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ABSTRACT

Partially observable Markov decision processes (POMDPs) have been used as mathematical models
for sequential decision-making under uncertain and incomplete information. Since the state space
is partially observable in a POMDP, the agent has to make a decision based on the integrated infor-
mation over the past experiences of actions and observations. This study aims to solve probabilistic
motion planning problems in which the agent is assigned a complex task under a partially observ-
able environment. We employ linear temporal logic (LTL) to formulate the complex task and then
convert it to a limit-deterministic generalized Büchi automaton (LDGBA). We reformulate the prob-
lem as finding an optimal policy on the product of POMDP and LDGBA based on model-checking
techniques. This paper adopts andmodifies two reinforcement learning (RL) approaches: value iter-
ation and deep Q-learning. Both are model-based because the optimal policy is a function of belief
states that need transition and observation probabilities to be updated. We illustrate the applicabil-
ity of the proposed methods by addressing two simulations, including a grid-world problem with
various sizes and a TurtleBot office path planning problem.
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1. Introduction

Markov decision processes (MDPs) [1] have been widely

applied in robotics motion planning, assuming the envi-

ronment was fully observable. However, in some real-

world applications, the agent may not have access to

complete or reliable information about the state of the

environment. Therefore, partially observable Markov

decision processes (POMDPs) [2] need to be adopted.

POMDPs are particularly useful when sensors or per-

ception systems are prone to errors or uncertainty. By

incorporating the observation probability model into the

POMDP framework, it is possible to quantify the effects

of perception errors on the agent’s decision-making per-

formance. On the other hand, there has been increasing

interest in considering complex tasks in robotics motion

planning other than simple go-to-goal missions, espe-

cially dealing with uncertain and dynamic environments.

Reinforcement learning (RL) methods [3] have been

employed to solve robotics motion planning in partially

observable environments. Model-based RL approaches

assume that the agent knows the probabilistic character-

istics of transition and observation. Therefore, a belief

state can be updated via the Bayesian theory [2, 4] to

denote a probability distribution over all possible states.

Consequently, a POMDP problem with the original state

space becomes an MDP problem with a corresponding

CONTACT Junchao Li junchao-li@uiowa.edu

belief space. In this case, the policy is a function of belief

states for action selection.One commonly-used approach

is the value iteration algorithm to solve POMDP prob-

lems as a form of dynamic programing.

Early works aim to determine exact value functions

in the belief space for small POMDP problems, e.g. enu-

meration algorithms [2, 5]. Based on Sondik’s one-pass

algorithm [5], Cheng [6] proposed a simple linear sup-

port algorithm, which started at a randombelief state and

generated a vector for its value function. Also, the witness

algorithm [7] simplified the POMDP problem by con-

sidering one action and one observation at a time. Fur-

thermore, Zhang and Liu [8] integrated the enumeration

and witness algorithms and proposed a so-called incre-

mental pruning algorithm. However, in large POMDP

problems with complex dimensions, finding the opti-

mal policy precisely in the belief space can be computa-

tionally intensive. Therefore, point-based value iteration

(PBVI) algorithms [9] were proposed for infinite-horizon

POMDP problems by approximating optimally reach-

able belief spaces to address this issue. This approach

updated value functions locally for a finite subset of the

belief space. One of the point-based solvers [10], SAR-

SOP (Successive Approximations of the Reachable Space

under Optimal Policies) [11, 12], could handle POMDP

problems with large state spaces.

© 2023 Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan
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Another approach is employing Q-learning to learn

the optimal policy on the belief state space of a POMDP.

It shall be noted that Q-learning [13] is a model-free

approach that allows the agent to learn to act optimally in

MDP problems. However, since the belief states need to

be calculated from the transition and observation prob-

abilities, this approach is still model-based. On the other

hand, because the belief state spaces are usually con-

tinuous in POMDP problems, classical Q-learning algo-

rithms such as tabular Q-learning [13] are no longer

applicable. Consequently, deep Q-network [14] (DQN)

is employed in this paper to map POMDP belief states

to state-action values. Some other works [15, 16] have

utilized DQN to achieve the optimal policy regarding a

sequence of observations.However, theyweremodel-free

approaches to POMDPs, which is not our focus in this

study.

Manyworks have been done to consider complex tasks

other than simple go-to-goal missions in MDP prob-

lems by adopting formal languages [17], such as linear

temporal logic (LTL), to formulate user-defined high-

level specifications. Then, the LTL formula is commonly

converted to an ω-automaton over infinite words with

a Büchi or a Rabin acceptance condition [18]. Con-

sequently, robotics motion planning problems can be

solved via control synthesis for a product of MDP and

automaton with model checking [17]. It has been shown

that a limit-deterministic Büchi automaton (LDBA) has

more advantages than a deterministic Rabin automaton

(DRA). Hahn et al. [19] implemented LDBA and DRA in

model-free RL with mild restrictions, respectively. They

concluded that LDBA was more suitable for both qual-

itative and quantitative analysis of MDPs under all ω-

regular objectives. In another work, Hasanbeig et al. [20]

stated that converting the LTL specification into an LDBA

might result in a smaller automaton state space than a

DRA. However, LDBA suffers the sparsity of reward and

may highly slow the RL’s convergence [21].

Similarly, model checking provides the formal

approach to verifying complex task objectives when solv-

ing POMDP problems with certain temporal logic con-

straints. Chatterjee et al. [22] studied the undecidability

of the qualitative model checking in a POMDP prob-

lem with the infinite horizon. They proposed a finite-

memory approach for the verification and synthesis of

POMDPs with LTL constraints. It relied on exploring the

entire belief space and was most suitable to the prob-

lems with small state spaces. In other works [23, 24],

LTL specifications were converted to a DRA, and then a

product of POMDP and DRA was constructed. Specifi-

cally, Sharan et al. [23] employed finite state controllers

to limit the policy search via the value iteration meth-

ods. On the other hand, Bouton et al. [24] utilized the

approximate POMDP solver, SARSOP [11], to search for

an optimal policy on the finite belief state space of the

product POMDP. Finally, it shall be noted that Wang et

al. [25] employed LDBA and converted a POMDP to

the corresponding belief MDP before building a product

of belief MDP and LDBA. However, simulation exam-

ples are expected to demonstrate the feasibility of the

proposed method.

