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Abstract— This paper explores a machine learning approach
on data from a single-chip mmWave radar for generating
high resolution point clouds — a key sensing primitive for
robotic applications such as mapping, odometry and localiza-
tion. Unlike lidar and vision-based systems, mmWave radar
can operate in harsh environments and see through occlusions
like smoke, fog, and dust. Unfortunately, current mmWave
processing techniques offer poor spatial resolution compared to
lidar point clouds. This paper presents RadarHD, an end-to-end
neural network that constructs lidar-like point clouds from low
resolution radar input. Enhancing radar images is challenging
due to the presence of specular and spurious reflections. Radar
data also doesn’t map well to traditional image processing
techniques due to the signal’s sinc-like spreading pattern. We
overcome these challenges by training RadarHD on a large
volume of raw I/Q radar data paired with lidar point clouds
across diverse indoor settings. Our experiments show the ability
to generate rich point clouds even in scenes unobserved during
training and in the presence of heavy smoke occlusion. Further,
RadarHD’s point clouds are high-quality enough to work with
existing lidar odometry and mapping workflows.

I. INTRODUCTION

Lidar is often considered the gold standard in terms of
sensors used for mapping, localization, and collision avoid-
ance in robotics. A key enabler is its ability to generate low-
noise and high-density point clouds, which can be easily
tracked from one position to the next. Despite its ubiquitous
use, lidar, just like visible light cameras, fail when used in
environments with occlusions — e.g. when robots navigate
thick fog, smoke or dust, say for search-and-rescue, disaster
recovery and firefighting. Such applications demand sensors
that see past occlusions and sense the world in high fidelity.

Radars (the Radio Frequency - RF - equivalent of lidars)
show promise given the robustness of RF waves to occlu-
sions [1]. However, due to the longer wavelengths of RF
(even at mmWave frequencies), single-chip radars achieve
an angular resolution that is two orders of magnitude (hun-
dred times) lower than a lidar. Therefore, a radar resolves
point clouds at a much lower resolution than lidar, limiting
them to coarse-grained collision avoidance type applications.
Higher resolution applications often resort to large mechan-
ical radars, adding bulk and cost. Our goal is to push the
resolution limits of a lightweight and compact, single-chip
radar, suitable for much more portable platforms (e.g. future
small robots, drones, AR/VR headsets, and mobile phones).
We specifically seek to exploit the enormous amounts of low-
level RF data normally discarded by traditional mmWave
processing to dramatically enhance resolution.

Current techniques to improve radar angular resolution
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Fig. 1. Single chip radar clearly has a much lower angular resolution than
state-of-the-art lidar. Noticeably, radar also shows other spurious artifacts.
@ marks the origin and both images show the same scene as perceived by
each sensor in a 10x20m area.

include (1) synthetic aperture, which moves radars along
specific trajectories precisely [2], [3], [4], [5], [6], and (2)
multi-modality (camera or lidar) sensor fusion for better
information on angular resolution [7], [8], [9]. However,
neither of these are applicable for radars that can move arbi-
trarily or remain static, and as previously stated, occlusions
cause auxiliary sensors like cameras and lidars to fail.

We propose RadarHD, which is a customized end-to-end
neural network that generates lidar-like point clouds from
low resolution radar point clouds. We opt for an end-to-end
learning-based pipeline to generate point clouds from radar,
allowing for learning features ordinarily missed or thrown
away by traditional signal processing pipelines. We show that
our generated point clouds are excellent for scene capture,
odometry, and mapping, even in smoke-filled environments.

RadarHD is inspired by important recent work on using
neural networks on mmWave radar for individual applica-
tions: odometry and mapping [10], [11]. However, unlike
these systems that target specific higher-level applications,
RadarHD targets a broader and more general problem: gener-
ating high resolution point cloud data directly from radar I/Q
streams that is as good as what a lidar would output (albeit
working in lidar-denied scenes). Our approach has two key
benefits over per-application end-to-end learning: (1) Point
clouds provide an interpretable, easy to understand output.
For instance, it’s more intuitive to debug and reason about
point cloud errors rather than odometry errors, especially
when both are output of a machine learning pipeline. (2)
High quality point clouds enable a more general representa-
tion that can replace lidar in existing point cloud processing
pipelines for several tasks beyond just odometry and mapping
such as object detection and classification.

