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A B S T R A C T

To support rigorous and repeatable experimental evaluation of wireless networked systems, the community has

made significant efforts to develop experimentation platforms. However, existing platforms primarily focus on

the data plane, i.e., the forwarding infrastructure, without explicitly considering the control plane. To fill this

gap, in this work we develop NeXT, a software-defined playground with integrated wireless network simulation,

experimentation and optimization capabilities. We first design the data plane, which integrates an event-driven

broadband wireless network simulator called UBSim and a software-defined wireless network testing facility

called RoboNet. We then design NeXT’s control plane, where a software toolchain is developed and deployed

to support both traditional model-based optimization and new data-driven control techniques. We showcase

the experimentation capability of NeXT considering a series of optimization and control problems in different

wireless networks.

1. Introduction

In the past decades, the evolution of wireless network systems has

significantly changed and will continue to change the way we live and

work, our commercial activities as well as national security. However,

as of today the wireless research community is still lacking a mature

ecosystem to support rigorous and repeatable experimental evaluation

of wireless networked systems. To fill this gap, significant efforts have

been made by the community. A recent milestone is the NSF Platforms

for Advanced Wireless Research (PAWR) program, which attempts to

develop four large-scale outdoor experimentation platforms for ad-

vanced wireless research [1]. As of today, three of them have already

been developed and are available to the wireless community. These

are POWDER-RENEW for experiments in the sub-6 GHz frequency

bands [2], COSMOS for experiments in both sub-6 GHz and mmWave
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frequency bands as well as edge computing [3], and AERPAW for

experiments with wireless unmanned aerial vehicles (UAVs) [4].

While existing community shared facilities have significantly ad-

vanced experimental research for new wireless systems, it is still chal-

lenging to fully meet the needs of experimental wireless research in the

era of data-driven networking. First, to simplify the modeling, control

and optimization of heterogeneous NextG networks, data-driven control

based on Artificial Intelligence (AI) and Machine Learning (ML) has at-

tracted significant research attention [5,6]. However, the effectiveness

of AI/ML algorithms largely relies on sufficient well-labeled data for

policy training [7,8]. It is typically time consuming and sometimes un-

safe to collect training data in real-world environments [9,10]. Second,

the design, prototyping and verification of new network control algo-

rithms require engineers to grapple simultaneously with mathematical

modeling, distributed control, protocol design across different layers of

https://doi.org/10.1016/j.comcom.2023.08.018

Received 27 March 2023; Received in revised form 15 July 2023; Accepted 17 August 2023



J. Hu et al.

Fig. 1. NeXT testbed architecture and paper organization.

the protocol stack, as well as their implementation and deployment.

This process is typically complex, tedious and error-prone.

To address these challenges, in this paper we present NeXT, a software-

defined wireless Network X-Control Testbed, where ‘‘X’’ refers to opti-

mization, simulation and experimentation. In a nutshell, NeXT provides

an integrated testing framework, in which researchers are allowed

to generate in an automated manner distributed cross-layer network

optimization algorithms, simulate the generated algorithms in software,

and then validate the simulation results based on testbed experiments.

The overall architecture of NeXT is illustrated in Fig. 1, where there

are two planes, Data Plane and Control Plane. The former provides

simulation and experimentation capabilities, and the latter implements

network optimization and control functionalities.

The main contributions of this work are as follows:

• We first design the data plane for the NeXT testbed. In this plane,

we first integrate UBSim with NeXT for software-based network

simulation. UBSim is an event-driven simulator that has been

developed at the University at Buffalo for broadband (microwave,

mmWave and terahertz bands) aerial and ground wireless net-

working. We also develop a testing facility for mobile networks

based on software defined radios (SDRs).

• We then design NeXT’s control plane, which supports traditional

model-based control and new data-driven control techniques. For

the former, Wireless Network Operating System (WNOS) [11]

has been deployed to enable automated generation of distributed

cross-layer control algorithms. For the latter, a reinforcement

learning (RL) repository is developed supporting various RL al-

gorithms. A scheme to automatically adjust robots’ posture and

positions is proposed to mitigate the error introduced by the

mobile hotspots.

• We showcase the optimization, simulation and experimentation

capabilities of the NeXT testbed considering a series of wireless

network control problems. These include narrow-band multi-hop

communications, srsRAN-based cellular networks and millimeter

wave (mmWave)-band communications. A set of application pro-

gramming interfaces (APIs) have been designed to simplify access

to NeXT’s data and control planes.

The remainder of the paper is organized as follows. In Section 2, we

discuss related work. We present the testbed’s data plane in Section 3

and its control plane design in Section 4. Seven example experiments

and results are given in Section 5. In Section 6, we discuss the new

research topics that can be studied by using our testbed. Finally, we

conclude in Section 7.

2. Related work

With the development of wireless technology, researchers from both

industry and academia are no longer satisfied testing their algorithms

in a single simulated environment. Thus a lot of testbeds have been

proposed and established to meet the needs of experimentation and

verifying algorithms in the real world. The NSF PAWR program aims to

enable experimental wireless communications research across devices,

communication techniques, networks, systems, and services conceived

by the US academic and industrial wireless research community and

deployed in partnership with local communities [12]. POWDER is a

facility for testing future wireless communications and networking

technologies in a city-scale ‘‘living laboratory’’ [2]. COSMOS aims at

design, development, and deployment of a city-scale advanced wireless

testbed to support real-world experimentation on next-generation wire-

less technologies and applications [3]. Colosseum is the world’s largest

network emulator providing researchers with testing at scale, offsetting

the site specificity of a physical testbed [13]. AERPAW is the first aerial

wireless experimentation platform spanning 5G technologies and be-

yond and with the potential to create transformative wireless advances

for aerial systems [4]. In [14], the world’s first fully programmable and

open-source massive-multiple input multiple output (MIMO) platform

named RENEW is introduced. However, these platforms either do not

consider mobile nodes or do not provide data-driven tools that simplify

the experimentation process.

A unique national research infrastructure called FABRIC is pro-

posed in [15] to enable cutting-edge and exploratory research at-scale

in networking, cybersecurity, distributed computing and storage sys-

tems, machine learning, and science applications. DeterLab is a shared

testbed providing a platform for research in cybersecurity and serving a

broad user community [16]. An open-source platform called 𝑀3 is de-

signed in [17,18] to facilitate research in 5G vehicular networking and

automotive sensing. In [19], a community-shared, open-source, open-

architecture infrastructure for mobile underwater wireless networks

called mu-Net is proposed. Readers are referred to [20,21] for more

information about the aforementioned testbeds. Arena is an open-access

wireless testing platform [22] that can be used to test key wireless

technologies, such as synchronized MIMO transmission schemes, multi-

hop ad hoc networking, multi-cell long term evolution (LTE) networks,

and spectrum sensing for cognitive radio. The authors in [23] propose

the SkyHaul platform for channel modeling in mobile scenarios. An

integrated testbed TeraNova for ultra-broadband wireless communica-

tions is developed in [24], which supports the testing and validation

of new terahertz (THz) channel models and physical layer solutions.

