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Modeling heterogeneity and permeability
evolution in a compaction band using a
phase-field approach
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Summary. Compaction bands are tabular zones of localized compressive defor-
mation associated with porosity and permeability reduction. Depending on their
orientation, compaction bands can act as barriers to fluid flow, and can be detri-
mental to fluid production in oil and gas reservoirs, as well as in CO2 sequestration.
The process of permeability reduction and the development of excess pore pres-
sures during compaction band formation in a heterogeneous rock mass are not fully
understood. Furthermore, few studies have modeled compaction band formation
considering coupled hydromechanical processes. In this study, we propose a coupled
hydromechanical, phase-field approach for capturing the formation and propagation
of compaction bands in heterogeneous porous media. Breakage mechanics is adopted
to characterize the free energy function in the intact and damaged material. The
resulting phase-field variable provides a measure of the degree of grain crushing.
Permeability reduction in the zone of compaction localization is modeled using the
Kozeny-Carman equation accounting for microstructural evolution. Numerical sim-
ulations demonstrate the ability of the model to capture compaction band forma-
tion, porosity reduction, and permeability evolution under drained and undrained
conditions. The results highlight the role of effective confining pressure, drainage
conditions, and material parameters on the styles of compaction bands that form.

Keywords. Compaction band, grain crushing, permeability evolution, phase-
field, porous media

1 Introduction

Porous sedimentary rocks have worldwide economic importance as they are
key hosts for groundwater and hydrocarbon reservoirs [93], CO2 sequestra-
tion [101], and hazardous waste disposal [59]. The fluid injection, storage and
extraction processes involved in these applications rely significantly on the
mechanical and hydraulic properties of the host rocks. As such, structures
and features that act as barriers for fluid flow can have adverse impacts on
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the properties of these rocks. One such feature is a compaction band, which is
one type of deformation band that occurs as a thin, tabular zone of localized
compaction [5, 18, 19, 56]. Compaction bands have been observed in various
high-porosity rocks, including sandstones [40, 46, 48, 72, 91, 92, 114, 122],
limestone [102], and volcanic rock [44]. Depending on their orientation, and
microtexture, compaction bands can be categorized into either pure or shear-
enhanced compaction bands [40]. The shear-enhanced compaction bands in-
clude straight tabular compaction bands that form obliquely (38-53°) to the
direction of maximum principal stress [40, 56], and wiggly bands with wave-
lengths of several centimeters [79]. Wiggly bands consist of individual seg-
ments of oblique compaction bands that generally develop perpendicular to
the direction of maximum principal stress. In contrast, pure compaction bands
are straight bands that develop perpendicular to the direction of maximum
principal stress.

Compaction bands can result in significant porosity and permeability re-
duction, unlike shear bands that can also exhibit dilative behavior [5]. Of-
tentimes, compaction bands exhibit signs of grain damage, cataclastic pore
collapse, and preferential clay accumulation [40, 70]. Previous studies suggest
that compaction band initiation and propagation can be triggered by spa-
tially heterogeneous material properties [30, 35, 46, 57]. Compaction bands
have been found to initiate at high porosity zones in Bleurswiller sandstone
[46] and Mount Gambier limestone [30]. There is also evidence of continued
diffusive growth within these zones of higher porosity [30, 46]. As such, com-
paction band formation generally results in microstructural evolution of the
rock’s material properties, which in turn can change its mechanical and hy-
draulic behavior. There has also been evidence of borehole breakout resulting
from compaction localization [39, 53, 54]. Thus, it is desirable to develop mod-
els that capture the formation and propagation of compaction bands with the
added ability to realistically predict the evolution of heterogeneity and per-
meability of the rock.

There have been a number of studies on the development of compaction
bands in high porosity rocks [1, 7, 9, 11, 28, 93, 103, 109, 111]. A handful of
these studies have focused on the effects of compaction localization on per-
meability reduction [8, 47, 59, 115, 139]. Laboratory-scale experiments have
identified the macroscopic hydromechanical response and microstructural al-
terations in and around the vicinity of the compaction band [38]. The per-
meability has been found to vary with several orders of magnitude difference
between inside and outside the localization zone within the same rock sam-
ple [8, 115]. Factors controlling the permeability reduction in the compaction
band include the reduction in porosity, the specific surface area, and the av-
erage aspect ratio of the band [47, 115]. In addition, the evolution in the pore
shape and grain orientations during compaction band formation can also lead
to anisotropic permeability in porous rocks [8]. However, most studies con-
ducted tests under drained conditions, and there is limited understanding of
the failure patterns under undrained conditions [109].
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Modeling heterogeneity and permeability evolution 3

Mechanistic models have been proposed to capture the formation of com-
paction bands in porous rocks. The ‘anticrack’ model proposed by Mollema
and Antonellini [87] and Sternlof et al. [108] uses an analog to linear elas-
tic fracture mechanics to describe the stress distribution around the tip of a
compaction band, in which the ‘free faces’ of the crack are allowed to over-
lap (a reverse kinematics to the mode-I crack opening). The bifurcation ap-
proach proposed by Rudnicki and Rice [99] has also been used to predict
compaction band formation [27, 65]. Some authors adopted micromechanics-
based approaches, such as spring network models and discrete element models
[68, 69, 79, 81, 117, 123, 125], which have offered insight into the formation
and propagation of compaction bands at the grain scale. Other studies incor-
porated the breakage mechanics framework [41, 42] coupled with plasticity
to capture grain crushing and track the progression of the compaction band
[36, 90, 113]. Recently, the phase-field approach has been adopted in sev-
eral studies to model compaction band formation [62, 116]. The phase-field
approach is based on the variational approach to fracture [49], in which the
crack is approximated as a diffuse interface represented by the phase-field vari-
able, and has been extended to model fractures in rocks [34, 45, 126, 138]. Ip
and Borja [62] developed a phase-field formulation for modeling compaction
bands in rocks employing breakage mechanics and critical state plasticity.
They showed that the development of different types of compaction band
patterns was influenced by material properties such as the plasticity model
parameters, the critical fracture energy G. and the grading index 6, as well
as loading conditions such as the confining pressure. Additionally, they high-
lighted the importance of spatially varying material parameters on the devel-
opment of different compaction band patterns. Wang et al. [116] also adopted
a phase-field approach to model compaction band formation under dynamic
loading conditions.

