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Summary. Compaction bands are tabular zones of localized compressive defor-8
mation associated with porosity and permeability reduction. Depending on their9
orientation, compaction bands can act as barriers to fluid flow, and can be detri-10
mental to fluid production in oil and gas reservoirs, as well as in CO2 sequestration.11
The process of permeability reduction and the development of excess pore pres-12
sures during compaction band formation in a heterogeneous rock mass are not fully13
understood. Furthermore, few studies have modeled compaction band formation14
considering coupled hydromechanical processes. In this study, we propose a coupled15
hydromechanical, phase-field approach for capturing the formation and propagation16
of compaction bands in heterogeneous porous media. Breakage mechanics is adopted17
to characterize the free energy function in the intact and damaged material. The18
resulting phase-field variable provides a measure of the degree of grain crushing.19
Permeability reduction in the zone of compaction localization is modeled using the20
Kozeny-Carman equation accounting for microstructural evolution. Numerical sim-21
ulations demonstrate the ability of the model to capture compaction band forma-22
tion, porosity reduction, and permeability evolution under drained and undrained23
conditions. The results highlight the role of effective confining pressure, drainage24
conditions, and material parameters on the styles of compaction bands that form.25

Keywords. Compaction band, grain crushing, permeability evolution, phase-26

field, porous media27

1 Introduction28

Porous sedimentary rocks have worldwide economic importance as they are29

key hosts for groundwater and hydrocarbon reservoirs [93], CO2 sequestra-30

tion [101], and hazardous waste disposal [59]. The fluid injection, storage and31

extraction processes involved in these applications rely significantly on the32

mechanical and hydraulic properties of the host rocks. As such, structures33

and features that act as barriers for fluid flow can have adverse impacts on34
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the properties of these rocks. One such feature is a compaction band, which is35

one type of deformation band that occurs as a thin, tabular zone of localized36

compaction [5, 18, 19, 56]. Compaction bands have been observed in various37

high-porosity rocks, including sandstones [40, 46, 48, 72, 91, 92, 114, 122],38

limestone [102], and volcanic rock [44]. Depending on their orientation, and39

microtexture, compaction bands can be categorized into either pure or shear-40

enhanced compaction bands [40]. The shear-enhanced compaction bands in-41

clude straight tabular compaction bands that form obliquely (38–53◦) to the42

direction of maximum principal stress [40, 56], and wiggly bands with wave-43

lengths of several centimeters [79]. Wiggly bands consist of individual seg-44

ments of oblique compaction bands that generally develop perpendicular to45

the direction of maximum principal stress. In contrast, pure compaction bands46

are straight bands that develop perpendicular to the direction of maximum47

principal stress.48

Compaction bands can result in significant porosity and permeability re-49

duction, unlike shear bands that can also exhibit dilative behavior [5]. Of-50

tentimes, compaction bands exhibit signs of grain damage, cataclastic pore51

collapse, and preferential clay accumulation [40, 70]. Previous studies suggest52

that compaction band initiation and propagation can be triggered by spa-53

tially heterogeneous material properties [30, 35, 46, 57]. Compaction bands54

have been found to initiate at high porosity zones in Bleurswiller sandstone55

[46] and Mount Gambier limestone [30]. There is also evidence of continued56

diffusive growth within these zones of higher porosity [30, 46]. As such, com-57

paction band formation generally results in microstructural evolution of the58

rock’s material properties, which in turn can change its mechanical and hy-59

draulic behavior. There has also been evidence of borehole breakout resulting60

from compaction localization [39, 53, 54]. Thus, it is desirable to develop mod-61

els that capture the formation and propagation of compaction bands with the62

added ability to realistically predict the evolution of heterogeneity and per-63

meability of the rock.64

There have been a number of studies on the development of compaction65

bands in high porosity rocks [1, 7, 9, 11, 28, 93, 103, 109, 111]. A handful of66