A testbed based on FlockLab [25] deployed in a campus-scale is de-

signed in [26] to better support testing of long-range communications.

However, these primarily focus on the physical platform’s development,

while neglecting the potential benefits of pairing the physical testbed

with a simulator (e.g., using the simulator to accelerate the training of

AI/ML algorithms).

Different from the above discussed testing facilities that primarily focus

on the development of the forwarding infrastructure, i.e., the data plane,

in this work, we focus on both data and control planes and aim to design

a software-defined testbed with integrated simulation, experimentation and

optimization capabilities for mobile wireless networks.

3. Data plane design

The data plane provides the forwarding infrastructure for the NeXT

testbed. As illustrated in Fig. 1, two forwarding infrastructures have

been designed: UBSim for software-based network simulations and

RoboNet for experiments based on SDRs.

3.1. Software simulations based on UBSim

UBSim, evolved from simulators in [6,27], is a new wireless network

simulator written in Python and based on the SimPy discrete-event
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Fig. 2. Architectural overview of UBSim network simulator.

simulation framework [28]. The simulator provides a configurable

network-layer simulation supported by analytical models for various

PHY- and MAC-layer protocols. This lightweight computational design

enables faster-than-real-time iteration as well as on-the-fly adjustments

to the protocol stack of each simulated node, which sets UBSim apart

as a highly effective simulator for experiments focusing on protocol

stack and topology self-configuration. The various node mobility types

supported by UBSim enables investigation into aerial networking, in-

cluding both UAV swarm and hybrid aerial–ground network control

problems. UBSim supports general AI/ML algorithm deployments, and

has been demonstrated for reinforcement learning (RL), deep RL, and

multi-agent RL experiments.

As depicted in Fig. 2, UBSim comprises three primary modules to

handle the behavior definition of various network elements, as well as

three APIs to support a wide range of custom networking scenarios.

Specifically, the network element module (NEM) defines the behav-

iors of all types of communication nodes, environmental blockages,

channels, and the network as a whole. The network controller module

(NCM) organizes the information from the NEM and each user API

to define the network topology, environment, and control objective.

The discrete event module (DEM) then takes the resulting full scenario

definition and starts the discrete event-driven simulation process.

The simulator APIs offer full configuration over network behaviors,

environment specification, and control specification. Specifically, the

network configuration API provides control over parameters such as

frequency, bandwidth, mobility, and location of nodes, as well as

networking area and propagation characteristics. The environmental

definition API provides control over the locations and sizes of blockages

as well as their RF absorption coefficients over different frequency

bands. In general, all physical environmental features, including lab

benches, server rack, and UAV enclosure as shown in Fig. 3(a), are

modeled as blockages within the networking area. Finally, the custom

algorithm API provides access to the run time behavior of all the

nodes, such as mobility, transmission patterns, band association, among

others. Particularly, this API module provides direct support for experi-

mental applications of AI/ML for tasks such as network automation and

self-configuration.

The parallel deployment of UBSim alongside the NeXT testbed

provides several advantages. The highly configurable nature of UBSim

provides a virtual sandbox in which experiments can be designed and

evaluated for deployment on the NeXT testbed much faster than using

SDR hardware alone. Additionally, the speed of simulation design and

execution in UBSim enables pre-training or parallel training of AI

models prior to deployment on hardware. This is particularly important

for models in which significant amounts of environmental data must be

available to generate an optimal solution, such as those used for deep

learning and reinforcement learning. Furthermore, over-the-air data

collected from the NeXT testbed can be used to improve the accuracy

of data generated by UBSim by means of system identification [29],

addressing challenges associated with high-quality data collection for

AI/ML algorithms mentioned in Section 1.

3.2. Software-defined forwarding infrastructure: RoboNet

The design objective of RoboNet is to support experiments in wire-

less networks with mobile robots, such as mobile hotspots [30] and

wireless UAVs [31]. The testbed is located in 238 Davis Hall on the

University at Buffalo’s North Campus. Fig. 3 shows a snapshot of

RoboNet and the corresponding topology. At the center of RoboNet is a

netted enclosure of dimension 6 × 4× 2.1 m3, providing a safe space for

robot navigation. For mobile nodes, three wireless robots have been

designed based on SuperDroid vehicles and universal software radio

peripheral (USRP) SDRs. An indoor navigation system is also designed

based on Marvelmind beacons to provide indoor localization for the

robots. For static nodes, a set of USRP SDRs have been deployed over

the shelves on the left and right sides of the netted enclosure. All

the static software radios are controlled by a server rack of four Dell

workstations. The mobile software radios are controlled by the robots’

onboard computing hosts.

Static Nodes. The static nodes consist of 19 USRP N210, 5 USRP

B210 SDRs and 1 wAP 60G (AP). Each USRP N210 operates at fre-

quencies from DC to 6 GHz and can process up to 50 mega samples

per second (MS/s). Each USRP N210 is equipped with a CBX daughter-

board and two VERT900/VERT2450 antennas. These USRP SDRs are
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Fig. 3. (a) Snapshot of the RoboNet testbed; (b) RoboNet network topology.

Fig. 4. (a) Snapshot of PDU setup; (b) PDU remote management interface.

connected via two switches to a server rack, comprising four Dell EMC

R340 PowerEdge workstations for baseband signal processing. Each

USRP B210 is designed for low-cost experimentation with continuous

frequency coverage from 70 MHz to 6 GHz. Each USRP B210 is also

equipped with two VERT2450 antennas. The five USRP B210s pro-

vide flexibility because they can be deployed to any place depending

on the requirements. The wAP 60G (AP) router is a product from

MikroTik [32] and can be used either as a point-to-point primary or

a point-to-multi-point primary.

The USRP SDRs are powered via three remotely accessible Cyber-

Power Power-Distribution-Units (PDUs), as shown in Fig. 4(a). These

PDUs are assigned with Ethernet LAN IP addresses 192.168.10.175,

192.168.10.176 and 192.168.10.177 and connected to edge servers via

switches. By getting access to the three default IP addresses, experi-

menters can power on, shut down and make a schedule with all static

USRP N210s remotely. Fig. 4(b) shows the PDU remote management

interface, via which experimenters can power on/off USRPs in real time

or at scheduled times.