Simultaneously, there has been an extensive body of work on modeling
the permeability evolution under applied stresses, accounting for porosity re-
duction and an increase in the specific surface. A variety of methods have
been used to model the hydraulic behavior, including empirical formulations
[37], capillary models [71], statistical approaches [66], and hydraulic radius
theories [140]. Among the empirical models, most are generalizations of the
Kozeny-Carman model [26, 73]. The evolution of the microstructure during
deformation needs to be tracked to accurately capture the permeability reduc-
tion when a compaction band forms. Since breakage mechanics can capture
changes in the microstructure, including the porosity and specific surface area,
models based on breakage mechanics have been used to study the permeability
evolution in rocks using a Kozeny law [43, 89].

Few studies have proposed hydromechanical formulations that account
for permeability reduction resulting from grain crushing and microstructure
evolution [52, 75, 88, 124]. Wu et al. [124] presented a multiscale modeling
approach using FEM/DEM to model compaction bands in specimens under
dry, drained, and undrained conditions. However, they only considered pore



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

150
151
152
153
154

155

156
157
158
159
160

4 Sabrina C.Y. Ip' - Ronaldo I. Borja"*

collapse and inter-granular debonding as the primary micromechanisms and
neglected the effects of grain crushing. Continuum approaches have also been
developed adopting breakage mechanics and nonlocal regularization to track
grain crushing in porous rocks [52, 88]. Common enrichment techniques em-
ployed for this purpose include the embedded strong discontinuity and ex-
tended finite element methods [16, 17, 20, 77, 78].

In this present study, we extend our previous phase-field formulation to
model compaction band formation in porous media. The phase-field formula-
tion adopts a free-energy decomposition inspired by breakage mechanics that
is suitable for modeling compaction band formation, as well as utilizes the
modified Cam-Clay plasticity model to describe the inelastic material behav-
ior [21]. We couple the phase-field formulation with the governing equations
for fluid flow in a fully-saturated isotropic porous media. Flow in the porous
media is assumed to follow Darcy’s law and the Kozeny-Carman equation is
used to describe the evolution of permeability due to changes in the poros-
ity and grain size distribution. Subsequently, we demonstrate the ability of
the model to capture various compaction band shapes, including pure com-
paction and shear-enhanced compaction bands, under drained and undrained
conditions, as well as the evolution of permeability in the sample. Finally, we
investigate the effects of heterogeneous porosity on compaction band forma-
tion in a natural rock [30] under different drainage conditions. We note that
the proposed mechanistic model only considers grain crushing in fully dry and
fully saturated conditions as the cause of compaction band formation, and ig-
nores the effects of degree of saturation [61, 63, 64] and creep [23, 76, 130].

2 Theory

In this section, we combine the phase-field formulation for compaction band
formation proposed by Ip and Borja [62] with balance of mass for the solid-
fluid mixture, thereby introducing the pore fluid pressure p as an additional
variable. As in the previous work, we assume the deformation to be infinites-
imal and take the phase-field variable d as a measure of grain crushing.

2.1 Governing equations

Let B define the domain of the body with external boundary 0. We assume
that the boundary can be decomposed into essential and natural boundaries
0B, and 0B;, where displacement and surface tractions are prescribed, re-
spectively; and 0B, and 0B,, where fluid pressure and flux are prescribed,
respectively. The linear momentum balance takes the form

V-o+pg=0 in B
n-oc=t on 9B , (1)

u=u on 0B,
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Modeling heterogeneity and permeability evolution 5

where o is the total Cauchy stress tensor, p is the mass density, g is the
gravitational acceleration vector, n is the outward unit normal vector to the
boundary dB; on which the surface traction t is prescribed, and = is the
prescribed value of displacement field w on the boundary 0B,.

We assume that the pore space is fully occupied by one type of fluid. For
an isotropic porous medium, the balance of mass can be expressed as

Miet-2p4V.g=0 in B
Ky

—n-q=¢q on 0B, ) (2)
p=p on 0B,
where K
= 1 _ —
b=1- = 3)

S

is the Biot coefficient, € is the total strain tensor, 1 is the identity tensor, K
is the drained bulk modulus of the solid skeleton, K, is the bulk modulus of
water, K is the bulk modulus of the solid constituent, ¢ is the porosity, q is
the Darcy flux, n is the outward unit normal vector to the boundary 9B, on
which the normal fluid flux q is prescribed, and p is the prescribed value of the
pore pressure p on the boundary 0B,. The superimposed dot is the material
time derivative following the solid motion.

The total Cauchy stress tensor o may be decomposed into an effective
stress tensor o’ and pore fluid pressure p according to the effective stress
equation

o=0o —bpl. (4)

We refer the readers to more recent articles [134-136] for developments ap-
propriate for anisotropic porous media.

The porous material may also contain an internal discontinuity, such as a
compaction band, denoted by I'. The presence of a discontinuous strain field
in the zone of discontinuities is difficult to track using conventional numerical
modeling techniques. As such, we follow the standard phase-field modeling
approach suggested in Miehe et al. [83], in which the discontinuous strain
field is regularized by introducing a phase-field variable d € [0, 1] that repre-
sents the degree of micro-structural changes in the material. In the framework
proposed by Ip and Borja [62], d represents the degree of grain crushing. A
completely intact region is denoted by the value of the phase-field variable
d = 0, whereas a completely crushed zone is defined by the value d = 1. The
strain jump in the damaged zone can then be approximated by introducing a
compaction-zone density functional v(d, Vd) [25]

/ G.dA ~ / Goy(d, Vd) dV
r B

P
:/lggc(%+§0Vd-Vd)dv,
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where G, is the critical energy release rate [100, 111, 114] and [y is the length
parameter controlling the width of the phase-field approximation zone. The
phase-field evolution can then be expressed as

d oy
2 — _— — =
gclOv d gc ZO d

Vd-n=0 on 0B

0 in B
; (6)

where 1 is the stored energy density and V? is the Laplacian operator. The
following section reviews the form of ¢» developed in Ip and Borja [62] that is
appropriate for modeling compaction band formation and propagation.