The first contribution of this paper is formulat-

ing a complex task via LTL, converting it to a limit-

deterministic generalized Büchi automaton (LDGBA),

and constructing a product of POMDP with LDGBA.

Although the strategy of representing complex tasks by

LTL and then automaton is not new, most works focused

on MDP instead of POMDP problems. In addition, this

study employs LDGBA for the first time in POMDPprob-

lems, since it can lead to a smaller product state space

[19] than DRA [23, 24] and can address the sparsity of

rewards caused by LDBA [21]. The second contribution

is to reformulate the original problem of finding a policy

that satisfies LTL specifications in a POMDPas finding an

optimal policy to maximize the collected reward on the

corresponding product of POMDP and LDGBA. There-

fore, model-based RL approaches can be employed. In

addition to a modified PBVI solver, we propose convo-

lutional neural network (CNN)-enhanced deep Q net-

works to approximate the state-action value functions

at a given belief product state. The last contribution is

redesigning the reward function and introducing a fron-

tier set in LDGBA to record non-visited accepting sets so

that the proposedmethods can efficiently handle surveil-

lance tasks.

Model-predictive Control (MPC), Rapidly-exploring

Random Trees (RRT), and Probabilistic Roadmaps

(PRM) are classical motion and trajectory planning algo-

rithms. Recently, some works like [26] utilized RRT to

map a belief state to possible paths that connect the start

state to a goal state for pathfinding. Therefore, RRT (and

PRM) can address the observation uncertainty. Although

this approach could be extended to solve the product

POMDP problems proposed in this study to handle com-

plex tasks, no such works were reported based on the

authors’ best knowledge. On the other hand, the belief

state space in POMDP is infinite. When model-based

motion planning algorithms, such as RRT and PRM,

search the paths on belief state spaces, they can be com-

putationally expensive. On the other hand, an online

MPC solver will be more appropriate when the obser-

vation uncertainty is considered. However, the optimal

control policy needs to be updated frequently based on

the new measurements. This method can be computa-

tionally intensive, too. Compared with MPC, RRT, and

PRM, one of our approaches utilizes the SARSOP solver,
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which explores a belief tree on the optimally reachable

belief space to improve computational efficiency.

The organization of this paper is described as fol-

lows. Section 2 reviews POMDP problems and state-

of-art solutions, including PBVI/SARSOP and Deep Q-

learning. Section 3 introduces LTL, LDGBA, and product

POMDP. Then, we redefine the POMDP problem with

LTL specifications and depict reward design and track-

ing frontier function. Section 4 proposes the approaches

to product POMDPproblems and provides detailed algo-

rithms. Finally, two simulations and results are included

in Section 5, followed by the conclusion and futureworks.

2. POMDP and its solution

2.1. POMDP

The POMDP is a mathematical framework to model a

problem in which the environment is not fully observ-

able.

Definition 2.1 (POMDP): Considering the action and

observation uncertainties and the labels of states, a

POMDP can be denoted by a tuple P = (S,A,T, s0,R,

O,�,�, L), where:

• S = {s1, . . . , sn} is a finite set of states.

• A = {a1, . . . , am} is a finite set of actions. Specifically,

A(s) represents the set of available actions that can be

taken by the agent at state s.

• T : S × A × S → [0, 1] is a function representing the

transition probability from state s ∈ S to state s′ ∈

S after the agent takes action a ∈ A(s). It satisfies
∑

s′∈S T(s, a, s′) = 1.

• s0 ∈ S is the initial state.

• R : S → R is a reward function, which can also be

defined as R(s, a, s′) or R(a, s′).

• O = {o1, . . . , oz} is a finite set of observations, and

O(s) denotes the set of possible observations that the

agent can acquire at state s.

• � : S × A × O → [0, 1] is a function representing the

observation probability that the agent can perceive at

state s′ ∈ S after taking action a ∈ A(s). This function

satisfies
∑

o∈O �(s′, a, o) = 1.

• � is a set of atomic propositions.

• L : S → 2� is a labeling function, and 2� is the power

set of �.

At every time step during the learning, the agent is at

state s ∈ S and selects an action a ∈ A(s), which transits

the agent to the next state s′ ∈ S. Since we consider the

motion uncertainty, the probability of such a transition

is T(s, a, s′). After the agent reaches the next state (s′), it

then can perceive an observation o ∈ O(s′)with the prob-

ability of�(s′, a, o) to gather the information of this state.

On the other hand, after the transition, the agent also col-

lects a reward given by the function R(s′). The goal of

the agent choosing a sequence of actions is to maximize

its expected return, i.e. the accumulated rewards, starting

from state s at the current time t = 0 as

U(s) = E

[

∞
∑

t=0

γ tR(st)

∣

∣

∣

∣

∣

st=0 = s

]

(1)

where st denotes the agent’s state at time t. γ ∈ [0, 1] is

the discount factor to balance the importance between

immediate and future rewards.

In model-based approaches to solving POMDPs, it is

common to find an optimal policy in the belief state space

instead of the state space defined in the POMDP, i.e. S.

A belief state, b ∈ B where B = Dist(S) is the belief state

space, represents the probability distribution over all the

possible states s ∈ S. Specifically, bt(s) denotes the prob-

ability of the agent being at state s at time step t. The

initial belief state, b0, depends on the agent’s knowledge

of its initial state s0. If the agent is aware of its initial state,

b0(s0) = 1 and b0(s) = 0 for s �= s0. Otherwise, b0 is a

uniform probability distribution. If the agent’s current

belief state is bt(s), after taking action at and obtain-

ing observation ot+1, the new belief state bt+1(s) can be

updated by Icarte et al. [27]:

bt+1(s
′) ∝ �(s′, at , ot+1)

∑

s∈S

T(s, at , s
′)bt(s) (2)

Consequently, the belief state holds the experience of a

complete history [27], and a policy can map the belief

state bt ∈ B to the action at ∈ A. Then, the expected

return in (1) under a policy ξ can be rewritten as

Uξ (b) = E
ξ

[

∞
∑

t=0

γ tR(bt)

∣

∣

∣

∣

∣

bt=0 = b

]

(3)

where R(bt) =
∑

s∈S bt(s)R(s) is the reward that the

agent can collect depending on the current belief state.