Mobile Nodes. Three software-defined robot vehicles have been

designed for RoboNet based on a combination of SuperDroid robots and

USRP SDRs. Snapshots of the robot vehicles are shown in Fig. 5. The

SuperDroid robot serves as the mobile carrier of the software radios. A

programmable Mecanum wheel vectoring robot has been used in the

current design of the mobile nodes. Each robot comprises 4 Mecanum

wheels, 4 IG32 gear motors, 2 Sabertooth dual 5 A motor drivers, 1

Quadruple LS7366R Encoder and 1 Arduino UNO controller. Each robot

is powered by two 18 V/2.4 A PB (lead–acid) batteries. This allows each

robot vehicle to carry up to 50 lbs of payload, including the USRP SDRs

and their controlling host. Each robot is equipped with USRP SDRs for

programmable wireless communications. Currently, both USRP N210

and B210 can be supported by mobile nodes. Each robot can also carry

a wAP 60G to enable mmWave communications.

A Dell Latitude 5491 laptop with Intel Core™i7-8850H CPU@2.6

GHz*12 is used for robot control, USRP SDR control and baseband

signal processing. The connection between the controlling laptop and

the robot vehicle is established by an Arduino via USB port ‘‘/dev/tty-

ACM0’’. The mobile beacon is connected to the laptop via USB port

‘‘/dev/ttyACM1’’. The two default serial ports provide more flexibility

of our testbed. For example, by accessing the USB serial port, exper-

imenters can access the raw beacon location information and design

their own position algorithms, rather than using algorithms that we

provide. Finally, the movement of the robot is controlled and navigated

by the Arduino and the beacon via serial communications.

Indoor Positioning System. Because of the poor reception of GPS

signals in indoor environments, an indoor positioning system has been

deployed, as shown in Fig. 6. The system consists of a controller modem

(Fig. 6(a)) and 7 precise (with accuracy of ±2 cm) Marvelmind Super-
Beacons (Fig. 6(b)). Based on this system, the location of the mobile

beacon can be calculated using trilateration based on the propagation

delay of ultrasonic signals to a set of stationary beacons.

The 7 super beacons are divided into two groups: 4 static and 3

mobile beacons. As shown in Fig. 3(b), the 4 static beacons, 𝑏1, 𝑏2, 𝑏3
and 𝑏4, are attached to the four sides of the protective net. For example,

Fig. 6(b) shows the deployment of 𝑏1, which can communicate with

the controller modem, its neighbor beacons and the mobile beacon

using the selected frequency (19/25/31/37 kHz). According to the

exchanged information among the static beacons, the mobile beacon

and the modem, the robot locations will be updated in real time. We

adopt a Non-Inverse Architecture to set up the navigation system and

31 kHz is used as the communication frequency.

Finally, the controller modem is connected to the edge server via a

USB port. Through the control dashboard at the server, experimenters

can define a network map by assigning the origin point of the 3D

network, configuring beacon parameters (e.g., beacon address and

mode), and monitoring the movements of the mobile beacons mounted

on the robots.

Robot Self-Adjustment Scheme. Since we focus on investigating

the wireless communication network, we always hope that the robot

will move as prescribed and arrive at its target location. However, with

inaccurate readings from the encoder and different speeds of the four

Mecanum wheels (shown in Fig. 5(c)), the robot may fail to arrive at

the expected position and collisions may happen when multiple robots

exist. In order to focus on the wireless network study itself without

worrying about the negative impacts induced by the robot, we propose

a beacon-based robot self-adjustment scheme to allow the robot to

automatically adjust its position and posture during experiments. The

overall robot self-adjustment scheme is summarized in Algorithm 1.

There are two phases of the self-adjustment scheme: (i) beacon-

based robot posture adjustment and (ii) beacon-based robot position

adjustment. Due to the different speeds of the Mecanum wheels, there

is a divergence angle 𝜃 between the movement direction of the robot

and the network’s 𝑥-axis, as shown in Fig. 7, especially when the robot

moves left or right. At the beginning of the adjustment, the robot

records its beacon-based position (𝑥1, 𝑦1). Since movement errors are
negligible when moving short distances forward or backward, we have

the robot move forward for 𝜏 seconds (𝜏 = 3 by default), record its new
beacon-based position (𝑥2, 𝑦2), and then move backwards for 𝜏 seconds
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Table 1

Robot movement operation.

Parameter Movement option Movement distance Parameter Movement option Movement distance

𝜃 > 0 Rotate Left |𝜃|∕360 ∗ 𝑑1 𝜃 < 0 Rotate Right |𝜃|∕360 ∗ 𝑑1
𝑥3 < 𝑥 Move Forward 𝑑𝑥 = (𝑥 − 𝑥3) ∗ 𝑑2 𝑥3 > 𝑥 Move Backward 𝑑𝑥 = (𝑥3 − 𝑥) ∗ 𝑑2
𝑦3 < 𝑦 Move Left 𝑑𝑦 = (𝑦 − 𝑦3) ∗ 𝑑3 𝑦3 > 𝑦 Move Right 𝑑𝑦 = (𝑦3 − 𝑦) ∗ 𝑑3
Otherwise Stop 0

Fig. 5. Snapshots of mobile node. (a) USRP software radio, control host, laptop, and mobile beacon; (b) Power unit and Arduino controller; and (c) Bottom view: motors, motor

drivers and encoder.

Fig. 6. (a) Controller modem; (b) Super beacon.

back to its original position (𝑥1, 𝑦1). With the recorded two positions,
the divergence angle 𝜃 can be calculated based on

𝜃 =
⎧
⎪
⎨
⎪
⎩

90◦, if 𝑥1 = 𝑥2 and 𝑦1 < 𝑦2

−90◦, if 𝑥1 = 𝑥2 and 𝑦1 > 𝑦2

arctan( 𝑦2−𝑦1
𝑥2−𝑥1

), otherwise.
(1)

With the divergence angle 𝜃, the movement option and the movement

distance can be obtained by referring to Table 1, in which 𝑑1 is the

measured reference distance, which is obtained as follows: When a

robot turns left or right, one of its four wheels (left-back wheel by

default) does not move and the other three wheels do. By reading the

encoder value of one of the non-static wheels (the left-front wheel by

default) when the robot rotates 360◦, the value of 𝑑1 can be obtained.

The two adjustment parameters (𝜃 and 𝑑1) will then be packed in a

message and sent to the onboard Arduino controller. With the received

message, the Arduino will control the robot to finish the beacon-based

robot posture adjustment.

In the second phase, the robot first measures its new position (𝑥3, 𝑦3)
and compares it with the measurement-based beacon state information

(𝑥, 𝑦) which can be obtained via a one-time beacon-based measurement.
The obtained distance divergence 𝑑𝑥 and 𝑑𝑦 for the 𝑥 and 𝑦 axis will be

calculated and transformed to the corresponding movement direction

and distance as shown in Table 1, in which 𝑑2 and 𝑑3 are the measured

reference distance when the robot moves forward and backward for

1 meter, respectively. Similarly, the obtained adjustment parameters

will be packed and sent to the Arduino. Once the Arduino receives the

Fig. 7. Mecanum wheel robot with angular deviation.

movement command, the robot will adjust its position and then finish

the second-phase adjustment.

