Taylor & Francis
Taylor & Francis Group

Advanced Robotics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tadr20

Model-based motion planning in POMDPs with
temporal logic specifications

Junchao Li, Mingyu Cai, Zhaoan Wang & Shaoping Xiao

To cite this article: Junchao Li, Mingyu Cai, Zhaoan Wang & Shaoping Xiao (2023) Model-based
motion planning in POMDPs with temporal logic specifications, Advanced Robotics, 37:14,
871-886, DOI: 10.1080/01691864.2023.2226191

To link to this article: https://doi.org/10.1080/01691864.2023.2226191

ﬁ Published online: 27 Jun 2023.

\]
[:J/ Submit your article to this journal &

||I| Article views: 38

A
h View related articles &'

@ View Crossmark data (&'
CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tadr20

ADVANCED ROBOTICS
2023, VOL. 37,NO. 14, 871-886
https://doi.org/10.1080/01691864.2023.2226191

5 lel Taylor & Francis
6 Taylor & Francis Group

FULL PAPER

[W) Check for updates

Model-based motion planning in POMDPs with temporal logic specifications

Junchao Li?, Mingyu Cai®, Zhaoan Wang? and Shaoping Xiao?

aDepartment of Mechanical Engineering, lowa Technology Institute, The University of lowa, lowa City, A, USA; PDepartment of Mechanical

Engineering, Lehigh University, Bethlehem, PA, USA

ABSTRACT

Partially observable Markov decision processes (POMDPs) have been used as mathematical models
for sequential decision-making under uncertain and incomplete information. Since the state space
is partially observable in a POMDP, the agent has to make a decision based on the integrated infor-
mation over the past experiences of actions and observations. This study aims to solve probabilistic
motion planning problems in which the agent is assigned a complex task under a partially observ-
able environment. We employ linear temporal logic (LTL) to formulate the complex task and then
convert it to a limit-deterministic generalized Biichi automaton (LDGBA). We reformulate the prob-
lem as finding an optimal policy on the product of POMDP and LDGBA based on model-checking
techniques. This paper adopts and modifies two reinforcement learning (RL) approaches: value iter-
ation and deep Q-learning. Both are model-based because the optimal policy is a function of belief
states that need transition and observation probabilities to be updated. We illustrate the applicabil-
ity of the proposed methods by addressing two simulations, including a grid-world problem with

ARTICLE HISTORY
Received 15 November 2022
Revised 11 March 2023
Accepted 14 May 2023

KEYWORDS

Partially observable Markov
decision process; linear
temporal logics; automaton;
reinforcement learning; deep
g-learning

various sizes and a TurtleBot office path planning problem.

1. Introduction

Markov decision processes (MDPs) [1] have been widely
applied in robotics motion planning, assuming the envi-
ronment was fully observable. However, in some real-
world applications, the agent may not have access to
complete or reliable information about the state of the
environment. Therefore, partially observable Markov
decision processes (POMDPs) [2] need to be adopted.
POMDPs are particularly useful when sensors or per-
ception systems are prone to errors or uncertainty. By
incorporating the observation probability model into the
POMDP framework, it is possible to quantify the effects
of perception errors on the agent’s decision-making per-
formance. On the other hand, there has been increasing
interest in considering complex tasks in robotics motion
planning other than simple go-to-goal missions, espe-
cially dealing with uncertain and dynamic environments.

Reinforcement learning (RL) methods [3] have been
employed to solve robotics motion planning in partially
observable environments. Model-based RL approaches
assume that the agent knows the probabilistic character-
istics of transition and observation. Therefore, a belief
state can be updated via the Bayesian theory [2, 4] to
denote a probability distribution over all possible states.
Consequently, a POMDP problem with the original state
space becomes an MDP problem with a corresponding

belief space. In this case, the policy is a function of belief
states for action selection. One commonly-used approach
is the value iteration algorithm to solve POMDP prob-
lems as a form of dynamic programing.

Early works aim to determine exact value functions
in the belief space for small POMDP problems, e.g. enu-
meration algorithms [2, 5]. Based on Sondik’s one-pass
algorithm [5], Cheng [6] proposed a simple linear sup-
portalgorithm, which started at a random belief state and
generated a vector for its value function. Also, the witness
algorithm [7] simplified the POMDP problem by con-
sidering one action and one observation at a time. Fur-
thermore, Zhang and Liu [8] integrated the enumeration
and witness algorithms and proposed a so-called incre-
mental pruning algorithm. However, in large POMDP
problems with complex dimensions, finding the opti-
mal policy precisely in the belief space can be computa-
tionally intensive. Therefore, point-based value iteration
(PBVI) algorithms [9] were proposed for infinite-horizon
POMDP problems by approximating optimally reach-
able belief spaces to address this issue. This approach
updated value functions locally for a finite subset of the
belief space. One of the point-based solvers [10], SAR-
SOP (Successive Approximations of the Reachable Space
under Optimal Policies) [11, 12], could handle POMDP
problems with large state spaces.

CONTACT Junchao Li @junchao-li@uiowa.edu

© 2023 Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan

872 (&) J.LETAL

Another approach is employing Q-learning to learn
the optimal policy on the belief state space of a POMDP.
It shall be noted that Q-learning [13] is a model-free
approach that allows the agent to learn to act optimally in
MDP problems. However, since the belief states need to
be calculated from the transition and observation prob-
abilities, this approach is still model-based. On the other
hand, because the belief state spaces are usually con-
tinuous in POMDP problems, classical Q-learning algo-
rithms such as tabular Q-learning [13] are no longer
applicable. Consequently, deep Q-network [14] (DQN)
is employed in this paper to map POMDP belief states
to state-action values. Some other works [15, 16] have
utilized DQN to achieve the optimal policy regarding a
sequence of observations. However, they were model-free
approaches to POMDPs, which is not our focus in this
study.

Many works have been done to consider complex tasks
other than simple go-to-goal missions in MDP prob-
lems by adopting formal languages [17], such as linear
temporal logic (LTL), to formulate user-defined high-
level specifications. Then, the LTL formula is commonly
converted to an w-automaton over infinite words with
a Biichi or a Rabin acceptance condition [18]. Con-
sequently, robotics motion planning problems can be
solved via control synthesis for a product of MDP and
automaton with model checking [17]. It has been shown
that a limit-deterministic Biichi automaton (LDBA) has
more advantages than a deterministic Rabin automaton
(DRA). Hahn et al. [19] implemented LDBA and DRA in
model-free RL with mild restrictions, respectively. They
concluded that LDBA was more suitable for both qual-
itative and quantitative analysis of MDPs under all w-
regular objectives. In another work, Hasanbeig et al. [20]
stated that converting the LTL specification into an LDBA
might result in a smaller automaton state space than a
DRA. However, LDBA suffers the sparsity of reward and
may highly slow the RL’s convergence [21].

Similarly, model checking provides the formal
approach to verifying complex task objectives when solv-
ing POMDP problems with certain temporal logic con-
straints. Chatterjee et al. [22] studied the undecidability
of the qualitative model checking in a POMDP prob-
lem with the infinite horizon. They proposed a finite-
memory approach for the verification and synthesis of
POMDPs with LTL constraints. It relied on exploring the
entire belief space and was most suitable to the prob-
lems with small state spaces. In other works [23, 24],
LTL specifications were converted to a DRA, and then a
product of POMDP and DRA was constructed. Specifi-
cally, Sharan et al. [23] employed finite state controllers
to limit the policy search via the value iteration meth-
ods. On the other hand, Bouton et al. [24] utilized the

approximate POMDP solver, SARSOP [11], to search for
an optimal policy on the finite belief state space of the
product POMDP. Finally, it shall be noted that Wang et
al. [25] employed LDBA and converted a POMDP to
the corresponding belief MDP before building a product
of belief MDP and LDBA. However, simulation exam-
ples are expected to demonstrate the feasibility of the
proposed method.