2.2 Free energy decomposition for breakage

Ip and Borja [62] proposed a novel free energy decomposition in which break-
age mechanics theory is used to degrade the elastic modulus from its initial
value at the intact state to its final value at the completely crushed state.
Continuum breakage mechanics is a thermodynamically consistent constitu-
tive model developed by Einav [41, 42] to predict the evolution of the grain
size distribution in granular materials. In breakage mechanics, a macroscopic
internal variable B, is introduced to track the degree of grain crushing in the
material. The stored energy density proposed in Ip and Borja [62] uses the
phase-field variable as a measure of the degree of grain crushing.

For the elastic free energy density, we take advantage of the spectral strain
decomposition proposed by Miehe [83] for an isotropic material to split the
elastic strain €® , into a tension part, €“t, and a compression part €=, with

3
eei = Z<€a>in(a) ® n(a) , (7)

a=1

where €, and n(® are the principal strains and principal directions, respec-
tively, and n(® @ n(® is the corresponding spectral direction. The elastic
stored energy density function can also be split into a tension-related energy
function and a compressive energy function

P© (667 d) = ¢e+(€p7 d) + 9 (6p7 d) . (8)

Based on breakage mechanics, Ip and Borja [62] developed the following ex-
pression for the compressive elastic free energy

P (e%,d) = g(d)fy (€°) + (1 = )¢5 (€°).- 9)

where g(d) is a degradation function commonly defined as g(d) = (1 — k)(1 —
d)?+k,and 0 < k < 1 is a stability parameter introduced to avoid numerical
singularities when the phase-field variable approaches the value 1 [12, 13, 83,
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Modeling heterogeneity and permeability evolution 7

85]. The grading index, § = 1 — ¢ /1§, is a scalar variable that describes the
relationship between the undamaged elastic free energy 1§ and the remaining
free energy <. This allows us to represent the elastic compressive free energy
only in terms of the elastic free energy in the undamaged state.

It then follows that

ve(ef,d) = g(d) (6 () + 005 () + (L= B)ug™ (). (10)
and the effective stress tensor can be written as
o' = g(d)(o'§ +00'5)+ (1—0)d'; . (11)

Several studies have highlighted the importance of tensile microcracks in the
formation of shear-enhanced compaction bands [3,4], which suggests that the
tensile free energy contributes to the formation of compaction bands. We note
the importance of accommodating for the development of tensile stresses in
regions close to the imperfections, since tensile stresses could also impact the
direction of propagation of the compaction band. Thus, we also apply the
same degradation function g(d) to the tension regime. However, since the
material is undergoing compressive axial strain, there is little development of
the tension-related elastic free energy and the tensile stresses do not develop
to the extent that a tensile crack propagates through the sample. As such, the
evolution of the phase-field variable is not an indication of fracture or cracking
under compressive loading conditions.

The plastic stored energy density is also decomposed into tension and
compression parts

UP(€,d) = T (e") + ¢ (€7, g(d)) .- (12)

To account for the contribution of plastic straining towards compaction band
formation, we assume only a portion of compactive plastic flow contributes to
grain crushing [129, 131]

_ JWP if tr(e?) <0
v {0 if tr(e?) >0 (13)

—-

+ _JoO if tr(e?) <0
v _{WP f tr(e?) >0 14

where WP is the plastic free energy, which is related to the accumulated plastic
work and can generally be defined as [4]

WP = /0 (1 -—w)o: €Pdt, (15)

where t is the current pseudo-time and 1 — w is the Taylor-Quinney coefficient
[110] that denotes the fraction of plastic work dissipated as heat and ranges
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from 0 to 1. We assume the Taylor-Quinney coefficient to be 0.9 (i.e., w = 0.1)
for all examples in this study.

Finally, the stored energy density for modeling compaction band formation
can be expressed as

V(e € d) = gld) (V7 () + 0U5 (1)) + (1= 0)U5 () + (e d) (16)

and the last term on the left-hand side of the phase-field evolution equation
(6) can be rewritten as

0
% g, (1)
where
g9'(d) =2(1 - k)(1—d) (18)
and H is the phase-field driving force given by

oYP~
dg

H =0T +005 + (19)

2.3 Constitutive relations
Solid deformation

To close the boundary value problem, we assume the same solid deformation
constitutive relations as the formulation presented in Ip and Borja [62]. Here,
we briefly summarize the main features of the solid deformation model and
simply refer the readers to Ip and Borja [62] for further details. From Eq. (7),
the tension- and compression-related elastic free energies can be written as

2
Yot = /\7<tr€e>+ + pet et
, 20
e -
Yy = )\T + pet t €

where X\ and p are the Lamé constants. Similarly, the stress-strain relationship
can be written as
o'5 = Atre) 21 + 2uet . (21)

We adopt the modified Cam-Clay (MCC) [14, 15, 60, 97] constitutive the-
ory with a non-zero tensile strength to model plastic deformation. The yield
function is given as

q2

F(alvpc) = W + (pv - pt)(pv - pc) < Oa (22)
where p, = tr(ce’)/3, ¢ = \/3/2|s||, and s = ¢’ — p, 1. The model parameters
M, p; > 0 and p. < 0 represent the slope of the critical state line, the tensile
strength, and the preconsolidation pressure, respectively.
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Modeling heterogeneity and permeability evolution 9

Ip and Borja [62] enriched the hardening/softening law of the MCC model
to capture the softening response when the grains crush and the subsequent
hardening response when the crushed grains reach their stable positions. In
this case, the preconsolidation pressure p. varies with both the plastic volu-
metric strain € < 0 and the phase-field variable d according to the equation

Pe € 1 d

b~ i) (23)
where AP is a plastic compressibility parameter and A% is a phase-field com-
pressibility parameter. The second term on the right-hand side allows the
model to capture the momentary unstable response induced by grain crush-
ing and the associated pore collapse, and is otherwise zero in the absence of
grain crushing (i.e., d = 0).

Remark. In equation (34) of Ip and Borja [62], the volumetric component of
the plastic strain rate (first term in the brackets on the far right-hand side)
should be corrected to (9f/0p)1/3.