In designing RadarHD, we encountered two challenges.
First, raw radar measurements are impacted by various spu-
rious artifacts — sidelobes from strong reflectors that create
sinc-like patterns across azimuth due to its poor azimuth

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 4135

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 24,2023 at 00:08:27 UTC from IEEE Xplore. Restrictions apply.



resolution (see Fig. 1), specular reflections from certain
objects, and other processing artifacts [12]. Eliminating these
artifacts to recover the true objects is crucial for constructing
a dense, accurate point cloud. Second, radar images are
coarse — meaning that they struggle with resolving sharp
environmental features with high angular resolution. In other
words, the data from a low resolution radar is quite different
from low resolution camera images, where naive super
resolution such as interpolation would give a sensible result.

RadarHD overcomes these challenges by posing a super-
vised learning problem where large datasets of radar-lidar
pairs collected on identical scenes, are used to inform radar to
distinguish true objects from noise/artifacts. RadarHD’s core
contribution is the customization of the entire neural network
pipeline — input/output representation, architecture and loss
functions — to tackle each of the challenges mentioned above.

To implement RadarHD, we collect a large repository
(200k pairs) of raw I/Q radar data from TI AWRI1843
mmWave radars paired with lidar point clouds across dif-
ferent indoor and outdoor environments for generalization.
RadarHD’s evaluation reveals low point-cloud error (24 cm)
versus lidar ground-truth and 3.5x superior to traditional
radar point-clouds. We also demonstrate the quality of our
point clouds with two applications: odometry and mapping,
using Google Cartographer [13].

Contributions: RadarHD makes three key contributions:

o Application of a super resolution model for generating
lidar-like point clouds from low resolution radar !.

o A detailed evaluation of the system in new, unseen envi-
ronments and severe occlusion such as smoke.

o A large repository of raw radar I/Q and lidar pairs along
with source code.

II. RELATED WORK

Radar Super Resolution: The mm-level wavelength and
the wide bandwidth available at mmWave frequency range
provide high ranging accuracy and sensitivity. Combined
with the robustness of mmWave radars to different lighting
and weather conditions, mmWave radar is a popular option
for sensing purposes [14], [15], [16], [17], [18], [19], [20],
[21], [22]. In radar, high resolution is usually achieved by
using Synthetic Aperture Radar (SAR) [23], [24], [3], [4], [5]
or sensor fusion such as integrating radar and camera/lidar
[25], [26], [27], [28]. While SAR is used in mobile contexts
such as satellite imagery and automotive [29], inaccurate
motion information causes errors in the synthesized image
[30]. For more portable applications (e.g: future small robots,
light-weight UAVs etc.) that we envision, mm-accurate (on
the scale of mmWave wavelength) motion information can
be expensive to obtain. Moreover, our applications need
high resolution images even when the radar is not being
moved/temporarily static. More recently, techniques leverage
deep learning [6], [31], [32], [33], [34] to perform radar super
resolution. [34] uses deep learning to only keep robust points
from the range-doppler spectrum. We instead tackle super

'Demo Link: https://youtu.be/me8ozpgyy0OM

resolution and seek to create lidar-like point cloud which not
only have true radar points but other synthetically generated
points that boost the resolution. HawkEye [6] is the closest
related work to RadarHD. However, it relies on input data
obtained from mechanically scanning the mmWave radar
on a large aperture slider to perform SAR [6], [35]. Other
works such as [31], [33] just like [6] deal with static radar
platform and single object setup. That is, a static radar is
looking at a single object (static car/person) whose 3D point
cloud is of interest. In such setups where radar platform and
object are static, a ground truth can be obtained from a SAR
system [31], and low resolution radar could be trained to
generate SAR-like output. In contrast, we want to generate
high resolution output just from a single-chip radar when (1)
radar is static/arbitrarily moving and (2) in real, complicated
environments. This calls for rethinking how we collect data,
what our ground truth is and design the entire learning
pipeline to deal with radar artifacts that show up due to real,
complicated environments.