The first contribution of this paper is formulat-
ing a complex task via LTL, converting it to a limit-
deterministic generalized Biichi automaton (LDGBA),
and constructing a product of POMDP with LDGBA.
Although the strategy of representing complex tasks by
LTL and then automaton is not new, most works focused
on MDP instead of POMDP problems. In addition, this
study employs LDGBA for the first time in POMDP prob-
lems, since it can lead to a smaller product state space
[19] than DRA [23, 24] and can address the sparsity of
rewards caused by LDBA [21]. The second contribution
is to reformulate the original problem of finding a policy
that satisfies LTL specifications in a POMDP as finding an
optimal policy to maximize the collected reward on the
corresponding product of POMDP and LDGBA. There-
fore, model-based RL approaches can be employed. In
addition to a modified PBVI solver, we propose convo-
lutional neural network (CNN)-enhanced deep Q net-
works to approximate the state-action value functions
at a given belief product state. The last contribution is
redesigning the reward function and introducing a fron-
tier set in LDGBA to record non-visited accepting sets so
that the proposed methods can efficiently handle surveil-
lance tasks.

Model-predictive Control (MPC), Rapidly-exploring
Random Trees (RRT), and Probabilistic Roadmaps
(PRM) are classical motion and trajectory planning algo-
rithms. Recently, some works like [26] utilized RRT to
map a belief state to possible paths that connect the start
state to a goal state for pathfinding. Therefore, RRT (and
PRM) can address the observation uncertainty. Although
this approach could be extended to solve the product
POMDP problems proposed in this study to handle com-
plex tasks, no such works were reported based on the
authors’ best knowledge. On the other hand, the belief
state space in POMDP is infinite. When model-based
motion planning algorithms, such as RRT and PRM,
search the paths on belief state spaces, they can be com-
putationally expensive. On the other hand, an online
MPC solver will be more appropriate when the obser-
vation uncertainty is considered. However, the optimal
control policy needs to be updated frequently based on
the new measurements. This method can be computa-
tionally intensive, too. Compared with MPC, RRT, and
PRM, one of our approaches utilizes the SARSOP solver,

which explores a belief tree on the optimally reachable
belief space to improve computational efficiency.

The organization of this paper is described as fol-
lows. Section 2 reviews POMDP problems and state-
of-art solutions, including PBVI/SARSOP and Deep Q-
learning. Section 3 introduces LTL, LDGBA, and product
POMDP. Then, we redefine the POMDP problem with
LTL specifications and depict reward design and track-
ing frontier function. Section 4 proposes the approaches
to product POMDP problems and provides detailed algo-
rithms. Finally, two simulations and results are included
in Section 5, followed by the conclusion and future works.

2. POMDP and its solution
2.1. POMDP

The POMDP is a mathematical framework to model a
problem in which the environment is not fully observ-
able.

Definition 2.1 (POMDP): Considering the action and
observation uncertainties and the labels of states, a
POMDP can be denoted by a tuple P = (S, A, T, s0, R,
0, 2, I1, L), where:

o S=/{s1,...,5,]}is a finite set of states.

e A={a,...,an} is afinite set of actions. Specifically,
A(s) represents the set of available actions that can be
taken by the agent at state s.

e T:8xAxS— [0,1] is a function representing the
transition probability from state s € S to state s’ €
S after the agent takes action a € A(s). It satisfies
Y ovesT(s,a,8) = 1.

e 5o € Sis the initial state.

e R:S— R is a reward function, which can also be
defined as R(s, a,s") or R(a, s).

e O=/{o01,...,0;} is a finite set of observations, and
O(s) denotes the set of possible observations that the
agent can acquire at state s.

e Q:5xAx O — [0,1] is a function representing the
observation probability that the agent can perceive at
state s’ € S after taking action a € A(s). This function
satisfies)). Q(s',a,0) = 1.

e [is a set of atomic propositions.

o L:S— 2Mig a labeling function, and 21T is the power
set of IT.

At every time step during the learning, the agent is at
state s € S and selects an action a € A(s), which transits
the agent to the next state s’ € S. Since we consider the
motion uncertainty, the probability of such a transition
is T(s,a,s"). After the agent reaches the next state ('), it

ADVANCED ROBOTICS (&) 873

then can perceive an observation o € O(s") with the prob-
ability of (s', a, 0) to gather the information of this state.
On the other hand, after the transition, the agent also col-
lects a reward given by the function R(s"). The goal of
the agent choosing a sequence of actions is to maximize
its expected return, i.e. the accumulated rewards, starting
from state s at the current time t = 0 as

Us) =& {Z y'R(st) | si=0 = s} (1)

t=0

where s; denotes the agent’s state at time . y € [0, 1] is
the discount factor to balance the importance between
immediate and future rewards.

In model-based approaches to solving POMDPs, it is
common to find an optimal policy in the belief state space
instead of the state space defined in the POMDP, i.e. S.
A belief state, b € B where B = Dist(S) is the belief state
space, represents the probability distribution over all the
possible states s € S. Specifically, b;(s) denotes the prob-
ability of the agent being at state s at time step t. The
initial belief state, by, depends on the agent’s knowledge
of its initial state s¢. If the agent is aware of its initial state,
bo(sp) = 1 and by(s) = 0 for s # sg. Otherwise, by is a
uniform probability distribution. If the agent’s current
belief state is b;(s), after taking action a; and obtain-
ing observation 0,41, the new belief state b;11(s) can be
updated by Icarte et al. [27]:

bri1(s) o Qs ap0001) Y T(s, a8)bi(s) (2)

seS

Consequently, the belief state holds the experience of a
complete history [27], and a policy can map the belief
state by € B to the action a; € A. Then, the expected
return in (1) under a policy & can be rewritten as

Ut (b) = B [Z y'R(br)

t=0

bi=o = b} 3)

where R(b;) =) gbi(s)R(s) is the reward that the
agent can collect depending on the current belief state.
Finally, the POMDP problem becomes finding the opti-
mal policies in a corresponding MDP with the belief
state space to maximize the expected return, ie. &* =
argmax; U (b).

2.2. PBVIand deep Q-learning

Since the belief state space is infinite and most belief
points are very unlikely to be reached, the PBVI algo-
rithms [9] prune away belief points by selecting the best
action on every trajectory to generate the next belief
point. Specifically, the PBVT algorithms introduce a set

874 (&) J.LETAL

of alpha vectors V = {ag, a1, . .
value functions as [9]:

., 0y} to approximate the

V(b) = max Z a(s)b(s) (4)

se§

It shall be noted that each alpha vector is an |S|-
dimensional hyper-plane and constrained by the bound-
ary of the belief state space, i.e. B. A number of alpha vec-
tors form the approximated value function V(b), which
is a piece-wise linear and convex function [9]. Only one
alpha vector on each belief point is maintained during the
value backup, which is defined as [9]

Vb :Rb Q /;>
(b) ()+yrgg§)§€agzz (s',a,0)

seS Jes

x T(s,a,s)a(s)b(s) (5)

In addition, the PBVTI algorithms use a precision param-
eter, the difference between an upper bound and a lower
bound of the value function, to guarantee policy conver-
gence [9].

Another reported approach [14] to POMDP problems
is utilizing deep neural networks (DNNs) to approximate
the state-action values. Mnih et al. [16] firstly intro-
duced Deep Q-learning (DQN) to solve MDP problems.
Their DQN architecture consists of two DNNs (called Q-
networks), an evaluation Q-network Q. (s, a; 6.) and a tar-
get Q-network Qy(s, a; 6;) to keep the learning more sta-
ble and effective. During the learning process, €-greedy
exploration strategy [3] and experience replay memory
[28] are used for the action selection and the collection
of the training samples, respectively.

