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Abstract— To mitigate the long-term spectrum crunch prob-
lem, the FCC recently opened up the 6 GHz frequency band
for unlicensed use. However, the existing spectrum sharing
strategies cannot support the operation of access points in moving
vehicles such as cars and UAVs. This is primarily because of
the directionality-based spectrum sharing among the incumbent
systems in this band and the high mobility of the moving
vehicles, which together make it challenging to control the cross-
system interference. In this paper, we propose SwarmShare,
a mobility-resilient spectrum sharing framework for swarm UAV
networking in the 6 GHz band. We first present a mathematical
formulation of the SwarmShare problem, where the objective is
to maximize the spectral efficiency of the UAV network by jointly
controlling the flight and transmission power of the UAVs and
their association with the ground users, under the interference
constraints of the incumbent system. We find that there are no
closed-form mathematical models that can be used to characterize
the statistical behaviors of the aggregate interference from the
UAVs to the incumbent system. Then we propose a data-driven
three-phase spectrum sharing approach, including Initial Power
Enforcement, Offline-dataset Guided Online Power Adaptation, and
Reinforcement Learning-based UAV Optimization. We validate the
effectiveness of SwarmShare through an extensive simulation
campaign. Results indicate that, based on SwarmShare, the
aggregate interference from the UAVs to the incumbent system
can be effectively kept below the target level without requiring the
real-time cross-system channel state information. The mobility
resilience of SwarmShare is also validated in coexisting networks
with no precise UAV location information.
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I. INTRODUCTION

NMANNED aerial vehicles (UAVs) have been envi-

sioned as a key technology for next-generation (i.e., BSG
or 6G) wireless networks [2], [3]. Because of their features
of fast deployment, high mobility and small size, UAVs have
a great potential to enable a wide set of new applications,
including UAV-aided guidance [4], small cells with flying base
stations [5], emergency wireless networking in the aftermath
of disasters [6], among others. The foreseen wide adoption of
UAV systems can pose a significant burden on the capacity
of the underlying wireless networks.In this paper, we aim to
explore new approaches that can enable UAV operations in
the 6 GHz band to harvest the additional 1.2 GHz spectrum
bandwidth [7].

The primary challenge towards this goal is in the spectrum
sharing approaches adopted by the incumbent systems in this
frequency band. The 6 GHz band consists of four sub-bands,
i.e., U-NII-5 (5.925-6.425 GHz), U-NII-6 (6.425-6.525 GHz),
U-NII-7 (6.525-6.875 GHz), and U-NII-8 (6.875-7.125 GHz).
These bands have been previously occupied by a set of non-
government services, including fixed point-to-point services,
fixed-satellite service (Earth-to-space), broadcast auxiliary ser-
vices and cable television relay services [7]. These incumbent
systems coexist with each other by sharing the spectrum on
a directional basis, i.e., they use highly directional antennas
to concentrate the signal energy in a particular direction such
that the mutual interference can be effectively mitigated as
long as their antennas are not pointed toward each other. As a
result, traditional carrier-sensing-based spectrum sharing as
in Wi-Fi networks is not applicable to extend those wireless
systems with omnidirectional antennas to this frequency band,
because of the low detectability of the incumbent systems. For
this reason, two operation modes have been proposed by the
FCC, i.e., standard-power and low-power modes. The former
allows both indoor and outdoor operations on the U-NII-5 and
U-NII-7 bands with maximum transmission power of 30 dBm.
The latter focuses on indoor operations in the U-NII-6 and
U-NII-8 bands with maximum transmission power of 24 dBm.

However, neither of the above two modes supports UAV
operations in the 6 GHz bands [7], [8]. A major concern
is that the high mobility of the UAV systems makes it
difficult to model and control their aggregate interference to
the incumbent systems. The situation gets even worse when
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considering the altitude-dependent interference range of UAVs
and the higher probability of line-of-sight signal propagation
at higher altitudes. Additionally, it is also challenging for
the distributed UAVs to control their aggregate interference
collaboratively by jointly considering their spectrum access
strategies and association to the ground users.

To address these challenges, a key step is to understand the
statistical behaviors and effects of the aggregate interference
experienced by the incumbent systems, since no real-time
cross-system channel state information (CSI) is available.
To this end, in this paper we focus on a new spectrum sharing
scenario in the 6 GHz band called SwarmShare, where a set
of UAVs collaboratively provide data streaming services to
ground users, by sharing the spectrum with the incumbent sys-
tems on the 6 GHz band under the cross-system interference
constraints. Within this framework, we model and analyze the
aggregate interference from the UAVs to the incumbent users,
and propose a mobility-resilient stochastic spectrum sharing
approach, based on which the interference can be mitigated
from the coexisting UAV networks to the incumbent users
in the 6 GHz band, while increasing the SINR of the UAV
networks. The main contributions of this work are as follows:

o We first present a mathematical formulation of the
SwarmShare problem, where the objective is to maximize
the spectral efficiency of the wireless UAV network
by jointly controlling the UAVs’ transmission power
and flight trajectory as well as their association to the
ground users, under the interference constraints of the
incumbent system. It is shown that the resulting problem
is a mixed integer nonlinear non-convex programming
(MINLP) problem.

o We analyze the statistical behavior of the aggregate
interference from the UAVs to the incumbent sys-
tem, and find that no existing models can be used to
characterize the statistical behavior of the interference.
With this observation, we propose to solve the above
MINLP spectrum sharing problem following a data-
driven three-phase approach: Initial Power Enforcement,
Offline-dataset Guided Online Power Adaptation, and
Reinforcement Learning-based UAV Optimization.

o We validate the effectiveness of SwarmShare by con-
ducting an extensive simulation campaign over UBSim,
a newly developed Universal Broadband Simulator for
integrated aerial-ground wireless networks. It is found
that, with SwarmShare, effective spectrum sharing can
be achieved without real-time cross-system channel state
information and, which is somewhat surprising, even with
no precise location information of the UAVs.

The rest of the paper is organized as follows. In Sec. II, we dis-
cuss the related works. The system model and problem for-
mulation are presented in Sec. III. In Sec. IV, we describe the
spectrum sharing framework. Performance evaluation results
are discussed in Sec. V and finally we draw the main conclu-
sions in Sec. VIIL.

