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Figure 1: Eagle trains end-to-end deep-RL controllers for PTZ cameras. Sample scenes for vehicle and human tracking from the
EagleSim simulator are shown. The direct transfer of Eagle policies to real-scene videos is also demonstrated.

ABSTRACT

Existing approaches for autonomous control of pan-tilt-zoom (PTZ)
cameras use multiple stages where object detection and localiza-
tion are performed separately from the control of the PTZ mech-
anisms. These approaches require manual labels and suffer from
performance bottlenecks due to error propagation across the multi-
stage flow of information. The large size of object detection neu-
ral networks also makes prior solutions infeasible for real-time
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deployment in resource-constrained devices. We present an end-
to-end deep reinforcement learning (RL) solution called Eagle!
to train a neural network policy that directly takes images as in-
put to control the PTZ camera. Training reinforcement learning
is cumbersome in the real world due to labeling effort, runtime
environment stochasticity, and fragile experimental setups. We in-
troduce a photo-realistic simulation framework for training and
evaluation of PTZ camera control policies. Eagle achieves superior
camera control performance by maintaining the object of interest
close to the center of captured images at high resolution and has
up to 17% more tracking duration than the state-of-the-art. Eagle
policies are lightweight (90x fewer parameters than Yolo5s) and can
run on embedded camera platforms such as Raspberry PI (33 FPS)
and Jetson Nano (38 FPS), facilitating real-time PTZ tracking for
resource-constrained environments. With domain randomization,

!Open-source link of Eagle: https://github.com/nesl/Eagle_PTZ_Cameras
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Eagle policies trained in our simulator can be transferred directly
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1 INTRODUCTION

Active vision endows applications with the ability to decide ‘where
to look’ at runtime. Autonomous control of pan-tilt-zoom (PTZ)
cameras provides superior monitoring with active vision systems by
tracking objects of interest in real-time [9, 17]. Active vision systems
are increasingly deployed in resource-constrained environments
such as remote surveillance [7, 11, 17] and mobile robotics [9, 25].

Autonomous PTZ controllers in prior works have multiple stages,
namely detection of objects of interest, tracking their trajectories,
and control of PTZ configuration parameters to keep objects in
the field-of-view [5, 8, 11, 17]. For example, neural networks are
used to identify objects of interest, Kalman filters for predicting
trajectories, and a PID controller changes PTZ parameters [6, 15, 25].
The multi-stage pipeline faces the following challenges:

1. Expensive fine-tuning: The multiple stages suffer from perfor-
mance bottlenecks as it is non-trivial to tune each step. For example,
tuning the parameters of the Kalman filter requires expert domain
knowledge and incurs trial-and-error [14, 16]. Fine-tuning neural
object detectors requires bounding box labels [8, 16].

2. Real-time deployment on resource-constrained platforms:
Even lightweight object detectors (such as YOLO (2, 14]) with sev-
eral millions of network parameters are too complex for embedded
camera platforms. This makes it infeasible to run multi-stage PTZ
control algorithms in real-time on platforms [1, 14] with memory
and computation constraints.

In contrast to the existing multi-stage pipeline, we propose Eagle,
an end-to-end deep reinforcement learning (RL) approach. Eagle
trains a neural network policy directly mapping raw images to pan-
tilt-zoom actions removing the multiple stages of object detection,
localization, and control. Recently, deep-RL has been shown to out-
perform conventional control for several robotic applications [4, 16].
To the best of our knowledge, we are the first to study an end-to-end
perception to control policy for PTZ cameras trained with deep-RL.
This is partly due to the challenges of training deep-RL in the real
world as it requires large environment interactions, expensive ex-
perimental setups, and labeling efforts [4, 16]. To enable successful

%Videos showing Eagle training and direct transfer to real scenes are available at
https://sites.google.com/view/sample-tracking-videos
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training of Eagle, we also introduce EagleSim, a simulation frame-
work for placement and control of PTZ cameras in photo-realistic
virtual worlds.

In multi-stage pipelines, the adoption of neural network ob-
ject detectors such as YOLO [2, 14] enables flexible tracking goals
and general-purpose object detection in the real world. Although
training in simulators is widely studied in deep-RL, transferring
simulation policies to the real world is still a challenge [4, 16]. This
paper poses and strives to answer the following research questions:
(i) How to design a generalizable end-to-end PTZ controller to track
different kinds of objects of interest (e.g., different kinds of vehicles)?,
(if) Can we enable flexible tracking goals (e.g., task to either track ve-
hicles or humans) at runtime without having multiple control stages?,
(iii) What is the impact on the PTZ controller performance as the
tracking complexity is increased (e.g., complex scenes with multiple
objects)?, and (iv) What are the limitations of end-to-end PTZ control?

To answer the above questions, we design generalizable deep-RL
controllers and evaluate them on unseen objects/surroundings. Ea-
gleSim provides software abstractions to control scene variations
with multiple objects (vehicles and human characters) and different
surroundings (background materials/patterns and trees) as shown
in Figure 1. We demonstrate that these rich scene variations are
necessary to bridge the gap between simulation and the real world.
We further evaluate the performance of Eagle policies as the track-
ing complexity is increased. To enable flexible tracking goals, we
introduce an extra contextual input along with images during train-
ing. Depending on the application’s needs, the contextual input
modifies the policy behavior at deployments, such as either tracking
vehicles or humans. Finally, we show that Eagle policies trained
purely in simulation transfer directly to the real videos.

We compare Eagle with three different categories of multi-
stage approaches by adopting state-of-the-art choices in ob-
ject detection, tracking, and control stages. More specifi-
cally, we evaluate: (i) Object_detection+tracking (Kalman fil-
ter)+control, (ii) Object_detection+reinforcement learning, and (iii)
Relative_location+control. Our results show that Eagle outperforms
current approaches across a suite of vehicle tracking scenarios to
maintain superior PTZ control performance and achieve up to 17%
more tracking duration. Eagle trains lightweight neural network
policies (79k model parameters and 320KB model size) that are real-
time deployable on resource-constrained embedded cameras [1]
having computation limitations of Raspberry PI 4B [20] (33 FPS)
and Jetson Nano [19] (38 FPS) class devices.