M. Egorov [14] leveraged DQN to solve POMDP
problems by mapping POMDP beliefs to the state-action
values. Instead of the model-free algorithm commonly
used in MDP problems, his approach updates the belief
state as the input feature to Q networks. Consequently,
this approach is still model-based, and the derived policy
is a function of belief states.

3. Linear temporal logic and product POMDP
3.1. Linear temporal logic (LTL)

Linear temporal logic is a high-level language to describe
user-specified tasks. Basically, an LTL specification can be
formulated inductively via the combination of Boolean
operators, such as negation (—) and conjunction (A), and
two temporal operators, including next () and until
(U). The formula (¢ can be read as ‘¢ is true at the
next state’ while ¢1U ¢, as ‘¢, is true at some future states
and ¢ is true at each state until then.” Consequently, the

syntax of an LTL formula is defined inductively as [29]

¢p:=True|a|dp1Adr | =9 | Od | p1lUpy (6)

where a € II is an atomic proposition. Other common
Boolean and temporal operators are derived as follows:

or : $1V P2 = —(—h1 A —¢h2)
implies : 01— P =—1 V
eventually : &g = Trueld¢

always : O¢p = —(O—¢)

Let = denote the satisfaction relationship. The semantics
of an LTL formula is interpreted over words, which is an
infinite sequence w = wow ... with w; € 21 for all i >
0, and defined as:

w &= True

wEkEao < a € L(w[0])

wWE AP & wEddandw = ¢,

wE —¢ & wl£e

wkE O¢ < wll:]E¢

weE Uy, <& Atstw(t:] =P,V €[0,0),
wlt':] = ¢

3.2. Limit-deterministic generalized Biichi
automaton (LDGBA)

Given an LTL that specifies a complex task, its satisfaction
can be evaluated by an LDGBA [30].

Definition 3.1 (LDGBA): An LDGBA is a tuple A =
(Q, %,6,90, F),where Q is a finite set of states, ¥ =
2M is a finite alphabet, §: Q x (T U {¢}) — 29 is the
transition function, gy € Q is an initial state, and F =
{F1,F2, ..., Fy} is a set of accepting sets with F; C Q,
Vi e {1,...,f}. The state set Q is partitioned into a deter-
ministic set Qp and a non-deterministic set Qy,i.e. Qp U

Qn = Qand Qp N Qn = @, where

o The state transitions in Qp are total and restricted
within it, i.e. |§(g, ®)| = 1 and §(g,) € Qp for every
stateq € Qpand o € X,

e The e-transition is not allowed in the deterministic
set, i.e. forany g € Qp, 8(q,€) = 9,

o The e-transitions are only defined for state transitions
from Qn to Qp, which do not consume the input
alphabet, and

o The accepting sets are only in the deterministic set, i.e.

Fi € Qp forevery F; € F.

A run of an LDGBA, subject to an input word w =
Wwow1 ..., can be represented as ¢ = qoq; . . ., and inf(q)
represents the infinite portion of q. If there exists
inf(9) NF; # @, Vie {1,...f}, we say that q satisfies

the LDGBA acceptance condition. In other words, the
LDGBA accepts the word w. We recommend Owl [18]
to readers for more details about automaton generation.
Consequently, this study aims to solve the POMDP prob-
lems with LTL specifications defined below.

Problem 3.1: Given a POMDP with its belief state space
B that can be derived via (2) and a task expressed as
an LTL formula. The objective is to find a policy &*(b)
that can complete the task by satisfying the acceptance
condition of the LTL-induced LDGBA.

3.3. Product POMDP

Therefore, we introduce a framework for solving a
POMDP problem by exploiting the fact that an LTL for-
mula can be transformed into an LDGBA representing
the task variables and safety constraints of the POMDP.
The problem of satisfying a given LTL objective ¢ in a
POMDP P can be reduced to the problem of satisfying a
repeated reachability (Biichi) objective ¢p in the product
POMDP.

Definition 3.2 (Product POMDP): The product POM
DP P* = P x Aofa POMDP P = (S, A, T, 50, R, O, 2,
I1,L) and an LDGBA A = (Q, £, 8, qo, F) is defined as
atuple P* = (8%, A%, T*,s;,R*,0,Q%, F*) where:

e 5* =S x Qis the finite set of labeled states, i.e. s* =
(s,q) € S* wheres € Sandgq € Q.

o AX = A U {¢} is the set of actions.

o T =8 x A* x § — [0, 1] is the transition func-
tion, specifically,

T(s,a,s) ¢ =39 (q, l) ,
leL(s)andac A
x(x x x_)1 a* € {e} and
d (S @S >_ q € 5(g,€) and
s =s,
0 otherwise.

(7)
e s; = (s0,q0) € S* is the initial state, where s) € Sand
9 € Q.
e R* = §* — R is the reward function of the product
state (s, q).

R(s) leL(s),gd =4 (q, l) e F;, and
FieF

0 otherwise.

R*(s¥) =

(8)

o QX =8%xA*x0—[0,1] is the observation

function

Q* (s, a%,0) = Q(,a%,0) 9)

ADVANCED ROBOTICS (&) 875

where s’ € S and a* € A. On the other hand, if a* €
{€}, the agent stays at the same s, i.e. s’ = s, and the
belief state won’t be updated.

o FX={FF) ... ,]—}X} is the set of accepting sets,

where F* = {(s,q)|s € S;q € Fi},i=1,...f.

A random path (s9, q0) (51, q1) - . . of the product POMDP
corresponds uniquely to the combination of a path
50,51 ... of the POMDP and a path gg,q; ... of the
LDGBA. On the other hand, the belief product state
denoted as b* € B*, where B* = Dist(S*), represents
the probability distribution over all the possible product
POMDP states. Similarly, the new belief product state can
be updated by the formula derived from (2):

/ / /
by () o QX (s a) 0i41) D TX(s%,a),s™)

s¥eS*

x b (s) (10)

It is noted that the product POMDP shares the same
observation space of POMDP. The initial belief state is

by € B*. Considering the initial automaton state is go,
by is defined as:

bo(s)

by (s,q) = {0 4°= 0 (11)

otherwise.

The expected return under a policy £ can be written as
below, similar to (1).

st(bx) — ESX |:Z th(th)

t=0

by = bx} (12)

where the reward function remains as

R(b;) = D b (sIR(™). (13)

sXe§*

The constructed product POMDP P* can be interpreted
as the POMDP P with the augmented state space to
account for the temporal logic specifications represented
by LDGBA A. All the feasible paths on P* share the
intersections between all the accessible paths over P
and all words accepted by A. Specifically, a path o”
= (50,90)(s1,41) - - ., generated by a random policy &*
on the product POMDP P*, is accepted if inf(o¥ ™) N
]:ix # 0,¥Yi=1,...f, where F* captures the acceptance
conditions of LDGBA A.

The belief state b;(s) represents the probability distri-
bution of the agent in POMDP state s € S given the his-
tory up to time t. b4 is then updated from the previous
belief state by, the executed action 4, and the resulting
observation o¢y; by (2) foralls’ € S.Based on that, b; € B
also has the Markovian property. Therefore, finding the

876 (&) J.LIETAL

optimal policy as a function of belief states in a POMDP
problem is equivalent to solving an MDP problem with a
continuous belief state space. Moreover, according to pre-
vious studies on MDP problems with LTL specifications
[29, 31-33], the optimal policy &**(b*) on the prod-
uct POMDP P* is also the optimal policy £*(b) on the
POMDP P satistying LTL specifications. Consequently,
Problem 3.1 can be reformulated as follows.

