orthogonal
decomposition (POD) is a primary example of a dimensionality reduc-
tion algorithm in fluid dynamics, which is basically a linear projection
of the high-dimensional state onto a low-dimensional subspace.
Machine learning and deep learning have made significant contribu-
tions to the development of efficient and nonlinear dimensionality
reduction techniques,41,42 especially convolutional autoencoders
(CAEs).24,28,43 Looking at the success of CAEs in dimensionality
reduction and feature extraction for fluid flows, we choose to utilize
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one in our model. There are numerous choices for the dynamical
model component in the literature including classical linear models,
such as dynamic mode decomposition (DMD),44,45 sparse
Identification of Nonlinear Dynamics (SINDy),46 and diverse types of
neural network architectures.28,30,47–53 In this work, we choose a trans-
former model as the dynamic component.

The transformer architecture,54 with the attention mechanism55

at its core, has achieved remarkable success in many research areas,
such as natural language processing,56,57 computer vision,58,59 and
molecular dynamics.60 These accomplishments have inspired many
researchers to utilize the transformer architecture to learn spatial rela-
tions61–64 as well as temporal evolution65–67 of physical systems. This
work falls under the first category because the self-attention mecha-
nism is utilized to learn how different regions in the spatial domain
affect each other over time.

The classical approach of reduced-order modeling handles the
spatial and temporal flow of information in two separate steps, making
it a data-driven separation of variables. These approaches usually
assume that the system consists of independent stationary spatial
modes that change magnitude over time. That is why methods like
POD might struggle with patterns that move in the spatial domain,
such as a traveling wave. Ironically, there are many scenarios where
fluid flows demonstrate such a behavior, including the famous
Karman vortex street in the flow behind a cylinder, even though it can
be modeled with these methods.

Reduced Order Model with transformER (ROMER) proposes a
new perspective for reduced-order modeling of fluid flows. Instead
of compressing the spatial information completely into a single vec-
tor with no explicit positional information about the presence of the
patterns, our method encodes the state of the system as a set of fea-
ture vectors while maintaining the spatial order. The dynamical
behavior of the system is, then, modeled as the interaction of these
feature vectors together based on their values and their locations in
the domain, which is done by the transformer architecture. This
content-based modeling approach has been gaining popularity in
the computer vision literature68,69 and has shown promising results.
We believe that utilizing a content-dependent mechanism like atten-
tion has great potential in modeling and processing fluid flow
dynamics.

ROMER succeeds to learn the dynamics in the latent space with
competitive performance to the well-known Fourier Neural
Operator39 and powerful convolutional networks, such as ResNet and
U-Net. This is despite the fact that the input of our model is only the
current time step, while the other models take the last ten time steps as
their input. Moreover, our model is not trained in a recurrent setting,
and the loss does not backpropagate through time. This leads to faster
training (about ten times faster than FNO-2D on a GPU) but a larger
error in the long time horizon. The model still exhibits strong perfor-
mance in turbulent datasets with shorter time horizons.

The main drawbacks of this work to be investigated in the future
are error accumulation over time as well as the lack of interpretability
and insight into the physics of the system. The error accumulation is a
typical drawback of any autoregressive model and can be improved by
recurrent training and backpropagation of error through time but
with a huge increase in the training cost. The issue of interpretability is
also considered a common challenge for most deep learning algo-
rithms. However, the authors believe in the potential of finding mean-
ingful and intuitive representations learned by the transformer
architecture as has been the case in areas, such as natural language
processing and computer vision.

II. METHODOLOGY
As mentioned before, a reduced-order model is composed of two

main components: dimensionality reduction and a dynamical model.
In this work, we use a convolutional autoencoder for the former and a
transformer architecture for the latter. We will now discuss the archi-
tecture and motivation of each model in detail.

A. The convolutional autoencoder
The architecture of the convolutional autoencoder is illustrated

in Fig. 1(a) including the details about its components. As shown in
the figure, an autoencoder is composed of two sub-models: the
encoder and the decoder, each consisting of several blocks. In our
model, each encoder block consists of a convolutional layer, a pooling
layer, and a nonlinear activation function. The convolutional layer is
the main component responsible for extracting features and important
information from the input. The main purpose of the pooling layer is
to reduce the spatial dimension of the tensors for the sake of memory