Finally, the POMDP problem becomes finding the opti-

mal policies in a corresponding MDP with the belief

state space to maximize the expected return, i.e. ξ∗ =

argmaxξU
ξ (b).

2.2. PBVI and deepQ-learning

Since the belief state space is infinite and most belief

points are very unlikely to be reached, the PBVI algo-

rithms [9] prune away belief points by selecting the best

action on every trajectory to generate the next belief

point. Specifically, the PBVI algorithms introduce a set
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of alpha vectorsV = {α0,α1, . . . ,αm} to approximate the

value functions as [9]:

V(b) = max
α∈V

∑

s∈S

α(s)b(s) (4)

It shall be noted that each alpha vector is an |S|-

dimensional hyper-plane and constrained by the bound-

ary of the belief state space, i.e. B. A number of alpha vec-

tors form the approximated value function V(b), which

is a piece-wise linear and convex function [9]. Only one

alpha vector on each belief point ismaintained during the

value backup, which is defined as [9]

V(b) = R(b) + γ max
a∈A

∑

o∈O

max
α∈V

∑

s∈S

∑

s′∈S

�(s′, a, o)

× T(s, a, s′)α(s′)b(s) (5)

In addition, the PBVI algorithms use a precision param-

eter, the difference between an upper bound and a lower

bound of the value function, to guarantee policy conver-

gence [9].

Another reported approach [14] to POMDP problems

is utilizing deep neural networks (DNNs) to approximate

the state-action values. Mnih et al. [16] firstly intro-

duced Deep Q-learning (DQN) to solve MDP problems.

Their DQN architecture consists of two DNNs (called Q-

networks), an evaluationQ-networkQe(s, a; θe) and a tar-

get Q-network Qt(s, a; θt) to keep the learning more sta-

ble and effective. During the learning process, ǫ-greedy

exploration strategy [3] and experience replay memory

[28] are used for the action selection and the collection

of the training samples, respectively.

M. Egorov [14] leveraged DQN to solve POMDP

problems by mapping POMDP beliefs to the state-action

values. Instead of the model-free algorithm commonly

used in MDP problems, his approach updates the belief

state as the input feature to Q networks. Consequently,

this approach is still model-based, and the derived policy

is a function of belief states.

3. Linear temporal logic and product POMDP

3.1. Linear temporal logic (LTL)

Linear temporal logic is a high-level language to describe

user-specified tasks. Basically, an LTL specification can be

formulated inductively via the combination of Boolean

operators, such as negation (¬) and conjunction (∧), and

two temporal operators, including next (©) and until

(U). The formula ©φ can be read as ‘φ is true at the

next state’ while φ1Uφ2 as ‘φ2 is true at some future states

and φ1 is true at each state until then.’ Consequently, the

syntax of an LTL formula is defined inductively as [29]

φ := True | a | φ1 ∧ φ2 | ¬φ | ©φ | φ1Uφ2 (6)

where a ∈ � is an atomic proposition. Other common

Boolean and temporal operators are derived as follows:

or : φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

implies : φ1 → φ2 ≡ ¬φ1 ∨ φ2

eventually : ♦φ ≡ TrueUφ

always : �φ ≡ ¬(♦¬φ)

Let |= denote the satisfaction relationship. The semantics

of an LTL formula is interpreted over words, which is an

infinite sequence w = w0w1 . . . with wi ∈ 2� for all i ≥

0, and defined as:

w |= True

w |= α ⇔ α ∈ L(w[0])

w |= φ1 ∧ φ2 ⇔ w |= φ1andw |= φ2

w |= ¬φ ⇔ w |�= φ

w |= ©φ ⇔ w[1 :] |= φ

w |= φ1Uφ2 ⇔ ∃ts.t.w[t :] |= φ2,∀t
′ ∈ [0, t),

w[t′ :] |= φ1

3.2. Limit-deterministic generalized Büchi

automaton (LDGBA)

Given an LTL that specifies a complex task, its satisfaction

can be evaluated by an LDGBA [30].

Definition 3.1 (LDGBA): An LDGBA is a tuple A =

(Q,�, δ, q0,F),where Q is a finite set of states, � =

2� is a finite alphabet, δ : Q × (� ∪ {ǫ}) → 2Q is the

transition function, q0 ∈ Q is an initial state, and F =

{F1,F2, . . . ,Ff } is a set of accepting sets with Fi ⊆ Q,

∀i ∈ {1, . . . , f }. The state setQ is partitioned into a deter-

ministic setQD and a non-deterministic setQN , i.e.QD ∪

QN = Q and QD ∩ QN = ∅, where

• The state transitions in QD are total and restricted

within it, i.e. |δ(q,α)| = 1 and δ(q,α) ⊆ QD for every

state q ∈ QD and α ∈ �,

• The ǫ-transition is not allowed in the deterministic

set, i.e. for any q ∈ QD, δ(q, ǫ) = ∅,

• The ǫ-transitions are only defined for state transitions

from QN to QD, which do not consume the input

alphabet, and

• The accepting sets are only in the deterministic set, i.e.

Fi ⊆ QD for every Fi ∈ F .

A run of an LDGBA, subject to an input word w =

w0w1 . . ., can be represented as q = q0q1 . . ., and inf(q)

represents the infinite portion of q. If there exists

inf(q) ∩ Fi �= ∅, ∀i ∈ {1, . . . f }, we say that q satisfies
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the LDGBA acceptance condition. In other words, the

LDGBA accepts the word w. We recommend Owl [18]

to readers for more details about automaton generation.

Consequently, this study aims to solve the POMDP prob-

lems with LTL specifications defined below.

Problem 3.1: Given a POMDP with its belief state space

B that can be derived via (2) and a task expressed as

an LTL formula. The objective is to find a policy ξ∗(b)

that can complete the task by satisfying the acceptance

condition of the LTL-induced LDGBA.

3.3. Product POMDP

Therefore, we introduce a framework for solving a

POMDP problem by exploiting the fact that an LTL for-

mula can be transformed into an LDGBA representing

the task variables and safety constraints of the POMDP.

The problem of satisfying a given LTL objective φ in a

POMDP P can be reduced to the problem of satisfying a

repeated reachability (Büchi) objective φB in the product

POMDP.