II. RELATED WORK

UAV systems have attracted significant research attention
in both academia and industry [2], [9], [10], [11], [12], [13].
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For example, in [2] the authors optimize the achievable rate of
UAV-aided cognitive IoT networks. Wang et al. propose in [9]
a dynamic hyper-graph coloring approach for spectrum sharing
in UAV-assisted networks. In [10], the authors optimize mobile
terminals’ throughput by jointly controlling UAV trajectory,
bandwidth allocation and user partitioning between the UAV
and ground base stations. In [11], a UAV is used as a relay
to assist D2D communications. In [12], the authors studies
machine learning based spectrum sharing for UAV-assisted
emergency communications. The authors of [13] adopt UAVs
to harvest the primary RF signal as an energy source of the
secondary users. Readers are referred to [14] and [15] and
references therein for a survey of the main results in this
area.

Spectrum sharing in cognitive radio networks has also been
a hot research topic for a long time with a sizable and
increasing body of literature. In [16], the authors aim to
maximize the average secrecy rate of the secondary network
by robustly optimizing the UAV’s trajectory and transmit
power. In [17], the authors maximize the revenue of the newly
joined systems in cognitive radio networks by controlling the
channel access of new users. The authors of [18] propose a
cognitive backscatter network to maximize the data rate of
the newly joined networks. By leveraging recent advances in
MIMO, the authors enable transparent spectrum sharing for a
small cognitive radio network in [19]. A deep reinforcement
learning based power control scheme is designed in [20] to
meet the QoS requirements of both primary and secondary
users. Based on a combination of model-free and model-based
reinforcement learning, the authors of [21] propose a dynamic
spectrum access scheme for secondary users with imperfect
sensing.

Spectrum sharing between directional- and omnidirectional-
antenna wireless systems has also been studied in existing
literature. For example, authors in [22] optimize the per-
formance of LTE-Unlicensed networks while guaranteeing
the performance of the co-located radar system. The authors
of [23] propose RadChat, a distributed networking protocol
for mitigation of interference among frequency modulated
continuous wave radars. A cooperative spectrum sharing
model is proposed in [24] to mitigate the mutual interfer-
ence among radar and communication systems. In [25], the
authors propose a framework for spectrum sharing between
satellite and terrestrial networks and analyze the interference
in both downlink and uplink from terrestrial cellular sys-
tems and nongeostationary systems to geostationary systems
within the framework. Please refer to [26] and [27] and
references therein for a good survey of the main results in this
field.

Further comparison of the above discussed references in
different aspects is summarized in Table I. From the table,
it can be seen that no existing work considers spectrum
sharing in the 6 GHz band between directional and omni-
directional mobile wireless communication systems. Differ-
ently, we instead aim to design a new, mobility-resilient
spectrum sharing framework between UAVs and the incumbent
wireless systems in the 6 GHz band to improve spectral
efficiency and maximize the throughput of the UAV network for

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 24,2023 at 01:08:09 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: MOBILITY-RESILIENT SPECTRUM SHARING FRAMEWORK FOR OPERATING WIRELESS UAVs 3

Incumbent Rx

— Incumbent data link

= = =3 UAV data link

=+ =% Interference from UAVs

----------- » Interference from Incumbent Tx

Fig. 1. Spectrum sharing between coexisting UAV network and the incumbent
network in the 6 GHz bands.

elastic applications such as data collection, file transfer and
messages.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a wireless UAV network
coexisting with an incumbent communication pair (Tx and Rx)
by sharing the same portion of spectrum B in the 6 GHz band.
The UAV network consists of a set K of UAVs collaborating
with each other to serve a set M of ground users. The
transmission time is divided into a set 7 of consecutive time
slots. In each time slot ¢ € 7, denotes the coordinate vector of
UAV k € K as cod}, = [2L, %, 24]T, with T being the trans-
pose operation and z}, vyt and z] representing the x-, y- and
z-axis components, respectively. Similarly, denote respectively
codry = [TTx, YTx, 2Tx) s €OdRx = [ZRx, YRx: 2Rx) " and
cod; = [z;,y;,2]T as the coordinate vectors of incumbent
transmitter Tx, incumbent receiver Rx and ground node 7 €
MU{Tx, Rx}. Denote A = LUMU{Tx, Rx} as the set of all
the nodes in the heterogeneous network. The objective of the
UAV network is to maximize its own spectral efficiency under
the interference constraints of the incumbent system. Before
presenting the formal formulation of the spectrum sharing
problem, we first describe the considered channel, antenna and
throughput models.

A. Channel Model

We consider both large-scale path-loss and small-scale
fading. For path-loss, we consider line-of-sight (LoS) wire-
less channels between the incumbent transmitter Tx and its
receiver Rx. This is feasible because the incumbent systems
are usually carefully deployed such that their antennas are
well-aligned without any obstructions in the link. We consider
non-line-of-sight (NLoS) links between the incumbent nodes
and the ground users of the coexisting networks. For UAV
networks, we consider both LoS and NLoS links. Specifically,
we consider as in [28] a probabilistic path-loss model for
the links between UAVs and ground nodes. Then, the LoS
and NLoS path-loss (in dB) between UAV k € K and ground

node i € M U {Tx,Rx} can be given as, in time slot ¢t € 7,
Ardt
H:*5" = 201log (” ‘“f> + ntoS, (1)
c
Ardt
H]l:iLoS,t =920 log‘ < m k:zf) + nNLoS, (2)
c

where the first term on the right-hand side of (1) and (2)
represents the free space path-loss with dt,; = ||cod},—cod;||»
being the distance between UAV k and receiver 7 in time slot
t, f is the carrier frequency of UAV £, c is the speed of light,
and 1™°5 and NS are the additional attenuation factors due
to LoS and NLoS transmissions, respectively. Let Pr(H lgios’t)
represent the probability of LoS transmissions in time slot %,

then Pr(H, ,I;ios’t) can be expressed as [29],
Pr(H ") = (1+ Xexp (—Y([ow — X)) 75 )

where X and Y are given environment-dependent constants
and ¢p; = sin~'(zL/dL;). Accordingly, the probability of
NLoS transmissions between UAV k € K and receiver i €
MU{Tx, Rx} can be given as Pr(H}jiLOS’t) = lfPr(H,I;;’S’t).