Problem 3.2: Given a product POMDP defined in
Section 3.3 as P* =P x A of a POMDP P and an
LDGBA A generated from LTL specifications ¢, the cor-
responding belief state space can be derived via (10). The
objective is to find a policy £ ™ (b*) so that the expected
return is maximized.

3.4. Reward redesign or tracking-frontier function

When directly applying the constructed LDGBA in solv-
ing a product POMDP problem defined in Problem 3.2, it
may fail to find the deterministic policy that satisfies the
LTL specifications [20, 21]. For example, to complete the
task that an agent shall visit states labeled with ‘a’ and ‘b’
once at a time for infinitely many times, the LTL formula
can be written as

¢ = (OCa A0SO AO—c (14)

Rabinizer 4 [18] is used to convert the LTL formula
into an LDGBA. We augment the accepting states in
order to separate ‘@’ and ‘b’ transitions. In addition, we
simplify the automaton by only keeping single labeled
transitions, which is sufficient to explain this example.
The full automaton after states augmentation is shown in
Figure 1, and the set of accepting sets is F = {{qo}, {q1}}
Theoretically, this automaton may accept a word of
(b*a*)® where *w * @ matche the preceding character(s)
finite times and infinite times. However, since the typical
reward design in (8) depends on the product states corre-
sponding to the LDGBA accepting states, the agent may
tend to keep visiting one of the labeled states infinitely
many times to collect more rewards. Consequently, the
specified task cannot be accomplished.

To address the above issue for surveillance tasks, we
redesign the reward function as below by adding a con-
straint to (8) such that the agent can visit the accepting
sets repeatedly.

R(s) l€L(s),q =8(q]) € Fi,FieF,
andq' # q

0 otherwise.

R*(s¥) =

(15)
where q # q' prevents the repeated transitions, which
lead to the same automaton accepting state by remov-
ing the rewards on the associated labeled POMDP states.

Figure 1. an LDGBA automaton.

After applying this constraint to the reward function, the
derived optimal policy satisfies the desired task specifi-
cation. We provide the simulation of this example with
the model-based SARSOP solver on the POMDP envi-
ronment in Section 5.1.

In addition, we introduce another approach that
implements a frontier set 7 to keep track of non-visited
accepting sets based on the previous work by M. Cai [32].
In most cases, 7 is initialized as F. If a state of one
or more accepting sets has been visited, those sets will
be removed from the frontier set 7. Mathematically, the
tracking-frontier function 7 is defined and updated as
[32]:

T\F, ifqeFiandFeT,
T}‘(q,T)z f\ﬁ; lqu]:zandT\]:,:Qj,
7, otherwise.

(16)

Once the frontier set 7 becomes empty, it will be reset
as JF if the specification requires the infinite visits of
all accepting sets. Consequently, the accepted words in
Figure 1 can be (ab)*, (ba)*. It shall be noted that the vis-
ited LDGBA accepting sets are removed from the frontier
set 7, and at the same time, the rewards on the associ-
ated labeled states are disabled. Therefore, it prevents the
repeated visiting of the same automaton state. Further-
more, the original definition of reward in (8) is redefined
as

R(s) leL(s),q =68(q.]) € Fi, and
FeT

0 otherwise.

R*(s%) =

(17)
The above tracking-frontier function 77 can be revised
according to different task specifications. For example,
additional constraints can be added to 7x that only
removes J; in order, forcing the agent to visit the labeled
states in a specific sequence. This approach is not easily
directly implemented in the SARSOP solver but in DQN.
Therefore, we only applied the frontier set to DQN in this
study.

4. Problem solutions
4.1. Point-based value iteration

A product POMDP can be viewed as a POMDP but
simultaneously satisfies the task constraints provided
by the LTL-induced automaton. The transitions in the
product POMDP are restricted and prevented by the
automaton transitions. Therefore, the proposed product
POMDP problem can be solved by the methods that have
been successfully applied to POMDP problems. It shall be
noted that the state space is extended due to the product
of POMDP and LDGBA.

One of our approaches uses SARSOP [11] to approx-
imate the optimal value functions on product POMDP.
To achieve this, SARSOP introduces a lower-bound tar-
get level L and an upper-bound target level U. A target
gap size € between L and U at by is initialized. When the
sampling process follows the belief tree T, the target lev-
els, i.e. L and U, are updated as L; and U; where ¢ is the
depth of the node in the tree. The sampling path will be
terminated once the gap size between L; and U; for all the
leaves in T reaches y ~'e where y is the discount factor
[11].

To update the lower and upper-bound target levels (L;
and U;) from L;_; and U;_j, the following equation is
utilized first to calculate the lower bound of the optimal
Q value [11] once an action is selected.

Qb*,a*) =R(b™) +y Y _ Plolb™,a™)V.(b*") (18)
0e0

where V, obtained by the fixed-action policy [34], is the
lower bound of the optimal value function V* at b*’. The
upper bound of the optimal Q value, Q, is obtained sim-
ilar to (18), and its upper bound V can be acquired by
sawtooth approximation [34]. In addition, P(o|b™, a™) is
defined as [10]

P(o|b*,a%) = Z Q*(s*,a%,0)
¥/ e§x
x Z T (%, a”, <X (s*) (19)

s¥eS*

Then, Qs used to find an intermediate lower-bound
target level L as the maximum value between L;_; and
Q. Similarly, an intermediate upper-bound target level

U’ is the maximum value between Ui-1 and Q + y le.

Finally, the target level L, for the next belief node b’ can
be calculated, and it is needed for Q to achieve its target
level L. Similarly, U, is acquired by computing Q with U’
[11].

Next, the standard backup process for a-vectors in
" is performed with the value function approximation.
The last step is the pruning process [11] in which the

ADVANCED ROBOTICS (&) 877

sub-optimal belief nodes and «¢-vectors are pruned away.
Finally, a more strict requirement of dominance check,
called §-dominance [11], is used to eliminate the sub-
optimal a-vectors. Algorithm 1 describes the implemen-
tation of this approach to determine a set of « vectors, I',
which is used to approximate the optimal value functions
of the product POMDP P*.

Algorithm 1 Point-based Model Checking (SARSOP) on
POMDPs with LTL specifications.
Require: LTL formula ¢, POMDP P, precision ¢
Convert ¢ to LDGBA Automaton A,
Construct The product POMDPs P* = P x A
Initialize the initial belief bj € B* as the root of the
search tree TR. Set upper-bound target level U and
lower-bound target level L.
Initialize the set of o vectors I', upper and lower
bounds V and V of V*. V is set as the prediction of
V*. Sample the initial points (Tr, I, b, L, U, ¢, t=1),
where ¢ is the time step.
while Termination is not satisfied do
for Sampling points(Tr, I, b*, L, U, ¢, t) do:
if V<L and V < max{U,V(b)+ y e}

then:
Return
else
Update the L; and Us.
Compute the next belief b<’ by (10).
Sample points (Tg, T, b L, U 6, t + 1).
end if
end for
Perform «-vector backup at the belief node b* of
TR by (5).
if Q(b*,a*) < Q(b*,a*’) then
Prune away all the points from b* taken a* in
TR.
end if
if o1 8-dominates o, then
Prune away .
end if
end while
Return I'.

4.2. Deep Q-learning

Another approach for solving product POMDP prob-
lems is deep Q-learning (DQN). This approach employs
neural networks to map a belief product state to the
corresponding state-action values, i.e. Q values, for the
agent choosing the best action. Compared to the SAR-
SOP solver, DQN requires more computation time since

878 (&) J.LETAL

it uses Monte Carlo simulation. However, it is eas-
ier to implement the tracking-frontier function (16)
Tr(q,7T) in DQN than in the SARSOP solver. As stated
in Section 3.4, the LTL-induced LDGBA with the fron-
tier set 7 can handle more complex tasks without adding
extra computational complexity [32] to the original
derived automaton. In this study, the tracking-frontier
function that can record the visited or non-visited accept-
ing sets in each round is implemented in DQN.