Definition 3.2 (Product POMDP): The product POM

DP P× = P × A of a POMDP P = (S,A,T, s0,R,O,�,

�, L) and an LDGBA A = (Q,�, δ, q0,F) is defined as

a tuple P× = (S×,A×,T×, s×0 ,R
×,O,�×,F×) where:

• S× = S × Q is the finite set of labeled states, i.e. s× =

〈s, q〉 ∈ S× where s ∈ S and q ∈ Q.

• A× = A ∪ {ǫ} is the set of actions.

• T× = S× × A× × S× → [0, 1] is the transition func-

tion, specifically,

T×
(

s×, a×, s×
′
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T(s, a, s′) q′ = δ
(

q, l
)

,

l ∈ L(s′) and a ∈ A

1 a× ∈ {ǫ} and

q′ ∈ δ(q, ǫ) and

s′ = s,

0 otherwise.
(7)

• s×0 = 〈s0, q0〉 ∈ S× is the initial state, where s0 ∈ S and

q0 ∈ Q.

• R× = S× → R is the reward function of the product

state 〈s, q〉.

R×(s×) =

⎧

⎨

⎩

R(s) l ∈ L(s), q′ = δ
(

q, l
)

∈ Fi, and

Fi ∈ F

0 otherwise.
(8)

• �× = S× × A× × O → [0, 1] is the observation

function

�×(s×
′
, a×, o) = �(s′, a×, o) (9)

where s′ ∈ S and a× ∈ A. On the other hand, if a× ∈

{ǫ}, the agent stays at the same s, i.e. s′ = s, and the

belief state won’t be updated.

• F× = {F×
1 ,F×

2 , . . . ,F×
f } is the set of accepting sets,

where F×
i = {〈s, q〉|s ∈ S; q ∈ Fi}, i = 1, . . . f .

A randompath (s0, q0)(s1, q1) . . . of the product POMDP

corresponds uniquely to the combination of a path

s0, s1 . . . of the POMDP and a path q0, q1 . . . of the

LDGBA. On the other hand, the belief product state

denoted as b× ∈ B×, where B× = Dist(S×), represents

the probability distribution over all the possible product

POMDP states. Similarly, the new belief product state can

be updated by the formula derived from (2):

b×
t+1(s

×′
) ∝ �×(s×

′
, a×

t , ot+1)
∑

s×∈S×

T×(s×, a×
t , s

×′
)

× b×
t (s×) (10)

It is noted that the product POMDP shares the same

observation space of POMDP. The initial belief state is

b×
0 ∈ B×. Considering the initial automaton state is q0,

b×
0 is defined as:

b×
0 (s, q) =

{

b0(s) q = q0
0 otherwise.

(11)

The expected return under a policy ξ× can be written as

below, similar to (1).

Uξ×
(b×) = E

ξ×

[

∞
∑

t=0

γ tR(b×
t )

∣

∣

∣

∣

∣

b×
t=0 = b×

]

(12)

where the reward function remains as

R(b×
t ) =

∑

s×∈S×

b×
t (s×)R(s×). (13)

The constructed product POMDPP× can be interpreted

as the POMDP P with the augmented state space to

account for the temporal logic specifications represented

by LDGBA A. All the feasible paths on P× share the

intersections between all the accessible paths over P

and all words accepted by A. Specifically, a path σ ξ×

= (s0, q0)(s1, q1) . . ., generated by a random policy ξ×

on the product POMDP P×, is accepted if inf(σ ξ×
) ∩

F
×
i �= ∅,∀i = 1, . . . f , whereF× captures the acceptance

conditions of LDGBAA.

The belief state bt(s) represents the probability distri-

bution of the agent in POMDP state s ∈ S given the his-

tory up to time t. bt+1 is then updated from the previous

belief state bt , the executed action at , and the resulting

observation ot+1 by (2) for all s
′ ∈ S. Based on that, bt ∈ B

also has the Markovian property. Therefore, finding the
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optimal policy as a function of belief states in a POMDP

problem is equivalent to solving an MDP problem with a

continuous belief state space.Moreover, according to pre-

vious studies on MDP problems with LTL specifications

[29, 31–33], the optimal policy ξ×∗
(b×) on the prod-

uct POMDP P× is also the optimal policy ξ∗(b) on the

POMDP P satisfying LTL specifications. Consequently,

Problem 3.1 can be reformulated as follows.

Problem 3.2: Given a product POMDP defined in

Section 3.3 as P× = P × A of a POMDP P and an

LDGBAA generated from LTL specifications φ, the cor-

responding belief state space can be derived via (10). The

objective is to find a policy ξ×∗
(b×) so that the expected

return is maximized.

3.4. Reward redesign or tracking-frontier function

When directly applying the constructed LDGBA in solv-

ing a product POMDPproblem defined in Problem 3.2, it

may fail to find the deterministic policy that satisfies the

LTL specifications [20, 21]. For example, to complete the

task that an agent shall visit states labeled with ‘a’ and ‘b’

once at a time for infinitely many times, the LTL formula

can be written as

φ = (�♦a ∧ �♦b) ∧ �¬c (14)

Rabinizer 4 [18] is used to convert the LTL formula

into an LDGBA. We augment the accepting states in

order to separate ‘a’ and ‘b’ transitions. In addition, we

simplify the automaton by only keeping single labeled

transitions, which is sufficient to explain this example.

The full automaton after states augmentation is shown in

Figure 1, and the set of accepting sets isF = {{q0}, {q1}}.

Theoretically, this automaton may accept a word of

(b∗a∗)ω where ∗ω ∗ ω matche the preceding character(s)

finite times and infinite times. However, since the typical

reward design in (8) depends on the product states corre-

sponding to the LDGBA accepting states, the agent may

tend to keep visiting one of the labeled states infinitely

many times to collect more rewards. Consequently, the

specified task cannot be accomplished.

To address the above issue for surveillance tasks, we

redesign the reward function as below by adding a con-

straint to (8) such that the agent can visit the accepting

sets repeatedly.

R×(s×) =

⎧

⎨

⎩

R(s) l ∈ L(s), q′ = δ
(

q, l
)

∈ Fi,Fi ∈ F ,

and q′ �= q

0 otherwise.
(15)

where q �= q′ prevents the repeated transitions, which

lead to the same automaton accepting state by remov-

ing the rewards on the associated labeled POMDP states.