Finally, for small-scale fading we consider Rician fading for
LoS transmissions and Rayleigh fading for NLoS. Denote K;;
as the Rician factor for the wireless channel between nodes
i,j € A, then Kj; can be given as K;; = 13 — 0.03 d;; for
LoS transmissions and 0 for NLoS, where d;; is the distance
between the two nodes. Denote the resulting small-scale fading
coefficient as h; £ h!;(K;;) for nodes i,j € A.

B. Antenna Model

As described in Sec. I, in this work we consider direc-
tional transmissions for the incumbent wireless systems and
omnidirectional transmissions for the coexisting UAV network.
Specifically, we consider as in [30] a bi-sectorized antenna
model to characterize the interference between directional
and omnidirectional antennas. Denote O, and 0, as the
signal beamwidth of the incumbent transmitter and receiver’s
antennas, respectively. Let 0, € [—m, 7] denote the offset
angle of the boresight direction of the Tx’s antenna with
respect to the reference direction for ground user m € M.
Here, the reference direction refers to the direction along
which the Tx’s antenna would be exactly pointed to user
m. Then the antenna gain of incumbent transmitter Tx with
respect to ground user m € M in time slot ¢, denoted as
w? can be written as

mTx>
max 3
. w1 Oy, < 01y
Wyry = - “)
mTx min th .
wry , otherwise
where W and wii" represent the maximum and minimum

transmit gains of the incumbent transmitter, respectively. Sim-
ilarly, the receive gain of the incumbent receiver Rx with
respect to UAV k € K, denoted as wéRx, can be given as

t w§3X7 if 91{: < GRX
WiRy = . &)
kRx min th . 9
Rx » Otherwise
with wi® and wii™ being the maximum and minimum

receive gains of the incumbent receiver, respectively. The
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TABLE 1
COMPARISON OF RELATED WORK IN DIFFERENT ASPECTS
Reference Spectrum Band Mobility Support Antenna Type Performance Metric
[2] 2.4 GHz Yes Omnidirectional Throughput
9] Unknown Yes Omnidirectional User Number
[10] Unknown Yes Omnidirectional Throughput
[11] Unknown Yes Omnidirectional Throughput
[12] 2 GHz Yes Omnidirectional Throughput
[13] 840.5 - 845.5 MHz No Omnidirectional Secrecy Outage Probability
[16] Unknown Yes Omnidirectional Throughput
[17] Unknown No Omnidirectional Throughput
[18] Unknown No Omnidirectional Throughput
[19] 2.48 GHz No Omnidirectional Interference
[20] Unknown No Omnidirectional Throughput
[21] Unknown No Omnidirectional Sample Efficiency
[22] 5 GHz No Directional Power
[23] Unknown No Directional Interference
[24] Below 100 MHz No Directional Throughput
[25] 18 GHz No Directional Interference

transmit and receive gains are set to the maximum values for

max

incumbent transmissions, i.e., WLy

max

and w3, respectively.

C. Throughput Model

Based on the above channel and antenna models, the
signal-to-interference-plus-noise ratio (SINR) of the incum-
bent receiver Rx, denoted as vﬁx for time slot ¢, can be written
as

max, ,max t 2 LoS
PrxWry " WRx  * (h’TxRx) /HTXRX

kZK pszRxwk ’ (hiltcRx)Q/Hlin + <URX)2
S

(6)

t
TRx =

where pryx and p! represent the transmission power of the
incumbent transmitter Tx and UAV k € K in time slot t € 7,
respectively; wj, denotes the transmit gain of the UAV and
is considered to be constant for omnidirectional antennas;
and (ory)? is the power of Additive White Gaussian Noise
(AWGN) at the incumbent receiver.

The objective of SwarmShare is to guarantee satisfactory
SINR for the incumbent system (i.e., v&,) by controlling
the transmission power of the coexisting UAVs. To this end,
we consider a single-home association strategy for the ground
users of the UAV network, i.e., in each time slot ¢ € 7 each
ground user can be served by at most one UAV. Denote o, as
the association variable, with ay,, = 1 if ground user m € M
is associated with UAV k € K and «y,, = 0 otherwise. Then
we have

Za;mgl,Vkelc,meM,teT (7
ke
al, €{0,1},Vke K,me Mt € T ®)

Denote M! = {m|m € M,al,, = 1} as the set of ground
users served by UAV £ in time slot ¢.

We further consider FDMA-based spectrum access among
the UAVs in K and TDMA for the ground users served by the
same UAV. Then, the SINR of ground user m € M in time

slot ¢, denoted as !, =~ (H! 1) can be expressed as

mTx
s Pitm) * Phmym)*/ Himym

" e/ IKD) Wi - (Br)?/ (Hpr) + 03,

where k(m) and 1, represent the serving UAV and receive

gain of ground user m, respectively; |K| denotes the number

. NLoS,t LoS,t .
of UAVs in K; HY (..., € {Hy )0 Hi(), } s the patE;}cgsi
H, >

from UAV k(m) to ground user m in time slot ¢ with H, (mym

and H II;(C; rsl)tm defined in Sec. III-A; and crfn is the power of the
AWGN noise at ground user m. Notice in (9) that only Wll of
the incumbent transmitter’s power (i.e., prx/|K|) is considered
for each UAV and its associated ground users because of the
UAVs’ FDMA-based spectrum access. It is worth pointing out
that we consider FDMA- and TDMA-based spectrum access
for the UAV networks because we want to focus this work on
the interference control between the UAV and the incumbent
systems. The resulting cross-system spectrum sharing scheme
can also be extended to other more advanced spectrum access
schemes for UAVs [31], [32].

Finally, the capacity achievable by user m in time slot ¢,

denoted as Cé(m) m» Can be expressed as

©))

B NLosS, o
= (i Lo (B ) Toga (149, (HI,)
) toss (1 4+, (HEES))) .

+ Pr (H ;{’ni)tm
where Pr(-) is the probability of LoS and NLoS transmissions
defined in Sec. III-A and ~!,(-) is the SINR of ground user
m defined in (9).