Figure 2 illustrates the Q networks’ architecture, sim-
ilar to a convolutional neural network (CNN). The Q
networks consist of ‘Convolutional’ layers, ‘Flatten’ layers,
‘Fully-Connected’ layers with linear activation functions
at the end to generate the outputs as the approximated Q
values of individual actions corresponding to the input
belief state. In this study, a considered POMDP has a two-
dimensional state space, and the LTL-induced LDGBA
state space provides an additional dimension. Conse-
quently, a belief state of the product POMDP is a three-
dimensional array as the input to Q networks. Compared
with artificial neural networks (ANNs), CNNs can auto-
matically detect important features without any human
supervision. In our Q network architecture, there are no
‘maxpooling’ layers because every belief point is impor-
tant, and any missing information may cause a dramatic
accuracy drop in the trained network.

In DQN, two identical Q networks are initialized: the
evaluation network (Q,) and the target network (Q;). The
target network is utilized for the next action selection and
Q value prediction. The evaluation network is trained
every M steps by a number (i.e. batch size) of experiences
(b, a;,r;, b,). After every K steps, the target network
is updated by copying the weight coeflicients of the eval-
uation networks. Using two neural networks can prevent
the bootstrapping of the DQN with a single neural net-
work. In the so-called model replay, once the random
sample set U(D) is collected, the new Q value is computed
by the equation as [16]

Qnew(bixyaix) = Qe(bixaaix;ee)

+a|:ri+y max Q(b;y,,a;, 1500

X X
a;y1€A

- Qe(b;(>a,‘x;08)i| (20)

Algorithm 2 demonstrates the procedure of applying
deep Q-learning with LDGBA and tracking-frontier
function to approximate the Q value function of POMDP
with temporal logic specifications.

Algorithm 2 Deep Q-Learning for product POMDP
problems.
Require: LTL formula ¢, POMDP P
Convert ¢ to an LDGBA A, initialize the frontier set
T=F
Construct the product POMDP P* =P x A
Initialize the evaluation network Q,, the target net-
work Qy, the learning rate «, the discount factor y, the
number of episodes E, the number of steps N, the batch
size M, and the Q; update steps K.
while The current episode e in E do
Randomly select a start state s; .
Initialize the belief state b
while The current step i in N do
Select and perform an action a;°.
After perceiving an observation, update the
belief state b7, ; via (10).
Update 7 and the reward function by Equa-
tions (16) and (17).
Calculate the rewards r; by (13).
Store transition (b}, a;,r;, b},) in the replay
memory D.
if i > 0 and {%M=0 then
Randomly select the samples U(D) with
length as M.
while every (b, a*,r;, biXH) in U(D) do
compute Qyew by (20).
end while
Train Q, by the set of Qyeyy.
end if
if i > 0 and i%K=0 then
Pass the weights of Q, to Q.
end if
end while
end while
Training end and save the evaluation network Q,

5. Simulation results

We evaluate our methodologies on two simulations with
the discrete POMDP state spaces. We first carry out the
simulations over a partially observable grid world. The
product POMDP models are generated in Python 3.9
with Rabinizer 4 [35] and then solved by Julia SARSOP
solver [11] and DQN (via Python), respectively. Further-
more, the grid-world simulation is scaled to different
sizes of state and observation spaces to evaluate the scal-
ability of the value iteration approach via SARSOP. Then,
we apply the value iteration approach to a more realistic
office scenario with TurtleBot2 via Pybullet 3.0 [36]. All
simulations are completed on a desktop with a 3.20 GHz

of automaton

states E N~ I
77

LV =
POMDP states

L J
T

Convolution and nonlinearity

ADVANCED ROBOTICS 879

Q values

-—

Flatten layer Fully-connected layers

Figure 2. The Q network architecture with convolution and fully-Connected Layers.

b|b

Figure 3. A 10 x 10 grid-world workspace.

eight-core CPU and 32GB of RAM. Some source codes
and supplementary materials are provided.!

5.1. Grid-world simulation by SARSOP

Here considers a grid-world workspace with a size of
10 x 10, as shown in Figure 3. The labeled cells are
marked with different colors representing different areas
of interest. For example, ‘a’ and ‘b’ are labeled on the goal
states that an agent may visit multiple times according to
the specified task. ‘c’ is the label on the trapping states
where an agent cannot escape once entered. ‘B’ represents
the block states, i.e. obstacles, that the agent is not able to
pass.

The agent, e.g. the mobile robot, in the grid world can
take four actions at each state: up, left, down, and right.
After taking each action, the agent can move towards the
desired state with a probability of 0.9 and move side-
ways with an equally weighted probability distribution
otherwise. If the next state is outside the grid world or
the obstacle, the agent will stay at the current state. In
addition, the agent can observe the current state with a
probability of 0.9 and adjacent states with a total probabil-
ity of 0.1 uniformly distributed. The obstacles (i.e. states

labeled with ‘B’) cannot be observed. The discount factor
y is all set as 0.95.

In the grid world, the agent is required to visit states
labeled ‘@ and ‘D’ once at a time for infinitely many
times, as stated in Section 3.4. The LTL formula is writ-
ten as (14), and the induced LDGBA is shown in Figure
1. The POMDP environment has 100 states, and its cor-
responding product POMDP consists of 300 states. The
set of accepting sets of the derived LDGBA is F =
{{q0}, {q11}}, and the standard rewards in (8) are assigned
with the labeled states transitions to go and ¢;.

We first use the SARSOP solver to obtain the optimal
value functions of belief states and then derive the opti-
mal policy. Figure 4(a) illustrates an induced path from
a start state, marked as a large purple solid circle. The
agent moves to ‘a’ straightly, and the LDGBA state transits
from g to q;. In Figure 4(b), it can be seen that the agent
keeps visiting states ‘a’ since q; has a recurrent transition
by consuming the symbol ‘a” in the LDGBA (Figure 1).
The agent must visit ‘a’ on ¢q; infinite times to maximize
the collected reward. Therefore, the specified task cannot
be accomplished.

To address the above issue discussed in Section 3.4,
we apply the redesigned reward in (15) by only assigning
rewards to the transitions that lead to the accepting states
from a different automaton state. Then, after solving the
problem again via SARSOP and obtaining the optimal
policy, we generate another path, shown in Figure 5.
It illustrates a successful run in which the agent visits
states ‘a’ then ‘b’ and keeps visiting them alternatively for
infinite times.

Starting from the initial state, shown in Figure 5(a),
the agent moves left straightly to reach the area labeled
‘@’, which leads the automaton transition from ¢ to q;.
A bend in the route indicates the agent pauses there
for an extra time due to the action uncertainty. Figure
5(b) shows the induced path on the POMDP at automa-
ton state q;. The agent leaves area ‘a’ and moves right
then up to reach the green area labeled as ‘b’. Up to this
point, the agent successfully completes one round, and

880 JLIETAL.

| .
8

| .
8

6
s .

:
l .
s :

(a)

2
n.
o 2

(b)

Figure 4. Aninduced path from the optimal policy via SARSOP using the standard reward design.

1

2

& .
0

1 13 24

(a)

2
a'
o H

(c)

Figure 5. Aninduced path from the optimal policy via SARSOP using the redesigned reward.

Table 1. Simulation results for various scale workspaces.