Fluid flow

We assume Darcy’s law to be valid, which takes the form

q=——(Vp+pug). (24)
w
where q is the Darcy velocity, x is the isotropic saturated permeability, p,, is
the dynamic viscosity of the fluid, and p,, is the mass density of water. We
assume the material permeability remains isotropic even after the compaction
band has formed.
The evolution of void ratio upon compressive loading has the form [60, 97]

e%+“+m§“pmu+%Wﬁ%§Q“aiwv (25)

where ey is the initial void ratio, p,q is the reference hydrostatic effective stress
and p}, is the preconsolidation pressure at which grain crushing begins.
The evolution of porosity can then be obtained with the following rela-

tionship
e

0= 1+e

Several studies have linked permeability reduction in compaction bands

not only to reduction of the porosity in the band but also to an increase in

the specific surface area [89, 121, 139]. The surface area of the grains can be ap-

proximated from the grain-size distribution [32]. We assume the permeability

to vary with the porosity and grain-size distribution by the Kozeny-Carman
relationship [10, 26, 73]

(26)
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¢3
(1—¢)?’

where f is scaling factor and D, is the average grain diameter. In continuum
breakage mechanics, the grain size distribution evolves upon breakage, which
implies that the average grain diameter is a function of the breakage param-
eter. In this formulation, the average grain diameter would be a function of
the phase field variable, d. To determine the relationship between D, and d,
we define the average grain diameter as the harmonic mean of the grain size
distribution, G,

k= fDy(d)? (27)

1 Pmax (D, d)
— 24D 2
b /D g, (28)

where D is a given grain diameter, Dy .y is the maximum grain size diam-
eter and Dy, is the minimum grain size diameter, which can be obtained
experimentally.

The particle size distribution can be expressed in terms of the initial G
and ultimate G, particle size distribution functions, when d = 0 and d = 1,
respectively. The average grain diameter can then be written as [89]

1 1 1
—=(1-d d .
Dp ( )Dmax + Dmin

(29)

2.4 Finite element formulation

In this section, we describe the numerical implementation of the governing
equations defined by Equations (1), (2), and (6). Let n € U, & € V, and
¢ € W denote the weighting functions belonging in the appropriate sets U, V,
and W, respectively. Applying the standard weighted residual procedure, in-
tegrating by parts, using the divergence theorem, and substituting the natural
boundary conditions to Equations (1), (2), and (6) yields the variational equa-
tions for linear momentum balance, mass balance, and phase-field evolution
of the forms

/Vsn:adV:/TrpngJr/ n-tdA
B B 0B,

/531:vsudv+/§ ¢ 'dV—/Vf-qu: ¢gdA S, (30)
B 5 Ku B 0B,

/gczovg.wdv+/cgﬂdwr/gg’(dmdvzo
B B lo B

where V¢ = (V + VT)/2 is the symmetric gradient operator.

This system of variational equations was implemented using the phase-
field, porous flow, and tensor mechanics modules of the Multiphysics Object-
Oriented Simulation Environment (MOOSE) framework [94, 119, 120] and
discretized using mixed finite elements with equal-order interpolation on the
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Modeling heterogeneity and permeability evolution 11

displacement, pore pressure and phase-field variables, but with a stabiliza-
tion feature that ensures satisfaction of the weak inf-sup condition [118]. A
staggered procedure was adopted for solving the coupled equations in which
the poromechanics and phase-field equations are algorithmically decoupled
[51, 83]. In the staggered scheme, we advance the numerical solution from
time t, to t,41 through the following steps:

1. Determine the local history field H from the displacement variable u at
time t,,;

2. Update the current phase-field variable d at time ¢,,; with Equation (11);
and

3. Compute the displacement field 4 and pore pressure field p at time ¢,,41
by solving Equations (1) and (2) with the updated phase-field variable d.

Even though it requires a more refined mesh [2, 141] and smaller load incre-
ments than those required by the monolithic scheme [2, 51], the incremental
cost engendered with the staggered scheme is offset by its strong convergence
properties and more numerically robust nature especially when the phase-field
variable is evolving rapidly [13].

3 Compaction band in a heterogeneous sample

Previous studies have shown that heterogeneous samples are more prone to
strain localization than homogeneous samples. Heterogeneity can be in the
form of spatially varying density, specific volume, and/or degree of saturation
[22, 33, 105, 106]. In this section, we calibrate the model against a dry a rock
sample with a spatially varying porosity and show that the predicted variation
in porosity resulting from the formation of a compaction band is consistent
with that observed in the experiment.

3.1 Calibration using dry Mount Gambier limestone

Several authors have observed a significantly lower porosity within the com-
paction band as compared to the surrounding host rock [9, 40, 55, 121]. In
particular, Chen et al. [30] presented the porosity evolution along the vertical
direction in samples of Mount Gambier limestone during triaxial compaction
tests. They highlighted that the compaction bands in Mount Gambier lime-
stone form in areas with higher initial porosity. In contrast, sections of the
sample with lower initial porosity had negligible changes in porosity after the
compression test.

Chen et al. [30] only presented the spatial variation of porosity in the
vertical direction (i.e., along the axis of the sample), and not in 3D, and
S0, in this section we conducted plane strain simulations of compaction band
formation in the limestone sample. The rectangular sample is 25.4 mm tall
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and 12.7 mm wide, and is divided into a structured mesh with 11,781 four-
node quadrilateral finite elements. The smallest element length was 0.5 mm.
We followed the suggestion that [y be no smaller than no less than twice the
characteristic length of the mesh [83, 84] and set it to be lp = 1 mm. The
top and bottom edges of the mesh were supported on vertical rollers and a
bottom corner node was pinned for stability. The samples tested by Chen et
al. [30] were dry, and so we suppressed the pore pressure degree of freedom
in the simulation. A confining pressure of 5 MPa was applied to the sample,
which was then deformed at a strain rate of 1.2x1074 s71.

We calibrated the material parameters of the model using the following
procedure. The elastic parameters, the Lamé parameter, and the shear mod-
ulus were simply evaluated on the initial linear part of the stress-strain curve
shown in Figure 1. The following values were inferred: Lamé parameter A = 68

Axial stress (MPa)
o

—— Porosity = 0.50

oy T Porosity = 0.35

— — = Porosity = 0.60
Chen et al., 2020

0 -2 -4 -6 -8 -10
Axial strain (%)

Fig. 1. Single-element stress-strain responses of dry Mount Gambier limestone un-
der a confining pressure of 5 MPa at different porosities. The gray solid line repre-
sents the experimental data from Chen et al. [30].

Deviatoric stress (MPa)
»~

1 o -t 2 3 4 5 6 7 -8
Mean effective stress (MPa)

Fig. 2. Calibrated MCC model for simulated samples of Mount Gambier limestone.
Ticks are data points from Chen et al. [30].