Algorithm 1: Robot Self-Adjustment Scheme

1 Beacon-based Robot Posture Adjustment:

2 Measure current position (𝑥1, 𝑦1) via beacon
3 Robot moves forward for 𝜏 seconds

4 Measure new position (𝑥2, 𝑦2)
5 Robot moves back to (𝑥1, 𝑦1)
6 Calculate the angle deviation based on (1)

7 Determine the rotation direction and calculate rotation

distance based on 2

8 Arduino movement control

9 Beacon-based Robot Position Adjustment:

10 Measure current position (𝑥3, 𝑦3) via beacon
11 Look up state position table and obtain target state position

(𝑥, 𝑦)
12 Determine the movement direction and calculate movement

distance based on 2

13 Arduino movement control

4. Control plane design

The control plane supports both traditional model-based control,

enabled by WNOS, and emerging data-driven control, enabled by the
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Table 2

Example APIs of WNOS.

API Description

attach(⋅) Add elements to the network

connect(⋅) Link one or more network elements

install_model(⋅) Install an expression model for a network element attribute

get_expr(⋅) Get the expression of a network element

mkexpr(⋅) Construct the new expression

record_expr(⋅) Store the expression in the database

set_para(⋅) Designate a specific expression as a utility function, constraint, or optimization variable

set_soln(⋅) Select the solution method to optimize the designated variables

record_expr(⋅) Store the expression in the database

RL repository. A set of APIs are developed for WNOS to enable auto-

matic generation of distributed cross-layer control algorithms. While

the RL repository is combined with a set of experiment management

APIs and multiple communication protocols to ease the use of NeXT

testbed and enable broadband wireless communication. The control

plane is deployed over the edge servers which are placed in the shelf

labeled as ‘‘UB NeXT’’ in Fig. 3(a).

4.1. Network modeling and optimization support

It is typically tedious and error-prone to manually model and op-

timize forwarding infrastructure in the data plane. To address this

challenge, we deployed our previously designed WNOS [11] over NeXT.

The primary benefits of WNOS are that it abstracts the data plan

forwarding infrastructure, allows experimenters to define control ob-

jectives in a centralized manner using high-level APIs, and then auto-

matically generates distributed cross-layer control algorithms that can

be deployed on NeXT’s data plane, e.g., UBSim and RoboNet. At a high

level, WNOS comprises two key components: network abstraction and

network control problem decomposition and control program genera-

tion. The network abstraction provides a set of APIs, based on which

experimenters can characterize in a centralized manner the desired

network behaviors before actual deployment. The network control

problem decomposition and control program generation is enabled

by disciplined instantiation (DI) [11], based on which user-defined ab-

stract centralized network control problems can be decomposed into

a set of distributed subproblems. WNOS is designed based on a three-

level hierarchical architecture to enable scalable network deployment.

Specifically, at the first-level, the WNOS control host is connected

to all second-level SDR control hosts via wireless interfaces (Wi-Fi

in our current prototype). The generated distributed algorithms are

automatically pushed over the wireless interfaces and installed at each

of the SDR control hosts which form the third-level. Hence, one only

needs to create a single piece of code to control all the SDR devices.

WNOS supports a wide set of network control problems in both

static and mobile networks. These include, but are not limited to,

rate maximization, power minimization, end-to-end delay minimization, and

movement optimization. WNOS also provides a rich set of APIs, based on

which experimenters are allowed to define more sophisticated control

problems in next-generation broadband networks spanning across mul-

tiple frequency bands, e.g., microwave, mmWave as well as THz bands.

Some examples of the APIs are given in Table 2.

4.2. Data-driven network control repository

The second part of the control plane is the data-driven network

control repository which enables data-driven control on RoboNet and

makes it easy to modify advanced AI/ML algorithms to be compatible

with our testbed. This repository consists of two classes of APIs for

data-driven control, i.e., Basic Class and Advanced Class. The basic class

is responsible for network initialization. Examples include the Envi-

ronment Initialization API, Variable Initialization API and Feedback List

Initialization API. The Advanced Class APIs are designed based on Basic

Class and are used for policy training, including updating states, actions

and a value table. Given the number of states and actions specified

using the Configuration API, the environment can be initialized using

the Environment Initialization API. Key variables involved in learning

algorithms, such as the current state and next state, can be initialized

via the Variable Initialization API. One is also allowed to choose the

Reward Type and Calculator Mode through the Configuration API. Based

on these APIs, four classes of RL algorithms have been implemented in

the advanced class and can be called via the RL Algorithm API. These are

epsilon-greedy search, upper confidence bound (UCB) action selection,

Q-learning and State–action–reward–state–action (SARSA). Different

reward types and calculator modes have been defined in advance, while

experimenters can define custom reward types and calculator modes for

their own experiments.

4.3. NeXT experiment management APIs

Extensive experiments can be conducted over the NeXT testbed,

especially on RoboNet discussed in Section 3.2. To help experimenters

use our testbed efficiently, we design a set of experiment management

APIs, by which elements deployed on RoboNet can be coordinated. As

shown in Fig. 8, there are three classes of APIs, as discussed next.

Network Configuration APIs. APIs in this class are used to define

various network environments. We provide three different APIs, Net-

work Configuration API, Host Configuration API and USRP Configuration

API. Parameters that can be configured via network configuration

APIs include network area, center frequency, bandwidth, transmission

power, modulation type, slot duration, the number of robots, etc.

Through host and USRP configuration APIs, experimenters can manage

Ethernet addresses, wireless network addresses, and port numbers for

the SDRs and their controlling hosts.

Nodes Synchronization APIs. To easily coordinate the server and

mobile hotspot controllers, Nodes Synchronization APIs are provided.

With these APIs, for example, experimenters can start the experiments

with just one command executed on the edge server.

These APIs are based on a Transmission Control Protocol (TCP)

connection established over WiFi to provide communications among

different nodes. The WiFi wireless local area network is enabled by

TP-Link Archer A7 AC1750 Wireless Dual Band Gigabit Router, which

follows wireless LAN 802.11a/b/g/n/ac standards. The 2.4 GHz and

5 GHz bands are dedicated for node synchronization and we avoid

using the two bands for conducting experiments. Thus, the WiFi will

not cause any interference to our target experiments. The other poten-

tial external interferes are mainly from wireless devices like phones.

However, since most wireless devices get access to the internet via

University at Buffalo’s WiFi network, which also works in the 2.4 GHz

and 5 GHz bands, the interference to measurements is limited. In Fig. 9,

we show the spectrum comparison without and with ongoing exper-

iments, respectively. The results show that the possible interference

(−92 dBFS) to our experiments is much smaller than our signal strength
(−68 dBFS). Thus we can neglect the possible interference.

Network Element APIs. After the experiment profile has been con-

figured, one can further control various network components via a set

of system control APIs deployed at the edge server and mobile hotspot

controller. These include the Transmission Control API, which can be



J. Hu et al.

Fig. 8. Network element control interface and experiment management APIs.