Workspace computing
size(cells) POMDP states product states time(seconds)
10 x 10 100 300 4.67
20 x 20 400 1200 358.97
40 x 40 1600 4800 23,649.83

the automaton state transits back to qo. In Figure 5(c), the
agent moves from ‘b’ to ‘@’ again to start another round.

We also tested the algorithm on the same grid-world
problem with various workspace sizes to show the com-
putational complexity. The simulation results are listed
in Table 1. It shows the times in seconds used to learn
optimal policies.

A similar scalability study was performed in [24], in
which the LTL formula was converted to DRA. They
investigated grid worlds with state spaces up to 10 by
10, and the simulation time for the size of 10 by 10 is
comparable to the one in Table 1.

5.2. Grid-world simulation by DQN

We tested another model-based approach using
DQN with the tracking-frontier function to the same

grid-world problem. The input shape for Q networks
is (10 x 10 x 3). The dimensions correspond to the
size of a belief product state, including the row and
column numbers of the workspace in the POMDP
and the number of automaton states of LDGBA,
respectively.

The Q network architecture is shown in Figure 2. In
this study, two convolutional layers extract the features
from the input belief state. One layer uses eight (4 x 4)
filters with stride (2, 2), and the other uses 16 (2 x 2) fil-
ters with stride (1, 1). The outputs are converted to a 1D
array by a ‘Flatten’ layer. Then, two fully-connected layers
with 128 and 64 neurons are used to predict the corre-
sponding Q values. The Rectified Linear Unit (i.e. ReLU)
is utilized as the activation function in the Q networks.
The learning process includes 500 steps per episode for
8,000 episodes. Two Q networks, the evaluation network
Q. and the target network Qy, are randomly initialized.
The training batch size for the evaluation network is
32, and the target network is updated by copying the
weight coeflicients of Q, every 50 steps. Since DQN uses
Monte Carlo simulation, it is computationally intensive.
The computing time for this simulation is 49450.4041
seconds.

ADVANCED ROBOTICS 881

r—
)

2 2
l “i" .
o 0
0] 3 ° H

2
nr
o 2

(a)

(c)

Figure 6. An induced path from the optimal policy via DQN with the tracking-frontier function.

The frontier set 7 is initialized as {{qo},{q1}}. The
rewards are assigned on the states labeled either ‘@’ or ‘b’,
resulting in the automaton transitions to gq or qi, respec-
tively. Once the automaton state in an accepting set of
T is visited, this accepting set will be removed from 7,
and the corresponding reward is disabled too, as indi-
cated in (16). After learning, the evaluation Q network
can predict the optimal Q values for a given belief state.
Consequently, the optimal policy can be derived. Figure 6
shows an induced path resulting in a successful run in
that the agent recurrently visited states ‘a’ and ‘b’ once at
a time for infinitely times. It shall be noted that the gen-
erated path differs from the one in Figure 5 because of
action uncertainty.

5.3. PyBullet TurtleBot simulations

This section considers an office environment generated
from PyBullet3.0 [36], a virtual robotic platform, as
shown in Figure 7. First, we map this virtual office envi-
ronment to a grid world to learn the optimal policy. Then,
the policy is applied to TurtleBot2 in PyBullet, where we
can implement the robotic dynamics and a PID controller
to ensure the robot follows the path generated from the
derived policy.

The environment has four office rooms denoted as
@, D,)¢, and ‘d’, the storage room as °S’, the printer’s
room as ‘Print’, and the supply station for the robot to
recharge noted as ‘Sply’. two big windows (facing west)
are located at offices ‘a’ and ‘d’. In addition, the robot can
also observe ‘wall’, ‘hallway’, and ‘door’. The sensor and
actuator uncertainties can be modeled as the observation
and action probabilities in the POMDP abstraction, as
discussed in [37, 38]. We consider two different obser-
vation settings in this example. We also assume that the
TurtleBot can successfully follow its navigation controller
by moving in the intended direction, with a probability of
0.9. Otherwise, the agent will accidentally move toward

Figure 7. The office environment.

any other direction with the same probability (the total
probability is 0.1). Moving toward the wall will keep the
robot staying at the same location.

The office space is divided into a 4 by 4 grid with 16
states. There are two big windows (facing west) located
at offices ‘a” and ‘d’ that the TurtleBot (i.e. the agent) can
sense by its embedded sensors. In addition, the agent can
also observe ‘wall’, ‘hallway’, and ‘door’. Given a specified
task, we can formulate this office scenario as a product
POMDP problem and apply the SARSOP solver to obtain
the optimal policy. Two different observation settings are
considered in this study.

5.3.1. Observation of the surroundings

In this setting, the agent can observe the surrounding
information of the current state in all four directions
without a specific order. There are a total of 8 obser-
vations, and each state has only one observation. For

882 J.LIETAL.

Figure 8. A path of two complete runs for Case 1 with the observations in four directions.

example, office ‘b” has the observation, O(‘b’) = ‘door’
‘wall” ‘wall’ ‘wall’. Since it is the only observation at this
state, its observation probability is 1.0. However, it shall
be noted that office ‘c’ and the printer’s room have the
same observation as Office ‘b’.

In Case 1, starting from an initial position, the Turtle-
Bot visits the printer’s room to collect the documents
and then carries the documents to offices ‘@’ or ‘c’
recurrently. Meanwhile, TurtleBot shall avoid the storage
room. This task can be formulated via LTL as below, and
the induced LDGBA with only single-label transitions
has four automaton states.

QYeasel = L(Print — O (—Print U (a V ¢))) A (=)
= Opy A D(=S) 21)

Figure 8(a) shows that, following the optimal policy,
the TurtleBot starts from the end of the hallway (i.e. its
initial position) and arrives at the printer’s room first, as
the red route indicates. The agent then leaves immedi-
ately after picking up the documents and heads to office
room ‘C, as the yellow route shows. Figure 8(b) shows
that the TurtleBot leaves office ‘c’ and continuously com-
pletes the second round. Since TurtleBot can observe all
four directions, it made the belief convergence fast, and
the agent can plan the path accordingly. The path appears
that TurtleBot efficiently completed the task with small
action uncertainty indicated as the to-and-fro part of the
yellow path.

Case 2 requires the TurtleBot to visit the supply sta-
tion right after it accomplishes the delivery task in Case
1, and the storage room must also be avoided during the

entire task. The LTL formula of Case 2 in (22) is extended
from part of the formula (21) used in Case 1, denoted as
1. Different from the task in Case 1, we only require the
agent to complete one run in Case 2.

Peasez = 1 A ((aV ©) > O(=(aV o) U Sply)) ALI(=S)
(22)

As shown in Figure 9, the TurtleBot starts from office
‘D’ (as the initial state), moves to the print room, and
delivers the documents to office ‘a’. Then, it arrives at the
‘Sply’ station to complete this task. Two states on the red
route are visited more than once because of the action
uncertainty.

5.3.2. Observation in a single direction

In another observation setting, the agent can only
observe on one direction at each state it visits. The obser-
vation set is ‘wall’, ‘hallway’, ‘door’, ‘window’. Assuming
each observation has the same chance of being detected
by the agent’s sensors, the observation probabilities can
be calculated. For example, the agent can observe ‘door’,
‘wall’, and ‘window’ with probabilities of 0.25, 0.5, and
0.25, respectively, in office ‘@’. It can be seen that the
observation uncertainty is much higher than that in the
previous observation setting. Consequently, the compu-
tation time is longer for the agent to learn the optimal
policies, as shown in Table 2.

Compared with the path with all four-directional
observations, a single observation element provides the
agent less sense of what the current state is, the increased
observation uncertainty brought the difficulty of the opti-
mal path planning. As Figures 10 and 11 show, the agent

Figure 9. A path for Case 2 with the observation in four direc-
tions.

encountered difficulty in selecting the suitable actions
especially around the ‘hallway’ states between the office
rooms ‘c’, ‘d’, and printer’s room, which appears as the
bends and edges in the planned paths.