Radar Odometry and Mapping: State-of-the-art radar
odometry techniques [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46] mainly rely on scan matching, in which
spatial features from the radar images are matched against
previous scans or a pre-determined map. However, due to
spurious reflections and artifacts in radar data, the accuracy
of these methods significantly drop for low resolution radars.
Follow-up research in this area relies on more complex mod-
eling such as using velocity estimates from radar scans [47],
[48], [49], [50], [51], [52], the fusion of radar and IMU data
based on Extended Kalman Filtering [53], [54], [41], [55], or
fusion of radar and RGB camera [56], [57], [58] to overcome
radar limitations. Few other approaches involve end-to-end
deep learning approaches for fusing Constant False Alarm
Rate (CFAR) radar point clouds and IMU to obtain either
odometry [10] or mapping [11], [59] individually. RadarHD,
on the other hand, seeks to solve an orthogonal problem:
replacing CFAR points by creating higher resolution point
clouds. These point clouds are general-purpose and can be
fed into multiple lidar processing pipelines such as odometry,
mapping, object detection, classification etc.

Radar-Lidar Datasets: Most publicly available radar and
lidar datasets capture outdoor environments when mounted
on a car [60], [61], [62]. Some of them use non-compact,
bulkier mechanically scanning radar [60]. We want a large
repository of single-chip radar and lidar pairs in real, com-
plicated environments for robotic applications. While there
have been datasets for radar odometry [10], mapping [11] and
activity recognition [17], ground truth lidar point cloud is not
commonly exposed. More recently, [63], [64] provide single
chip radar datasets with monocular and stereo camera largely
for automotive purposes. [65] is the closest that comes to the
raw radar-lidar dataset that we desire. However, the indoor
data samples (~15k radar-lidar pairs) are only a fraction of
the entire dataset. To allow for larger volume of training
data, custom design test cases and test robustly, we collect
our own dataset.
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RadarHD’s thresholding

Lidar with 0.1° angular resolution

Fig. 2. Radar data representation: Raw radar heatmap captures all
reflections and radar artifacts but the image is extremely crowded. CFAR
thresholding only selects robust strong peaks. RadarHD uses a hybrid
capturing a combination of strong/weak peaks and radar artifacts. All radar
images are log magnitude normalized to 8 bit image.

III. RadarHD SYSTEM DESIGN

The core objective of RadarHD is to improve the resolu-
tion of the radar signals and make them lidar-like. At first
blush, one may consider simply interpolating the neighbor-
hood and upscaling the radar image (Fig. 2), much like super
resolution on camera images [66]. But unlike camera images,
low resolution radar images’ neighborhoods lack similarity
and can often be polluted. One such artifact affecting pixel
neighborhoods is the azimuthally spreading patterns that can
be seen in Fig. 2. This spreading affects the entire image
and is a result of side lobes originating from a few strong
reflectors. Tackling this azimuth spreading requires us to go
beyond local pixel neighborhood and get a global view of the
radar image. On top of this, radar images have “ghost points”,
i.e. false detections of non-existent objects that also pollute
pixel neighborhoods. Thus, we need to first understand what
objects are truly present in the real world and weed out these
artifacts before upscaling. RadarHD goes beyond classical
neighborhood approaches and explores machine learning
approaches to obtain global image understanding.

ML Design Choice: Having motivated the need for learning,
we now motivate RadarHD’s specific choice of ML models.
One may simply consider a CNN model that uses convolution
layers successively and builds a global view of the input
image. However, since we are interested ultimately in the
task of super resolution we need to consider global image
understanding and upsampling in conjunction. Therefore,
RadarHD builds on a U-net based encoder-decoder archi-
tecture which is traditionally used on camera image data for
segmentation and ports it to address the radar super reso-
lution task. The U-net’s general design allows the encoder
to understand various radar artifacts and obtain semantically
accurate representation of real world objects and the decoder
uses this representation to do super resolution.