In summary, we make the following contributions:

e We present Eagle, an end-to-end deep-RL approach to control
aPTZ camera directly using raw images. Eagle is lightweight
and doesn’t require multi-stage fine-tuning.

e We introduce a new simulator, called EagleSim, to study PTZ
cameras in photo-realistic virtual worlds. We also show the
direct transfer of Eagle policies trained purely in EagleSim
simulator to the real scene videos.

e We compare Eagle with recent works showing its superior
performance and evaluating its generalizability across dif-
ferent object/surrounding variations.
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Figure 2: Different approaches to control PTZ cameras are illustrated using a vehicle tracking scenario. A PTZ camera is
controlled to keep a car in the field-of-view (FoV). The horizontal FoV (FoV},) and vertical FoV (FoV,) control zoom parameters.
Approach-1 (Object-detection+tracking+control): Represented by 1,2,3,4,9 is the widely used multi-stage technique of identifying
objects (using object detectors), followed by a short-term tracker and a controller. Approach-2 Object-detection+RL: Given
by 1,2,5,9 shows a setting where the bounding boxes are used to train an RL policy. Approach-3 Relative-location+control:
Steps 1,6,7,9 shows an alternative to bounding boxes where a neural network predicts the relative location of objects that the
controller uses. Approach-4 Eagle: End-to-end deep-RL: Steps 1,8,9 show the proposed Eagle approach to directly control the

pan, tilt, and zoom parameters using raw images.

2 BACKGROUND AND RELATED WORKS

2.1 Autonomous Control of PTZ Cameras

Our objective is to keep one or more objects of interest in the field-
of-view (FoV) of the PTZ camera at high resolution. An autonomous
controller achieves this by modifying the pan/tilt, keeping the de-
sired object in the center of the captured image, and zooming with-
out clipping the object. Keeping an object in the center of the image
avoids target loss during sudden movement/direction changes.
Figure 2 represents the different steps in autonomous PTZ control
for four classes of approaches using a sample object of interest (car).
We compare the recently proposed approaches that use learning-
based components for active tracking. Luo et al. [16] have shown
that neural network-based active trackers outperform traditional
trackers like MIL, Meanshift, and KCF. Each approach is represented
from the input image @) to the final control@.
Object_detection+tracking+control [5, 15, 25]: Steps
OOOOO. The objects of interest are detected in the image,
followed by a short-term tracking algorithm to predict their
location in the future frame. The controller adjusts the pan-tilt-
zoom to track the objects of interest. Bernardin et al. [5] focus
on human targets. They use a face detector and a mean-shift
tracker in combination with expert knowledge to control a PTZ
camera. Unlu et al. [25] present the control of a PTZ camera for
UAV tracking where a ResNet-based object detector is used. Lopez
et al. [15] track less frequent objects using a PTZ camera with a
faster R-CNN object detector. The object occurrence probability
identifies the less frequent objects of interest, and a rule-based
controller modifies the PTZ parameters. Using neural network
object detectors makes it infeasible to deploy this pipeline on
embedded camera platforms [14]. Further, multi-stage information
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flow necessitates fine-tuning of each stage, and its performance is
impacted by errors in each stage [14, 16]. E.g., the object detector’s
errors impact the tracking performance [14].

Object_detection+reinforcement learning [7, 13]: Steps
OOOO. These methods combine the tracking and control stages
with a deep-RL policy. Bisagno et al. [7] and Kim et al. [13] show
the control of PTZ camera using deep-RL where the inputs to the
neural networks are the information about the object of interest
(e.g., bounding-boxes, location of pedestrians). An actual deploy-
ment may need to use external object detectors to measure these
inputs, where the performance suffers from object detector errors.

Relative_location+control [12, 14]: Steps @@@Q. A neu-
ral network is trained using supervised machine learning to output
the relative location of the object of interest in captured images. The
relative location is used to control the pan-tilt-zoom parameters
without an explicit object detector. However, training the relative
location predictor from images demands the availability of labeled
bounding boxes in videos which are difficult to get for arbitrary
deployments. Further, a separate controller that uses the relative lo-
cations needs to be fine-tuned for the specific scenario and camera
parameters to make an end-to-end system.

Eagle: Steps @@@). We propose Eagle, an end-to-end deep-RL
approach that directly uses the raw input images to control the
PTZ parameters of a camera. Luo et al. [16] propose end-to-end
deep-RL for first-person tracking, where the first-person observer
moves along the object to track. In contrast, we study end-to-end
deep-RL to control PTZ cameras where the location of the camera
is fixed, but its PTZ parameters are modified to keep an object of
interest in the field-of-view. Eagle removes the need to tune the
multiple stages and trains lightweight controllers having superior
PTZ tracking performance.
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2.2 Frameworks for Pan-Tilt-Zoom Cameras

Due to the difficulty of creating tracking scenarios in the real world,
researchers have proposed several PTZ frameworks. Chen et al. [8]
propose a framework where a virtual PTZ camera is controlled to
generate images from panoramic videos. However, this framework
depends on the human annotation of videos for ground truth. Fur-
ther, creating new scenarios requires manual video capture using
specialized spherical cameras. Hanoun et al. [11] propose a frame-
work to study PTZ camera placement using a CAD environment.
However, they assume that the objects of interest are available
(similar to the object detectors). Salvagnini et al. [21] propose a
framework by placing a real PTZ camera and a calibrated projec-
tor screen. This requires specialized equipment, and the spherical
screen limits the camera motion. Hamesse et al. [10] propose a PTZ
tracker for air traffic control. The simulator doesna€™t keep track
of ground truth annotation; instead, it uses external object detectors
and achieves only 3 FPS on a GPU server used by authors. Further,
the proposed simulator lacks rich scene variations. It is also unclear
how to use existing simulation frameworks for end-to-end deep-RL
due to a lack of capability to learn from trial and error in the scenes
and automatic ground truth annotations for reward calculations.