these studies have focused on the effects of compaction localization on per-67

meability reduction [8, 47, 59, 115, 139]. Laboratory-scale experiments have68

identified the macroscopic hydromechanical response and microstructural al-69

terations in and around the vicinity of the compaction band [38]. The per-70

meability has been found to vary with several orders of magnitude difference71

between inside and outside the localization zone within the same rock sam-72

ple [8, 115]. Factors controlling the permeability reduction in the compaction73

band include the reduction in porosity, the specific surface area, and the av-74

erage aspect ratio of the band [47, 115]. In addition, the evolution in the pore75

shape and grain orientations during compaction band formation can also lead76

to anisotropic permeability in porous rocks [8]. However, most studies con-77

ducted tests under drained conditions, and there is limited understanding of78

the failure patterns under undrained conditions [109].79
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Mechanistic models have been proposed to capture the formation of com-80

paction bands in porous rocks. The ‘anticrack’ model proposed by Mollema81

and Antonellini [87] and Sternlof et al. [108] uses an analog to linear elas-82

tic fracture mechanics to describe the stress distribution around the tip of a83

compaction band, in which the ‘free faces’ of the crack are allowed to over-84

lap (a reverse kinematics to the mode-I crack opening). The bifurcation ap-85

proach proposed by Rudnicki and Rice [99] has also been used to predict86

compaction band formation [27, 65]. Some authors adopted micromechanics-87

based approaches, such as spring network models and discrete element models88

[68, 69, 79, 81, 117, 123, 125], which have offered insight into the formation89

and propagation of compaction bands at the grain scale. Other studies incor-90

porated the breakage mechanics framework [41, 42] coupled with plasticity91

to capture grain crushing and track the progression of the compaction band92

[36, 90, 113]. Recently, the phase-field approach has been adopted in sev-93

eral studies to model compaction band formation [62, 116]. The phase-field94

approach is based on the variational approach to fracture [49], in which the95

crack is approximated as a diffuse interface represented by the phase-field vari-96

able, and has been extended to model fractures in rocks [34, 45, 126, 138]. Ip97

and Borja [62] developed a phase-field formulation for modeling compaction98

bands in rocks employing breakage mechanics and critical state plasticity.99

They showed that the development of different types of compaction band100

patterns was influenced by material properties such as the plasticity model101

parameters, the critical fracture energy Gc and the grading index θ, as well102

as loading conditions such as the confining pressure. Additionally, they high-103

lighted the importance of spatially varying material parameters on the devel-104

opment of different compaction band patterns. Wang et al. [116] also adopted105

a phase-field approach to model compaction band formation under dynamic106

loading conditions.107

Simultaneously, there has been an extensive body of work on modeling108

the permeability evolution under applied stresses, accounting for porosity re-109

duction and an increase in the specific surface. A variety of methods have110

been used to model the hydraulic behavior, including empirical formulations111

[37], capillary models [71], statistical approaches [66], and hydraulic radius112

theories [140]. Among the empirical models, most are generalizations of the113

Kozeny-Carman model [26, 73]. The evolution of the microstructure during114

deformation needs to be tracked to accurately capture the permeability reduc-115

tion when a compaction band forms. Since breakage mechanics can capture116

changes in the microstructure, including the porosity and specific surface area,117

models based on breakage mechanics have been used to study the permeability118

evolution in rocks using a Kozeny law [43, 89].119

Few studies have proposed hydromechanical formulations that account120

for permeability reduction resulting from grain crushing and microstructure121

evolution [52, 75, 88, 124]. Wu et al. [124] presented a multiscale modeling122

approach using FEM/DEM to model compaction bands in specimens under123

dry, drained, and undrained conditions. However, they only considered pore124
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collapse and inter-granular debonding as the primary micromechanisms and125