Design Challenges: The rest of this section describes the
key design decisions in RadarHD’s ML pipeline that helps
U-net to learn effectively. (1) Effectively representing, pre-
processing, and inputting radar I/Q data. (2) Designing U-net
itself to allow for the elimination of spurious artifacts while
preserving data from true objects in the scene. (3) Designing
loss functions to ensure that features such as sharp lines in
the expected output (see Fig. 2) are preserved.

A. Radar Data Representation

We first consider the problem of representing radar signals
as input to the ML architecture. To do so, we briefly describe
our radar platform’s capabilities and typical sensor output.

Radar Platform: Our mmWave radar [67] provides raw I/Q
data streams that can undergo further processing as needed.
A typical radar processing pipeline [68] involves a spatial
Fourier transform that outputs a 2D heatmap with intensity
of the reflected radar signal across range and azimuth. Tra-
ditionally, the heatmap gets thresholded to a “point cloud”.
Constant False Alarm Rate (CFAR) is one such threshold
detector that keeps robust objects and eliminate noisy ones.
Fig. 2 shows CFAR thresholding applied to radar heatmap.

Choice of Input Representation: At this point, we have
a choice — do we feed in raw 1/Q inputs directly or should
we send processed point cloud data. On one hand, inputting
raw I/Q requires the model to understand and learn phase
information and to learn some fairly obvious initial steps (e.g.
a Fourier Transform). On the other hand, sending in a highly
thresholded heatmap may filter out important information
that values below the threshold carry, e.g. feeble objects
masked by sinc lobes from stronger reflections.

RadarHD instead takes an approach in between these two
extremes. Specifically, RadarHD applies a very low threshold
to the processed heatmap so that it preserves dominant
reflectors, feeble ones and many artifacts. Our objective is to
retain a significant portion of the heatmap, including feeble
reflectors while leaving it to the ML model to learn and filter
out spurious artifacts. RadarHD chooses a threshold such that
extremely weak points are omitted, but is still low enough to
propagate radar’s artifacts, strong and feeble reflectors. For
context in Fig. 2, CFAR thresholding has 110 non-zero pixels
and RadarHD’s thresholding has 1606 non-zero pixels.

Polar vs Cartesian Representation: We note that the
thresholded image above is actually in polar format i.e.
range-azimuth, but is shown in Fig. 2 in Cartesian format
for easy understanding. Given that the output we desire for
a point cloud is Cartesian, one may consider the Cartesian
representation as the natural choice of representation.

However, radar inherently measures radially and side lobes
arising from a strong reflector also spread azimuthally. To
capture these radial and azimuthal variations, one would
need radial/azimuthal processing. But the primary learning
element in convolutional layers in machine learning is a filter
that performs 2D correlation across the height and width of
the input. To leverage this to our advantage, we choose a
polar format so that the filters then naturally traverse along
the range and azimuth when they go across height and width,
respectively. We thus have thresholded points on the heatmap
with range, azimuth, and intensity arranged into an image
with range (0-10 m) along rows and azimuth (-90° to 90°)
along columns (Fig. 3). The radar images (64 x 256) are
narrower than lidar (512 x256) because of the poorer azimuth
resolution.
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Fig. 3.  Assymetric U-net Network architecture: RadarHD adapts an
encoder-decoder architecture for radar super resolution. Colored arrows
show different ML operations. Black solid lines are 3D inputs and outputs
of these operations.

=)

B. Neural network architecture

We choose our base architecture as U-net [69] (see Fig. 3)
that allows encoder to denoise and obtain accurate semantic
scene understanding and decoder to perform super resolution.
U-net captures features at different “resolution levels”. From
Fig. 3, we can also clearly see that as we move to lower
resolutions, the height and width of convolution output
decreases (implying capturing more global understanding),
and the number of filters increases (to capture richer global
understanding). This is crucial to capture the azimuthally
spreading artifacts that affects the radar image globally.
RadarHD’s design has other salient differences from tradi-
tional U-nets for the context of radar super resolution.

U-net Asymmetry due to Super Resolution: While base U-
net is generally a symmetric network, super resolution prob-
lem being fundamentally asymmetric (output image width
larger than input), we adapt the base U-net to an asymmetric
U-net by adding upsampling and convolutional layers to the
decoder to obtain desired resolution (Fig. 3).