Figure 1. an LDGBA automaton.

After applying this constraint to the reward function, the

derived optimal policy satisfies the desired task specifi-

cation. We provide the simulation of this example with

the model-based SARSOP solver on the POMDP envi-

ronment in Section 5.1.

In addition, we introduce another approach that

implements a frontier set T to keep track of non-visited

accepting sets based on the previous work byM. Cai [32].

In most cases, T is initialized as F . If a state of one

or more accepting sets has been visited, those sets will

be removed from the frontier set T . Mathematically, the

tracking-frontier function TF is defined and updated as

[32]:

TF
(

q,T
)

=

⎧

⎨

⎩

T \ Fi, if q ∈ Fi and Fi ∈ T ,

F \ Fi, if q ∈ Fi and T \ Fi = ∅,

T , otherwise.

(16)

Once the frontier set T becomes empty, it will be reset

as F if the specification requires the infinite visits of

all accepting sets. Consequently, the accepted words in

Figure 1 can be (ab)∗, (ba)∗. It shall be noted that the vis-

ited LDGBA accepting sets are removed from the frontier

set T , and at the same time, the rewards on the associ-

ated labeled states are disabled. Therefore, it prevents the

repeated visiting of the same automaton state. Further-

more, the original definition of reward in (8) is redefined

as

R×(s×) =

⎧

⎨

⎩

R(s) l ∈ L(s), q′ = δ
(

q, l
)

∈ Fi, and

Fi ∈ T

0 otherwise.
(17)

The above tracking-frontier function TF can be revised

according to different task specifications. For example,

additional constraints can be added to TF that only

removesFi in order, forcing the agent to visit the labeled

states in a specific sequence. This approach is not easily

directly implemented in the SARSOP solver but in DQN.

Therefore, we only applied the frontier set to DQN in this

study.
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4. Problem solutions

4.1. Point-based value iteration

A product POMDP can be viewed as a POMDP but

simultaneously satisfies the task constraints provided

by the LTL-induced automaton. The transitions in the

product POMDP are restricted and prevented by the

automaton transitions. Therefore, the proposed product

POMDP problem can be solved by themethods that have

been successfully applied to POMDPproblems. It shall be

noted that the state space is extended due to the product

of POMDP and LDGBA.

One of our approaches uses SARSOP [11] to approx-

imate the optimal value functions on product POMDP.

To achieve this, SARSOP introduces a lower-bound tar-

get level L and an upper-bound target level U. A target

gap size ε between L and U at b×
0 is initialized. When the

sampling process follows the belief treeTR, the target lev-

els, i.e. L and U, are updated as Lt and Ut where t is the

depth of the node in the tree. The sampling path will be

terminated once the gap size between Lt andUt for all the

leaves in TR reaches γ −tε where γ is the discount factor

[11].

To update the lower and upper-bound target levels (Lt
and Ut) from Lt−1 and Ut−1, the following equation is

utilized first to calculate the lower bound of the optimal

Q value [11] once an action is selected.

Q(b×, a×) = R(b×) + γ
∑

o∈O

P(o|b×, a×)V(b×′
) (18)

where V , obtained by the fixed-action policy [34], is the

lower bound of the optimal value functionV∗ at b×′
. The

upper bound of the optimal Q value, Q, is obtained sim-

ilar to (18), and its upper bound V can be acquired by

sawtooth approximation [34]. In addition, P(o|b×, a×) is

defined as [10]

P(o|b×, a×) =
∑

s×′∈S×

�×(s×
′
, a×, o)

×
∑

s×∈S×

T×(s×, a×, s×
′
)b×(s×) (19)

Then, Q is used to find an intermediate lower-bound

target level L′ as the maximum value between Lt−1 and

Q. Similarly, an intermediate upper-bound target level

U ′ is the maximum value between Ut−1 and Q + γ −tε.

Finally, the target level Lt for the next belief node b
×′

can

be calculated, and it is needed for Q to achieve its target

level L′. Similarly,Ut is acquired by computingQwithU ′

[11].

Next, the standard backup process for α-vectors in

Ŵ is performed with the value function approximation.

The last step is the pruning process [11] in which the

sub-optimal belief nodes and α-vectors are pruned away.

Finally, a more strict requirement of dominance check,

called δ-dominance [11], is used to eliminate the sub-

optimal α-vectors. Algorithm 1 describes the implemen-

tation of this approach to determine a set of α vectors, Ŵ,

which is used to approximate the optimal value functions

of the product POMDP P×.

Algorithm 1 Point-basedModel Checking (SARSOP) on

POMDPs with LTL specifications.

Require: LTL formula φ, POMDP P , precision ε

Convert φ to LDGBA AutomatonA,

Construct The product POMDPs P× = P × A

Initialize the initial belief b×
0 ∈ B× as the root of the

search tree TR. Set upper-bound target level U and

lower-bound target level L.

Initialize the set of α vectors Ŵ, upper and lower

bounds V and V of V∗. V̂ is set as the prediction of

V∗. Sample the initial points (TR, Ŵ, b×
0 , L, U, ε, t=1),

where t is the time step.

while Termination is not satisfied do

for Sampling points(TR, Ŵ, b×, L, U, ε, t) do:

if V̂ ≤ L and V ≤ max{U,V(b) + γ −tε}

then:

Return

else

Update the Lt and Ut .

Compute the next belief b×′
by (10).

Sample points (TR,Ŵ, b×′
, Lt ,Ut , ε, t + 1).

end if

end for

Perform α-vector backup at the belief node b× of

TR by (5).

if Q(b×, a×) < Q(b×, a×′
) then

Prune away all the points from b× taken a× in

TR.

end if

if α1 δ-dominates α2 then

Prune away α2.

end if

end while

Return Ŵ.

4.2. DeepQ-learning

Another approach for solving product POMDP prob-

lems is deep Q-learning (DQN). This approach employs

neural networks to map a belief product state to the

corresponding state-action values, i.e. Q values, for the

agent choosing the best action. Compared to the SAR-

SOP solver, DQN requires more computation time since



878 J. LI ET AL.

it uses Monte Carlo simulation. However, it is eas-

ier to implement the tracking-frontier function (16)

TF (q,T ) in DQN than in the SARSOP solver. As stated

in Section 3.4, the LTL-induced LDGBA with the fron-

tier set T can handle more complex tasks without adding

extra computational complexity [32] to the original

derived automaton. In this study, the tracking-frontier

function that can record the visited or non-visited accept-

ing sets in each round is implemented in DQN.