Fig. 9. Screenshot of 2.56 GHz spectrum monitor of network (a) in idle mode with −92 dBFS peak interference; (b) during experiments with −68 dBFS peak signal.

used to control the transmissions of the USRP N210 carried by the

robot vehicle; the Receiver Control API for controlling data receiving;

the Robot Movement Control API for controlling robot movement; and

finally the Beacon Positioning API, based on which experimenters can

obtain the robots’ real-time positions.

In these network element APIs, logging features are enabled to

record system status like transmission process startup, beacon posi-

tioning updates, robot movements and so on. Data that will be used

for analyzing and processing, like throughput for each time slot, are

stored and updated in dictionaries/tables during the tests and saved

automatically once an experiment finishes.

1 import Reinforcement_Learning_API as rli
2 import Robot_Movement_Control_API as rmi
3 import Beacon_Positioning_API as bpi
4

5 while experiment_running:
6 curt_state = bpi.operation()
7 next_state = rli.operation()
8 updt_rbt_movement_ctrl(curt_state ,

next_state)
9 updt_usrp_commn_ctrl()
10 updt_fdbk_request()
11 reward = rli.fdbk_processing(fdbk,

fdbk_type , rwd_calc)
12 rli.updt_value_table(reward)
13 if rbt_adjustment_status:
14 rmi.rbt_adjustment(next_state)

Listing 1: Example of Experiment Management APIs

In Listing 1, we show an example of using the aforementioned APIs

to conduct experiments on the NeXT testbed. While an experiment is

running (line 5), the user calls Beacon Positioning API to get the current

state information (line 6) and calls Reinforcement Learning API to get the

next state information (line 7). The robot updates its location by calling

Robot Movement Control API (line 8). After the robot arrives at the

target location, the communication begins (line 9). After a pre-defined

communication time in Network Configuration API, the robot requests

feedback (line 10) and obtains the current reward (line 11), and the

value table is then updated (line 12). Before conducting the next

time-slot experiment, the robot adjustment status parameter defined in

Network Configuration API will be checked (line 13). If the status is True,

the robot will adjust its posture and position based on Algorithm 1 (line

14).

4.4. Communication protocols management

We consider three different communication protocols in our testbed:

GNU Radio Benchmark, srsRAN and mmWave communication proto-

cols.

GNU Radio Benchmark Protocol. This is developed based on

GNU Radio narrow-band benchmark library [33]. Specifically, we ex-

tend the original benchmark narrow-band library by designing three

additional APIs. These are Benchmark Interaction API, Benchmark Trans-

mission Control API and Benchmark Receiving Monitor API. For example,

the Benchmark Transmission Control API is used to control when and

what data is transmitted. The transmission duration and transmission

information can be configured in Network Configuration API in Sec-

tion 4.3 and can then be transmitted to the basic benchmark module via

Benchmark Interaction API. Benchmark Receiving Monitor API is used to

monitor the status of the receiver. If the receiver detects disconnected

links, it will restart the transmitter by sending a request to the edge

server via Benchmark Interaction API.

1 import Network_Configuration_API as ncfg
2 import Host_Configuration_API as hcfg
3 import Benchmark_Interaction_API as bmia
4
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5 def Benchmark_Transmission_Control_API():
6

7 if bmia.tmr1 == 0:
8 data = ncfg.cxn_data
9 elif bmia.tmr2 <= ncfg.ts_len:
10 data = ncfg.comm_data
11 else:
12 data = ncfg.cxn_data
13 bmia.socket.sendto(ncfg.cmd_done , (

hcfg.wl_host, hcfg.port))
14

15 return data

Listing 2: Example of Benchmark Transmission API

Listing 2 shows an example of how Benchmark Transmission Control

API is used to control the transmission of data at run time. There are

two types of data that can be transmitted: regular transmission data,

which is the actual data that we want to deliver over the network, and

dummy connection data, which we use to keep the network connection

alive. The connection data is needed because GNU Radio does not

provide an auto re-connection scheme if a connection is lost. In Listing

2, the experimenter first calls the Benchmark Transmission Control API

(line 5) to determine the data to be transmitted based on the two

timers received from Benchmark Interaction API. If timer 1 (bmia.tmr1)

equals 0 (line 7), the data is set as connection data (ncfg.cxn_data, line

8); if timer 2 (bmia.tmr2) is smaller than a predefined transmission

duration (ncfg.ts_len, line 9), the data is set as communication data

(ncfg.comm_data, line 10); otherwise, the data is set to ncfg.cxn_data

(line 12) and the one-time-slot-finished information will be sent to Local

Main Controller API via Benchmark Interaction API (line 13).

Software-Defined RAN Protocol. This is developed based on

srsRAN, an open-source 4G and 5G software radio suite developed by

Software Radio Systems (SRS) [34]. It contains three different modules,

srsEPC, srsENB and srsUE. We design a set of srsRAN Configuration

APIs to manage the three modules based on the parameters in Network

Configuration API. For example, the user dataset information can be

generated automatically and stored in ‘‘user_db.csv’’ via srsEPC con-

figuration API, and srsENB operation parameters like communication

frequency can be generated automatically via srsENB configuration API.

The srsUE configuration API is used to generate ‘‘ue.conf’’ file which

contains srsUE operation information, such as IMSI information.

1 import os
2 import srsEPC_configuration_API as epca
3 import srsENB_configuration_API as enba
4 import srsUE_configuration_API as suea
5

6 epca.srsepc_operation()
7 os.system( "gnome-terminal -- bash -c \"sudo

srsepc; exec bash \"")
8 enba.srsenb_operation()
9 os.system( "gnome-terminal -- bash -c \"sudo

srsenb; exec bash \"")
10 suea.srsue_operation()
11 os.system( "gnome-terminal -- bash -c \"sudo

srsue; exec bash \"")

Listing 3: Example of srsRAN Configuration APIs

Listing 3 shows an example of how to generate srsRAN configure

files and run the corresponding programs. Users call srsEPC_operation

(line 6) to generate ‘‘user_db.csv’’ and start up srsEPC program in

line 7. Similarly, ‘‘enb.conf’’ and ‘‘ue.conf’’ are generated by calling

srsENB_operation (line 8) and srsUE_operation (line 11), respectively.

Millimeter Wave Communication Protocol. The mmWave com-

munication protocol is supported by MikroTik mmWave routers [32].

These mmWave routers can be configured to form a point-to-point

network or point-to-multi-point network based on requirements. When

integrating the mmWave communication protocol with srsRAN to en-

able large scale wireless network communication, we connect both

the USRP B210 (running srsEPC and srsENB) and the mmWave router

(primary) to a single laptop and design a Gateway Setting API to

navigate data traffic between srsUE and mmWave subordinate.