neglected the effects of grain crushing. Continuum approaches have also been126

developed adopting breakage mechanics and nonlocal regularization to track127

grain crushing in porous rocks [52, 88]. Common enrichment techniques em-128

ployed for this purpose include the embedded strong discontinuity and ex-129

tended finite element methods [16, 17, 20, 77, 78].130

In this present study, we extend our previous phase-field formulation to131

model compaction band formation in porous media. The phase-field formula-132

tion adopts a free-energy decomposition inspired by breakage mechanics that133

is suitable for modeling compaction band formation, as well as utilizes the134

modified Cam-Clay plasticity model to describe the inelastic material behav-135

ior [21]. We couple the phase-field formulation with the governing equations136

for fluid flow in a fully-saturated isotropic porous media. Flow in the porous137

media is assumed to follow Darcy’s law and the Kozeny-Carman equation is138

used to describe the evolution of permeability due to changes in the poros-139

ity and grain size distribution. Subsequently, we demonstrate the ability of140

the model to capture various compaction band shapes, including pure com-141

paction and shear-enhanced compaction bands, under drained and undrained142

conditions, as well as the evolution of permeability in the sample. Finally, we143

investigate the effects of heterogeneous porosity on compaction band forma-144

tion in a natural rock [30] under different drainage conditions. We note that145

the proposed mechanistic model only considers grain crushing in fully dry and146

fully saturated conditions as the cause of compaction band formation, and ig-147

nores the effects of degree of saturation [61, 63, 64] and creep [23, 76, 130].148

2 Theory149

In this section, we combine the phase-field formulation for compaction band150

formation proposed by Ip and Borja [62] with balance of mass for the solid-151

fluid mixture, thereby introducing the pore fluid pressure p as an additional152

variable. As in the previous work, we assume the deformation to be infinites-153

imal and take the phase-field variable d as a measure of grain crushing.154

2.1 Governing equations155

Let B define the domain of the body with external boundary ∂B. We assume156

that the boundary can be decomposed into essential and natural boundaries157

∂Bu and ∂Bt, where displacement and surface tractions are prescribed, re-158

spectively; and ∂Bp and ∂Bq, where fluid pressure and flux are prescribed,159

respectively. The linear momentum balance takes the form160

∇ · σ + ρg = 0 in B

n · σ = t̄ on ∂Bt

u = ū on ∂Bu











, (1)
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where σ is the total Cauchy stress tensor, ρ is the mass density, g is the161

gravitational acceleration vector, n is the outward unit normal vector to the162

boundary ∂Bt on which the surface traction t̄ is prescribed, and ū is the163

prescribed value of displacement field u on the boundary ∂Bu.164

We assume that the pore space is fully occupied by one type of fluid. For165

an isotropic porous medium, the balance of mass can be expressed as166

b1 : ε̇+
φ

Kw

ṗ+∇ · q = 0 in B

−n̂ · q = q̄ on ∂Bq

p = p̄ on ∂Bp















, (2)

where167

b = 1−
K

Ks

(3)

is the Biot coefficient, ε is the total strain tensor, 1 is the identity tensor, K168

is the drained bulk modulus of the solid skeleton, Kw is the bulk modulus of169

water, Ks is the bulk modulus of the solid constituent, φ is the porosity, q is170

the Darcy flux, n̂ is the outward unit normal vector to the boundary ∂Bq on171

which the normal fluid flux q̄ is prescribed, and p̄ is the prescribed value of the172

pore pressure p on the boundary ∂Bp. The superimposed dot is the material173

time derivative following the solid motion.174

The total Cauchy stress tensor σ may be decomposed into an effective175

stress tensor σ′ and pore fluid pressure p according to the effective stress176

equation177

σ = σ′ − bp1 . (4)

We refer the readers to more recent articles [134–136] for developments ap-178

propriate for anisotropic porous media.179

The porous material may also contain an internal discontinuity, such as a180

compaction band, denoted by Γ . The presence of a discontinuous strain field181

in the zone of discontinuities is difficult to track using conventional numerical182

modeling techniques. As such, we follow the standard phase-field modeling183

approach suggested in Miehe et al. [83], in which the discontinuous strain184

field is regularized by introducing a phase-field variable d ∈ [0, 1] that repre-185

sents the degree of micro-structural changes in the material. In the framework186