(10)

D. Problem Formulation
Define P = (p},)iS% as the transmission power vector of
the UAVs, A = (o, )ik ,.c o as the UAV-user association

vector, and Q = (cod};)ffe% as the UAV location vector.

Then the objective of the SwarmShare control problem is
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Fig. 2. Diagram of the SwarmShare spectrum sharing framework.

to maximize the aggregate capacity of the UAV network by
jointly controlling the transmission power of the UAVs and
their flight trajectory as well as association with the ground
users, while meeting the cross-system interference constraints,
as formulated as

1
Maximi — t 11
gz 2y 2 Choom v
€T meM
Subject to: 0 < pj, < pmax, Vk € K, t € T, (12)
Association Constraints (7), (8)  (13)
1 max
7 D Ik <) <P (14)
teT
Cross—system Inter ference Constraint
where C’,i(m)m is defined in (10), pmax is the maximum

transmission power of each UAV, I(-) is the indication function
taking value of 1 if the condition holds and O otherwise, and
A and Priye™ denote respectively the threshold SINR and the
maximum tolerable SINR outage probability of the incumbent

system.

IV. SPECTRUM COEXISTENCE DESIGN

The SwarmShare problem formulated in (11)-(14) is a
mixed integer nonlinear nonconvex programming (MINLP)
problem, because of the binary UAV-user association variables
. and the underlying complicated mathematical expressions
in (11) and (14). Moreover, to solve the problem directly it
requires knowing the real-time channel state information (CSI)
between the UAV network and the incumbent system, which
is unavailable, as discussed in Sec. I, because of the low-
detectability of the directional incumbent signals.

To address the above challenges, in this work we consider
an AFC (Automated Frequency Controller)-assisted spectrum
sharing. AFC has been adopted for spectrum sharing in the TV
whitespace band as well as the 6 GHz band by determining
certain exclusion zones nearby the incumbent systems [7].
Our work differs from this with our objective to enable
exclusion-zone-free hence more flexible spectrum sharing, and
study the statistical behavior of the aggregate interference
from the UAV networks to the incumbent system, while

keeping the cross-system signaling at a minimum level. The
diagram of the proposed spectrum coexistence framework is
illustrated in Fig. 2, where there are three major components,
i.e., Initial Power Enforcement, Offline-dataset Guided Online
Power Adaptation, and Reinforcement Learning-based UAV
Optimization.

A. Initial Power Enforcement

The objective of this phase is to determine, following a
set of Power Control Principles, a rough transmission power
for each of the UAVs. In this work, we consider three
basic principles to accommodate the effects of the UAVs’
flight altitudes and their locations on the interference to the
incumbent system, while more sophisticated principles can
be incorporated in the future. These principles are i) UAVs
that are closer to the incumbent receiver should transmit at
lower power; (ii) with the same distance to the incumbent
receiver, UAVs flying higher should transmit at lower power;
and (iii) with the same distance and altitude, UAVs with
smaller angles relative to the boresight axis of the incumbent
receivers’ directional antenna should transmit at lower power.
Particularly, the rationale of the second principle is that, with
the hybrid LoS/NLoS channel model described in Sec. III-A,
it is more likely for a UAV to establish LoS links to the
incumbent receiver when flying higher and hence cause more
interference. Similarly, for the third principle, based on the
directional antenna model described in Sec. III-B, a UAV will
cause higher interference when it is more aligned with the
incumbent receiver’s antenna.

In SwarmShare, an initial power enforcement coefficient,
denoted as Enf(cod}, codgy, ang;, ), will be calculated for
each UAV £k € K in time slot ¢ € 7 based on the above three
principles. This is accomplished using three Sigmoid-family
functions Sigi(+), Siga(-) and Sigs(-), as follows:

Enf(cod}, codgy, angy,.)

. leuc(cod?, codry
= Slgl< ( ltl; i )>

euc

Principle 1
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. Sigs (h(codf') + h(code)>

th
lhgh

Principle 2

- Sigs (lrad(codz, codgy, angInC)> , (15)

Principle 3

where louc(-,-) represents the Euclidean distance between
UAV £k and the incumbent receiver given their coordinates;
h(-) represents their height, and l;,4(-,-,-) € [0,7] is the
angle (in radians) of UAV k with respect to the boresight
axis of the incumbent receiver antenna; finally, I} and lfl’;_h
in equation (15) are respectively, the threshold distance and
height beyond which Sig;(-) and Sigs(-) become nearly
constant. It is worth pointing out that, since a standard sigmoid
function is a differentiable, monotonically increasing, real
function taking values in [0,1], we design Sig1(-), Siga(-)
and Sigs(-) by scaling, shifting and reversing the standard
sigmoid function to consider the effects of the UAV location,
flight altitude and relative angle to the incumbent receiver.
For example, Sigi(xz) = le/m%) has been adopted for
principle 1 in this work, while Sig2(-) and Sigs(-) can be
defined similarly. With the obtained power enforcement coef-
ficient Enf(cod}, codgy, angy,.), each UAV’s power can be
initialized as, in time slot ¢t € 7,

pikni = pmaXEnf(Cod};a COdea anglnc)’ Vk € ’C’ (16)

max

where p™#* is the maximum transmission power of each UAV.

B. Offline-Dataset Guided Online Power Adaptation

Recall in Sec. III that our goal is to enable UAV operations
in the 6 GHz band while meeting the cross-system interference
constraint (14). In SwarmShare, this is accomplished by fine-
tuning the above obtained initial transmission power for the
UAVs according to a three-step approach, as described as
follows.