6. Conclusions

This paper tends to solve POMDP problems with high-
level and complex tasks that can be formulated via LTL

ADVANCED ROBOTICS 883

Table 2. Time consumption of generat-
ing optimal policies in office simulations.

Computing
Cases(Observation) time[seconds]
Case 1 (four directions) 1.21
Case 1 (one direction) 18.64
Case 2 (four directions) 3.74
Case 2 (one direction) 29.83

and then converted to LDGBAs. Such a motion planning
problem became equivalent to finding an optimal pol-
icy on the product of POMDP and the induced LDGBA.
Two model-based RL approaches are adopted to derive
the optimal policy as a function of the belief state. One
approach is based on the PBVI methods, and we utilize
the SARSOP solver on the product POMDP to approx-
imate the optimal value functions. In another approach,
we employ a CNN architecture for Q-networks in DQN
to map the relationship between a belief state and its opti-
mal state-action values (i.e. Q values). To address the
issue that LDGBA may fail to find the deterministic pol-
icy for some task specifications. We redesign the reward
function and introduce a frontier-tracking function for
the above-mentioned approaches, respectively. The sim-
ulations demonstrate that the agent could accomplish the
specified tasks by following the derived optimal policies.

In addition, we perform the scalability study on the
value iteration approach. In contrast, DQN is more
computationally intensive because many episodes are
needed for convergence while updating the belief state
at each step. However, with the implementation of the
frontier-tracking function, DQN is adaptive to various

Figure 10. The path of office simulation Case 1 with the observation in a single direction.

884 J.LIETAL.

Figure 11. The path of office simulation Case 2 with the observa-
tion in a single direction.

task specifications. In future works, our proposed DQN
approach can be potentially extended to a hybrid frame-
work accommodating both model-free and model-based
approaches, in which the belief state can be updated
based on the approximation of transition and observation
likelihoods. Furthermore, this DQN approach can also
be combined with Inverse reinforcement learning (IRL)
in POMDPs to use the learned Q-values as a feature to
extract the rewards in problems with large state spaces.
This approach has been explored in other works [39, 40]
and can be further researched.

This study focuses on high-level motion planning
to find the optimal policy for the agent to accomplish
user-specified complex tasks. Although we use a virtual
TurtleBot2 on PyBullet3.0 to validate the derived policy,
it would be interesting to incorporate the internal con-
trollers of a robot in real-world applications. Fainekos
et al. [41] designed a closed-loop hybrid controller to
integrate the continuous trajectory control to discrete
path planning, which satisfied high-level task specifica-
tions via LTL. Specifically, the transitions of the agent
between states in POMDP can be considered as many
subtasks. For example, suppose the high-level policy out-
puts a discrete action, such as ‘go forward’ or ‘turn left.’
In that case, the discrete action needs to be mapped to
the desired linear and angular velocities, by consider-
ing the robot’s dynamics and kinematics. The low-level
controllers, such as a PID controller, can send the con-
trol signals to the actuators (e.g. the motors) to drive the
wheels. At the same time, the observations captured by

the agent’s embedded sensors serve dual purposes in the
POMDP framework. Firstly, they provide feedback to the
trajectory control between the states. Secondly, the obser-
vations can also be used to update the agent’s belief state
for the high-level decision-making process.

The proposed model-based approaches have limita-
tions because the transition and observation probabilities
must be provided to update the belief state. Model-free
RL methods will be considered for POMDPs with LTL
specifications in future works. In that case, the decision-
making will depend on the history of observations or
actions.

Note

1. https://github.com/JunchaoLi001/LDGBA-Model\ _
Checking.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Li, Wang, and Xiao would like to thank US Department of
Education (ED#P116S210005) and US National Science Foun-
dation NSF (#2226936) for supporting this research.

Notes on contributors

Junchao Li received his B.S.E. degree from the Department
of Mechanical Engineering at the University of Iowa in 2017.
He is currently a Ph.D. student in the same department and
a research assistant in The Multi-scale Computational Science
and Engineering Laboratory. His research interests include
robotics, automation, machine learning, path planning, and
decision-making.

Mingyu Caireceived the B.Eng. in Aerospace Engineering from
the Beijing Institute of Technology, Beijing, China in 2015,
and the M.S.E. degree in Mechanical and Aerospace Engi-
neering from the University of Florida, Gainesville, USA in
2017. He obtained his Ph.D. degree in Mechanical Engineering
with the University of Iowa in 2021. He is currently a post-
doctoral associate in the Explainable Robotics Lab (ERL) with
the Department of Mechanical Engineering, Lehigh University,
Bethlehem, USA. His research interests include motion plan-
ning and decision making employing formal methods, machine
learning, and optimization.

Zhaoan Wang received a B.S.E. degree in Automotive System
Engineering from Arizona State University in 2019 and an
M.S.E. degree in Engineering Technology from Wayne State
University in 2021. He is currently a Ph.D. Student in Mechan-
ical Engineering at the University of Iowa. He is a graduate
research assistant in the Multi-scale Computational Science
and Engineering Laboratory. His research interests include
machine learning, robotics, and big data analytics.

Shaoping Xiao is a professor in the Department of Mechani-
cal Engineering at the University of Iowa. He graduated from
Northwestern University with a Ph.D. degree in mechanical
engineering before joining the University of Iowa in 2003. His
original expertize lies in computational mechanics and mate-
rials science, and one of his papers has been cited over 1000
times. In the past several years, he has extended his efforts to
artificial intelligence (AI) and its applications in engineering
problem-solving. His group’s current research interests include
machine-learning enhanced numerical modeling of compos-
ite materials, reinforcement learning and formal methods for
robotics control, Al-powered design of distributed reservoir
systems to mitigate the flood, intelligent traffic lights, and quan-
tum computing.

References

[1] Howard RA. Dynamic programming and Markov pro-
cesses. Cambridge (MA, USA): MIT Press; 1960.

[2] Monahan G. State of the art-A survey of partially
observable Markov decision processes: theory, mod-
els, and algorithms. Manag Sci. 1982;28(1):1-16. doi:
10.1287/mnsc.28.1.1

[3] Sutton RS, Barto AG. Reinforcement learning: an intro-
duction. Cambridge (MA, USA): MIT Press; 2018.

[4] Kaelbling L, Littman M, Cassandra A. Planning, uncer-
tainty, partially observable Markov decision processes.
Artif Intell. 1998;101(1):99-134. doi: 10.1016/S0004-
3702(98)00023-X

[5] Sondik EJ. The optimal control of partially observable
Markov decision processes [PhD thesis]. Stanford, Cali-
fornia; 1971.

[6] Cheng HT. Algorithms for partially observable Markov
decision process [PhD thesis]. University of British
Columbia; 1988.

[7] Littman ML. Markov games as a framework for multi-
agent reinforcement learning.New Jersey.International
conference on machine learning.1994.p. 157-163.

[8] Zhang NL, Liu W. Planning in stochastic domains: prob-
lem characteristics and approximation. THKUST-CS96-
31. Hong Kong University; 1996.

[9] Pineau J, Gordon G, Thrun S. Point-based value iter-
ation: an anytime algorithm for POMDPs. Proceed-
ings of the 18th international joint conference on arti-
ficial intelligence (IJCAI'03). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.; 2008. p. 1025-
1030.

[10] Shani G, Pineau], Kaplow R. A survey of point-
based POMDP solvers. Auton Agent Multi Agent Syst.
2013;27:1-51. doi: 10.1007/s10458-012-9200-2

[11] Kurniawati H, Hsu D, Lee WS. SARSOP: Efficient point-
based POMDP planning by approximating optimally
reachable belief spaces.ETH Zurich, SwitzerlandRobotics:
Science and systems.2008.