FIG. 1. (a) The architecture of the convolutional autoencoder for dembed¼ 128. All Conv2D layers use kernel size 3, stride 1, and same padding. Average pooling and the bilin-
ear method are used for the pooling and the upsampling layers, respectively. (b) The schematic mechanism of ROMER. The encoder maps the input onto the embedding
space, in which the transformer propagates the system through time. The original state of the system at any time can be obtained approximately using the decoder.
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and computational efficiency. Finally, the nonlinear activation func-
tion is necessary to learn a nonlinear featurization of the system. The
output of the encoder is called the bottleneck of the autoencoder or
the embedding tensor. We will learn the time dynamics of the system
in this embedding space. The embedding tensor has three dimensions:
two spatial dimensions and one feature dimension. The spatial resolu-
tion of the embedding tensor is much coarser than the original data,
which can be thought of as an embedding of a certain region in the
input frame, known as the receptive field.

The second sub-model, the decoder, basically is the reverse mech-
anism of the encoder and is composed of several decoder blocks. Each
decoder block of our model consists of an upsampling layer, a convo-
lutional layer, and a nonlinear activation function (except the final
block). The output of the decoder will not exactly match the input of
the encoder, but the autoencoder is trained so that the output is as
close as possible to the input. The metric that we use in this work to
measure the difference between the input and output of the autoen-
coder is the root mean square error (RMSE).

After training the autoencoder, we can use the encoder to obtain
an embedding tensor from the original state of the system and use the
decoder to reconstruct the original state. As mentioned before, we
train a transformer model to learn the time dynamics of the model in
the embedding space, as shown in Fig. 1(b). We will now explain the
mechanism of the transformer model.

B. The transformer architecture
A transformer model consists of several transformer layers as

shown in Fig. 2(a). The embedding tensor first needs to be flattened in
the spatial dimensions and arranged as a set of vectors to be fed to the
transformer. We denote each of these feature vectors as xi, where i is
the index of the corresponding vector. This will discard the spatial
information, but we will later address this issue using positional
embedding. The first and most important block in a transformer layer
is the multi-head self-attention block, which will be explained later in
detail. This is the component that learns the interactions and relations
among the input vectors. After this layer, each output vector is added
to the input, modeling an incremental change. Then, each vector is
passed through an identical feed-forward neural network, and the

output is again added to the input, modeling an incremental change
independent from the other vectors.

Figure 2(b) provides a simple illustration of the attention mecha-
nism. For each input vector xi, three different vectors are obtained by
applying a linear layer: query (qi), key (ki), and value (vi) with dimen-
sions dk, dk, and dv, respectively. For all the inputs including xi itself,
we calculate the attention weights of the ith vector to other vectors (j)
called aij using the following equations:

~aij ¼
qi:kjffiffiffiffiffi
dk
p ; (1)

aij ¼
e~aij

X

j

e~aij
: (2)

In Eq. (1), we take the inner product of qi with every kj to obtain ~aij.
This is basically a similarity metric between qi and kj and represents
how much xi can be affected by xj. The inner product is, then, divided
by

ffiffiffiffiffi
dk
p

for the sake of magnitude normalization. Then, we apply a
softmax function to obtain aij. Because of the property of the softmax
function, aij are positive values that sum up to 1, so they can be inter-
preted as a set of weights to be used in a weighted average. Finally, the
effect of all the vectors on xi is denoted as zi calculated by taking a
weighted average over the value vectors weighted by aij as shown in
Eq. (3). In the figure, the red boxes in the figure denote the index j
meaning that this operation is performed using all the input vectors,

zi ¼
X

j

aijvj: (3)

There are some interesting similarities between POD and this mecha-
nism since both rely on linear projections and linear combinations.
The important difference is that the attention mechanism calculates
the vectors dynamically based on the value of all the feature vectors
and the correlating patterns that are detected by key and query vectors,
as opposed to POD that extracts the dominant modes first using the
whole dataset.

A multi-head self-attention layer is basically composed of several
parallel self-attention layers as shown in Fig. 2(c). First, each

FIG. 2. The architecture of a transformer
model.54 In this work, N ¼ 6; h ¼ 8; and
the other parameters are set as the
default values in PyTorch. (a) The trans-
former model; (b) scaled dot-product
attention; and (c) multi-head self-attention.
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embedding vector is split into equal-length vectors, each being passed
through a different self-attention layer. Finally, the outputs of the self-
attention layers are concatenated together and passed to a final linear
layer to obtain output vectors with the same size as the embedding
vectors, so that they can be passed to the next layers. The weights of
the linear layers are different in each head as shown in the figure,
denoted by the index i. This mechanism can be summarized in the fol-
lowing equations:

MultiHeadðXÞ ¼ Concatðheadi;…; headhÞWO; (4)

headi ¼ AttentionðXWQ
i ;XW

K
i ;XW

V
i Þ: (5)

There is still an important component left in the transformer
model, which is the positional embedding. As mentioned before, the
spatial information is discarded when the spatial dimensions of the
embedding tensor are flattened. This issue is mitigated by adding a
positional embedding vector to each input vector before it is passed to
the transformer model. In the case of periodic boundary conditions,
the positional embedding also should have a periodic nature. Hence,
we use trigonometric functions as the primary positional features.
Suppose the spatial dimension of the embedding tensor is Nx $ Ny.
We define the positional feature vector for embedding vector xij as

sin
2pk
Nx

i
" #

; cos
2pk
Nx

i
" #

; sin
2pl
Ny

j

 !
; cos

2pl
Ny

j

 !( )
(6)

for all values of k ¼ 1; 2;…;Nx % 1 and l ¼ 1; 2;…;Ny % 1. We,
then, pass this to a trainable feed-forward neural network to obtain the
final positional embedding with the same dimension as the embedding
vectors, which is, then, added to the original embedding vectors before
they are passed to the transformer model.

III. EXPERIMENTS AND DISCUSSION
In order to evaluate the proposed architecture, we use the three

simulation datasets of the 2D Navier–Stokes equations from the
Fourier Neural Operator (FNO) paper39 with details provided in
Table I. There are two main reasons for this choice: First, these data-
sets are used to benchmark neural operators, which are a very power-
ful and novel class of algorithms, and accurate predictions for such
datasets mean that the model can learn complex dynamics in turbulent
regimes. Second, the simple geometry and periodic boundary condi-
tions make these datasets ideal for the evaluation of our model since

the flow field is evolving by itself and not affected by any enforced
boundary condition or geometry. For each dataset, the convolutional
autoencoder is first trained on the training dataset independently.
After training, the parameters of the autoencoder are frozen, and the
encoder and the decoder are used as shown in Fig. 1(b). Although the
overall mechanism of our model uses the transformer recurrently, we
train it in a simple supervised learning scheme, meaning that the train-
ing data for the transformer consist of input–output pairs st; stþ1,
where st is the embedding tensor at time t. This greatly reduces the
computational cost of training compared to a recurrent training
scheme where the error backpropagates through time. The CAE
and the transformer in ROMER each take about 6 s per epoch to
train, while FNO-2D takes more than 2min. For both the autoen-
coder and transformer, we set the MSE loss as the objective function
and use the Adam optimizer70 with an initial learning rate of 0.001
to optimize the network parameters. We also utilize a learning rate
scheduler to adjust the learning rate when the learning curve
reaches a plateau. The patience and factor of the scheduler in
PyTorch71 are set to 5 and 0.2, respectively. The networks are
trained until convergence.

Unlike the other models included in the benchmark that take the
last ten time steps as input to predict the next time step(s), our model
only requires the current state of the system as input, which is similar
to traditional numerical approaches, such as finite difference methods.
If a certain model truly encapsulates the dynamics of the system, the
current state of the system should be sufficient to predict the future.
Models that take the state at several time steps as the input are in fact
receiving some information about the time dynamics of the system as
well.

The results shown in Table I demonstrate the capability of
ROMER in learning the time-stepping dynamics of fluid flows even in
turbulent regimes. For dataset 1 which is in the laminar regime and
has the longest time horizon to predict, the accumulation of error over
time is the main problem. That is why FNO-3D has the best perfor-
mance by predicting all the next 40 time steps in one forward pass.
However, the other datasets with turbulent behavior present a more
challenging task. It is observed that ROMER has a competitive perfor-
mance compared to FNO-2D in such scenarios. Even though error
accumulation over time is a problem for all models except FNO-3D,
ROMER and FNO-2D achieve the most accurate results. A qualitative
evaluation of ROMER is also provided in Fig. 3 for dataset 3, which is
most turbulent and challenging. As observed in the plots, the predic-
tions closely match the ground truth.

Next, we are going to investigate the effect of the hyperpara-
meters on the performance of the model on dataset 3. The other train-
ing settings are the same as before. The results can be found in
Table II. As expected, smaller embedding dimensions lead to lower
expressive powers and higher error, as well as a smaller model size.
Increasing the embedding dimension would increase the capacity of
the model and decrease the error but with the cost of a huge model
size and parameter count. The number of heads, on the other hand,
does not have a straightforward relationship with the performance
and does not affect the model size. We can see that the best perfor-
mance is for the model that uses four heads with a small margin, but
decreasing the number of heads to two results in a higher error than
eight heads. The number of layers also has a similar role as the embed-
ding dimension, meaning that more layers usually result in higher

TABLE I. Comparison of ROMER with benchmarks from the FNO paper.39 1000
training samples and 200 test samples are used in all experiments.