1 import os
2 import Network_Configuration_API as ncfg
3 import Host_Configuration_API as hcfg
4

5 def Gateway_Setting_API():
6

7 subnet = hcfg.srsRANsubnet
8 eth_addr = getattr(hcfg, ncfg.laptop_name

).get( "eth_host ")
9 gw_setting_cmd = "gnome-terminal -- bash

-c \"sudo ip route add " + str(subnet
) + " via " + str(eth_addr) + " ;
exec bash \""

10 os.system(gw_setting_cmd)

Listing 4: Example of Gateway Setting API

Listing 4 shows an example of how to set the gateway to enable

communication between srsUE and mmWave subordinate. The key is

to get the subnet address of srsRAN (line 8) and Ethernet address of

the current laptop (line 9). The command is generated based on the

above two information (line 10) and the gateway is set by executing

the command (line 11).

Since the three communication protocols have their own logic stacks

and the interactions with controllers are processed in different ways,

we implement three different profiles for each communication protocol.

These three profiles are stored in laptop controllers and edge servers.

Each profile is independently stored in different folders but they share

the same components except communication protocol. Experimenters

can choose the profile to load, i.e., select the communication protocol

they want to use, before conducting experiments. By providing different

profiles for different communication protocols, we can easily integrate

more communication protocols, like direct sequence spread-spectrum

(DSSS) [35], to our testbed in the future.

The three communication protocols that we have implemented all

rely on self-synchronization schemes. For example, srsRAN implements

the Precision Time Protocol (PTP), which is a standard protocol used

for time synchronization in packet-based networks, so no clock/time

synchronization features are needed. However, protocols that rely on

clock/time synchronization can be implemented with support of ad-

ditional hardware, such as an Octoclock or GPS module, as shown in

Fig. 10. The accuracy of Octoclock is within a few 100 ns and GPS

module is within 50 ns.

5. Example experiments over NeXT

We now test NeXT and showcase its capabilities of optimization,

simulation and experimentation considering different network control

problems. These include user scheduling in a cellular network, trajec-

tory optimization for a mobile hotspot, and joint rate and power control

in multi-hop networks. A comprehensive overview of these experiments

is summarized in Table 3.

5.1. Experiment 1: User scheduling

In the first experiment, we consider a wireless network with a

hotspot serving a set of users. The transmission time is divided into a set

of consecutive time slots. In each time slot, we consider that the hotspot

can serve at most one user. The objective of the hotspot is to maximize

the aggregate throughput by selecting a user to serve in each time slot.
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Fig. 10. (a) Snapshot of the Octocolock; (b) GPS module.

Fig. 11. User scheduling scenario: (a) Average capacity obtained over UBSim; and (b) average throughput using RoboNet.

Table 3

Experiments overview.

Experiment No. Name Type

1 User Scheduling simulation & experimentation

2 Overflow Control experimentation

3 Mobile Hotspot Navigation experimentation

4 Multi-Mobile Hotspots Navigation experimentation

5 Mobile Hotspot Navigation with srsRAN experimentation

6 Mobile Hotspot Navigation in IAB experimentation

7 Multi-hop Network Optimization optimization & simulation & experimentation

We design control algorithms for the hotspot based on the data-driven

network control repository as discussed in Section 4.2. Specifically, we

consider the upper confidence bound (UCB) action selection algorithm

and test it over both UBSim and RoboNet developed in Section 3. First,

we test the effectiveness of the UCB algorithm in UBSim. Fig. 11(a)

plots the achievable capacity averaged over 20 episodes each with 100

time slots. It can be seen that the average capacity improves over time,

and this validates the effectiveness of the data-driven network control

repository.

Then we further test the data-driven network control repository over

RoboNet considering SDRs and real-world wireless channels. USRP20

is selected as the transmitter and five USRPs (USRP2, USRP5, USRP9,

USRP11 and USRP19) are selected as receivers (see Fig. 3). The time

slot duration is set to 3 s. The exploration parameter 𝜖 and UCB control

parameter 𝑐 are set to 0.15 and 2, respectively. We run 10 episodes

of robot navigation, with each episode consisting of 100 time slots.

We calculate the average number of received packets in each time

slot and the results are shown in Fig. 11(b). It can be seen that the

highest throughput can be achieved in around 20 time slots. This

further validates the effectiveness of the data-driven network control

repository. Comparing Figs. 11(a) and (b), we found the average capac-

ity in UBSim is much larger than the average throughput on RoboNet.

This is because we use different protocols in each system. In UBSim, the

network capacity is calculated based on the Shannon capacity formula

while on RoboNet, the throughput is obtained based on GNU Radio’s

narrowband communication protocol. Besides, the transmission power,

bandwidth and so on are different in UBSim and RoboNet. For these

reasons, the gap between UBSim and RoboNet is large. Since we focus

on the verification of algorithms effectiveness, we neglect the gap

between the simulator and reality. However, it would be interesting to

investigate how to mitigate the reality gap, which is also a potential

function provided by the NeXT system. We discuss this further in

Section 6. Recall that the primary objective of NeXT is to provide an

integrated environment for optimization, simulation, and experimenta-

tion in software-defined wireless networks. This experiment illustrates

the benefits of using the NeXT testbed. Conducting experiments in the

real-world is time consuming while simulation-based experiments can

be done much quicker. With the NeXT testbed, users can test their

algorithm in UBSim first and check the performance of the proposed

algorithm. If the results show that the algorithm needs improvement,

they do not need to do the tests in the real-world, which saves time.

By conducting experiments on our testbed, users also avoid directly

collecting data in the real-world, which can sometimes be unsafe.

1 usrp_rx_list = [ "usrp2 ","usrp5 ","usrp9 ","
usrp11 ","usrp19 "]

2 ts_len = 3 # time slot length; unit: second
3 ts_num = 100 # time slot number
4 UCB_e = 0.15 # exploration parameter
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Fig. 12. Overflow control scenario: Transmitted packet number vs. time slot.

5 UCB_c = 2 # control parameter

Listing 5: User scheduling configuration parameters in Network

Configuration API

Listing 5 shows user scheduling configure parameters in Network

Configuration API, which can be used to configure the parameters

involved in this experiment. Experimenters can specify the USRPs they

want to use as the receiver in line 1. The time-slot length and time-slot

number for each episode can be set via line 2 and line 3, respec-

tively. The parameters used for the UCB action selection algorithm

configuration can be configured via line 4 and line 5.

5.2. Experiment 2: Overflow control

In this scenario, Robot1 is adopted as the transmitter and three

USRPs (USRP1, USRP9 and USRP11) are adopted as receivers. Each

time slot is set to 5 s and the transmitter transmits data every 0.15 s.