381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
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MPa and shear modulus pu = 270 MPa. Next, the plastic yield surface was
calibrated against the experimental yield envelope obtained from triaxial tests
[30]. We plot the experimental data and the model yield surface in Figure 2,
in which the following MCC parameters were obtained: M = 1.4, p,o = —7.7
MPa, p; = 0.5 MPa. The plastic compressibility parameter AP is one of the
parameters controlling the hardening/softening response of the MCC model.
We assumed that the initial hardening observed in the stress-strain curve is
due mainly to the evolution in the plastic strain and neglect the effect of the
evolution of the phase-field variable (which should be small at this point in the
loading test). Thus, we simulated single-element tests to calibrate AP = 0.28
against the initial slope of the stress-strain curve immediately after plastic
strains are observed. Lastly, the phase-field compressibility parameters \¢ as
well as the the breakage parameters 6 and average G. were determined from
the compaction band formation response of the plane strain simulations to be
6 = 0.9 and G, = 1.3 N/mm. We note that developing a more rigorous proce-
dure for calibrating the model is ongoing research and will be investigated in
a future study. The single-element stress-strain response using the calibrated
material parameters is presented in Figure 1, along with stress-strain curves
associated with the end-member porosities ¢ = 0.35 and ¢ = 0.6.

In addition, we imposed a spatially varying porosity field that followed
the initial spatial distribution measured by Chen et al. [30]. The authors
only measured the variation of porosity along the vertical direction; thus,
we used a random function generator to obtain a normal distribution of the
porosity field in the horizontal direction (i.e., along the width of the plane
strain sample), which was then prescribed at the Gauss integration points.
The generated spatial field had a mean value of 0.5, a standard deviation of
0.05, and a range of [0.35,0.59]. Several studies investigating breakage and
fracture in various materials have suggested a dependence between porosity
and the critical energy release rate G, [96, 98, 128]. Thus, we assume that

Porosity
0.6

Fig. 3. Contours of material parameters for simulated samples of Mount Gambier
limestone under a confining pressure of 5 MPa: (a) the critical energy release rate
G in the initial state, (b) porosity ¢(a) in the initial state, and (c) porosity at a
vertical strain of 10%.
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Fig. 4. Contours of phase-field variable d for simulated samples of Mount Gambier
limestone under a confining pressure of 5 MPa at a vertical strain of 10%.

the critical energy release rate G, also varies spatially following the initial
porosity field with a negative relationship, but does not evolve with porosity.
The spatial variation of G. has a mean value of 1.3 N/mm, a standard deviation
of 0.07 N/mm, and a range of [1.16,1.51] N/mm. Figures 3(a) and (b) present
the spatial distributions of G. and initial porosity in 2D, respectively.

The plane-strain sample was loaded to a vertical strain of 10% and the
phase-field contours are presented in Figure 4. We observe a horizontal zone
of grain crushing oriented perpendicular to the direction of maximum com-
pressive stress forming at a distance of around 10 mm below the top of the
sample. The zone of grain crushing has a significantly decreased porosity, as
seen in Figure 3(b). A comparison of the porosity in the vertical direction
before and after the compression test is presented in Figure 5. We note that,
similar to the experimental results, a significant decrease in porosity is ob-
served in the compaction band, with an average porosity of 0.36 within the
band. Still, there are differences between the simulated sample and the exper-
imental results. The area of reduced porosity in the experiment was thinner
than the area of reduced porosity predicted in our simulations. The com-
paction band formed between 8 to 15 mm below the top of the experimental
sample, whereas in our simulations the sample had reduced porosity between
6 to 16 mm below the top of the sample. In addition, areas outside of the com-
paction band undergo some porosity reduction in our simulation, while there
is negligible porosity change outside the compaction band in the experimental
data. This behavior in our model is due to the initial hardening of the material
within the compaction band when it first forms. The compaction band zone
has a higher strength than the rest of the sample and as a result, some of the
damage is diffused to the material in the rest of the sample. Furthermore, the
ends of the experimental sample showed significant porosity decrease, likely
due to end effects that were not captured in the simulations. Nevertheless,
this example shows that the proposed model can predict the general trend in
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201

Sample length from top of sample (mm)

Initial (Simulation)

----- Vertical strain = 0.1 (Simulation)
30H Initial (Experimental)

Vertical strain = 0.1 (Experimental)

L
0.1 0.2 0.3 0.4 05 0.6
Porosity (-)

Fig. 5. Variation of porosity along the vertical direction for samples of Mount
Gambier limestone under a confining pressure of 5 MPa. Black curves are simulation
results; gray curves are experimental measurements [30].

porosity reduction including the likely position of the compaction band in a
heterogeneous sample.

3.2 Saturated Mount Gambier limestone

We consider the same compression test on Mount Gambier limestone, but
now assume a hypothetical scenario in which the rock was fully saturated. We
then investigate its response under globally drained, globally undrained, and
locally undrained conditions. We note that the results presented in this section
are purely predictions of the rock’s response in fully saturated conditions. To
the authors’ knowledge, no measurements of the pore pressure evolution in
porous rocks during compaction band formation are available in the literature.
As such, we are unable to validate our model predictions at this time.

In the simulations, the effective confining pressure was maintained at 5
MPa and the pore fluid pressure at the start was zero. The same strain rate
and material properties as in the dry sample were assumed for the globally
drained and undrained samples, while the hydraulic parameters were assumed
to be f =7.9x107°, Dyax = 0.15 mm, and Dy,;, = 0.015 mm, which gives an
undamaged intrinsic permeability of 8.9x107!3 m? at a porosity of 0.5 [29].
For the locally undrained sample, we set the sample’s intrinsic permeability
to zero.

In the globally drained case, fluid was free to flow out of the top and
bottom edges of the sample, but not on the vertical sides. Figure 6 presents
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Pore Pressure
(kPa)
4.0

Porosity
0.6
3.0

2.0
I 1.0
0.0

Fig. 6. Globally drained: Contours of the (a) phase-field variable d, (b) porosity
¢, and (c) pore pressure for simulated samples of fully saturated Mount Gambier
limestone under an effective confining pressure of 5 MPa at a vertical strain of 11.8%.