Data 1 Data 2 Data 3 Parameters

! 1e-3 1e-4 1e-5 —
TðTpredÞ 50 (40) 30 (20) 20 (10) —
FNO-3D 0.86% 19.18% 18.93% 6 558 537
FNO-2D 1.28% 15.59% 15.56% 414 517
U-Net72 2.45% 20.51% 19.82% 24 950 491
TF-Net73 2.25% 22.53% 22.68% 7 451 724
ResNet74 7.01% 28.71% 27.53% 266 641
ROMER 7.70% 19.71% 17.45% 990 497
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accuracy but a larger model size. The choice of N¼ 6 seems to be a
reasonable middle ground based on our experiments.

At last, we investigate the spatial resolution of the embedding
tensor, meaning how much should the encoder downsample the data
in the spatial domain for the transformer. If the encoder has three
blocks, the spatial resolution of the embedding tensor will be 8$ 8,
while demebd¼ 128 similar to the default setting. This means that the
encoder is even more expressive than the default setting since the
dimension of the embedding tensor will be of shape 8$ 8$ 128.
Now, the transformer has to learn the relationship among more region
pairs in the domain. Despite larger embedding tensor and more poten-
tial relations for the transformer to learn, the final error does not seem
to differ noticeably. In fact, increasing the embedding resolution to

16$ 16 leads to much worse performance. This means that the best
choice is to let the autoencoder handle the processing of the smaller-
scale features and patterns and leave the processing of the dynamics
on the larger scale to the transformer model.

ROMER is different from other reduced-order models in two
main aspects. First, the total number of dimensions in the embedding
tensor is not very compact compared to the typical dimension of the
reduced dimensionality of other ROMs. The focus is compressing the
spatial information into the channel dimension, so the dimensionality
reduction is mostly about the spatial resolution rather than the sheer
number of elements in the embedding tensor. Second, one can think
of ROMER as a model that detects spatial correlations and patterns on
the fly and calculate the next state according to the patterns that it
detects at the moment. That is basically the functionality of the atten-
tion mechanism. The scaled dot-product attention is simply a correla-
tion detection mechanism among the input vectors, while the softmax
helps with numerical stability. While other reduced-order models first
extract a compact representation based on the commonly observed
patterns in the data, such as it is done with POD, ROMER utilizes the
self-attention mechanism to detect the important correlating patterns
at each time and proceed with the calculations accordingly, perform-
ing a dynamic or on-the-fly reduced-order modeling, or ROMing!

IV. CONCLUSION
This paper introduces ROMER, a hybrid architecture composed

of a convolutional autoencoder and a transformer for reduced-order
modeling of fluid flows in a novel perspective.

• Unlike many of the previous works in the literature, the input of
this model is solely the current state of the system rather than a
concatenation of the states at several consecutive time steps,
making it conserve the Markov property of a physical system like
traditional numerical solvers.

• ROMER achieves a competitive error magnitude compared to
the Fourier Neural Operator and powerful convolutional neural
networks (CNNs) like U-Net and ResNet.

• This work demonstrates the capability of the transformer archi-
tecture in capturing the spatial relations between different
regions in the fluid flow.

FIG. 3. Comparison between the output of ROMER and ground truth for some test
samples from dataset 3.

TABLE II. The relative RMSE on test data from dataset 3 with different choices of
hyperparameters. Other hyperparameters are the same as before in each
experiment.

Value Error CAE params
Transformer

params

Default — 17.45% 194 177 796 320
dembed 64 21.67% 48 705 201 696

256 15.60% 775 425 3 165 216
h 2 18.63% 194 177 796 320

4 16.83% 194 177 796 320
N 4 19.60% 194 177 532 384

8 17.51% 194 177 1 060 256
resembed 8$ 8 19.01% 185 217 801 216

16$ 16 33.13% 148 865 812 544
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There are several challenges to be addressed in future works
before ROMER is applicable to more general settings. The current
instance of the model is specific to a certain resolution, a simple geom-
etry (rectangular domain), and periodic boundary conditions. In order
to develop a mesh-agnostic model, the model will lean toward neural
operators as that is the focus of such approaches. In order to develop
similar models for more complex geometries and boundary condi-
tions, the positional embedding and the mechanism of data compres-
sion and feature extraction need to be modified. If the state of the
system can be compressed as a set of feature vectors in the spatial
domain, the transformer architecture can be utilized to learn the time
dynamics of those vectors. There are also several options on how to
utilize the transformer architecture to process such data, which can be
inspired by models with a transformer-based backbone in computer
vision.