[12] Boettiger C, Ooms J, Memarzadeh M. Sarsop: approxi-
mate POMDP planning software. (July 6, 2022) CRAN.R-
project.org/package = sarsop.

[13] Watkins CJCH, Dayan P. Q-learning. Machine learning.
1992;8(3-4):279-292. doi:10.1007/BF00992698.

[14] Egorov M. Deep reinforcement learning with POMDPs
[Tech. Rep.]. Stanford, CA, USA: Stanford University;
2015.

ADVANCED ROBOTICS 885

[15] Mnih V, Silver D, Riedmiller M. Playing Atari with deep
Q learning. Nips. 2013.

[16] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level
control through deep reinforcement learning. Nature.
2015;518(7540):529-533. doi: 10.1038/nature14236

[17] Baier C, Katoen JP. Principles of model checking. Cam-
bridge (MA, USA): MIT Press; 2008.

[18] Ktetinsky J, Meggendorfer T, Sickert S. Owl: a library
for w-words, automata, and LTL.Los Angeles, CA,
USA, Automated Technology for Verification and Anal-
ysis: 16th International Symposium.2018.

[19] Hahn EM, Perez M, Schewe S. Omega-regular objec-
tives in model-free reinforcement learning.Prague, Czech
Republic,Tools and Algorithms for the Construction
and Analysis of Systems: 25th International Conference,
TACAS.2019.p. 395-412.

[20] Hasanbeig M, Kantaros Y, Abate A, et al. Reinforcement
learning for temporal logic control synthesis with proba-
bilistic satisfaction guarantees. Proceedings of the IEEE
58th conference on decision and control (CDC). Nilce,
France: IEEE; 2019. p. 5338-5343.

[21] Oura R, Sakakibara A, Ushio T. Reinforcement learn-
ing of control policy for linear temporal logic spec-
ifications using limit-deterministic generalized Biichi
automata. IEEE Control Syst Lett. 2020;4(3):761-766. doi:
10.1109/LCSYS.7782633

[22] Chatterjee K, Chmelik M, Gupta R, et al. Qualitative anal-
ysis of POMDPs with temporal logic specifications for
robotics applications. Proceedings of the IEEE interna-
tional conference on robotics and automation. Seattle,
Washington, USA: IEEE; 2015. p. 325-330.

[23] Sharan R, Burdick J. Finite state control of POMDPs with
LTL specifications. 2014 American control conference.
Portland, Oregon, USA: IEEE. 2014. p. 501-508.

[24] Bouton M, Tumova J, Kochenderfer MJ. Point-based
methods for model checking in partially observable
Markov decision processes. In: Proceedings of the AAAI
conference on artificial intelligence. New York, USA:
AAAT; 2020. p. 34(6):2159-5399.

[25] Wang Y, Bozkurt AK, Pajic M. Reinforcement learning
with temporal logic constraints for partially-observable
Markov decision processes. arXiv preprint arXiv:2104.
01612. 2021.

[26] Perez A, Platt R, Konidaris G, et al. LQR-RRTx: opti-
mal sampling-based motion planning with automatically
derived extension heuristics. St Paul, MN, USA, 2012
IEEE international conference on robotics and automa-
tion. IEEE 2012 p. 2537-2542.

[27] Icarte RT, Waldie E, Klassen T, et al. Learning reward
machines for partially observable reinforcement learn-
ingVancouver, Canada,.Advances in Neural Informa-
tion Processing Systems 32 (NeurIPS 2019).2019.ISBN:
9781713807933.

[28] Lin LJ. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Mach Learn. Aug.
1992;8(3/4):293-321. doi: 10.1023/A:1022628806385
Special issue on reinforcement learning.

[29] Bozkurt AK, Wang Y, Zavlanos MM, et al. Control syn-
thesis from linear temporal logic specifications using
model-free reinforcement learning. Paris, France,.2020
IEEE international conference on robotics and automa-
tion (ICRA).2020.p. 10349-10355.

886 (&) J.LIETAL

(30]

[31]

[34]

(35]

Sickert S, Esparza], Jaax S, et al. Limit-deterministic
Biichi automata for linear temporal logic. Toronto, ON,
Canada, Computer Aided Verification: 28th International
Conference, CAV 2016. 2016. p. 312-332.

Cai M, Xiao S, Li Z, et al. Optimal probabilistic motion
planning with potential infeasible LTL constraints. IEEE
Trans Autom Control. 2021;68:1-1. doi:10.1109/TAC.
2021.3138704

Cai M, Xiao S, Li B, et al. Reinforcement learning
based temporal logic control with maximum probabilis-
tic satisfaction. Xi’an, China, 2021 IEEE international
conference on robotics and automation (ICRA) 2021.
doi:10.1109/ICRA48506.2021.9561903

Cai M, Hasanbeig M, Xiao S, et al. Modular deep
reinforcement learning for continuous motion plan-
ning with temporal logic. IEEE Robot Autom Lett.
2021;6(4):7973-7980. doi: 10.1109/LRA.2021.3101544
Hauskrecht M. Value-function approximations for par-
tially observable Markov decision processes. J Artif Intell
Res. 2000;13:33-94. doi: 10.1613/jair.678

Ktetinsky J, Meggendorfer T, Sickert S, et al. Rabinizer
4: From LTL to your favourite deterministic automaton.
Available from: https://www?7.in.tum.de/ ~ kretinsk/rabi
nizer4.html.

[36]

(37]

(38]

(39]

[40]

[41]

Coumans E, Bai Y. PyBullet, a Python module for physics
simulation for games, robotics and machine learning.
Available from: https://pybullet.org/wordpress/.

Grady DK, Moll M, Kavraki LE. Combining a POMDP
abstraction with replanning to solve complex, position-
dependent sensing tasks. 2013 AAAI fall symposium
series. 2013.

Grady DK, Moll M, Kavraki LE. Extending the applica-
bility of POMDP solutions to robotic tasks. IEEE Trans
Robot. 2015;31(4):948-961. doi: 10.1109/TR0O.2015.2441
511

You C, Lu J, Filev D, et al. Advanced planning for
autonomous vehicles using reinforcement learning and
deep inverse reinforcement learning. Robot Auton Syst.
2019;114:1-18. doi: 10.1016/j.robot.2019.01.003

Lv H, Qi C, Song C, et al. Energy management of
hybrid electric vehicles based on inverse reinforce-
ment learning. Energy Rep. 2022;8:5215-5224. doi:
10.1016/j.egyr.2022.03.176

Fainekos GE, Kress-Gazit H, Pappas GJ. Hybrid con-
trollers for path planning: a temporal logic approach.
Seville, Spain.Proceedings of the 44th IEEE Conference
on Decision and Control.2005. doi:10.1109/CDC.2005.
1582935

	1. Introduction
	2. POMDP and its solution
	2.1. POMDP
	2.2. PBVI and deep Q-learning

	3. Linear temporal logic and product POMDP
	3.1. Linear temporal logic (LTL)
	3.2. Limit-deterministic generalized Büchi automaton (LDGBA)
	3.3. Product POMDP
	3.4. Reward redesign or tracking-frontier function

	4. Problem solutions
	4.1. Point-based value iteration
	4.2. Deep Q-learning

	5. Simulation results
	5.1. Grid-world simulation by SARSOP
	5.2. Grid-world simulation by DQN
	5.3. PyBullet TurtleBot simulations
	5.3.1. Observation of the surroundings
	5.3.2. Observation in a single direction

	6. Conclusions
	Note
	Disclosure statement
	Funding
	References