1) Model-Based Feature Extraction: In this step, we first
extract the network features that can be used later in Data-
Driven Calibration, rather than using directly, the raw net-
work topology information such as UAV location vector
(codt )2667,; It is important to mitigate the curse of dimension-
ality problem [33] especially with a large number of UAVs.
In SwarmShare, we select the power adaptation coefficient,
denoted as 7' for time slot ¢, as the network feature. Then,
given the above obtained initial transmission power pi®' for
UAV k € K, a new transmission power pfc can be obtained as

t 07
b= i’

That is, the transmission power will be set to 0 if a UAV
is not associated to any ground users. Then the interference
constraint (14) can be rewritten as

ZI ’ny

tET

if af, =0,Ym e M

17
otherwise 17

) < ki) < Pris’, (18)

where ’yﬁx(nt) is the SINR of the incumbent receiver defined
in (6) by substituting (17) into (6). Consider an ergodic
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stochastic process for the aggregate interference and denote
Prob (v, (n') < 7iti) as the SINR outage probability in time
slot t € 7, then the left-hand side of (18) can be equivalently
represented as

Prob (vh« (") < 7Rx) (19)
51g
= Pt <R (20)
= /b]g pdfpﬂg( ) . pdfpl‘th (pitf)dpitfdPSig7 (21)
7{5& Noncentral Gamma
Chi—square Distribution
Distribution

where Py g and P} are the numerator and denominator of
(6), respectlvely, a Rayleigh distribution has been considered
for the small-scale fading and hence noncentral chi-square
distribution [34] for the receive power of the incumbent
signals; and finally as in [35] and [36] a Gamma distribution
is considered for the aggregate interference power. It is worth
pointing out that, as shown later in Sec. V, the aggregate
interference of UAVs does not follow any existing statistical
distributions. In this work, we consider the Gamma distribution
in (21) because we want to obtain a rough estimation of
the power adaptation coefficient 7%, which will be further
calibrated based on an offline dataset. Notice that given the
maximum tolerable SINR outage probability Prie™ in (18),
the maximum 7’ can be determined efficiently by bisection
search, since the left-hand side of (18), which is equivalent
to (21), is a monotonically increasing function of the UAVs’
transmission power hence 7°.

2) Offline-Dataset Generation: Given the above obtained
network feature 7', each UAV’s transmission power p! can
be updated according to (17). Since the power adaptation
may be inaccurate because of the inaccuracy of the Gamma
distribution-based interference model in (21), we further cali-
brate the power control for UAVs with the assistance of offline
measurements. Specifically, given the transmission power vec-
tor (p})kex, the corresponding SINR outage probability of
the incumbent system can be obtained by offline simulations.
By varying the number of UAVs, their locations, as well as
the maximum tolerable SINR outage probability in the simula-
tions, we are able to obtain an SINR outage probability vector.
Denote Pris* = (Pri}2*) as the vector of the maximum
tolerable outage probability, and accordmgly denote the sim-
ulated outage probability vector as Pry. (1) = (Prpe (1))
with PrRX (n') being the SINR outage probability given the
network metric 7?, and 7 = (n') the network feature vector.

3) Data-Driven Calibration: Finally, a mapping between
Pri®* and Pryp. (n) can be established through function
approximation, e.g., based on linear regression [37], echo state
learning [38] or deep neural networks [20]. In this work we
find that it is enough to approximate the mapping based on lin-
ear regression. Denote the mapping as Privax — f(Prp. ().
Then, given PrRX , the value of Prd* and the corresponding
network feature 1 can be obtamed at network run time and
further used for UAV power control based on (17).
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C. Reinforcement Learning-Based UAV Optimization

As illustrated in Fig. 2, the above obtained 1’ will be broad-
cast to the UAVs, which will then calculate their transmission
power based on (17). Meanwhile, the UAVs will update their
flight and association strategies to serve their users with higher
spectral efficiency. To this end, we consider as in [30] the
shortest-distance-based association strategy. Then, in each time
slot t € 7 the association variables «y ,, defined in Sec. III
can be determined as

1, if k = argmin||cod}, — cod,,|?
Qf,m = k 22)

0, otherwise

Finally, as in [39], reinforcement learning with the e-greedy
search is adopted to guide the exploitation and exploration
during the UAV’s flight control. To this end, we further
divide the whole network area into a set of three dimensional
rectangles, each corresponding to a state of the RL control
problem. Denote S as the set of all possible states. In each time
slot, each UAV is allowed to either move to one of its adjacent
rectangles or stay in the current. For each of the candidate
rectangles, the UAV will first calculate the achievable capacity
given the transmission power calculated in Sec. IV-A and IV-B
and the set of ground users it serves.

Let a € A be the action of the considered UAV, where
A = {F,B,U,D,R,L,S} is the set of candidate actions,
including moving forward, backward, upper, lower, right and
left and staying at the current location. Then the action A},
chosen by UAV £ at time slot ¢ can be given by, for state
se S,

arg max Q% (a,s), with probability 1 — e
acA
€ )

a' € A/a, with probability ——
|A/al

Al =

(23)

where Q! (a, s) is the estimated throughput value of UAV k
if action a is chosen at state s in time ¢, and | - | represents
the cardinality of a set. For each state, the state-action value
(ie., Q! (a,s)) is estimated using a table-based approach with
discount factor 0 [40]. Based on the selected action Ai at
time slot ¢, coordinate vector eod} " = (it yitt ZIH1Y) of
UAV £ for time slot ¢ + 1 can then be updated accordingly.
The overall spectrum sharing algorithm is summarized in

Algorithm 1.

D. Complexity Analysis

The most time-consuming operation of Algorithm 1 is
offline-dataset guided online power adaptation in Sec. IV-B.
In Sec. IV-B.1, we need to determine the network feature nt
given the UAV network’s topology and the maximum tolerable
SINR outage probability. Since the SINR outage probability
is a monotonically increasing function of n?, the value of 7’
can be obtained efficiently based on bisection search with
a constant computational complexity for fixed range of n’
(i.e., [0, 1]) and the margin of error (1% in this work). It is
worth pointing out that, for each iteration of bisection search,
the AFC needs to calculate the mean and variance of the

Algorithm 1 SwarmShare Algorithm

Data: Node coordinates cod; = (x;,y;,2;); Vi € A,
incumbent Tx transmission power pry, tolerable
SINR outage probability Prg2*, total duration
of simulation 7
Result: For each UAV k € IC, the transmission power
p}. for time slot ¢ € 7 and the coordinates
cod’,fj'1 for time slot t +1 € T

1 while ¢t € 7 do
2 Initial Power Enforcement
3 for each UAV k € K do
4 Calculate initial power enforcement coefficient
Enf(-) based on (15); Calculate initial power
p'}vni based on (16);
5 end
6 Offline-dataset Guided Online Power
Adaptation
7 Determine the network feature 7' based on
(18)-(21);
8 for each UAV k € K do
9 Determine the transmission power p! based on
(17);
10 end
11 Reinforcement Learning-based UAV
Optimization
12 for each UAV k € K do
13 Determine the association variables «y, ,,, based
on (22);
14 Determine Afc based on (23) and update
cod)"! for next time slot.
15 end
16 end

aggregate interference of UAVs given their current locations
and their assigned transmission power based on (17). However,
the resulting computational complexity is only negligible since
it can be done by simple linear operations.