(c)

the contours of the phase-field variable, porosity, and pore pressure in the
fully saturated sample when it was loaded to a vertical strain of 11.8%. We
observe similar results to the simulated case with the dry Mount Gambier
limestone sample but at a larger axial strain. A horizontal compaction band
forms near the middle of the sample where the area of high initial porosity is
located. Due to the high permeability of the sample, the pore fluid is able to
drain away quickly as compared to the loading rate. As a result, there is little
buildup of pore pressure within the compaction band after it has formed.

d Porosity
1.0 0.6

I 0.8
0.6 0.5
0.4 04
0.2

I 0.0 0.3

@ )
Fig. 7. Globally undrained: Contours of the (a) phase-field variable d and (b) poros-

ity ¢ for simulated samples of fully saturated Mount Gambier limestone under an
effective confining pressure of 5 MPa at a vertical strain of 3.3%.

In the globally undrained situation, fluid was prevented from flowing in or
out of the sample, but was free to flow within the sample. The contours of
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the phase-field variable and porosity at a vertical strain of 3.3% are presented
in Figure 7. The pore pressure in the sample is homogeneous at 4.4 MPa.
No compaction band is observed in the sample based on the evolution of the
phase-field variable. Instead, conjugate oblique bands of significant equivalent
plastic strains are seen transecting the upper half of the sample, which is
shown in Figure 8(a). As such, the globally undrained sample develops con-
jugate shear bands instead of a compaction band. Further evidence of shear
bands forming in the sample can be seen in the contours of volumetric and
deviatoric strains presented in Figures 8(b) and 8(c). The conjugate oblique
bands has significant deviatoric strains and low compressive strains, which is
characteristic of shear bands [3, 5]. Undrained conditions in the sample lead
to a significant buildup of pore pressures in the sample, which reduces the
effective stresses in the sample. This affects the local stress paths and can
result in the stress points intersecting the modified Cam-Clay yield surface
near the critical state line, where little volumetric strains occur. We highlight
the model’s ability to capture the formation and propagation of shear bands
in spite of the free energy decomposition being formulated for compaction
bands. While the phase-field variable does not evolve significantly during the
propagation of a shear band, the slight increase of the phase-field variable
regularizes the zone where the shear band forms. As a result, our phase-field
model is able to capture shear band formation without any additional finite
element enhancements.

Deviatoric
strain

I 0.6

0.4

Volumetric
strain
0.01

0.0

Equivalent
plastic strain

0.07
I 0.06
0.04

-0.02
0.2

I 0.0

0.02
-0.04

l 0 -0.05

(a) (b (©

Fig. 8. Globally undrained: Contours of the (a) equivalent plastic strain, (b) volu-
metric strain and (c) deviatoric strain for simulated samples of fully saturated Mount
Gambier limestone under an effective confining pressure of 5 MPa at a vertical strain
of 3.3%.

For the locally undrained sample, the intrinsic permeability was set to
zero to simulate fluid being trapped in the pores of the rock matrix. Figure 9
presents the contours of the phase-field variable, porosity, and pore pressure
in the sample when it was deformed to a vertical strain of 4.0%. Similar to
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the globally undrained case, no compaction band is observed for the locally
undrained sample. Instead, conjugate shear bands of significant equivalent
plastic strains develop at the top of the sample, as shown in Figure 10(a).
From Figures 10(b) and 10(c), we observe that these shear bands are also
characterized by significant deviatoric strain and little volumetric strain as
compared to the surrounding material. We note that there is buildup of pore
pressure in the upper portion of the sample, most significantly in the area of
breakage where the shear bands initiate.

The above simulation results highlight the effect of drainage conditions
on compaction band formation in highly porous rocks. Undrained conditions,
both globally and locally, can cause a buildup of pore pressures in the sample,
which may inhibit pore collapse and compaction band formation. Instead, a
shear band may form in the globally undrained sample due to changes in the
stress paths and changes in the locations where the stress paths intersect the
yield surface.

Pore pressure

d Porosity
(MPa)
1.0 0.6 4.8
I 08 45
0.6 05 40
0.4 04 35
0.2 3.0
0.0 . 0.3 2.7
(a) (b) ©

Fig. 9. Locally undrained: Contours of the (a) phase-field variable d, (b) porosity
¢, and (c) pore pressure for simulated samples of fully saturated Mount Gambier
limestone under an effective confining pressure of 5 MPa at a vertical strain of 4.0%.

4 Parametric studies

This section elucidates the effect of compaction band formation on the evo-
lution of pore pressure, porosity, and permeability of a rock. All simulations
were conducted in plane strain under vertical compression on fully saturated
rock samples. The material parameters chosen are generally similar to those
of Bentheim sandstone for illustrative purposes.
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Equivalent Volumetric Deviatoric
plastic strain strain strain
l 0.10 I -0.013 I 1.0
- 0.08 - -0.014 - 0.8
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0.04 -0.016 0.4
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0 -0.018 0.0
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Fig. 10. Locally undrained: Contours of the (a) equivalent plastic strain, (b) vol-
umetric strain and (c) deviatoric strain for simulated samples of fully saturated
Mount Gambier limestone under locally undrained conditions and an effective con-
fining pressure of 5 MPa at a vertical strain of 4.0%.

4.1 Drained compression tests on notched samples

We consider a rectangular block 80 mm tall and 40 mm wide with notches
on both sides. The notches have a rectangular shape 0.8 mm thick and 2 mm
wide. The geometry is divided into 13,713 quadrilateral finite elements. The
top and bottom edges of the mesh were supported on vertical rollers, while
the bottom corner node was also pinned for stability.

Several numerical simulations of drained samples were conducted varying
the effective confining pressure. The following elastoplastic material parame-
ters were assumed in the simulations: Lamé parameter A = 8000 MPa, shear
modulus p = 7000 MPa, G./lp = 0.8 MPa, l[p = 1 mm, M = 1.2, \? = 0.2,
M = 1.0, poy = —65 MPa, p; = 10 MPa [36, 86]. The hydraulic parame-
ters were assumed to be: f = 2x107%, Dyax = 0.2 mm, and D, = 0.01
mm [80, 115]. Additionally, the following values were used for the porosity
¢ = 0.22 and Biot coefficient b = 0.77 [107]. An initial pore pressure of 5 MPa
was applied to the entire sample at the beginning of the simulation. Pore fluid
was free to flow out of the top and bottom edges of the sample, but not on
the vertical sides. During the simulation, we applied a pore pressure of 5 MPa
on the top and bottom edges of the samples and a compressive strain along
the vertical axis at a strain rate of 1.25x1073 s~1.