Figure 2 illustrates the Q networks’ architecture, sim-

ilar to a convolutional neural network (CNN). The Q

networks consist of ‘Convolutional’ layers, ‘Flatten’ layers,

‘Fully-Connected’ layers with linear activation functions

at the end to generate the outputs as the approximated Q

values of individual actions corresponding to the input

belief state. In this study, a considered POMDPhas a two-

dimensional state space, and the LTL-induced LDGBA

state space provides an additional dimension. Conse-

quently, a belief state of the product POMDP is a three-

dimensional array as the input to Q networks. Compared

with artificial neural networks (ANNs), CNNs can auto-

matically detect important features without any human

supervision. In our Q network architecture, there are no

‘maxpooling’ layers because every belief point is impor-

tant, and any missing information may cause a dramatic

accuracy drop in the trained network.

In DQN, two identical Q networks are initialized: the

evaluation network (Qe) and the target network (Qt). The

target network is utilized for the next action selection and

Q value prediction. The evaluation network is trained

everyM steps by a number (i.e. batch size) of experiences

〈b×
i , a

×
i , ri, b

×
i+1〉. After every K steps, the target network

is updated by copying the weight coefficients of the eval-

uation networks. Using two neural networks can prevent

the bootstrapping of the DQN with a single neural net-

work. In the so-called model replay, once the random

sample setU(D) is collected, the newQvalue is computed

by the equation as [16]

Qnew(b×
i , a

×
i ) = Qe(b

×
i , a

×
i ; θe)

+ α

[

ri + γ max
a×
i+1∈A

×
Qt(b

×
i+1, a

×
i+1; θt)

− Qe(b
×
i , a

×
i ; θe)

]

(20)

Algorithm 2 demonstrates the procedure of applying

deep Q-learning with LDGBA and tracking-frontier

function to approximate the Q value function of POMDP

with temporal logic specifications.

Algorithm 2 Deep Q-Learning for product POMDP

problems.

Require: LTL formula φ, POMDP P

Convert φ to an LDGBA A, initialize the frontier set

T = F

Construct the product POMDP P× = P × A

Initialize the evaluation network Qe, the target net-

workQt , the learning rate α, the discount factor γ , the

number of episodesE, the number of stepsN, the batch

sizeM, and the Qt update steps K.

while The current episode e in E do

Randomly select a start state s×0 .

Initialize the belief state b×
0

while The current step i in N do

Select and perform an action a×
i .

After perceiving an observation, update the

belief state b×
i+1 via (10).

Update T and the reward function by Equa-

tions (16) and (17).

Calculate the rewards ri by (13).

Store transition 〈b×
i , a

×
i , ri, b

×
i+1〉 in the replay

memory D.

if i > 0 and i%M=0 then

Randomly select the samples U(D) with

length asM.

while every 〈b×
i , a

×
i , ri, b

×
i+1〉 in U(D) do

compute Qnew by (20).

end while

Train Qe by the set of Qnew.

end if

if i > 0 and i%K=0 then

Pass the weights of Qe to Qt .

end if

end while

end while

Training end and save the evaluation network Qe

5. Simulation results

We evaluate our methodologies on two simulations with

the discrete POMDP state spaces. We first carry out the

simulations over a partially observable grid world. The

product POMDP models are generated in Python 3.9

with Rabinizer 4 [35] and then solved by Julia SARSOP

solver [11] and DQN (via Python), respectively. Further-

more, the grid-world simulation is scaled to different

sizes of state and observation spaces to evaluate the scal-

ability of the value iteration approach via SARSOP. Then,

we apply the value iteration approach to a more realistic

office scenario with TurtleBot2 via Pybullet 3.0 [36]. All

simulations are completed on a desktop with a 3.20 GHz
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Figure 2. The Q network architecture with convolution and fully-Connected Layers.

Figure 3. A 10 × 10 grid-world workspace.

eight-core CPU and 32GB of RAM. Some source codes

and supplementary materials are provided.1

5.1. Grid-world simulation by SARSOP

Here considers a grid-world workspace with a size of

10 × 10, as shown in Figure 3. The labeled cells are

marked with different colors representing different areas

of interest. For example, ‘a’ and ‘b’ are labeled on the goal

states that an agent may visit multiple times according to

the specified task. ‘c’ is the label on the trapping states

where an agent cannot escape once entered. ‘B’ represents

the block states, i.e. obstacles, that the agent is not able to

pass.

The agent, e.g. the mobile robot, in the grid world can

take four actions at each state: up, left, down, and right.

After taking each action, the agent can move towards the

desired state with a probability of 0.9 and move side-

ways with an equally weighted probability distribution

otherwise. If the next state is outside the grid world or

the obstacle, the agent will stay at the current state. In

addition, the agent can observe the current state with a

probability of 0.9 and adjacent stateswith a total probabil-

ity of 0.1 uniformly distributed. The obstacles (i.e. states

labeled with ‘B’) cannot be observed. The discount factor

γ is all set as 0.95.

In the grid world, the agent is required to visit states

labeled ‘a’ and ‘b’ once at a time for infinitely many

times, as stated in Section 3.4. The LTL formula is writ-

ten as (14), and the induced LDGBA is shown in Figure

1. The POMDP environment has 100 states, and its cor-

responding product POMDP consists of 300 states. The

set of accepting sets of the derived LDGBA is F =

{{q0}, {q1}}, and the standard rewards in (8) are assigned

with the labeled states transitions to q0 and q1.

We first use the SARSOP solver to obtain the optimal

value functions of belief states and then derive the opti-

mal policy. Figure 4(a) illustrates an induced path from

a start state, marked as a large purple solid circle. The

agentmoves to ‘a’ straightly, and the LDGBAstate transits

from q0 to q1. In Figure 4(b), it can be seen that the agent

keeps visiting states ‘a’ since q1 has a recurrent transition

by consuming the symbol ‘a’ in the LDGBA (Figure 1).

The agent must visit ‘a’ on q1 infinite times to maximize

the collected reward. Therefore, the specified task cannot

be accomplished.