proposed by Ip and Borja [62], d represents the degree of grain crushing. A187

completely intact region is denoted by the value of the phase-field variable188

d = 0, whereas a completely crushed zone is defined by the value d = 1. The189

strain jump in the damaged zone can then be approximated by introducing a190

compaction-zone density functional γ(d,∇d) [25]191

∫

Γ

Gc dA ≈

∫

B

Gcγ(d,∇d) dV

=

∫

B

Gc

( d2

2l0
+
l0
2
∇d · ∇d

)

dV ,

(5)
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where Gc is the critical energy release rate [100, 111, 114] and l0 is the length192

parameter controlling the width of the phase-field approximation zone. The193

phase-field evolution can then be expressed as194

Gcl0∇
2d− Gc

d

l0
−
∂ψ

∂d
= 0 in B

∇d · n = 0 on ∂B











, (6)

where ψ is the stored energy density and ∇2 is the Laplacian operator. The195

following section reviews the form of ψ developed in Ip and Borja [62] that is196

appropriate for modeling compaction band formation and propagation.197

2.2 Free energy decomposition for breakage198

Ip and Borja [62] proposed a novel free energy decomposition in which break-199

age mechanics theory is used to degrade the elastic modulus from its initial200

value at the intact state to its final value at the completely crushed state.201

Continuum breakage mechanics is a thermodynamically consistent constitu-202

tive model developed by Einav [41, 42] to predict the evolution of the grain203

size distribution in granular materials. In breakage mechanics, a macroscopic204

internal variable B, is introduced to track the degree of grain crushing in the205

material. The stored energy density proposed in Ip and Borja [62] uses the206

phase-field variable as a measure of the degree of grain crushing.207

For the elastic free energy density, we take advantage of the spectral strain208

decomposition proposed by Miehe [83] for an isotropic material to split the209

elastic strain εe , into a tension part, εe+, and a compression part εe−, with210

εe± =

3
∑

a=1

〈εa〉±n
(a) ⊗ n(a) , (7)

where εa and n(a) are the principal strains and principal directions, respec-211

tively, and n(a) ⊗ n(a) is the corresponding spectral direction. The elastic212

stored energy density function can also be split into a tension-related energy213

function and a compressive energy function214

ψe(εe, d) = ψe+(εp, d) + ψe−(εp, d) . (8)

Based on breakage mechanics, Ip and Borja [62] developed the following ex-215

pression for the compressive elastic free energy216

ψe−(εe, d) = g(d)θψe−
0 (εe) + (1− θ)ψe−

0 (εe) . (9)

where g(d) is a degradation function commonly defined as g(d) = (1− k)(1−217

d)2+k, and 0 < k � 1 is a stability parameter introduced to avoid numerical218

singularities when the phase-field variable approaches the value 1 [12, 13, 83,219
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85]. The grading index, θ = 1− ψe
u/ψ

e
0, is a scalar variable that describes the220

relationship between the undamaged elastic free energy ψe
0 and the remaining221

free energy ψe
u. This allows us to represent the elastic compressive free energy222

only in terms of the elastic free energy in the undamaged state.223

It then follows that224

ψe(εe, d) = g(d)
(

ψe+(εe) + θψe−
0 (εe)

)

+ (1− θ)ψe−
0 (εe) . (10)

and the effective stress tensor can be written as225

σ′ = g(d)(σ′+
0 + θσ′−

0 ) + (1− θ)σ′−

0 . (11)

Several studies have highlighted the importance of tensile microcracks in the226

formation of shear-enhanced compaction bands [3,4], which suggests that the227

tensile free energy contributes to the formation of compaction bands. We note228

the importance of accommodating for the development of tensile stresses in229

regions close to the imperfections, since tensile stresses could also impact the230

direction of propagation of the compaction band. Thus, we also apply the231

same degradation function g(d) to the tension regime. However, since the232

material is undergoing compressive axial strain, there is little development of233

the tension-related elastic free energy and the tensile stresses do not develop234

to the extent that a tensile crack propagates through the sample. As such, the235

evolution of the phase-field variable is not an indication of fracture or cracking236

under compressive loading conditions.237

The plastic stored energy density is also decomposed into tension and238

compression parts239

ψp(εp, d) = ψp+(εp) + ψp−(εp, g(d)) . (12)