Assume that the arrival rate follows a Poisson distribution and the

average arrival rate is set to 1 packet per time slot. The maximum

data buffer length is set to 8 packets for each receiver. Q-learning is

adopted in this case to control data buffer overflows. As shown in

Fig. 12, we run one episode with 500 time slots and calculate the

number of transmitted packets and the corresponding running average

for each time slot. It can be seen that, in some time slots the number

of transmitted packets is 0. This happens when there are no packets

available in the buffer to transmit or when the channel conditions are

bad. For Poisson distributed packet arrivals with average arrival rate 1,

the expected number of packets arriving at each user in each time slot

is 1. Thus, the total expected arrivals for three users in each time slot

is 3. From Fig. 12, the running average is around 3 packets per time

slot which matches the above mathematical analysis. The cumulative

overflows are shown in Fig. 13, in which the slope converges gradually

over time towards the optimal achievable packet overflow rate.

1 pkts_arrival_rate = 1 # unit: packet/slot
2 queue_max_pkts_num = 8 # maximum buffer size
3 queue_overflow_reward = -20

Listing 6: Overflow control configuration parameters in Network

Configuration API

As shown in Listing 6 experimenters can modify the parameters

in Network Configuration API to meet their needs. Experimenters can

modify the packet arrival rate and maximum buffer length for each user

via line 1 and line 2, respectively. Line 3 can be configured to set an

overflow reward (such that a negative value corresponds to a penalty).

Fig. 13. Overflow control scenario: Cumulative overflows vs. time slot.

Fig. 14. Single mobile hotspot scenario: instantaneous and running average of

throughput.

5.3. Experiment 3: Mobile hotspot navigation.

In the third experiment, we consider a wireless network where

a robot carrying a mobile hotspot moves around to serve a set of

users. The objective is to maximize the users’ aggregate throughput

by controlling the robot’s trajectory. The network is divided into a

set of grid cells, each corresponding to a state of the environment. In

each grid cell, the robot has five action options, i.e., move forward,

move backward, move left, move right and stay. The reward for each

state–action pair is defined as the sum throughput of users. Q-learning

is considered in this experiment with exploration probability 𝜖 set to

0.15, step size of 0.2 and discount factor 0.95. Each episode consists

of 500 time slots, corresponding to 3 h. We measure the number of

received packets and calculate the corresponding running average in

each time slot. The experimental results are reported in Fig. 14. It can

be seen that the running average converges to around 30 packets/slot.

The drop of instantaneous throughput around time slot 400 is caused

by the imperfection of the wireless link, which got disconnected as the

robot moved.

5.4. Experiment 4: Multi-mobile hotspots navigation.

In the fourth experiment, we consider the same wireless network

scenario as the third except that we adopt two mobile hotspots. To

avoid collisions, the network is divided into two regions and each
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Fig. 15. Two mobile hotspots scenario: instantaneous and running average of

throughput.

robot can only move within one region. Five USRPs (USRP0, USRP1,

USRP2, USRP3 and USRP19) are configured as users to receive service

from the two robots. In each time slot, a user is only allowed to

connect to the robot with the shortest distance to it. Q-learning with

the same parameters as in the second experiment is adopted. Similarly,

we measure the number of correctly received packets and calculate

the corresponding running average in each time slot. The experimental

results are reported in Fig. 15. It can be seen that the running average

converges to around 80 packets/slot.

1 import struct
2 import Network_Configuration_API as ncfg
3 import Beacon_Positioning_API as bpi
4 import Host_Configuration_API as hcfg
5

6 def update_rbt2_state():
7

8 curt_state = bpi.operation()
9 s_addr = hcfg.rbt2.get( "code ")
10 d_addr = hcfg.rbt1.get( "code ")
11

12 data = struct.pack(’!H’, s_addr & 0xffff)
+ struct.pack(’!H’, d_addr & 0xffff)
+ struct.pack(’!H’, curt_state & 0

xffff) + ncfg.rbt2_state_info
13 rb2_tcp_skt.sendto(data, ((hcfg.rbt1.get(

’host’), hcfg.rbt1.get(’port’))))

Listing 7: Example of multi-robots interaction

In Listing 7 we give an example showing how Robot2 sends its

state information to Robot1 during the experiments. Robot2 first gets

its current state information via interaction with Beacon Positioning API

(line 8). By calling Host Configuration API, the message source code (line

9) and message destination code (line 10) are obtained for message

routing. Then the data is constructed (line 12) and sent to Robot1 via

TCP Client API (line 13).

In the above four experiments, we adopt the GNU Radio Benchmark

communication protocol. In the following two experiments, we adopt

srsRAN (and mmWave) as the communication protocol.

5.5. Experiment 5: Mobile hotspot navigation with srsRAN

Similar toMobile Hotspot Navigation, we want to maximize the users’

aggregate throughput by controlling a robot’s trajectory but with a

different communication protocol, namely, srsRAN. The robot carries

Fig. 16. Single mobile hotspot scenario: instantaneous and running average of

throughput.

a USRP B210 which works as a base station to serve three users (each

being a USRP B210). The three USRP B210s are located at the position

of USRP0, USRP5 and USRP14 as shown in Fig. 3(b), respectively. In

each time slot, we use iperf3 to measure instantaneous throughput for

3 s and calculate the corresponding average throughput. The results

are shown in Fig. 16. It can be seen that the total running average

converges to around 28 Mbps. The drop of instantaneous throughput of

UE2 near the 200th time slot results from it losing its connection and

thus leads to increased throughputs of UE1 and UE3. We can also find

that the three UEs can achieve similar throughput if no connections

are lost. This is because we set the srsRAN MAC layer scheduling

mechanism to proportional fair (PF), which aims to balance system

throughput and fairness. Based on the PF scheduling mechanism, UE’s

with relatively better instantaneous channel quality indicator (CQI)

compared to their historic average rates will be allocated with more

resources. Experimenters can also choose a round-robin scheduling

method by specifying it in Network Configuration API at the MAC layer.

1 import os
2 import Host_Configuration_API as hcfg
3 import srsUE_configuration_API as suea
4

5 ue_name = suea.get_srsRANue_name()
6 ue_port = getattr(hcfg, ue_name).get( "port ")
7 iperf3_server_cmd = suea.cmd_gen(ue_port)
8 os.system(iperf3_server_cmd)

Listing 8: Example of starting iperf3 server

Listing 8 shows how to generate an iperf3 server on srsUE side.

Firstly, users need to obtain the UE name (line 5) and the predefined

port number (line 6). Then iperf3 server command is generated (line

7) and executed (line 8) to run the iperf3 server, which is waiting for

iperf3 client connection from the client side (i.e., the robot).

5.6. Experiment 6: Mobile hotspot navigation in IAB

The sixth experiment is mobile hotspot navigation in an integrated

access and backhaul (IAB) network setting. As shown in Fig. 17(b), a

robot carries a USRP B210 and a mmWave router slave as a relay to

bridge three users and the base station (mmWave router primary). The

three users are located at the positions of USRP0, USRP5 and USRP19

and the mmWave primary is located at (7.1 m, 0 m, 1.5 m) in the

RoboNet network. Q-learning is adopted to optimize the robot trajec-

tory. The results of the experiments are shown in Fig. 18. Similarly, the

running average throughput converges to 22 Mbps.
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Fig. 17. (a) Snapshot of srsRAN based-robot; and (b) Snapshot of IAB based-robot.