To address the above issue discussed in Section 3.4,

we apply the redesigned reward in (15) by only assigning

rewards to the transitions that lead to the accepting states

from a different automaton state. Then, after solving the

problem again via SARSOP and obtaining the optimal

policy, we generate another path, shown in Figure 5.

It illustrates a successful run in which the agent visits

states ‘a’ then ‘b’ and keeps visiting them alternatively for

infinite times.

Starting from the initial state, shown in Figure 5(a),

the agent moves left straightly to reach the area labeled

‘a’, which leads the automaton transition from q0 to q1.

A bend in the route indicates the agent pauses there

for an extra time due to the action uncertainty. Figure

5(b) shows the induced path on the POMDP at automa-

ton state q1. The agent leaves area ‘a’ and moves right

then up to reach the green area labeled as ‘b’. Up to this

point, the agent successfully completes one round, and
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Figure 4. An induced path from the optimal policy via SARSOP using the standard reward design.

Figure 5. An induced path from the optimal policy via SARSOP using the redesigned reward.

Table 1. Simulation results for various scale workspaces.

Workspace
size(cells) POMDP states product states

computing
time(seconds)

10× 10 100 300 4.67
20× 20 400 1200 358.97
40× 40 1600 4800 23,649.83

the automaton state transits back to q0. In Figure 5(c), the

agent moves from ‘b’ to ‘a’ again to start another round.

We also tested the algorithm on the same grid-world

problem with various workspace sizes to show the com-

putational complexity. The simulation results are listed

in Table 1. It shows the times in seconds used to learn

optimal policies.

A similar scalability study was performed in [24], in

which the LTL formula was converted to DRA. They

investigated grid worlds with state spaces up to 10 by

10, and the simulation time for the size of 10 by 10 is

comparable to the one in Table 1.

5.2. Grid-world simulation by DQN

We tested another model-based approach using

DQN with the tracking-frontier function to the same

grid-world problem. The input shape for Q networks

is (10 × 10 × 3). The dimensions correspond to the

size of a belief product state, including the row and

column numbers of the workspace in the POMDP

and the number of automaton states of LDGBA,

respectively.

The Q network architecture is shown in Figure 2. In

this study, two convolutional layers extract the features

from the input belief state. One layer uses eight (4 × 4)

filters with stride (2, 2), and the other uses 16 (2 × 2) fil-

ters with stride (1, 1). The outputs are converted to a 1D

array by a ‘Flatten’ layer. Then, two fully-connected layers

with 128 and 64 neurons are used to predict the corre-

sponding Q values. The Rectified Linear Unit (i.e. ReLU)

is utilized as the activation function in the Q networks.

The learning process includes 500 steps per episode for

8,000 episodes. Two Q networks, the evaluation network

Qe and the target network Qt , are randomly initialized.

The training batch size for the evaluation network is

32, and the target network is updated by copying the

weight coefficients of Qe every 50 steps. Since DQN uses

Monte Carlo simulation, it is computationally intensive.

The computing time for this simulation is 49450.4041

seconds.
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Figure 6. An induced path from the optimal policy via DQN with the tracking-frontier function.

The frontier set T is initialized as {{q0}, {q1}}. The

rewards are assigned on the states labeled either ‘a’ or ‘b’,

resulting in the automaton transitions to q0 or q1, respec-

tively. Once the automaton state in an accepting set of

T is visited, this accepting set will be removed from T ,

and the corresponding reward is disabled too, as indi-

cated in (16). After learning, the evaluation Q network

can predict the optimal Q values for a given belief state.

Consequently, the optimal policy can be derived. Figure 6

shows an induced path resulting in a successful run in

that the agent recurrently visited states ‘a’ and ‘b’ once at

a time for infinitely times. It shall be noted that the gen-

erated path differs from the one in Figure 5 because of

action uncertainty.

5.3. PyBullet TurtleBot simulations

This section considers an office environment generated

from PyBullet3.0 [36], a virtual robotic platform, as

shown in Figure 7. First, we map this virtual office envi-

ronment to a gridworld to learn the optimal policy. Then,

the policy is applied to TurtleBot2 in PyBullet, where we

can implement the robotic dynamics and a PID controller

to ensure the robot follows the path generated from the

derived policy.

The environment has four office rooms denoted as

‘a’, ‘b’, ‘c’, and ‘d’, the storage room as ‘S’, the printer’s

room as ‘Print’, and the supply station for the robot to

recharge noted as ‘Sply’. two big windows (facing west)

are located at offices ‘a’ and ‘d’. In addition, the robot can

also observe ‘wall’, ‘hallway’, and ‘door’. The sensor and

actuator uncertainties can be modeled as the observation

and action probabilities in the POMDP abstraction, as

discussed in [37, 38]. We consider two different obser-

vation settings in this example. We also assume that the

TurtleBot can successfully follow its navigation controller

bymoving in the intended direction, with a probability of

0.9. Otherwise, the agent will accidentally move toward

Figure 7. The office environment.

any other direction with the same probability (the total

probability is 0.1). Moving toward the wall will keep the

robot staying at the same location.

The office space is divided into a 4 by 4 grid with 16

states. There are two big windows (facing west) located

at offices ‘a’ and ‘d’ that the TurtleBot (i.e. the agent) can

sense by its embedded sensors. In addition, the agent can

also observe ‘wall’, ‘hallway’, and ‘door’. Given a specified

task, we can formulate this office scenario as a product

POMDPproblem and apply the SARSOP solver to obtain

the optimal policy. Two different observation settings are

considered in this study.

5.3.1. Observation of the surroundings

In this setting, the agent can observe the surrounding

information of the current state in all four directions

without a specific order. There are a total of 8 obser-

vations, and each state has only one observation. For
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Figure 8. A path of two complete runs for Case 1 with the observations in four directions.

example, office ‘b’ has the observation, O(‘b’) = ‘door’

‘wall’ ‘wall’ ‘wall’. Since it is the only observation at this

state, its observation probability is 1.0. However, it shall

be noted that office ‘c’ and the printer’s room have the

same observation as Office ‘b’.

In Case 1, starting from an initial position, the Turtle-

Bot visits the printer’s room to collect the documents

and then carries the documents to offices ‘a’ or ‘c’

recurrently. Meanwhile, TurtleBot shall avoid the storage

room. This task can be formulated via LTL as below, and

the induced LDGBA with only single-label transitions

has four automaton states.