Figure 11 presents the contours of the phase-field variable showing the
zones of grain crushing for different values of effective confining pressure, ¢’ =
11, 13, and 16 MPa. Various grain crushing patterns can be seen at different
effective confining pressures, with deformation band angles ranging between
zero at ¢’ = 16 MPa, to 31° at ¢/ = 11 MPa. An increase in the effective
confining pressure results in the formation of a lower angle compaction band.
The results are similar to experimental observations of compaction bands
in porous rocks, with low- or high-angled bands forming at lower effective
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confining pressure, and horizontal bands forming at higher effective confining
pressures [7, 74, 102, 104, 122].

C™

1.0
[ 0.8
0.6
0.4

I 0.2
0.0

Fig. 11. Contours of phase-field parameter d for samples under a pore pressure of
5 MPa and effective confining pressures of: (a) 11 MPa at a vertical strain of 0.86%;
(b) 13 MPa at a vertical strain of 0.50%; and (c) 16 MPa at a vertical strain of
0.47%.

(a) (b) ()

We present the spatiotemporal evolution of the phase-field variable in the
sample under an effective confining pressure of 13 MPa in Figure 12. Similar
to the results in Ip and Borja [62], we observe that the compaction band
initiates at the notches and propagates through the width of the sample.
We also note that the band first propagates across the sample with little
evolution of the phase-field variable, then the entire band develops into a
compaction band with significant breakage and evolution in the phase-field
variable. This behavior is likely due to pore pressures building up in the
regions with higher breakage and hindering further evolution of the phase-
field variable. Consequently, breakage develops evenly across the sample first.

The variations of vertical stress versus vertical strain for the drained sam-
ples are presented in Figure 13. We note that the shape of the stress-strain
curves are similar for all effective confining pressures. The strains at which
the peak vertical stress is achieved differ slightly between samples. The sample
with the highest effective confining pressure (¢/ = 16 MPa) experiences peak
vertical strain at a lower vertical strain than the other samples. Simultane-
ously, the pure compaction band in this sample initiates at lower strains.

Figure 14 plots the contours of pore pressures in the drained samples
at different effective confining pressures. Higher pore pressures are observed
inside and around the compaction band in all the samples. This is due to lower
permeabilities in the zones of localized deformation where both the porosity
and the average grain diameter (as a result of breakage) are smaller. The pore
fluid is essentially trapped in the compaction band during band propagation as
there is insufficient time for diffusion of pore fluid out of the zone of localized
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Fig. 12. Contours of phase-field parameter d for samples under pore pressure of 5
MPa and effective confining pressure of 13 MPa at vertical strains of (a) 0.25%; (b)
0.31%; and (c) 0.38%.
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Fig. 13. Variations of vertical stress versus vertical strain for plane-strain compres-
sion of drained samples with effective confining pressures of 11, 13, and 16 MPa
under pore pressures of 5 MPa.

deformation. The sample with effective confining pressure of 13 MPa exhibits
the highest pore pressures when the compaction band has fully propagated
with an excess pore water pressure of 0.3 MPa.

To elucidate the evolution of pore pressures inside the band, we plot the
local pore pressures in the middle of the compaction band for each sample in
Figure 15. The locations in the compaction bands are indicated by the white
circles in Figure 11. The pore pressure responses differ greatly between the
different samples. The sample with a pure compaction band (¢’ = 16 MPa)
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Pore
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5.10
5.05
5.00

Fig. 14. Contours of pore pressure for samples under a pore pressure of 5 MPa and
effective confining pressures of: (a) 11 MPa at a vertical strain of 0.86%; (b) 13 MPa
at a vertical strain of 0.50%; and (c) 16 MPa at a vertical strain of 0.47%.

(a) (b ©

exhibits a sharp spike in the pore pressure upon compaction band initiation,
after which the pore pressure also drops sharply and continues to decrease as
the compaction band propagates through the sample. Similarly, the sample
with the chevron band (¢/ = 13 MPa) shows a large, but less sudden, increase
in pore pressure when the band initiates. The dissipation of the excess pore
pressure is also more gradual as the band propagates. On the other hand, upon
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Fig. 15. Variations of pore pressures inside the compaction band during plane
strain compression of samples with effective confining pressures of 11, 13, and 16
MPa under a pore pressure of 5 MPa.
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band initiation, the sample with the shear-enhanced compaction band (¢’ =
11 MPa) only experiences a small increase in pore pressure that continues to
increase as the band propagates through the sample. The difference in pore
pressure evolution in the compaction bands is likely due to the rate at which
porosity and permeability decrease in a compaction band when it forms. If
there is sudden pore collapse, pore pressures would immediately build up
in the compaction band. It would take some time for the pore pressures to
dissipate as pore collapse is accompanied by a decrease in permeability. On the
other hand, if pore collapse occurs gradually, the pore pressure can dissipate
more easily during formation and propagation of the compaction band.

We present the contours of porosity in the sample with a chevron band in
Figure 16 to highlight the evolution of porosity during the compression test.
There is a significant reduction in porosity within the compaction band to
around 10% after the band is fully propagated, which is similar to experimen-
tal observations of 10-15% porosity within compaction bands in Bentheim
sandstone [107]. We note that the greatest reduction in porosity occurs at the
notches of the samples as the compaction band initiates from those regions.

- P N

Porosity
0.22
0.20

0.10
(@ (® ©

Fig. 16. Contours of porosity for samples under pore pressure of 5 MPa and effec-

tive confining pressures of 13 MPa at vertical strains of (a) 0.25%; (b) 0.31%; and

(c) 0.38%.Contours of flow velocity vectors during compaction band formation for

samples under pore pressure of 5 MPa and effective confining pressures of 13 MPa

at vertical strains of (a) 0.25%; (b) 0.31%; (c¢) 0.38%; and (d) 0.50%.