EagleSim: We introduce the EagleSim simulator to train end-to-
end deep-RL policies for PTZ control. EagleSim relieves the need
to create real-world tracking scenarios and automatically provides
ground truth annotations of objects of interest. These ground truth
annotations are perfect, unlike human labels or pre-trained object
detectors. We address the challenging simulation-to-reality gap by
including virtual words with a wide variety of scene variations.
EagleSim includes the capability to simulate pan, tilt, and zoom on
real videos and enables parallel scenes supporting >200 FPS on a
GPU machine (GeForce RTX 3090 Ti).

3 EAGLE: END-TO-END DEEP-RL FOR PTZ

Eagle trains lightweight neural network policies that map input
images directly to pan, tilt, and zoom actions to track an object of
interest in a scene. We consider a standard Markov decision process
where an agent learns from trial and error by interacting with an
environment over many discrete time steps. At each step, the agent
receives a scalar reward defining its performance. The agent uses
the current state of the environment to decide the action.

3.1 State Space, Policy Network and Actions

The current state is represented by the most recent image captured
from a PTZ camera. The Agent uses the image to decide the next
action, where the video frame rate determines the step length.
Our policy adopts lightweight network architecture to enable real-
time inference on resource-constrained devices. We use a discrete
action space that modifies the current values of pan, tilt, and zoom
parameters. The implementation-specific details of the input size,
state transition delays, network architecture, and action space are
discussed in Section 5.2.

3.2 Reward Function: Single Object

First, we formalize the reward function to track a single object
of interest in scenes having no other objects. This setting is later
generalized to handle the presence of other objects.
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For active tracking, we formulate a reward function to keep
object O near the center of the image with the maximum possible
resolution. Consider a scenario in Figure 2, where a PTZ camera
tracks a car as the object of interest O%. A sample image of O%
captured by the PTZ camera is shown in Figure 3 along with the
bounding box of the car [Xmin, Ymin, Xmax, Ymax|, image Height,
and image Width. The center coordinate (x,y) of the bounding box
is defined as [x, y] = [(Xmin + Xmax) /2, (Ymin + Ymax)/2].

Knowing the bounding box and its center coordinate for 0%, we
define the reward (r{’) for step i in Equation 1.

1

pa_ Centery X Centery X Objl, X Clip® - P Condition
-L Otherwise

Where Condition is a binary value. For a single object setting, the
Condition is given by 1%. Here, [* = 1, if O¢ is captured in the image,
else % = 0. When Condition is True, the reward is a multiplication of
four terms Centery, Centery, Objé, ., and Clip® after penalty P is
subtracted. P > 0 is a hyper-parameter that penalizes the agent for
modifying the camera’s PTZ parameters to avoid jittery behavior.
When the object O is not present in the captured images, the agent
receives a negative reward L, where L > 0 is a hyper-parameter.

abs (W’Td”’ —x) abs (H%ght —y)

Center? = idih Centery = FroT
e Zg
. (Xmax — Xmin) X (Ymax — Ymin)
Ob}saize = : . (2)
Width x Height
M if Xmin = —(Height/2) or Ymin = —(Width/2)
Clip® ={M if Xmax = (Height/2) or Ymax = (Width/2)
1 otherwise
®)
N
R =" (rf) ()
i=0

Centery, Centerg and Obj;_, are defined in Equation 2. Centery
and Center, measure the accuracy with which an agent keeps ob-
ject O centered on the X-axis and Y-axis of the image, respectively.
If the target is not close to the center of the image, its probability of
leaving FoV is high on sudden direction changes. Obj¢,_ measures
the relative size of O% in the image. Centerg, Centerg, Objsaize €
[0, 1]. Clip® is defined in Equation 3, where M € (0, 1) is a hyper-
parameter. Clip? penalizes the reward r{ when O is clipped in the
captured image. The total reward R? for each episode of N steps is
the summation of step rewards r{* as shown in Equation 4.

3.3 Generalizable PTZ Tracking

Next, we answer the question: How to design a generalizable end-to-
end PTZ controller to track different kinds of objects of interest? We
extend the reward function to complex scenes by modifying the
Condition definition in Equation 1.
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We define 2 classes of objects in a scene.
The first class A = {0, .., O“T} is a collec-
tion of objects to track. For example, class A =

{SUVpies SUVyeq, SPOrtsyeq, Sportsgrey, Pickupy.eq, Pickupgrey }
is representing different vehicles to track. The second class
B= {Obl, . ObU} is the collection of objects to be ignored. For
example, the objects in the class B may refer to background
buildings, trees, and human characters for a vehicle tracking
scenario. We assume that only one of the objects from class A
is present at a given time in the scene, while the same policy
generalizes to all objects of class A. For example, the same policy
can track SUVyp,e, Sports,eq or a Pickupgrey vehicle, but only
one of them is present in the scene. The agent is given a reward
only when the objects of class A are tracked. We express this by
modifying the Condition, which is True when (I¢ = 1) A (a € A).

We update the calculation of reward (r{) (Equation 1) using
this new Condition. Our approach to generalize PTZ tracking is
motivated by domain randomization (or environment augmenta-
tions) [4, 16]. The discussion also applies to other scenarios, such as
tracking human characters. Here, the variations of human charac-
ters are added to class A, and class B contains objects to be ignored
in the scene. When multiple objects of class A are present in the
same scene, a policy trained using Equation 1 tracks an object giving
better future rewards as discussed in Section 6. Next, we introduce
the idea of dynamic tasking to enable flexible tracking Goals.

3.4 Dynamic Tasking: Flexible Tracking Goals

Here, we present a novel approach to enable flexible tracking goals
at runtime without having multiple control stages. We define dy-
namic tasking as the capability to change the tracking goal at de-
ployment. Dynamic tasking in multi-stage approaches can be easily
realized by changing the object detection stage. The identified ob-
jects from the object detectors are filtered during deployment to
change the tracking behavior [17]. However, in Eagle, there is no
separate object detector. To allow dynamic tasking, we include an
extra contextual input along with the current camera image and
modify the reward calculation.