ϕcase1 = �(Print → ©(¬Print U (a ∨ c))) ∧ �(¬S)

= �ϕ1 ∧ �(¬S) (21)

Figure 8(a) shows that, following the optimal policy,

the TurtleBot starts from the end of the hallway (i.e. its

initial position) and arrives at the printer’s room first, as

the red route indicates. The agent then leaves immedi-

ately after picking up the documents and heads to office

room ‘c’, as the yellow route shows. Figure 8(b) shows

that the TurtleBot leaves office ‘c’ and continuously com-

pletes the second round. Since TurtleBot can observe all

four directions, it made the belief convergence fast, and

the agent can plan the path accordingly. The path appears

that TurtleBot efficiently completed the task with small

action uncertainty indicated as the to-and-fro part of the

yellow path.

Case 2 requires the TurtleBot to visit the supply sta-

tion right after it accomplishes the delivery task in Case

1, and the storage room must also be avoided during the

entire task. The LTL formula of Case 2 in (22) is extended

from part of the formula (21) used in Case 1, denoted as

ϕ1. Different from the task in Case 1, we only require the

agent to complete one run in Case 2.

ϕcase2 = ϕ1 ∧ ((a ∨ c) → ©(¬(a ∨ c) U Sply)) ∧ �(¬S)

(22)

As shown in Figure 9, the TurtleBot starts from office

‘b’ (as the initial state), moves to the print room, and

delivers the documents to office ‘a’. Then, it arrives at the

‘Sply’ station to complete this task. Two states on the red

route are visited more than once because of the action

uncertainty.

5.3.2. Observation in a single direction

In another observation setting, the agent can only

observe on one direction at each state it visits. The obser-

vation set is ‘wall’, ‘hallway’, ‘door’, ‘window’. Assuming

each observation has the same chance of being detected

by the agent’s sensors, the observation probabilities can

be calculated. For example, the agent can observe ‘door’,

‘wall’, and ‘window’ with probabilities of 0.25, 0.5, and

0.25, respectively, in office ‘a’. It can be seen that the

observation uncertainty is much higher than that in the

previous observation setting. Consequently, the compu-

tation time is longer for the agent to learn the optimal

policies, as shown in Table 2.

Compared with the path with all four-directional

observations, a single observation element provides the

agent less sense of what the current state is, the increased

observation uncertainty brought the difficulty of the opti-

mal path planning. As Figures 10 and 11 show, the agent
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Figure 9. A path for Case 2 with the observation in four direc-
tions.

encountered difficulty in selecting the suitable actions

especially around the ‘hallway’ states between the office

rooms ‘c’, ‘d’, and printer’s room, which appears as the

bends and edges in the planned paths.

6. Conclusions

This paper tends to solve POMDP problems with high-

level and complex tasks that can be formulated via LTL

Table 2. Time consumption of generat-
ingoptimal policies inoffice simulations.

Cases(Observation)
Computing

time[seconds]

Case 1 (four directions) 1.21
Case 1 (one direction) 18.64
Case 2 (four directions) 3.74
Case 2 (one direction) 29.83

and then converted to LDGBAs. Such a motion planning

problem became equivalent to finding an optimal pol-

icy on the product of POMDP and the induced LDGBA.

Two model-based RL approaches are adopted to derive

the optimal policy as a function of the belief state. One

approach is based on the PBVI methods, and we utilize

the SARSOP solver on the product POMDP to approx-

imate the optimal value functions. In another approach,

we employ a CNN architecture for Q-networks in DQN

tomap the relationship between a belief state and its opti-

mal state-action values (i.e. Q values). To address the

issue that LDGBA may fail to find the deterministic pol-

icy for some task specifications. We redesign the reward

function and introduce a frontier-tracking function for

the above-mentioned approaches, respectively. The sim-

ulations demonstrate that the agent could accomplish the

specified tasks by following the derived optimal policies.

In addition, we perform the scalability study on the

value iteration approach. In contrast, DQN is more

computationally intensive because many episodes are

needed for convergence while updating the belief state

at each step. However, with the implementation of the

frontier-tracking function, DQN is adaptive to various

Figure 10. The path of office simulation Case 1 with the observation in a single direction.
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Figure 11. The path of office simulation Case 2with the observa-
tion in a single direction.

task specifications. In future works, our proposed DQN

approach can be potentially extended to a hybrid frame-

work accommodating both model-free and model-based

approaches, in which the belief state can be updated

based on the approximation of transition and observation

likelihoods. Furthermore, this DQN approach can also

be combined with Inverse reinforcement learning (IRL)

in POMDPs to use the learned Q-values as a feature to

extract the rewards in problems with large state spaces.

This approach has been explored in other works [39, 40]

and can be further researched.

This study focuses on high-level motion planning

to find the optimal policy for the agent to accomplish

user-specified complex tasks. Although we use a virtual

TurtleBot2 on PyBullet3.0 to validate the derived policy,

it would be interesting to incorporate the internal con-

trollers of a robot in real-world applications. Fainekos

et al. [41] designed a closed–loop hybrid controller to

integrate the continuous trajectory control to discrete

path planning, which satisfied high-level task specifica-

tions via LTL. Specifically, the transitions of the agent

between states in POMDP can be considered as many

subtasks. For example, suppose the high-level policy out-

puts a discrete action, such as ‘go forward’ or ‘turn left.’

In that case, the discrete action needs to be mapped to

the desired linear and angular velocities, by consider-

ing the robot’s dynamics and kinematics. The low-level

controllers, such as a PID controller, can send the con-

trol signals to the actuators (e.g. the motors) to drive the

wheels. At the same time, the observations captured by

the agent’s embedded sensors serve dual purposes in the

POMDP framework. Firstly, they provide feedback to the

trajectory control between the states. Secondly, the obser-

vations can also be used to update the agent’s belief state

for the high-level decision-making process.

The proposed model-based approaches have limita-

tions because the transition and observation probabilities

must be provided to update the belief state. Model-free

RL methods will be considered for POMDPs with LTL

specifications in future works. In that case, the decision-

making will depend on the history of observations or

actions.

Note

1. https://github.com/JunchaoLi001/LDGBA-Model\_
Checking.
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