Another important aspect to be investigated is the sampling
requirements for such algorithms. As opposed to traditional methods
like DMD which rely on more concrete theoretical foundations, deep
learning methods use stochastic gradient-based optimization and a
complex functional form, which makes it difficult to obtain straight-
forward rules regarding sampling and convergence. Therefore, such
requirements are investigated empirically based on the problem at
hand. Exploring the sampling issue for such methods is a potential
line of future work that is of high importance for practical applications
where data collection is a major challenge.
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NOMENCLATURE

Abbreviations

CAE Convolutional autoencoder
CFD Computational fluid dynamics
CNN Convolutional neural network
DMD Dynamic mode decomposition
FNO Fourier neural operator
MSE Mean squared error

POD Proper orthogonal decomposition
RMSE Root mean squared error
ROM Reduced-order model(ing)

Variables

aij Attention weight of xi to xj
dk Dimension of the query and key vectors
dv Dimension of the value vectors
ki Key vector of the feature vector xi
qi Query vector of the feature vector xi
st Embedding tensor at time step t
vi Value vector of the feature vector xi
xi Feature vector of index i
zi Vector containing the effect of all feature vectors on xi calcu-

lated by attention

REFERENCES
1C. Pozrikidis and D. Jankowski, Introduction to Theoretical and Computational
Fluid Dynamics (Oxford University Press, New York, 1997), Vol. 675.

2D. R. Chapman, “Computational aerodynamics development and outlook,”
AIAA J. 17, 1293–1313 (1979).

3H. Wang, F. Min, Z. Xie, J. Li, J. Dai, and Y. Yang, “Quantitative study of the
control of hypersonic aerodynamics using millisecond pulsed discharges,”
Phys. Fluids 34, 021701 (2022).

4Q. Zhou, M. M. Alam, S. Cao, H. Liao, and M. Li, “Numerical study of wake
and aerodynamic forces on two tandem circular cylinders at Re¼ 103,” Phys.
Fluids 31, 045103 (2019).

5J. Shang, Q. Zhou, M. M. Alam, H. Liao, and S. Cao, “Numerical studies of the
flow structure and aerodynamic forces on two tandem square cylinders with
different chamfered-corner ratios,” Phys. Fluids 31, 075102 (2019).

6H. Liu, S. He, L. Shen, and J. Hong, “Simulation-based study of COVID-19
outbreak associated with air-conditioning in a restaurant,” Phys. Fluids 33,
023301 (2021).

7L. Wu, X. Liu, F. Yao, and Y. Chen, “Numerical study of virus transmission
through droplets from sneezing in a cafeteria,” Phys. Fluids 33, 023311 (2021).

8M. Abuhegazy, K. Talaat, O. Anderoglu, and S. V. Poroseva, “Numerical inves-
tigation of aerosol transport in a classroom with relevance to COVID-19,”
Phys. Fluids 32, 103311 (2020).

9B. Mahapatra and A. Bandopadhyay, “Numerical analysis of combined
electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta poten-
tial modulated surfaces,” Phys. Fluids 33, 012001 (2021).

10B. Kada, A. A. Pasha, Z. Asghar, M. W. S. Khan, I. B. Aris, and M. S. Shaikh,
“Carreau–Yasuda fluid flow generated via metachronal waves of cilia in a
micro-channel,” Phys. Fluids 35, 013110 (2023).

11M. W. Saeed Khan, N. Ali, and O. A. B!eg, “Thermal entrance problem for blood
flow inside an axisymmetric tube: The classical Graetz problem extended for
Quemada’s bio-rheological fluid with axial conduction,” Proc. Inst. Mech. Eng.,
Part H 236, 848–859 (2022).

12H. Jin, Y. Wang, H. Wang, Z. Wu, and X. Li, “Influence of Stefan flow on the
drag coefficient and heat transfer of a spherical particle in a supercritical water
cross flow,” Phys. Fluids 33, 023313 (2021).

13N. Ali, M. W. S. Khan, and M. Sajid, “The Graetz–Nusselt problem for the
curved channel using spectral collocation method,” Phys. Scr. 96, 055204
(2021).