We use structured contextual input in the integer space to spec-
ify different sub-class of objects in class A. To simplify notation,
we explain dynamic tasking with an example of two sub-classes
in class A = {SUV}1ye> SUV,pq, Humany, Humany}. The first sub-
class of vehicles Ay = {SUVpye, SUV,oq} and the second sub-class
of human characters Ay, = {Humany, Humany}. The contextual
input CI € {0, 1} represents two integer values. The formulation
generalizes to more complex contextual inputs at the expense of
increased training time. Our goal is to task policy at runtime to
either track sub-class A, when CI = 0 or sub-class Ay when CI = 1.
We define a new Condition in the Equation 5 to allow this.

True
False

Where C, is True when (I¢ = 1) A (a € Ay) A (CI = 0) and Cy,
is True when (I = 1) A (a € Ap) A (CI = 1). The Condition in the
Equation 5 brings in the domain knowledge to ensure that the agent
can learn to associate a specific contextual input with a particular
sub-class of objects of interest.

CUVCh

otherwise

Condition = { (5)

148

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

4 DESIGN OF EAGLESIM
4.1 Approaches to training Eagle

Different alternative approaches applicable to train Eagle include:
(i) Training using specialized videos: It is not possible to use
videos captured from a standard camera. Training requires
videos from different perspectives as modifying pan-tilt-
zoom changes the camera’s field-of-view. Hence, it either
requires multiple cameras to create a 3D world model or spe-
cialized spherical cameras to capture panoramic videos [8].

(i) Training in the real world: Deep-Rl training using a real-

world PTZ camera setup is difficult due to a large number
of environment interactions, real-time labeling, and fragile
experimental setups. Further creating tracking scenarios
with vehicles, and humans are not trivial in the real world.

(iii) Training in Simualtors: Researchers [4, 16] have proposed

the design of simulation environments to scale the training of
deep-RL. However, creating simulations with rich scenarios
and transferring policies from simulation to the real world
is itself non-trivial.

For optimal real-world performance, a hybrid approach can also
be used, where the initial policy is trained using a simulator, and
then the real world is used to finetune the policy. We follow ap-
proach (iii) and introduce a new simulator called EagleSim to train
end-to-end deep-RL policies for PTZ cameras. EagleSim is designed
using Unreal Engine? and AirSim [24] to enable PTZ camera place-
ment and control in photo-realistic virtual worlds. The architecture
of EagleSim is shown in Figure 3.

4.2 Photo-Realistic Virtual Worlds

Although AirSim enables control of a drone and a car in virtual
worlds, it doesn’t support different types of vehicles, control over
human characters, background trees, boundaries, and surround-
ings. These scene variations are needed to create a rich tracking
scenario. Creating rich scene variations is non-trivial, and requires
a significant engineering effort. To address this, we design new
virtual worlds with PTZ software abstractions (4300 lines of c++
code in Unreal engine) and include them with EagleSim.

Virtual worlds in EagleSim: We package virtual worlds for vehi-
cle tracking and human tracking scenarios. The vehicle tracking
virtual world keeps track of ground truth annotations of vehicles,
whereas the human tracking world keeps track of human charac-
ters. Each virtual world supports 6 types of vehicles (SUV1, Pickup,
Sports, HatchBack, SUV2, Truck) in five colors (30 different vehi-
cles), 6 human characters, 25 background materials/patterns, and
10 types of trees. EagleSim also supports image augmentations to
add random shadows, salt-pepper noises, random contrast, and
brightness changes to the PTZ images.

Each virtual world represents an open space (70 meters X 70
meters) with boundaries. The boundaries can be made invisible,
creating a simple scene with a blue skyline (see Sc-1 setting in
Figure 4a). The background patterns can be applied to the floor and
the boundaries to create variations of urban, forest, and rural areas,
as shown in Figure 1 and Figure 4a.

Shttps://www.unrealengine.com/
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Figure 3: The architecture of EagleSim and its integration with Eagle along with bounding-box for reward calculation. Step-1
shows a placement of a PTZ camera for vehicle tracking. Step-2 shows an image captured by a camera.

Addressing simulation-to-reality gap: A significant challenge
with policies trained in a simulator is to transfer them to the real
world. The research community represents this as the simulation-
to-reality gap [4, 16] due to sensing and environmental differences
between the simulators and the real world. For example, the images
in the real world can have observations (such as object variations,
backgrounds, shadows, occlusions, and illuminations) never ob-
served in the static/simple simulations. The virtual worlds packaged
with EagleSim are carefully designed to address the simulation-to-
reality gap. We use domain randomization to train a policy that
can generalize to unseen variations of objects and surroundings.
The idea is to train policies on a combination of different scene
variations.

4.3 PTZ Abstractions

The PTZ abstractions in EagleSim provide four modular compo-
nents as shown in Figure 3. A PTZ camera (step @) is placed using
Camera Placement component. The camera is controlled using the
Camera Controller. Step @ shows a sample camera image. The car
may or may not get captured in the image depending on the cam-
era’s location, the car’s location, and PTZ parameters. The bounding
box (€@)) is captured by the Object Tracker.

Camera Controller exposes control of pan, tilt, and zoom param-
eters of the cameras at runtime. The resolution supported for pan
and tilt is one degree. The zoom is controlled by modifying the hor-
izontal field-of-view (FoV) at runtime with a resolution of 1 degree.
The vertical FoV is based on the aspect ratio and the horizontal
FoV: verticalp,y = horizontalg,y * height /width. Object Tracker
provides bounding boxes of objects of interest captured in the PTZ
image. A bounding box is calculated by transforming the 3-D outer
coordinate mesh of the object available from the Unreal engine
to the 2-D image coordinates using a pinhole camera model. The
bounding boxes of EagleSim are perfect, unlike the bounding boxes
predicted by a neural network-based object detector, which may
have prediction errors. The bounding boxes are used to calculate
rewards (Section 3) to train Eagle. Scene Controller selects scene
variations to enable the evolution of the training environment.