Fig. 18. Single mobile hotspot scenario in IAB setting: instantaneous and running

average of throughput.

In the above experiments, the RL algorithms are adopted to improve

network performance. However, we found that sometimes RL does

not work well in practice. Randomness (like the user disconnection,

time-varying channel, movement of robot and so on) could affect the

RL performance. For example, during the mobile hotspot navigation

in IAB experiments, the robot spends most time in a state (state 6)

after 200 time-slots but the running average throughput is lower as

shown in Fig. 18. This could be due to the laptop’s limited computation

capabilities, which can degrade the USRP B210s performance. In this

case, if we want to apply RL in a wireless network, we need to take

randomness into consideration and design a more sophisticated reward

(not simply taking throughput as the only one criteria).

5.7. Experiment 7: Multi-hop network optimization

In the seventh and final experiment, we consider a multi-session

multi-hop network with two sessions and eight nodes. Each session

consists of four nodes, namely one source node, two relay nodes

and one destination node. The objective is to maximize the network

throughput while minimizing the interference between the two sessions

by jointly optimizing the physical and transport layers. The optimiza-

tion algorithms are generated automatically by WNOS, which has been

deployed over the control plane of NeXT, as described in Section 4.

The resulting algorithms are deployed over the data plane. Similar

to the User Scheduling experiment discussed above, we conduct this

experiment over both UBSim and RoboNet. The results are reported

in Fig. 19. We can see that the control algorithms converge over

both UBSim and RoboNet. It is worth pointing out that different link

models have been considered in UBSim and RoboNet in their current

implementations. In future research, we will create a digital twin of

RoboNet based on UBSim and test the gap between simulated and

real-world performance.

6. New research topics enabled by NeXT

In this section we discuss the new research topics that NeXT can

enable, including sim-to-real transfer learning, robust wireless network

control, online digital twin construction and optimization, and multi-agent

reinforcement learning.

Sim-to-real transfer learning : Towards zero-touch wireless network

self-configuration, the proposed framework will connect accelerated

learning in the virtual domain with performance evaluation in the

real domain. With the proposed framework, novel machine learning

algorithms can be designed and tested rapidly in the virtual domain

in a variety of configurable networking scenarios, and the converged

algorithms can be deployed on SDR hardware for practical evaluation.

Making use of a digital twin for initial policy iteration can significantly

reduce the time required to generate an optimal control policy, es-

pecially in the case of deep learning or deep reinforcement learning.

These transfer learning experiments will be used to understand the

performance discrepancy between simulation and hardware evalua-

tion, which will be necessary for designing repeatable experiments

towards accelerated learning for wireless network self-configuration.

This investigation into efficient transfer learning will start with exper-

imental benchmarks to quantify the reality gap between UBSim and

RoboNet and then designing methods to minimize the impact of this

gap through an experimental campaign of domain adaptation and novel

twin-domain learning algorithms.

Robust wireless network control: The use of robust learning for domain

adaptation in the wireless domain has been introduced in [27]. By

introducing noise to the training data or training environment during

policy iteration, it has been shown that the resulting control policy will

provide improved performance when faced with unexpected observa-

tions or perturbations compared to a non-robust policy. In this line of

research, this uncertainty can be interpreted as the set of all physical

phenomena which contribute to the performance gap between simu-

lation and hardware scenarios, such as unpredictable RF interference

or hardware nonlinearities. The programmable SDR hardware provided

by the RoboNet testbed coupled with the virtualization of the RoboNet

environment in UBSim enables investigation into robust learning to
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Fig. 19. Multi-hop network optimization scenario: Average end-to-end throughput with (a) UBSim simulator and (b) NeXT testbed.

improve sim-to-real transfer learning performance in a wide variety of

networking scenarios, with or without knowledge of the reality gap. We

plan to build on findings in [27] by applying the experimental robust

learning framework to the sim-to-real capabilities presented in this

work, exploring robust learning as a method of mitigating performance

degradation due to sim-to-real policy transfer.

Online digital twin construction and optimization: Existing methods for

generating a virtual model for digital twin applications typically rely on

human expertise, and can be tedious and error-prone. This motivates

autonomous virtual environment construction based on mobile sensing

techniques such as simultaneous localization and mapping (SLAM).

Using SLAM with remote-control hardware such as the robots intro-

duced in Section 3, it is possible to record observations and generate

a 3D environment map with configurable fidelity in real time without

significant human intervention. This capability can significantly accel-

erate the digital twin construction process by automating the collection

and import of environmental data into the desired simulation environ-

ment, such as UBSim. With integrated simulation and experimentation

capabilities, the NeXT testbed can enable research of online digital

twin construction by providing configurable network simulation envi-

ronments in UBSim, and verifying the accuracy of the autonomously

generated digital twin with ground truth obtained through testbed

experiments.

Multi-agent Reinforcement Learning (MARL): The NeXT testbed can

support MARL research for development and evaluation of algorithms

such as REINFORCE policy gradient (PG) [36], gradient-based partially

observable MDP (G(PO)MDP) [37], actor–critic (A2C) [38], or asyn-

chronous actor–critic (A3C) [39]. In general, these algorithms require

significantly more time to converge to an optimal policy than their

single-agent counterparts. Additionally, debugging MARL algorithms

can be complicated due to the distributed nature of data collection

and processing. The architecture of UBSim and its supporting APIs

can significantly simplify the simulation design process by streamlining

user-configurable parameters such as the number of nodes, distributed

or centralized control algorithms, and reward function related to the

environment. This can save time, provide configurable online feedback

to display only target data points, and limit redundancy in coding for

large-scale MARL problems. Finally, the configurable SDR topology and

the hardware available in the RoboNet testbed can provide a framework

through which simulation results obtained in the virtual digital twin

environment can be verified through real-world experiments.

7. Conclusions and future work

In this work, we introduced the software-defined testbed NeXT,

which enables integrated simulation, experimentation and optimization

for wireless research. We designed the data plane with both the simu-

lator UBSim and the testing facility RoboNet. We designed the control

plane in which a software toolchain is developed to support both

traditional model-based and new data-driven control techniques. We

presented the communication protocols deployed on our testbed. We

verified the effectiveness and flexibility of NeXT considering both sim-

ulation and testbed experiments. We also discussed the new research

topics that can be enabled by NeXT. In future work, we will (i) enable

experiments in flying networks by integrating UAVs into NeXT; (ii) enable

digital twin for testing self-optimizing networks; and (iii) allow remote

access to the NeXT platform via CloudRAFT, a cloud-based framework for

remote access of experimentation platforms that has been developed at the

University at Buffalo [40].
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