To account for the contribution of plastic straining towards compaction band240

formation, we assume only a portion of compactive plastic flow contributes to241

grain crushing [129, 131]242

ψp− =

{

W p if tr(εp) ≤ 0

0 if tr(εp) > 0
(13)

243

ψp+ =

{

0 if tr(εp) ≤ 0

W p if tr(εp) > 0
(14)

whereW p is the plastic free energy, which is related to the accumulated plastic244

work and can generally be defined as [4]245

W p =

∫ t

0

(1− ω)σ : ε̇pdt , (15)

where t is the current pseudo-time and 1−ω is the Taylor-Quinney coefficient246

[110] that denotes the fraction of plastic work dissipated as heat and ranges247



8 Sabrina C.Y. Ip1
· Ronaldo I. Borja1,∗

from 0 to 1. We assume the Taylor-Quinney coefficient to be 0.9 (i.e., ω = 0.1)248

for all examples in this study.249

Finally, the stored energy density for modeling compaction band formation250

can be expressed as251

ψ(εe, εp, d) = g(d)
(

ψe+(εe) + θψe−
0 (εe)

)

+ (1− θ)ψe−
0 (εe) + ψp(εp, d) (16)

and the last term on the left-hand side of the phase-field evolution equation252

(6) can be rewritten as253
∂ψ

∂d
= g′(d)H , (17)

where254

g′(d) = 2(1− k)(1− d) (18)

and H is the phase-field driving force given by255

H = ψe+ + θψe−
0 +

∂ψp−

∂g
. (19)

2.3 Constitutive relations256

Solid deformation257

To close the boundary value problem, we assume the same solid deformation258

constitutive relations as the formulation presented in Ip and Borja [62]. Here,259

we briefly summarize the main features of the solid deformation model and260

simply refer the readers to Ip and Borja [62] for further details. From Eq. (7),261

the tension- and compression-related elastic free energies can be written as262

ψe+ = λ
〈trεe〉2+

2
+ µεe+ : εe+

ψe−
0 = λ

〈trεe〉2−
2

+ µεe− : εe−















, (20)

where λ and µ are the Lamé constants. Similarly, the stress-strain relationship263

can be written as264

σ′±

0 = λ〈trεe〉±1+ 2µεe± . (21)

We adopt the modified Cam-Clay (MCC) [14, 15, 60, 97] constitutive the-265

ory with a non-zero tensile strength to model plastic deformation. The yield266

function is given as267

F (σ′, pc) =
q2

M2
+ (pv − pt)

(

pv − pc
)

≤ 0 , (22)

where pv = tr(σ′)/3, q =
√

3/2‖s‖, and s = σ′ − pv1. The model parameters268

M , pt > 0 and pc < 0 represent the slope of the critical state line, the tensile269

strength, and the preconsolidation pressure, respectively.270
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Ip and Borja [62] enriched the hardening/softening law of the MCC model271

to capture the softening response when the grains crush and the subsequent272

hardening response when the crushed grains reach their stable positions. In273

this case, the preconsolidation pressure pc varies with both the plastic volu-274

metric strain εpv < 0 and the phase-field variable d according to the equation275

276
ṗc
pc

= −
ε̇pv
λp

+ g′(d)
ḋ

λd
, (23)

where λp is a plastic compressibility parameter and λd is a phase-field com-277

pressibility parameter. The second term on the right-hand side allows the278

model to capture the momentary unstable response induced by grain crush-279

ing and the associated pore collapse, and is otherwise zero in the absence of280

grain crushing (i.e., d = 0).281

Remark. In equation (34) of Ip and Borja [62], the volumetric component of282

the plastic strain rate (first term in the brackets on the far right-hand side)283

should be corrected to (∂f/∂p)1/3.284

Fluid flow285

We assume Darcy’s law to be valid, which takes the form286

q = −
κ

µw

· (∇p+ ρwg) , (24)

where q is the Darcy velocity, κ is the isotropic saturated permeability, µw is287

the dynamic viscosity of the fluid, and ρw is the mass density of water. We288

assume the material permeability remains isotropic even after the compaction289

band has formed.290

The evolution of void ratio upon compressive loading has the form [60, 97]291

292

e = e0 +
(1 + e0)(pv − pv0)