5 EVALUATION

While every component of EagleSim is needed for end-to-end RL,
traditional ablation study is not applicable. Here, we systematically
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Layer 1 2 3 4 5|6
Config | C5x5-64 | C3x3-32 | C3x3-32 | C3x3-16 | 64 | 64
Table 1: Policy architecture used by Eagle.

7
64

333

evaluate Eagle policies in varying scene complexity in the virtual
world and compare them to the existing multi-stage approaches.

5.1 Performance Metrics for PTZ Tracking

Eagle doesn’t produce intermediate bounding boxes, generally avail-
able in multi-stage approaches. Hence, we adopt metrics (% Track-
ing, Centery, Centery, Objsize) to directly evaluate the camera con-
trol performance. The metric of tracking duration (referred to as %
Tracking) [14] measures the duration for which the controller suc-
cessfully keeps an object of interest in the FOV of the camera. When
% Tracking is 100, the object was kept in the camera’s FoV for the
entire duration. Tracking duration is also equivalent to the episode
length adopted by Luo et al. [16]. Instead of the number of steps,
we report the percentage. Like the tracking duration, Chen et al. [8]
uses track fragmentation, which is the number of steps as a fraction
between 0 and 1. One of the goals of the PTZ controller is to capture
an object in the center of the image. To measure center location
error, we directly use the average Centery (Equation 2) and average
Centery (Equation 2) maintained by the controller for the entire
trajectory. The metrics of Centery and Centery are equivalent to
the center location error used by Chen et al. [8]. To compare the
object resolution, we adopt Objsiz. (Equation 2), which measures
the relative size of an object in the captured image.

5.2 Implementation of Eagle

State Space, Policy Network and Actions: We downsample the
PTZ camera images to 120x120 and convert them to grayscale.
Working directly with large color images is computationally de-
manding [14, 18]. The low-resolution images are not for surveil-
lance and are only used for the purposes of camera control. Our
evaluation in Section 5.4 shows that even at low resolution Eagle
outperforms other approaches using higher image resolutions. The
policy network architecture is shown in Table 1, which consists
of 7 hidden layers and an output layer. This network architecture
is motivated by neural networks trained for Atari games by Mnih
et al. [18]. The first five layers are convolution layers, each with
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Scenario Tracking Goal Scene Variations
Sc-1 SUV1p4e Fixed background
Sc-2 SUV1piye Fixed background+Trees+Image augmentations
Sc-3 SUV1p1ue Variable backgrounds+Trees+Image augmentations
Sc-4 SUV1ppye + SUV1,0q+SUV1grey | Variable backgrounds+Trees+Image augmentations+Humans
Sc-5 SUV1ppye + SUV1,eq + Pickupgrey + | Variable backgrounds+Trees+Image augmentations+Humans
Pickupyeq + Sportspiye + Sportsgrey
Dynamic Tasking SUV1p,e/Humans Variable backgrounds+Trees+Image augmentations

Table 2: Different tracking scenarios in the increasing order of tracking complexity to evaluate Eagle. The goal of Sc-1 to Sc-5 is
to track vehicles. Dynamic tasking (DT) trains a policy to track either a vehicle or human characters.
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Figure 4: (a) Visualization of tracking scenarios presented in Table 2. Sc-1 to Sc-5 are vehicle tracking scenarios. DT shows the
scenes for dynamic tasking of policy to track human characters. (b) Average training reward of Eagle policies for scenarios. We
calculate the average reward by training three policies for each scenario and show its min-max spread.

a stride 2 and a rectifier nonlinearity. The first layer, denoted by
C5x5-64 convolves 64 filters of 5 X 5 each. The fifth, sixth, and sev-
enth layers are fully connected and consist of 64 rectifier units each.
The last layer produces 3 discrete outputs to control the pan, tilt,
and zoom parameters. The policy network is lightweight, enabling
real-time inference on embedded platforms (e.g., Raspberry PI 4B,
Jetson Nano), and has 79k model parameters.

The 3 outputs modify the current parameter values as follows: [-
2 degrees, 0 degrees, 2 degrees] for pan and tilt. We control the FoV
with three possible outputs for the zoom configuration: [-1 degree,
0 degrees, 1 degree]. The horizontal FoV and vertical FoV are equal
due to the same aspect ratio of input images. We use the ground
truth bounding boxes from EagleSim to calculate the episodic re-
ward (Equation 4) and use L = 10, M = 0.3, and Penalty = 0.01 as
the hyperparameters.
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State Transitions: During training, we maintain an end-to-end
delay from sensing a state (image) to action at 30 milliseconds. This
delay is matched to the embedded PTZ camera platform [1] when
deploying Eagle policy using Raspberry PI 4B. We use an episode
length of 2000 steps during training which translates to one minute
of continuous tracking.

Distributed Training: EagleSim supports the creation of multiple
scenes in parallel using Python wrappers in the OpenAl Gym*
format. This allows the integration of EagleSim with state-of-the-
art reinforcement learning libraries. We use 6 parallel scenes to
train a single policy in 69 hours (2.9 days) on a GPU server machine
(GeForce RTX 3090 Ti) [3] (see Figure 4b). Without 6 parallel scenes,
it would take 17 days (2.9%6) for an agent to collect the same amount
of data from a sequential environment.

4https://github.com/openai/gym
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Training Algorithm: We adopt distributed implementation of
the Proximal Policy Optimization (PPO) [23] algorithm from the
stable-baselines3° library. The default hyperparameters of PPO
present in the library are used, except the updates to the network
are performed every 24576 (4096*6) steps collected from 6 parallel
environments and a batch size of 256.