14M. W. S. Khan, Z. Asghar, N. Ali, and W. Shatanawi, “Thermal entry problem
for v!ocadlo fluid model bounded within passive tube and channel with axial
conduction and viscous dissipation: A Graetz–Nusselt problem,” Chin. J. Phys.
81, 219–232 (2023).

15M. A. Mendez, A. Ianiro, B. R. Noack, and S. L. Brunton, Data-Driven Fluid
Mechanics: Combining First Principles and Machine Learning (Cambridge
University Press, 2023).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 057126 (2023); doi: 10.1063/5.0151515 35, 057126-6

Published under an exclusive license by AIP Publishing

 23 Septem
ber 2023 23:50:43

https://github.com/BaratiLab/ROMER
https://doi.org/10.2514/3.61311
https://doi.org/10.1063/5.0081599
https://doi.org/10.1063/1.5087221
https://doi.org/10.1063/1.5087221
https://doi.org/10.1063/1.5100266
https://doi.org/10.1063/5.0040188
https://doi.org/10.1063/5.0040803
https://doi.org/10.1063/5.0029118
https://doi.org/10.1063/5.0033088
https://doi.org/10.1063/5.0134777
https://doi.org/10.1177/09544119221086479
https://doi.org/10.1177/09544119221086479
https://doi.org/10.1063/5.0041572
https://doi.org/10.1088/1402-4896/abe586
https://doi.org/10.1016/j.cjph.2022.11.022
pubs.aip.org/aip/phf


16R. Vinuesa and S. L. Brunton, “Enhancing computational fluid dynamics with
machine learning,” Nat. Comput. Sci. 2, 358–366 (2022).

17R. Vinuesa and S. L. Brunton, “The potential of machine learning to enhance
computational fluid dynamics,” arXiv:2110.02085 (2021).

18S. L. Brunton, “Applying machine learning to study fluid mechanics,” Acta
Mech. Sin. 37, 1718–1726 (2021).

19A. Beck and M. Kurz, “A perspective on machine learning methods in turbu-
lence modeling,” GAMM-Mitteilungen 44, e202100002 (2021).

20K. Fukami, K. Fukagata, and K. Taira, “Super-resolution analysis via machine
learning: A survey for fluid flows,” arXiv:2301.10937 (2023).

21D. Shu, Z. Li, and A. B. Farimani, “A physics-informed diffusion model for
high-fidelity flow field reconstruction,” J. Comput. Phys. 478, 111972 (2023).

22K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. T.
Dawson, and C.-A. Yeh, “Modal analysis of fluid flows: Applications and out-
look,” AIAA J. 58, 998–1022 (2020).

23K. Fukami, T. Nakamura, and K. Fukagata, “Convolutional neural network
based hierarchical autoencoder for nonlinear mode decomposition of fluid field
data,” Phys. Fluids 32, 095110 (2020).

24T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with
convolutional neural networks for fluid dynamics,” J. Fluid Mech. 882, A13
(2020).

25K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence modeling in the age of
data,” Annu. Rev. Fluid Mech. 51, 357–377 (2019).

26K. Stachenfeld, D. B. Fielding, D. Kochkov, M. Cranmer, T. Pfaff, J. Godwin, C.
Cui, S. Ho, P. Battaglia, and A. Sanchez-Gonzalez, “Learned simulators for
turbulence,” in International Conference on Learning Representations (2022).

27D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: New
approaches for computational physics,” Prog. Aerosp. Sci. 40, 51–117 (2004).

28R. Maulik, B. Lusch, and P. Balaprakash, “Reduced-order modeling of
advection-dominated systems with recurrent neural networks and convolu-
tional autoencoders,” Phys. Fluids 33, 037106 (2021).

29S. Fresca, L. Dede, and A. Manzoni, “A comprehensive deep learning-based
approach to reduced order modeling of nonlinear time-dependent parame-
trized PDEs,” J. Sci. Comput. 87, 61 (2021).

30P. Pant, R. Doshi, P. Bahl, and A. Barati Farimani, “Deep learning for reduced
order modelling and efficient temporal evolution of fluid simulations,” Phys.
Fluids 33, 107101 (2021).

31T. Duriez, S. L. Brunton, and B. R. Noack, Machine Learning Control-Taming
Nonlinear Dynamics and Turbulence (Springer, 2017), Vol. 116.

32F. Ren, H.-B. Hu, and H. Tang, “Active flow control using machine learning: A
brief review,” J. Hydrodyn. 32, 247–253 (2020).