Finally, the dataset generation and regression in Sec. IV-B.2
can be conducted offline, and in Sec. IV-B.3 Prps™ can be
determined online by solving a linear problem.

Regarding communication overhead, as illustrated in Fig. 2,
in Sec. IV-A the AFC needs to collect one-time location and
orientation information of the incumbent system and broadcast
the collected information to the UAVs. If the incumbent system
does not move frequently (which is usually the case, e.g.,
fixed point-to-point applications), the resulting communication
overhead can be neglected. The AFC also needs to collect
periodically the UAVs’ locations and broadcast the updated
power adaptation coefficient n* to the UAVSs. Since it is enough
to represent this information in 16 bytes (three float numbers
for location and one for the power adaptation coefficient,
and each float number takes 4 bytes), the resulting broadcast
overhead is low as well. Moreover, we will show later in
Sec. V that the UAVs do not need to report their locations to
the AFC in real-time, without obviously increasing the SINR
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Fig. 3.

outage probability of the incumbent system. This will further
reduce the communication overhead.

V. PERFORMANCE EVALUATION

In this section we validate the effectiveness of the
SwarmShare framework described in Sec. III and IV. We con-
sider a network area of 500 x 500 x 50 m?®, with 50 ground
users randomly located in the network and the number of
UAVs varying from 3 to 24. The incumbent transmitter and
receiver are deployed with coordinates of (200, 200, 10)
and (250, 250, 10), respectively. The center frequency of
the shared spectrum is set to 6 GHz with a total bandwidth
of 10 MHz. The maximum transmission power of the incum-
bent transmitter and the UAVs are set to 1 W and 0.25 W,
respectively. For the bisectorized antenna model desribed in
Sec. III, the maximum and minimum gains are set to 1 and
0.5, respectively. The power density of the AWGN is set to
-174 dBm/Hz. The probability of LoS and NLoS links are set
to 0.7 and 0.3, respectively. The threshold parameters It} and
lfféh in (15) are set to 70 m and 30 m, respectively. Next, before
discussing the interference control results, we first determine
the threshold angle for the directional antenna model described
in Sec. III-B and validate the effectiveness of the data-driven
calibration scheme proposed in Sec. IV-B.

A. Threshold Angle Measurement

We first determine the threshold angle for the directional
antenna model described in Sec. III-B by conducting a set
of experimental measurements. A snapshot of the testbed is
shown in Fig. 3(a), where the transmitter is a USRP B210
software radio with an omnidirectional antenna, the receiver
is another USRP B210 with a Tupavco TP542 antenna, and
the baseband signal processing is conducted based on GNU
Radio on a Dell Latitude 7400 laptop. Tupavco TP542 is a
directional Wi-Fi antenna operating in a frequency range up
to 5.8 GHz (very close to the 6 GHz band) with an antenna
gain of 13 dBi. We measure the received power by varying the
relative angle of the transmitter with respect to the boresight
direction of the directional antenna (as illustrated in Fig. 3(a))
and the transmission distance from 1 to 3 meters. Examples
of the measurement results are given in Fig. 3(b) with a
transmission range of 1 meter and relative angles varying
from O to 120 degrees at step of 30 degrees. The mapping
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(a) Snapshot of the testbed setup for threshold angle measurement; (b) Examples of the measurement results.
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Fig. 4. Diagram of UBSim-based SwarmShare simulator.

between the received power and relative angle is established
based on the logarithmic regression method [41]. Based on the
regression results, we set 30 degree as the threshold angle for
the bisectorized antenna model Sec. III-B, which corresponds
to the 3 dB angle of the Tupavco TP542 antenna.

B. Data-Driven Interference Prediction

Given the above obtained threshold angle, we further char-
acterize the statistical behavior of the aggregate interference
from the coexisting UAVs to the incumbent receiver. To this
end, we conduct a set of simulations over UBSim, a newly
developed Python-based Universal Broadband Simulator for
integrated aerial-ground networking.! As shown in Fig. 4,
the simulator consists of four major modules: SwarmShare
Control Problem Specification Module, AFC Module, Network
Element Module and Discrete Event Driver. The SwarmShare
Control Problem Specification Module provides a set of APIs,
based on which experimenters can define various network
parameters such as the size of network area, the number of
incumbent users, UAVs and ground users, antenna gain, prob-
ability channel coefficient, interference threshold, spectrum
bandwidth, among others. Then, an object will be created for
each of the incumbent users, UAV base stations and ground
users in the Network Element Module. The classes of these
network elements are defined in a hierarchical manner based
on the basic network element class net_elmt, which defines

In this work, the performance evaluation is conducted primarily over
UBSim. We measure the threshold angle based on testbed experiments because
in future work we want to further test the proposed spectrum coexistence
framework in real world considering the directional antenna, Tupavco TP542,
for incumbent users.
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the most basic network element attributes and operations. The
AFC Module is the place where the spectrum coordination
algorithms designed in Sec. IV are deployed and executed.
Finally, the Discrete Event Driver is developed based on
the open-source library SimPy [42] for discrete event-driven
simulations.

The results are reported in Figs. 5(a) and (b) with 10 and
20 UAVs, respectively. We fit as in [43] and [44] the collected
interference values using four distributions, including Gaus-
sian, Inverse Gaussian, Gamma and Inverse Gamma, and find
that the power of the aggregate interference does not follow
any of these distributions. This is actually our motivation to
design SwarmShare based on a data-driven approach. Fig-
ure 5(c) reports the results of the data-driven prediction of
the SINR outage probability. The offline dataset is generated
based on simulations. We consider 6, 12 and 18 UAVs with
multiple possible violation probabilities ranging from 0.05 to
0.25 with interval of 0.025. For each combination of UAV
number and violation probability, we conduct 2000 episodes
simulations with 2000 time slots in each episode. We can
find that the predicted SINR outage probability matches the
simulated results well.