K
− (1 + e0)λ

p
(

ln
( pc
p∗c0

)

−
g(d)− 1

λd

)

, (25)

where e0 is the initial void ratio, pv0 is the reference hydrostatic effective stress293

and p∗c0 is the preconsolidation pressure at which grain crushing begins.294

The evolution of porosity can then be obtained with the following rela-295

tionship296

φ =
e

1 + e
(26)

Several studies have linked permeability reduction in compaction bands297

not only to reduction of the porosity in the band but also to an increase in298

the specific surface area [89, 121, 139]. The surface area of the grains can be ap-299

proximated from the grain-size distribution [32]. We assume the permeability300

to vary with the porosity and grain-size distribution by the Kozeny-Carman301

relationship [10, 26, 73]302
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κ = fDp(d)
2 φ3

(1− φ)2
, (27)

where f is scaling factor and Dp is the average grain diameter. In continuum303

breakage mechanics, the grain size distribution evolves upon breakage, which304

implies that the average grain diameter is a function of the breakage param-305

eter. In this formulation, the average grain diameter would be a function of306

the phase field variable, d. To determine the relationship between Dp and d,307

we define the average grain diameter as the harmonic mean of the grain size308

distribution, G,309

1

Dp

=

∫ Dmax

Dmin

G(D, d)

D
dD , (28)

where D is a given grain diameter, Dmax is the maximum grain size diam-310

eter and Dmin is the minimum grain size diameter, which can be obtained311

experimentally.312

The particle size distribution can be expressed in terms of the initial G0313

and ultimate Gu particle size distribution functions, when d = 0 and d = 1,314

respectively. The average grain diameter can then be written as [89]315

1

Dp

= (1− d)
1

Dmax
+ d

1

Dmin
. (29)

2.4 Finite element formulation316

In this section, we describe the numerical implementation of the governing317

equations defined by Equations (1), (2), and (6). Let η ∈ U , ξ ∈ V , and318

ζ ∈ W denote the weighting functions belonging in the appropriate sets U , V,319

and W, respectively. Applying the standard weighted residual procedure, in-320

tegrating by parts, using the divergence theorem, and substituting the natural321

boundary conditions to Equations (1), (2), and (6) yields the variational equa-322

tions for linear momentum balance, mass balance, and phase-field evolution323

of the forms324
∫

B

∇sη : σ dV =

∫

B

η · ρg dV +

∫

∂Bt

η · t̄ dA

∫

B

ξB1 : ∇sv dV +

∫

B

ξ
φ

Kw

ṗ dV −

∫

B

∇ξ · q dV =

∫

∂Bq

ξq̄ dA

∫

B

Gcl0∇ζ · ∇d dV +

∫

B

ζGc

d

l0
dV +

∫

B

ζg′(d)H dV = 0



































, (30)

where ∇s = (∇+∇T)/2 is the symmetric gradient operator.325

This system of variational equations was implemented using the phase-326

field, porous flow, and tensor mechanics modules of the Multiphysics Object-327

Oriented Simulation Environment (MOOSE) framework [94, 119, 120] and328

discretized using mixed finite elements with equal-order interpolation on the329
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displacement, pore pressure and phase-field variables, but with a stabiliza-330