Mitigating Specularity: While the input representation al-
lows U-net to capture the azimuthally spreading artifacts, one
key challenge that remains is “ghost points”. This arises due
to specularity [12] of some radar reflections. Specularity is
observed when an object, viewed from different orientations,
appears and disappears in the radar image. One way to deal
with this is to view the scene from multiple viewpoints. The
need for multiple viewpoints is further exacerbated when we
empirically observed the lack of persistence in the inferred
images. That is, when the generated images are viewed as
a video, objects would appear and disappear. Thus, it is
important to consider using these multi-viewpoint images to
tackle specularity and establish a notion of persistence.

BCE =1
Dice =0

BCE =0.8
Dice = 0.2

BCE=0.9
Dice = 0.1

Ground
Truth
Fig. 4. Qualitative Ablation Study: Dice Loss helps in sharpening lines, but
is very aggressive and starts missing out features shown in colored circles.
RadarHD chooses a balance between sharpness and accuracy.

Generated Images

Naively one could use single frame inference and classical
filtering to ensure that objects do not appear and disappear.
We perform this filtering through the network by incorporat-
ing past radar frames (that offer multiple viewpoints if radar
is moving) as input while performing super resolution on the
current frame. Our design is to exploit the variable number
of input image channels and stack the past frames as input
channels to allow for understanding of each radar frame and
modeling persistence across frames. We empirically analyze
and find 40 past frames (2 seconds history) to be sufficient
for enforcing persistence. Even in static cases, using past
frames lead to smooth and less jittery output.

C. Neural network training methodology

We carefully select loss functions to preserve features such
as sharp lines that appear in lidar images (thin lines of white
pixels against black background). We use a combination of
various loss functions for achieving different objectives.

Pixel wise loss: To compare two images, one ground-truth
label and one output from the network, we first consider
the most standard loss function — pixel wise loss. Our
ground truth labels are binary lidar images. We compare this
binary image against the final sigmoid layer output from the
network. We use mean Binary Cross-Entropy (BCE) over
all pixels. The objective of this pixel wise loss is to force
each pixel to match the expected output. Fig. 4 shows that
BCE alone generates an acceptable output, but the lines and
boundaries are not as sharp as the ground truth.

Dice loss: To promote crisp and sharp lines in the output
image, we draw from Dice loss [70] used in computer vision
tasks like boundary detection [71]. For each pixel in ground-
truth g; and network output o;, Dice loss for N pixels is:

N
2 Z¢:1 0;9i
N N
Dim1 Ozz + 2 im1 91‘2

Here, the numerator finds the loss pixel wise and is max-
imized when both o and g are identical. The denominator
keeps a global view of total number of points that are 1. The
loss promotes maximizing the intersection between o and g
and penalizes the union of 0 and g. This forces the network to
output 1 exactly where the ground truth is 1, while remaining
0 where the ground truth is 0. This enables a sharper and
crisper prediction than pixel wise cross entropy. We analyze
and find trade-off between BCE and Dice loss (Fig. 4). More
Dice loss leads to eliminating certain important features.

D=1-
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IV. IMPLEMENTATION

System Hardware: RadarHD was implemented using
TI mmWave radar AWR1843, a state-of-the-art single-chip
radar with a theoretical range resolution of 3.75 cm and
azimuth resolution of 15°. RadarHD’s objective is to improve
this azimuth resolution. We use the AWR1843 together with
DCA1000EVM to collect raw I/Q samples.

Testbed: Our testbed consists of radar, lidar for ground truth
and camera for debugging - all time-synced. Our testbed is
mounted on a mobile testing rig. Our entire data repository
consists of about 200k radar I/Q - lidar pairs collected across
a total area of 5147 m? which we believe will be extremely
useful to the research community.

Ground Truth: We use Ouster OS 0 - 64 beam mechanical
scanning lidar for our ground truth. The lidar is configured to
work at 0.35° azimuth resolution. We only use the forward-
facing lidar points for super resolution and we also restrict
the lidar’s elevation FoV to be within +/-30cm.