C. Case Study

Fig. 6 shows an example of the power control results
based on SwarmShare. To visualize the effects of the power
control principles described in Sec. IV-A, in this example all

Aggregrate Interference Value (Watt)
(b)
Aggregate interference pdf with (a) 10 and (b) 20 UAVs; (c) Validation of data-driven prediction of the SINR outage probability for the incumbent

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Calculated SINR Outage Probability

(©

1.5 2.0

the 24 UAVs are deployed uniformally along 4 circles with
different altitudes and radii. From the figure, it can be seen
that lower transmission powers have been allocated to UAVs
along the lower circles. Also, because of the shorter distances
from the incumbent receiver, lower transmission power has
been allocated to the UAVs of the first circle from the bottom,
e.g., 1.0102 mW for UAV 1 (i.e., D1[1.0102] in Fig. 6)
against 16.7896 mW for UAV 7 and 39.6234 mW for UAV
13 along the second and third circles, respectively. Moreover,
along the same circle, UAVs more aligned with the incumbent
receiver have been allocated lower transmission powers, e.g.,
8.3948 mW for UAV 10 vs 39.6234 mW for UAV 9 along
the second circle. Finally, we notice in this example that
all the UAVs along the fourth (i.e., the highest) circle have
been allocated zero transmission power because no users are
associated with them based on the shortest-distance association
strategy described in Sec. IV-C. This also conforms to the
third power control principle, i.e., with the same distance and
relative angle, higher altitudes result in lower transmission
powers because of higher probability of LoS transmissions.
It is worth pointing out that the power allocation results are
determined by jointly considering the three basic principles
described in Sec. IV-A. In the following experiments, we will
further evaluate the effectiveness of SwarmShare on the cross-
system interference control.

In Figs. 7 and 8, we plot the instantaneous capacity achiev-
able by the incumbent system and the UAV networks with dif-
ferent numbers of UAVs. In Fig. 7(a), we consider 6 hovering
UAVs, and the maximum tolerable SINR outage probability
is set to 0.05 for the incumbent system. The achievable
capacity is plotted for 1000 time slots. Results indicate that
the interference constraint of the incumbent system can be
very well fulfilled, with SINR outage probability of 0.032.
Similar results can be obtained with 12 and 18 hovering UAVs
in Figs. 7(b) and (c), with the SINR outage probability of
0.029 and 0.021, respectively.

Fig. 8 shows the corresponding results with moving UAVs.
In this experiment, the network area is divided into a set of
three-dimension rectangles each of 50 x 50 x 10 m?>. The
trajectory of the UAVs are controlled as described in Sec. IV-C,
with exploitation probability of 0.98. The same as in Fig. 7, the
incumbent system’s interference constraints can be satisfied in
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all the tested cases, with SINR outage probabilities of 0.025,
0.018 and 0.022 for 6, 12 and 18 UAVs, respectively, all below

Instantaneous capacity of the incumbent system and the UAV network with moving UAVs.

The violation probabilities are (a) 0.025, (b) 0.018 and
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Fig. 11.  SINR outage probability vs UAV location reporting period.

the maximum tolerable outage probability 0.05. This verifies
the effectiveness of SwarmShare in cross-system interference
control. It can also be seen that the incumbent network’s
capacity does not decrease obviously as the number of UAVs
increases (e.g., from 12 to 18). This is because, as more UAVs
are deployed in a network with fixed number of ground users,
some UAVs will not serve any ground users and hence become
inactive and cause no interference to the incumbent system.

D. Average Results

In Fig. 9 we report the average capacity achievable by
the incumbent system and the UAV network with the num-
ber of UAVs varying from 3 to 15 at step of 3. Three
UAV mobility patterns are considered: i) random movement;
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ii) reinforcement learning controlled movement with exploita-
tion probability of 0.98; and iii) hovering UAVs. The results
are obtained by averaging over 50000 time slots for each
mobility pattern. It can be seen that, as expected, obvious
capacity gain can be achieved by the UAV network with all the
above three mobility patterns by deploying more UAVs. For
example, for hovering UAVs, the average capacity increases
from around 60 Mbps with 3 UAVs to 80 Mbps with 15 UAVs.
The capacity is further increased to around 100 Mbps with
RL-controlled UAV movement. Particularly, we find that there
is no obvious degradation in the capacity of the incumbent
system when there are 6 or more coexisting UAVs. The
average capacity of the incumbent system can be further
increased with less UAVs, e.g., 3, because of the reduced
cross-system interference.

In Fig. 10, we report the average capacity achievable by
the incumbent system and the UAVsunder different viola-
tion probability constraints. Two UAV mobility patterns are
considered: i) hovering UAVs and ii) moving UAVs guided
by reinforcement learning. The exploitation probability is set
to 0.98 for the latter case. Similar to Fig. 9, the aggregate
capacity of the UAV networks can be increased significantly by
deploying more UAVs. For example, 70 Mbps can be achieved
with 9 hovering UAVs and violation probability threshold 0.02,

50 - -
|
o | TRl j ‘\*‘?
A S (T i¢¢+l
an ! T:A*._' '***;'Tff*
E | kgrix _‘ Tt
D 535 [ sifntvin
4 _.ﬁiga!“ FrprH

@ Ground user
A Incumbent Tx
¥ Incumbent Rx

(b)

Example of UAV trajectory with location reporting period of 60 time slots. (a) RL-guided movement; (b) random movement.

which goes up to 76 Mbps with 15 UAVs. The corresponding
incumbent user capacity are 55 Mbps and 54 Mbps. It can
also be seen that significant capacity gain can be achieved by
RL-guided UAV control. For example, 84 Mbps and 94 Mbps
can be achieved with 9 and 15 UAVs, which are 1.52 and
1.74 times higher than that with hovering UAVs. Similar
results can also be observed with a violation probability
threshold 0.05.