5.3 Tracking Scenarios

We consider five vehicle tracking scenarios (Sc-1 to Sc-5) with in-
creasing tracking complexity and a dynamic tasking (DT) scenario,
as shown in Table 2. The scenes from tracking scenarios are shown
in Figure 4a. Sc-1 tracks a single SUV 1y, car in a Fixed back-
ground. In Sc-5, the agent tracks any of the 6 vehicles (SUV 1,
SUV1,eq , Pickupgrey, Pickup,eq, Sportspiye, Sportsgrey) in the
presence of variable backgrounds, tree, image augmentations and
human characters. Variable backgrounds refers to the random selec-
tion of background materials (any one of 25 materials included in
EagleSim) during training episodes. Various trees and human char-
acters are randomly placed in the scene when enabled. Dynamic
tasking (DT) trains a policy to track objects from one of the two
sub-classes based on contextual input. The first sub-class contains
a single vehicle (SUV1p;,,.), and the second sub-class contains 4
different human characters.

Tracking setup: During training and evaluation, the vehicles are
given random trajectories by controlling steering and throttle in the
virtual world in an open space of 70 meters X 70 meters. A vehicle
has an average speed of 6 m/s. The vehicle comes to a standstill
when reaching the boundary and randomly changes its direction,
and has a max speed of 16 m/s. A PTZ camera is placed at the mid-
point of the south (or bottom) boundary at the height of 8 meters
as shown in Figure 3 (step @)). The camera initially looks at the
wider scene, capturing a zoomed-out image with a vehicle in it. As
the vehicle moves, the goal is to track and focus on it. This tracking
setup is shown for different scenes in Figure 4a (Sc-1 to Sc-5), where
the initial image shows a wider view of the scene, and subsequently,
the PTZ camera tracks the car. With the tracking progress, the PTZ
camera focuses on the object of interest, as seen in the right images
of Figure 4a. While tracking the vehicle, variations are enabled in
specific scenarios, as seen in Figure 4a. For the dynamic tasking
(DT) scenario, a human character is placed in the scene along with
the vehicle (SUV1p},,.), where both are initially visible to the wider
view of the camera. Both humans and vehicles move on random
trajectories. A random human character (out of 4) is selected during
each training episode.

Training reward: The training reward is shown in Figure 4b. The
policies are trained using 6 parallel environments for 69 hours (2000
iterations). The training reward is calculated as an average of three
policies for each scenario. As seen, the simpler tracking scenario
converges faster. We also see with the increasing complexity of
scenarios, Eagle policies converge to a lower reward. Next, we
analyze the performance of policies to understand this behavior.

5.3.1 Performance of Eagle Policies. We evaluate the policies using
the checkpoint with the highest training reward. For each scenario,

Shttps://github.com/DLR-RM/stable-baselines3

151

Sandha, et al.

three policies with different random seeds are trained, and a check-
point is evaluated from each policy. Each checkpoint is evaluated
for 100 episodes (each episode is of 2000 steps or 1 minute of track-
ing). We report the mean performance metrics (Tracking duration
(% Tracking), Centery, Centery, Ob jsize) and their std.

Table 3 shows the performance of Eagle policies to track
SUV1pp,e in scenes having Fixed background, Variable back-
grounds+Trees, and Variable backgrounds+Trees+Humans. The
SUV1pp,e vehicle is present during training of all scenarios (Ta-
ble 2). The test scenes are different from training due to the random
placement of objects (backgrounds, trees, and human characters
when enabled) and random vehicle/human trajectories.

Policy behavior in simple scenes and understanding training
rewards: Looking at the Fixed background evaluation in Table 3,
we see Eagle policies can successfully track >99% of the time and
maintain similar Centery and Center, metrics. However, the policy
zooms in conservatively on the object of interest when the training
complexity of scenes is increased. The Ob js;z maintained by poli-
cies decreases for Sc-1 to Sc-5 gradually. Our hypothesis is that the
behavior to reduce zoom is learned so as to track different kinds
of vehicles in the presence of other objects/occlusions and scene
variations. Due to the reduction in Objsize, the average training
reward decreases from Sc-1 to Sc-5.

Generalization to unseen scene variations: Eagle policies for
Sc-1 and Sc-2 are trained using a Fixed background. We see these
policies don’t transfer to unseen scenes variations (Variable back-
grounds+Trees and Variable backgrounds+Trees+Humans as shown
in Table 3). Adding Image augmentations in Sc-2 results in better
performance in comparison to Sc-1 for unseen variations. During
training, Sc-3 doesn’t observe human characters; however, the pol-
icy maintains a tracking duration of 90% even in the presence of
human characters. This shows variations in backgrounds are criti-
cal during training to have generalizability. We also see that Sc-4
and Sc-5 have similar behavior. This is because Sc-4 and Sc-5 are
trained with variable backgrounds, trees, and human characters for
SUV1ppye vehicle. However, Sc-5 is also trained to track rich cate-
gories of vehicles, and next, we see how Sc-4 and Sc-5 generalize
to unseen vehicle variations.

Generalization to unseen variations in an object of interest:
We analyze Sc-4 and Sc-5 policies to track vehicles not present
during training. The performance is shown in Table 4 to track
HatchBackgreen and Truckpp,e. HatchBack and Truck vehicles
were not present during training. Also, no green color vehicles
were present during training. The policies trained for Sc-5 outper-
form because Sc-5 has different types of vehicles with multiple
colors, whereas Sc-4 has one type of vehicle with multiple col-
ors. Hence, having variations in vehicle types generalizes better.
Further, HatchBackgreen refers to a setting where neither the vehi-
cle (HatchBack) nor the color (green) was present during training,
which gives slightly worse performance than Truckyj,,.. blue color
vehicles were present during the training of policies.