33D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer,
“Machine learning–accelerated computational fluid dynamics,” Proc. Natl.
Acad. Sci. 118, e2101784118 (2021).

34O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowliswharan,
“CFDNet: A deep learning-based accelerator for fluid simulations,” in
Proceedings of the 34th ACM International Conference on Supercomputing
(Association for Computing Machinery, 2020), pp. 1–12.

35G. Karniadakis, Y. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nat. Rev. Phys. 3, 422–440 (2021).

36M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comput. Phys. 378,
686–707 (2019).

37A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney,
“Characterizing possible failure modes in physics-informed neural networks,”
in Advances in Neural Information Processing Systems, edited by M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan (Curran Associates,
Inc., 2021), Vol. 34, pp. 26548–26560.

38L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlinear
operators via deeponet based on the universal approximation theorem of oper-
ators,” Nat. Mach. Intell. 3, 218–229 (2021).

39Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart,
and A. Anandkumar, “Fourier neural operator for parametric partial differen-
tial equations,” in International Conference on Learning Representations
(2021).

40N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and
A. Anandkumar, “Neural operator: Learning maps between function spaces,”
arXiv:2108.08481 (2021).

41B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nat. Commun. 9, 4950 (2018).

42S. Pan, S. L. Brunton, and J. N. Kutz, “Neural implicit flow: A mesh-agnostic
dimensionality reduction paradigm of spatio-temporal data,” arXiv:2204.03216
(2022).

43H. Eivazi, H. Veisi, M. H. Naderi, and V. Esfahanian, “Deep neural networks
for nonlinear model order reduction of unsteady flows,” Phys. Fluids 32,
105104 (2020).

44N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman invariant subspa-
ces for dynamic mode decomposition,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17 (Curran
Associates, Inc., Red Hook, NY, 2017), pp. 1130–1140.

45C. Y. Li, Z. Chen, X. Lin, A. U. Weerasuriya, X. Zhang, Y. Fu, and T. K. Tse,
“The linear-time-invariance notion to the Koopman analysis: The architecture,
pedagogical rendering, and fluid–structure association,” Phys. Fluids 34,
125136 (2022).

46S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” Proc. Natl.
Acad. Sci. 113, 3932–3937 (2016).

47P. Wu, J. Sun, X. Chang, W. Zhang, R. Arcucci, Y. Guo, and C. C. Pain, “Data-
driven reduced order model with temporal convolutional neural network,”
Comput. Methods Appl. Mech. Eng. 360, 112766 (2020).

48O. San, R. Maulik, and M. Ahmed, “An artificial neural network framework for
reduced order modeling of transient flows,” Commun. Nonlinear Sci. Numer.
Simul. 77, 271–287 (2019).

49H. F. Lui and W. R. Wolf, “Construction of reduced-order models for fluid
flows using deep feedforward neural networks,” J. Fluid Mech. 872, 963–994
(2019).

50S. Pawar, S. E. Ahmed, O. San, and A. Rasheed, “Data-driven recovery of hid-
den physics in reduced order modeling of fluid flows,” Phys. Fluids 32, 036602
(2020).

51M. Wang, S. W. Cheung, W. T. Leung, E. T. Chung, Y. Efendiev, and M. Wheeler,
“Reduced-order deep learning for flow dynamics. The interplay between deep
learning andmodel reduction,” J. Comput. Phys. 401, 108939 (2020).

52J. Morton, A. Jameson, M. J. Kochenderfer, and F. Witherden, “Deep dynami-
cal modeling and control of unsteady fluid flows,” in Advances in Neural
Information Processing Systems, edited by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran Associates, Inc., 2018),
Vol. 31.

53S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik, “Prediction of
aerodynamic flow fields using convolutional neural networks,” Comput. Mech.
64, 525–545 (2019).

54A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. U.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Curran Associates,
Inc., 2017), Vol. 30.

55D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv:1409.0473 (2014).

56J. Devlin,M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv:1810.04805 (2018).

57T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-
shot learners,” in Advances in Neural Information Processing Systems (Curran
Associates, Inc., 2020), Vol. 33, pp. 1877–1901.

58A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” in
International Conference on Learning Representations (2021).

59K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y.
Xu et al., “A survey on vision transformer,” IEEE Trans. Pattern Anal. Mach.
Intell. 45, 87–110 (2023).