In previous experiments (in Fig. 7) the UAVs report their
locations to the AFC in every time slot. In this experiment,
we investigate the mobility resilience of SwarmShare for
spectrum sharing in the presence of inaccurate UAV locations.
The SINR outage probability results are reported in Fig. 11,
where two mobility patterns are considered for the UAVs,
i.e., random movement and RL-guided movement, and the
maximum tolerable SINR outage probability is set to 0.05 for
the incumbent system. The location reporting period is varied
from 10 time slots to 60. It can be seen that the SINR outage
probability of the incumbent system increases monotonically
with the location reporting period if the UAVs move in an
uncontrolled manner, i.e., completely randomly. For example,
the outage probability is around 0.07 when the reporting
period is 10 time slots and can be up to 0.2 for 60 time
slots. In the case of controlled UAV movement, the SINR
outage probability is barely affected by the location reporting
period and always below the maximum tolerable. This is
because, as illustrated by the example trajectories in Fig. 12,
the UAVs will stick with their current best locations at a
high probability (0.98 in this experiment) while exploring new
locations at a low probability (0.02). As a result, the topology
of the UAV network and hence the statistical behavior of their
aggregate interference to the incumbent system changes only
slowly. Therefore, with controlled UAV movement, effective
interference control can be achieved with SwarmShare in
mobile scenarios even with inaccurate UAV locations, e.g.,
because of the temporary loss of the connections to the AFC.

E. Effects of UAV Moving Speed

In this experiment, we study the effects of the UAV moving
speed on the throughput achievable by the UAV network.
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Consider 12, 15 and 18 UAVs in the network and the maxi-
mum moving speed of UAVs is set to 25 m/s. The duration of
each time slot is set to 30 seconds. The results are reported
in Fig. 13. It can be seen that, as expected, a larger average
throughput can be achieved by the UAV network with higher
moving speed. This is because we consider in each time slot
that each UAV first moves to the new position before providing
service to ground users, and hence with higher moving speed
each UAV can arrive at the target position faster and start to
serve the ground users sooner.

F. Computational Complexity

We further study the computational time of the UAVs.
In this experiment, each UAV needs to finish two tasks in each
time slot: transmission power initialization and RL-guided
trajectory optimization. For the first task, each UAV calculates
its initial power based on three Sigmoid functions defined in
(15). In the second task, each UAV determines its next-step
movement based on the RL algorithm described in Sec. IV-C.
We conduct the experiments on Next Unit of Computing
(NUC) with Intel® Core ™ i5-10210U CPU @ 1.60 GHz x8,
memory of 16 GB, and Ubuntu 20.04 Operating System. The
dimension of NUC is 117 x 112 x 37 mm?® and with weight
of 504 g. As shown in Figs. 14(a) and (b), NUC has been
integrated with the octocopter UAV custom-designed in our
lab as the onboard computing device. The results are reported
in Fig. 14(c). It can be seen that it takes less than 1 ms for
each UAV to finish the two tasks in each step. Since the UAV
movement usually operates at a much larger time scale, this
verifies the low computational complexity of spectrum sharing
algorithm.

VI. EXTENSION TO MULTIPLE INCUMBENT USERS

In previous sections, we consider the spectrum coexistence
framework between a UAV network and a single incumbent
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(a) Snapshot of octocopter UAV, (b) onboard computing device Intel NUC, and (c) computation time.

user pair. The framework can also be extended to the scenarios
with multiple incumbent user pairs. To this end, we need to
further consider the interference among the unpaired incum-
bent transmitters and receivers, and consider the cross-system
interference constraint for each of the incumbent user pairs.
Denote £ as the set of the incumbent user pairs and further
denote 4, as the SINR of incumbent receiver Rx; in time slot
t. Then the SINR expression in (6) can be rewritten as in (24),
shown at the bottom of the page. The SINR for UAV £k € K
can be recalculated similarly. For each incumbent Rx [ € L,
a power adaptation coefficient n* will be calculated following
the same procedure as in Sec. I'V. In the case that the UAV
network is deployed nearby the overlapping area of multiple
incumbent user pairs, the smallest n* will be used for power
adaptation for the UAV networks so that the cross-system
interference constraints can be satisfied for all the incumbent
user pairs. Recall in Sec. IV-D that the power adaptation
coefficient n* can be calculated for each incumbent user pair
based on bisection search with almost constant computational
complexity. The overall computational complexity in the case
of multiple incumbent user pairs is hence O(|L|), with |L]
representing the number of incumbent user pairs in L.

We further verify the effectiveness of the spectrum coex-
istence framework considering two and three incumbent user
pairs. Consider 6 UAVs moving according to the e-greedy RL
algorithm with exploration probability 0.02. The results are
reported in Fig. 15 for two incumbent user pairs. Incumbent
transmitters (Txg and Tx;) and receivers (Rxy and Rx;) are
deployed with coordinates (120, 250, 10), (380, 250, 10), (50,
250, 10) and (450, 250, 10), respectively. The threshold of
violation probability is set to 5% for each incumbent receiver.
It can be seen that the violation probability is lower than
the threshold for both incumbent user pairs, which are 0.6%
and 0.7% for incumbent receiver Rxy and Rxj, respectively.
Similar results can also be obtained for three incumbent user
pairs.

max max
pTxl wTX[ wRXl

: (h’thlel

)2 /H%?(ZSRXZ

t
VRXl -
Z piﬁwlinl wk : (thxl)z/Hszl + Z
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VII. CONCLUSION

In this paper, we proposed a new framework called
SwarmShare to enable spectrum sharing between the incum-
bent systems and the coexisting UAV networks in the 6 GHz
band. We validated the effectiveness of the framework through
an extensive simulation campaign. SwarmShare is shown to
be mobility-resilient and hence is suitable for the operations
of moving vehicles such as cars and UAVs on this newly
opened spectrum band without requiring pre-defined exclusion
zones. It is also found that the aggregate interference of the
UAVs does not follow any existing distributions. In future
work, we will develop new theoretical models to characterize
the aggregate interference of the UAVs; reduce the power
consumption of the UAV network by jointly optimizing the
UAV transmission power and their trajectories under the cross-
system interference constraints; enhance spectral efficiency by
considering multiple UAVs serving a ground user; and further
validate the effectiveness of SwarmShare over the UAV testing
facilities being developed at University at Buffalo.
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