Dynamic Tasking Performance: Dynamic tasking represents
the most complex scenario in Table 2 as the agent needs to learn
adaptation of its tracking goal across diverse objects. Table 5 shows
the performance of Eagle policies to track either SUV 1y, (DTy) or
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Fixed background Variable backgrounds+Trees Variable backgrounds+Trees+Humans
%Tracking | Centery | Centery | Objsize || %Tracking | Centery | Centery | Objsize || %Tracking | Centery | Centery | Objsize
Sc-1{99.6+43| 0.87 0.85 0.31 9.7+6.3 0.65 0.63 0.13 85+4.4 0.64 0.62 0.08
Sc-2199.9 +£0.1 0.87 0.86 0.30 18.8 £16.2| 0.81 0.79 0.29 17.2 £ 14.8| 0.81 0.77 0.27
Sc-3]99.1 +£8.5 0.87 0.86 0.30 98.9 +£6.9 0.87 0.86 0.30 90.0 +£ 22.1| 0.86 0.85 0.31
Sc-4{99.7+43| 0.87 0.86 0.29 989+7.4 | 0.86 0.86 0.29 99.1+6.3 | 0.86 0.86 0.29
Sc-5(99.7+£54 0.86 0.85 0.27 99.3+6.9 0.86 0.86 0.27 99.2 £ 4.6 0.86 0.85 0.27

Table 3:

The performance of Eagle policies for vehicle tracking scenarios. Centery, Center and Ob sz, have std within +0.2.

HatchBackgreen Vehicle

Truckpjye Vehicle

%Tracking | Centery | Centery

Objsize

%Tracking | Centery | Centery | Objsize

Sc-4183.0+28.2(0.85+0.1[0.86+0.1

0.21+0.1

92.8+19.4]0.87+0.1{/0.82+0.1|0.27 £0.1

Sc-5(88.1+25.4{0.84 £0.1{0.85+0.1

0.22+0.1

95.1+16.3|0.84+0.1]0.83+0.1/0.34+0.1

Table 4: Generalization of Eagle policies to unseen variations in the object of interest.

Figure 5: Policy behavior in a sample scene where the object of interest is not dominant in the initial view and is partially

blocked. The goal is to track the red car.

Fixed background Variable backgrounds+Trees Variable backgrounds+Trees+Object
%Tracking | Centery | Centery | Objsize || %Tracking | Centery | Centery | Objsize || %Tracking | Centery | Centery | Objsize
DT, | 98.8 £7.6 0.86 0.85 0.30 |{92.0+18.7| 0.85 0.84 0.30 |{88.7+21.4| 0.85 0.85 0.29
DTy |95.8 £15.2] 0.90 0.90 0.27 |[86.3+22.7| 0.89 0.90 0.28 |[83.6 +£23.7| 0.89 0.90 0.28

Table 5: The dynamic tasking (DT) performance of Eagle policies to track either a humans character (DT},) or a vehicle (DTy).

Centery, Centery and Objisize have std within +0.1.

Height 20m 10m 8m 5m 4m

%Tracking | 96.5 + 15| 99.7 +£3.1[99.7 £ 5.4 [ 99.3 £ 6.6 | 90.2 + 23

Table 6: %Tracking of Eagle policies at different heights
(meters) of the PTZ camera.

a Human (DTy,) character. In Fixed background and Variable back-
grounds+Trees only one of the objects of interest (SUV1py,, or
a Human) is present. In Variable backgrounds+Trees+Object both
SUV 1y, and Humans are present. In the absence of another com-
peting object, policy performs much better, whereas it suffers a
performance degradation in Variable backgrounds+Trees+Object.
The tracking goal also has different complexity between the vehicle
and human sub-class. The vehicle sub-class contains only a single
vehicle (SUV1p;,,.), whereas the human sub-class contains 4 differ-
ent characters. The average performance of 4 human characters is
shown. We hypothesize that the imbalance in tracking complexity
results in performance differences between DT, and DTj,.

Camera height: Eagle policies are trained by placing a camera
at 8 meters(m) height as discussed in Section 5.3 (Tracking setup).
Table 6 shows the performance of Sc-5 policies trained at 8m by
varying the height during evaluation. The %Tracking is captured
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across 100 episodes to track SUV 1y, vehicle moving on random
trajectories (avg speed of 6 m/s) in scenes having Fixed Background.
The action space of Eagle modifies the current PTZ parameters
(Section 5.2) and works well between 5m to 20m heights during
deployment, even when trained at 8m. We do observe performance
drop as the camera placement differs from the training setup. This
suggests with a substantial camera placement difference between
training and deployment; policy retraining is needed for optimal
performance, which is similar to the recalibration of PTZ parame-
ters in classical control.

Object of interest in the initial viewpoint: Eagle policies suc-
cessfully track the object of interest even when the initial viewpoint
doesn’t capture the object of interest completely or has another ob-
ject which is captured in dominance. Figure 5 shows a scene where
the blue car is captured in dominant in the initial viewpoint and
is partially blocking the object of interest (red car). Both cars are
exactly similar except for their colors. As seen, in the subsequent
images, Eagle successfully tracks the red car.

Summary: What is the impact on the PTZ controller performance

as the tracking complexity is increased? As the PTZ tracking com-
plexity is increased for vehicle tracking scenarios (Sc-1 to Sc-5),
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Eagle policies learn a more conservative behavior. The zoom level
maintained on the object of interest is reduced in complex scenes.
Policies trained in simpler scenes don’t transfer well to unseen back-
grounds and cannot work in the presence of other objects like trees
or humans. The trained policies for Sc-5 use complex scenes, which
also perform better for unseen variations in the object of interest.
This shows the complex scenes in EagleSim simulator are critical
to developing generalizable policies. The evaluation of dynamic
tasking showed that contextual input enables goal modification
during the deployment; however, enabling dynamic tasking comes
at a performance cost.

5.4 Eagle vs Other Approaches

Here, we compare the performance of Eagle with the current state-
of-the-art approaches. First, we discuss our realization of other
approaches and then present their control performance.

5.4.1 Object_detection+tracking+control. We use Yolo5s [2], a state-
of-the-art lightweight object detector, followed by a Kalman filter
for state estimation on bounding boxes. We use the open-source [6]
implementation of the SORT algorithm for the Kalman filter. Fi-
nally, the tracking outputs are used to control the PTZ param-
eters using a rule-based controller [15]. The input to the object
detector is an image of size 240x240. We call this tracking setting
Yolo+Kalman+Controller.