tion feature that ensures satisfaction of the weak inf-sup condition [118]. A331

staggered procedure was adopted for solving the coupled equations in which332

the poromechanics and phase-field equations are algorithmically decoupled333

[51, 83]. In the staggered scheme, we advance the numerical solution from334

time tn to tn+1 through the following steps:335

1. Determine the local history field H from the displacement variable u at336

time tn;337

2. Update the current phase-field variable d at time tn+1 with Equation (11);338

and339

3. Compute the displacement field u and pore pressure field p at time tn+1340

by solving Equations (1) and (2) with the updated phase-field variable d.341

Even though it requires a more refined mesh [2, 141] and smaller load incre-342

ments than those required by the monolithic scheme [2, 51], the incremental343

cost engendered with the staggered scheme is offset by its strong convergence344

properties and more numerically robust nature especially when the phase-field345

variable is evolving rapidly [13].346

3 Compaction band in a heterogeneous sample347

Previous studies have shown that heterogeneous samples are more prone to348

strain localization than homogeneous samples. Heterogeneity can be in the349

form of spatially varying density, specific volume, and/or degree of saturation350

[22, 33, 105, 106]. In this section, we calibrate the model against a dry a rock351

sample with a spatially varying porosity and show that the predicted variation352

in porosity resulting from the formation of a compaction band is consistent353

with that observed in the experiment.354

3.1 Calibration using dry Mount Gambier limestone355

Several authors have observed a significantly lower porosity within the com-356

paction band as compared to the surrounding host rock [9, 40, 55, 121]. In357

particular, Chen et al. [30] presented the porosity evolution along the vertical358

direction in samples of Mount Gambier limestone during triaxial compaction359

tests. They highlighted that the compaction bands in Mount Gambier lime-360

stone form in areas with higher initial porosity. In contrast, sections of the361

sample with lower initial porosity had negligible changes in porosity after the362

compression test.363

Chen et al. [30] only presented the spatial variation of porosity in the364

vertical direction (i.e., along the axis of the sample), and not in 3D, and365

so, in this section we conducted plane strain simulations of compaction band366

formation in the limestone sample. The rectangular sample is 25.4 mm tall367
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and 12.7 mm wide, and is divided into a structured mesh with 11,781 four-368

node quadrilateral finite elements. The smallest element length was 0.5 mm.369

We followed the suggestion that l0 be no smaller than no less than twice the370

characteristic length of the mesh [83, 84] and set it to be l0 = 1 mm. The371

top and bottom edges of the mesh were supported on vertical rollers and a372

bottom corner node was pinned for stability. The samples tested by Chen et373

al. [30] were dry, and so we suppressed the pore pressure degree of freedom374

in the simulation. A confining pressure of 5 MPa was applied to the sample,375

which was then deformed at a strain rate of 1.2x10−4 s−1.376

We calibrated the material parameters of the model using the following377

procedure. The elastic parameters, the Lamé parameter, and the shear mod-378

ulus were simply evaluated on the initial linear part of the stress-strain curve379

shown in Figure 1. The following values were inferred: Lamé parameter λ = 68380
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Fig. 1. Single-element stress-strain responses of dry Mount Gambier limestone un-
der a confining pressure of 5 MPa at different porosities. The gray solid line repre-
sents the experimental data from Chen et al. [30].
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Fig. 2. Calibrated MCC model for simulated samples of Mount Gambier limestone.
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Fig. 5. Variation of porosity along the vertical direction for samples of Mount
Gambier limestone under a confining pressure of 5 MPa. Black curves are simulation
results; gray curves are experimental measurements [30].

porosity reduction including the likely position of the compaction band in a439

heterogeneous sample.440

3.2 Saturated Mount Gambier limestone441

We consider the same compression test on Mount Gambier limestone, but442

now assume a hypothetical scenario in which the rock was fully saturated. We443

then investigate its response under globally drained, globally undrained, and444

locally undrained conditions. We note that the results presented in this section445

are purely predictions of the rock’s response in fully saturated conditions. To446

the authors’ knowledge, no measurements of the pore pressure evolution in447

porous rocks during compaction band formation are available in the literature.448