Baselines: We use Constant False Alarm Rate (CFAR)
based thresholding with different thresholds as our baselines.
Today, CFAR is widely used for collecting radar point
clouds. CFAR is an ideal baseline as: it is not machine
learning based, relies purely on radar signals (no IMU) and
works when radar is either static/mobile (unlike SAR). We
specifically implement Cell-Averaging CFAR [72].

=4 o
= ®

o
=

Fig. 7.
in smoke.
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Fig. 8. RadarHD thresholds generated images
to compare with lidar. @ marks the origin
and images show a 10x20m area.

Train and Test Data: We train our system in a large office
space that includes furniture, electronics, walls, conference
rooms, and cubicles, with a total area of 839 m2. All of our
tests are performed on unseen data in (1) same environment
with different trajectories collected across different days, (2)
similar environment in different office spaces with different
cubicle structures, and (3) different environment, which is
totally new and includes building lobbies and outdoor en-
vironments. Across all our data we use 28 trajectories for
training (561 meters long with 22784 image pairs in total)
and 39 diverse trajectories for testing (714 meters long with
36779 image pairs in total) to allow for testing robustly.

V. RESULTS
A. Point cloud Comparison

Method: After training on rich office space environment, we
run RadarHD on all the diverse test samples. To compare
against lidar point cloud, we first convert the threshold the
range-azimuth output image to obtain a list of points with
their (x,y) location. We then compare point cloud error using
two popularly used point cloud similarity metrics [73]: (1)
Chamfer distance [74]: finds the nearest neighbor for each
point in one point cloud to the other, and takes the mean of
all these distances to get an error for each point cloud pair.
(2) Modified Hausdorff Distance [75]: which also finds the
nearest neighbors and obtains the median neighbor distance.

Comparison to baseline: Here, we show our performance in
the floor-wide office environment on 19 different trajectories
against different CFAR thresholds. This includes 18k radar-
lidar point cloud pairs, each over a 10x20 meter area.

As seen in Fig. 5, we obtain a 0.24 m modified-Hausdorff
median error and 0.36 m Chamfer median error. CFAR, on
the other hand, varies depending on the threshold. A low
threshold like 1dB threshold creates point cloud 5x denser
than lidar, while a high threshold like 8dB would just have
10% of the number of points captured using lidar. Despite
varying density levels across these extremes, none of them
have any structural similarity to the ground truth lidar point
cloud. So from 1dB to 8dB, as the threshold increases and
density decreases, both point cloud error metric Cumulative
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ATE CFAR RadarHD

(meter) 3dB | 8dB | Same | Similar | Diff
env. env. env
Mean 5.02 3.21 1.03 1.30 1.28

RMSE 5.74 3.98 1.35 1.52 1.44
Median 5.70 2.42 0.80 1.22 1.21

Std 2.79 2.35 0.87 0.80 0.68
Map RadarHD
Error Same | Similar Diff
(meter) env. env. env.
Mean 2.03 2.61 3.17

RMSE 2.70 3.58 3.87
Median 1.32 0.91 2.02
Std 1.78 2.44 2.22

Fig. 10.  Odometry (Absolute Trajectory Error - ATE) and Mapping
quantitative results.

Distribution Functions (CDFs) shift to the left. However,
because the highest threshold generates a very sparse point
cloud and does not resemble ground truth, the CDFs do not
shift any more to the left with an increase in the threshold.
In fact, beyond 8dB, the number of points was less than 1%
that of lidar. Our generated point cloud not only improves
upon CFAR by 3.5x (mod-Hausdorff) and 2.7 x (Chamfer),
but is also structurally more similar to the ground truth as
seen in Fig. 8, unlike Fig. 1.

Generalization: We compare the performance of point cloud
generation along these 19 diverse trajectories against those
obtained in similar and different environments having trained
only on same environments. We use 7.5k point cloud pairs,
each for similar and different environments.