60K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Z!ıdek, A.
Bridgland, A. Cowie, C. Meyer, A. Laydon, S. Velankar, G. Kleywegt, A.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 057126 (2023); doi: 10.1063/5.0151515 35, 057126-7

Published under an exclusive license by AIP Publishing

 23 Septem
ber 2023 23:50:43

https://doi.org/10.1038/s43588-022-00264-7
http://arxiv.org/abs/2110.02085
https://doi.org/10.1007/s10409-021-01143-6
https://doi.org/10.1007/s10409-021-01143-6
https://doi.org/10.1002/gamm.202100002
http://arxiv.org/abs/2301.10937
https://doi.org/10.1016/j.jcp.2023.111972
https://doi.org/10.2514/1.J058462
https://doi.org/10.1063/5.0020721
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1016/j.paerosci.2003.12.001
https://doi.org/10.1063/5.0039986
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1063/5.0062546
https://doi.org/10.1063/5.0062546
https://doi.org/10.1007/s42241-020-0026-0
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2108.08481
https://doi.org/10.1038/s41467-018-07210-0
http://arxiv.org/abs/2204.03216
https://doi.org/10.1063/5.0020526
https://doi.org/10.1063/5.0124914
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1016/j.cma.2019.112766
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1017/jfm.2019.358
https://doi.org/10.1063/5.0002051
https://doi.org/10.1016/j.jcp.2019.108939
https://doi.org/10.1007/s00466-019-01740-0
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.1109/TPAMI.2022.3152247
pubs.aip.org/aip/phf


Bateman, R. Evans, A. Pritzel, M. Figurnov, O. Ronneberger, R. Bates, S. Kohl,
and D. Hassabis, “Highly accurate protein structure prediction for the human
proteome,” Nature 596, 590–599 (2021).

61S. Cao, “Choose a transformer: Fourier or Galerkin,” in Advances in Neural
Information Processing Systems, edited by A. Beygelzimer, Y. Dauphin, P.
Liang, and J. W. Vaughan (MIT Press, 2021).

62G. Kissas, J. H. Seidman, L. F. Guilhoto, V. M. Preciado, G. J. Pappas, and P.
Perdikaris, “Learning operators with coupled attention,” arXiv:2201.01032
(2022).

63Y. Shao, C. C. Loy, and B. Dai, “SiT: Simulation transformer for particle-based
physics simulation,” in The International Conference on Learning
Representations, 2022.

64Z. Li, K. Meidani, and A. B. Farimani, “Transformer for partial differential
equations’ operator learning,” arXiv:2205.13671 (2022).

65N. Geneva and N. Zabaras, “Transformers for modeling physical systems,”
Neural Networks 146, 272–289 (2022).

66X. Han, H. Gao, T. Pffaf, J.-X. Wang, and L.-P. Liu, “Predicting phys-
ics in mesh-reduced space with temporal attention,” arXiv:2201.09113
(2022).

67R. R. Torrado, P. C. T. Ruiz, L. Cueto-Felgueroso, M. C. Green, T. Friesen, S.
F. Matringe, and J. Togelius, “Physics-informed attention-based neural net-
work for solving non-linear partial differential equations,” arXiv:2105.07898
(2021).

68P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens,
“Stand-alone self-attention in vision models,” in Advances in Neural
Information Processing Systems (MIT Press, 2019), Vol. 32.

69H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (IEEE, 2020), pp. 10076–10085.

70D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 (2014).

71A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, edited by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alch!e-Buc, E. Fox, and R. Garnett (Curran
Associates, Inc., 2019), Vol. 32, pp. 8024–8035.

72O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in Proceedings on the 18th International
Conference on Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015 (Springer, 2015), pp. 234–241.

73R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, “Towards physics-
informed deep learning for turbulent flow prediction,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’20 (Association for Computing Machinery, New York, NY,
2020), pp. 1457–1466.

74K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (IEEE, 2015).

75A. Hemmasian (2023). “Reduced-order modeling of fluid Flows with
Transformers,” https://github.com/BaratiLab/ROMER

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 057126 (2023); doi: 10.1063/5.0151515 35, 057126-8

Published under an exclusive license by AIP Publishing

 23 Septem
ber 2023 23:50:43

https://doi.org/10.1038/s41586-021-03828-1
http://arxiv.org/abs/2201.01032
http://arxiv.org/abs/2205.13671
https://doi.org/10.1016/j.neunet.2021.11.022
http://arxiv.org/abs/2201.09113
http://arxiv.org/abs/2105.07898
http://arxiv.org/abs/1412.6980
https://github.com/BaratiLab/ROMER
pubs.aip.org/aip/phf