The evolution of the fluid velocity in the vicinity of the chevron compaction
band during its formation and propagation is presented in Figure 17 at the
same axial strains as presented in Figures 11(b) and 12. We observe the highest
velocities during the initial propagation of the compaction band across the
sample around an axial strain of 0.31% in Figure 17(b). As the material in
the compaction band region begins to crush, the pore pressure builds up in
the compaction band region and there is a larger pressure gradient at the
edge of the compaction band. Consequently, the fluid velocity is higher in
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that region as fluid flows away from the compaction band. During the initial
compaction band propagation, fluid is mostly flowing towards the top of the
sample away from the compaction band. As the band continues to propagate
and fully develops, the fluid velocity magnitude is highest along the lower
edge of the compaction band, where fluid is moving towards the bottom of
the sample. The major direction of fluid flow away from the compaction band
is likely influenced by the shape of the compaction band that develops.

Velocity.
mm/s

I 0.077
0.06
0.04

I 0.02
i 0.0

Fig. 17. Contours of flow velocity vectors during compaction band formation for
samples under pore pressure of 5 MPa and effective confining pressures of 13 MPa
at vertical strains of (a) 0.25%; (b) 0.31%; (c) 0.38%; and (d) 0.50%.

(2)

4.2 Permeability reduction

To understand the effects of compaction band formation and propagation on
the sample permeability, we evaluated the flow field at different axial strains
using a permeability test. Simulations of steady-state fluid flow were per-
formed by applying 1 MPa and zero pore pressure at the top and bottom
boundaries of the sample, respectively. The effects of gravity were ignored.
Darcy’s law was then used to estimate the sample permeability from the aver-
age flow velocity out of the sample at nodal points along the bottom boundary.

Figure 18 presents the evolution of permeability in samples at different
effective confining pressure. All the samples experience considerable perme-
ability reduction of around two orders of magnitude, similar to experimental
measurements of porous sandstones [8, 115, 139]. The relationship between
the vertical stress and the permeability is similar to that of experimental
measurements of Bentheim sandstone [8, 115], where the sample experiences
a substantial reduction in permeability upon compression of the sample, while
after the onset of the compaction band, there is a smaller reduction in per-
meability. The compaction band shape (controlled by the effective confining
pressure) has a significant effect on the decrease in permeability, mainly due to
the magnitude of strain required for the compaction band to fully propagate
through the sample.



636
637
638
639
640
641
642
643

644

645
646
647
648
649
650
651
652
653
654
655
656
657
658

Modeling heterogeneity and permeability evolution 25

The flow velocity vectors in each sample during the permeability test at the
end of compaction band propagation are shown in Figure 19 to further inves-
tigate fluid flow in and around the compaction band. We note that the mag-
nitudes of flow velocities are generally lower inside the compaction band due
to the lower permeability inside the band. Additionally, the contours of flow
velocities are similar in the samples with chevron and pure compaction bands.
On the other hand, the shear-enhanced compaction band exhibits higher flow
velocity along the right edge of the sample.
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Fig. 18. Variations of intrinsic permeability versus vertical strain for plane-strain
compression of samples with effective confining pressures of 11, 13, and 16 MPa
under pore pressures of 5 MPa.

4.3 Compaction band can form without softening

This section demonstrates that softening is not a necessary condition for
the formation of a compaction band. To this end, numerical simulations of
a drained sample was conducted under an effective confining pressure of 16
MPa, assuming the same material parameters as in the previous simulations
except for \? = 0.01, A = 1000 and 6 = 0.8. A constant pore pressure of 5
MPa was applied on the top and bottom surfaces of the sample. The sam-
ple was also compressed at a strain rate of 1.25x1073 s~!. Figures 20 and
21 present the contours of the phase-field parameter and the stress-strain re-
sponse of the sample, respectively. We observe double chevron-shaped bands
forming between the notches. Significant breakage is also observed in the sam-
ple around the compaction band, instead of being concentrated only within
the compaction band. The stress-strain response of the sample shows no soft-
ening or hardening and resembles a perfectly plastic behavior of the material.
This is likely due to having a large A%, which reduces the effect of breakage
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Fig. 19. Contours of flow velocity vectors during permeability tests of samples
under pore pressure of 5 MPa and effective confining pressures of: (a) 11 MPa at a
vertical strain of 0.86%; (b) 13 MPa at a vertical strain of 0.50%; and (c) 16 MPa
at a vertical strain of 0.47%.
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Fig. 20. Contour of phase-field parameter d for a drained sample undergoing plane-

strain compression under pore pressure of 5 MPa and effective confining pressure of
16 MPa at a vertical strain of 0.87%.

on degrading the preconsolidation pressure. The small AP also amplifies the
hardening response of the material upon plastic straining. However, we do
not observe hardening in the stress-strain response as the breakage occurs in
a more diffuse manner. Since the damaged material does not soften, breakage
does not concentrate only in one area and a significant portion of the sam-
ple is partially damaged. As a result, the stress-strain response of the sample
appears to be perfectly plastic.

To sum up, we have shown that the proposed model can reproduce a
compaction band even without softening, in agreement with some laboratory
observations reported in the literature (7, 9, 47, 111, 114].
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Fig. 21. Variation of vertical stress versus vertical strain for plane-strain compres-
sion of a drained sample with an effective confining pressure of 16 MPa under a
pore pressure of 5 MPa. Arrow indicates the strain at which the compaction band
initiates.

5 Conclusion

In this paper, we have extended the phase-field framework for modeling com-
paction band formulation developed by Ip and Borja [62] to account for hy-
dromechanical effects, heterogeneity, and permeability reduction in the com-
paction band. The formulation uses the Kozeny-Carman equation to model
the permeability reduction upon grain crushing in the compaction band. Nu-
merical examples on Mount Gambier limestone highlight the model’s abil-
ity to capture compaction band formation in samples with spatially varying
porosity under fully drained, locally undrained and globally undrained con-
ditions. This example is unique in that no artificial material or geometric
imperfection was introduced in the sample; instead, the compaction band
was reproduced from the sample’s inherent heterogeneity similar to the shear
band that was reproduced for sand with a spatially varying density [22]. Ad-
ditionally, the model can capture the transition between shear-enhanced and
pure compaction bands with increasing effective confining pressure that has
been observed in laboratory experiments. The results presented in this paper
also highlight the model’s ability to capture the permeability reduction and
buildup of pore pressures associated with compaction band formation. Fur-
ther work is underway to investigate the influence of the material parameters
on the band thickness in lab and field scale studies as well as extend the
proposed hydromechanical framework to accommodate material anisotropy
[50, 103, 133, 137], viscoplasticity [23, 95, 127], chemical reaction [24, 31], and
inertia effects [116].
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