Fig. 6 shows the change in performance in new environ-
ments. We see a median error of 0.75 m (mod-Hausdorff) and
0.8 m (Chamfer) for similar environments and 0.94 m (mod-
Hausdorff) and 1.03 m (Chamfer) for different environments.
This tells us that these point clouds generated are not quite as
accurate as when tested in same environment. At first glance,
we observe that these medians are similar to the medians
for some CFAR CDFs in Fig. 5. However, we would like
to point out three important reasons why RadarHD’s point
clouds are still superior. First, the CFAR CDFs start on the
x-axis at 0.4 m; in contrast, even for similar and different
environments, we see that the CDFs start at 0.08 m. This
shows that there is a significant fraction of the point clouds
that is accurately inferred by our system. Second, because
both Chamfer distance and modified Hausdorff distance have
a nearest neighbor point association, structural similarity is
not entirely captured [76]. However, we can qualitatively see
from Fig. 8 that our system indeed generates meaningful
points. Third, to quantitatively show the impact of improved
accuracy, we compare RadarHD against CFAR in two key
applications - odometry and mapping in Sec. V-B.

Smoke: To study the impact of occlusion, we build a smoke
chamber around the testing rig and drop smoke pellets in it to
create dense smoke. The radar is kept static and same scene
is captured without smoke and varying levels of smoke. We
use onboard camera to judge the intensity of smoke.

We notice that even with 1 smoke pellet, that generates 500
cubic feet/min, lidar does not receive any points. However,
the collected radar signals in smoke are almost identical to

that without smoke even for the densest smoke we could
create using 4 pellets. As the collected radar signal remains
the same, we expect similar performance as without smoke.
Fig. 7 validates this by showing that RadarHD’s performance
doesn’t degrade, up to densities we could create.

B. Odometry and Mapping Comparison

Method: Using the high quality point clouds generated by
RadarHD, we next show 2 downstream tasks that RadarHD
will enable in scenarios where lidars fail: odometry and
mapping. Since our points are lidar-like, we evaluate this by
feeding our point clouds, without adding any other sensor
(e.g IMU), into existing lidar SLAM frameworks such as
Google Cartographer [13]. We obtain the 3-DoF pose in 2D
(translation (x,y) and rotation) and map from Cartographer.

Odometry: We evaluate odometry against lidar and bench-
mark CFAR point clouds using Absolute Trajectory Error
- ATE (see Fig. 10). In all cases, including different envi-
ronments, the odometry accuracy of RadarHD outperforms
that of CFAR regardless of threshold. Qualitatively, one can
clearly see the difference between RadarHD odometry and
CFAR odometry in Fig. 9. RadarHD achieves performance
comparable to 0.8 m reported in radar+IMU pipelines dedi-
cated for odometry in past work [10].

Mapping: We benchmark the mapping performance by iden-
tifying keypoints that point to the same physical feature in the
real world, such as corners of a room, and then calculate the
Euclidean distance error of corresponding keypoints between
RadarHD and ground truth. Fig. 9 shows a qualitative com-
parison of a map generated from one trajectory. It is clear that
CFAR does not provide any meaningful features to extract
keypoints while RadarHD achieves a structurally similar map
compared to lidar. Fig. 10 shows the Euclidean distance error
between keypoints across different environments. Good per-
formance on odometry/mapping is possible only because of
artifact-free, meaningful point clouds generated by RadarHD.
RadarHD also allows for visual debugging of point clouds
in case of poor odometry/mapping performance.

VI. CONCLUSION AND FUTURE WORK

RadarHD creates a lidar-like high resolution point cloud
from low resolution single-chip mmWave radar input for use
in robotic applications where lidar fails. RadarHD designs
a machine learning pipeline for this task and overcomes the
challenges arising from radar artifacts by choosing design
parameters. We show our rich point cloud in a variety of
scenes - completely new environments and in occlusions
such as smoke. We collect a large dataset of radar-lidar raw
data pairs, which is useful for other perception tasks. In
the future, we hope to solve other challenges in enabling
RadarHD to be an invaluable asset in situations where lidar
fails. This includes moving beyond 2D and generating 3D
point clouds, tackling highly dynamic scenes, and dealing
with 3-dimensional mobile platforms (e.g. UAVs).
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