As such, we are unable to validate our model predictions at this time.449

In the simulations, the effective confining pressure was maintained at 5450

MPa and the pore fluid pressure at the start was zero. The same strain rate451

and material properties as in the dry sample were assumed for the globally452

drained and undrained samples, while the hydraulic parameters were assumed453

to be f = 7.9x10−5, Dmax = 0.15 mm, and Dmin = 0.015 mm, which gives an454

undamaged intrinsic permeability of 8.9x10−13 m2 at a porosity of 0.5 [29].455

For the locally undrained sample, we set the sample’s intrinsic permeability456

to zero.457

In the globally drained case, fluid was free to flow out of the top and458

bottom edges of the sample, but not on the vertical sides. Figure 6 presents459
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The flow velocity vectors in each sample during the permeability test at the636

end of compaction band propagation are shown in Figure 19 to further inves-637

tigate fluid flow in and around the compaction band. We note that the mag-638

nitudes of flow velocities are generally lower inside the compaction band due639

to the lower permeability inside the band. Additionally, the contours of flow640

velocities are similar in the samples with chevron and pure compaction bands.641

On the other hand, the shear-enhanced compaction band exhibits higher flow642

velocity along the right edge of the sample.643
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Fig. 18. Variations of intrinsic permeability versus vertical strain for plane-strain
compression of samples with effective confining pressures of 11, 13, and 16 MPa
under pore pressures of 5 MPa.

4.3 Compaction band can form without softening644

This section demonstrates that softening is not a necessary condition for645

the formation of a compaction band. To this end, numerical simulations of646

a drained sample was conducted under an effective confining pressure of 16647

MPa, assuming the same material parameters as in the previous simulations648

except for λp = 0.01, λd = 1000 and θ = 0.8. A constant pore pressure of 5649

MPa was applied on the top and bottom surfaces of the sample. The sam-650

ple was also compressed at a strain rate of 1.25x10−3 s−1. Figures 20 and651

21 present the contours of the phase-field parameter and the stress-strain re-652

sponse of the sample, respectively. We observe double chevron-shaped bands653

forming between the notches. Significant breakage is also observed in the sam-654

ple around the compaction band, instead of being concentrated only within655

the compaction band. The stress-strain response of the sample shows no soft-656

ening or hardening and resembles a perfectly plastic behavior of the material.657

This is likely due to having a large λd, which reduces the effect of breakage658
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Fig. 21. Variation of vertical stress versus vertical strain for plane-strain compres-
sion of a drained sample with an effective confining pressure of 16 MPa under a
pore pressure of 5 MPa. Arrow indicates the strain at which the compaction band
initiates.

5 Conclusion669

In this paper, we have extended the phase-field framework for modeling com-670

paction band formulation developed by Ip and Borja [62] to account for hy-671

dromechanical effects, heterogeneity, and permeability reduction in the com-672

paction band. The formulation uses the Kozeny-Carman equation to model673

the permeability reduction upon grain crushing in the compaction band. Nu-674

merical examples on Mount Gambier limestone highlight the model’s abil-675

ity to capture compaction band formation in samples with spatially varying676

porosity under fully drained, locally undrained and globally undrained con-677

ditions. This example is unique in that no artificial material or geometric678

imperfection was introduced in the sample; instead, the compaction band679

was reproduced from the sample’s inherent heterogeneity similar to the shear680

band that was reproduced for sand with a spatially varying density [22]. Ad-681

ditionally, the model can capture the transition between shear-enhanced and682

pure compaction bands with increasing effective confining pressure that has683

been observed in laboratory experiments. The results presented in this paper684

also highlight the model’s ability to capture the permeability reduction and685

buildup of pore pressures associated with compaction band formation. Fur-686

ther work is underway to investigate the influence of the material parameters687

on the band thickness in lab and field scale studies as well as extend the688

proposed hydromechanical framework to accommodate material anisotropy689

[50, 103, 133, 137], viscoplasticity [23, 95, 127], chemical reaction [24, 31], and690

inertia effects [116].691
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and velocities associated with the formation of compaction bands in841

sandstone. Journal of Geophysical Research: Solid Earth 1111:B10203.842
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