Yolo5s is trained to detect 80 different classes of objects [2]. To
improve its performance during evaluation, we finetune Yolo5s
by collecting a labeled dataset of 50k images from EagleSim. The
dataset is collected by observing the SUV 1}, vehicle in Variable
backgrounds+Trees+Humans scenes and at varying zoom levels. The
default hyperparameters recommended by Yolo5s developers [2]
were used to finetune the model for 100 epochs. We use the fine-
tuned Yolo5s in our experiments.

Finally, to completely remove object detector errors, we imple-
ment another setting that uses the oracle bounding boxes provided
by the EagleSim simulator as input to the Kalman filter. We call this
setting, PerfectBB+Kalman+Controller, where PerfectBB signifies
the perfect bounding boxes.

Controller Parameter Tuning: We fine-tune the parameters
of this pipeline using Mango [22], a state-of-the-art hyperpa-
rameter tuning library. We use total reward in Equation 4 as
the objective function for Mango to tune controllers for Per-
fectBB+Kalman+Controller and Yolo+Kalman+Controller for 1000
episodes (each of 2000 steps) in EagleSim. This amounts to a total
tuning time of 16.6 hours.

5.4.2 Object_detection+reinforcement learning. We use the bound-
ing boxes from EagleSim to train a deep-RL model. The in-
put state of deep-RL consists of a vector of 4 variables
([Xmin, Ymin, Xmax, Ymax]) shown in Figure 3. The policy net-
work is a 2-layer fully connected neural network, each having 64
hidden nodes, followed by an output layer with 3 discrete outputs
for pan, tilt, and zoom parameters. PPO algorithm with the same
hyperparameters as Eagle is used for training (Section 5.2).

We evaluate this approach at test time in two different ways:
(i) using the bounding boxes from EagleSim, which are error-free,
called PerfectBB+Deep_RL, and (ii) using the bounding boxes from
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the finetuned Yolo5s object detector, Yolo+Deep_RL. The input to
object detector is an image of size 240x240. This shows the usage
of object detectors for a realistic setting when perfect bounding
boxes are not available.

5.4.3 Relative_location+control. We build on the method proposed
by Kyrkou et al. [14] using supervised machine learning for pan-
tilt control. We extend the proposed [14] approach by includ-
ing a relative zoom variable. A neural network is trained to pre-
dict three outputs defining a relative location: (i) Relxzm,

.. _ y _ (Xmax—Xmin)*(Ymax—Ymin)
(ii) Rely= Height]2’ and (iii) Relzoom = Width«Height

Where x, y, Width, Height, Xmax, Xmin, Ymax and Ymin are
shown in Figure 3. The Rely, Rely, and Relz,om, varies between -1
and 1. A separate controller uses the Relx and Rely to control the
pan and tilt of the camera and uses Relz,on, to modify the zoom.

The neural network has the same architecture as the policy net-
work of Eagle (Table 1), with a different output layer. The output
layer consists of 3 nodes for each of Relx, Rely, and Relz,om With
a linear activation. The input to the network is an image of size
240x240. This setting is called NN+Controller. We train this neural
network by using the 50k labeled images capturing the relative lo-
cation of SUV 1y, vehicle in Variable backgrounds+Trees+Humans
scenes from the EagleSim simulator.

5.4.4  Performance Comparisons. The comparison of Eagle with
the current state-of-the-art approaches is shown in Table 7. The
performance numbers for Eagle are added for policies trained for
the scenario Sc-5 (from Figure 3). For fairness, all approaches are
evaluated for an end-to-end delay of 30ms from sensing image to
applying PTZ actions. The evaluation in Table 7 is to track SUV 1y,
vehicle moving on random trajectories (with an average speed of 6
m/s) for 100 episodes The tracking setup used for evaluation is the
same as discussed in Section 5.3 (Tracking setup).

The performance of multi-stage approaches using perfect bound-
ing boxes is shown in Table 8. The accuracy of perfect bounding
boxes is independent of the scene’s complexity. But, these settings
are not realistic, as, in practice, there will be errors in object detec-
tors; however, this evaluation presents a valuable insight into the
upper bound of performance as the object detectors improve.

In Fixed background, Eagle outperforms the next best ap-
proach of Yolo+Kalman+Controller by 4.6% in tracking duration
(% Tracking). Eagle also maintains the metrics of Centery, Centery,
and Objsize better than others. With perfect bounding boxes
(Table 8), controller performance improves as expected. How-
ever, when bounding boxes are imperfect (Table 7), there is a
significant degradation. Yolo+Deep_RL suffers more degradation
in comparison to Yolo+Kalman+Controller. This is because, for
Yolo+Kalman+Controller, Mango (hyperparameter tuner) selects
lower Ob jsize during tuning to maintain a higher tracking duration.
However, in Yolo+Deep_RL, such fine-tuning is not possible, and
on replacing perfect bounding boxes with Yolo5s. We see Eagle
slightly outperforms even the PerfectBB+Kalman+Controller and
PerfectBB+Deep_RL in tracking duration; we hypothesize that the
raw images provide much richer information such as the orienta-
tion of the vehicle and the presence of other objects, which is not
available in perfect bounding boxes.
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Approach Fixed background Variable backgrounds+Trees+Humans
%Tracking | Centery | Centery | Objsize || %Tracking | Centery | Centery | Objsize
Eagle 99.7+5.4 [0.86+0.1/0.85+0.1{0.27+0.1| 99.2+4.6 [0.86+0.1]0.85+0.1{0.27 £0.1
Yolo+Kalman+Controller | 95.1 + 18.2 1 0.81 +£0.1 [0.85+0.1|0.24 + 0.1 [ 75.4 +30.6| 0.81 £ 0.1 | 0.84 £ 0.1 | 0.25 + 0.1
Yolo+Deep_RL 39.1+18.9|0.81+£0.2(0.82+0.2{0.19+0.2|[36.8+19.0{0.84 £0.2|0.82+0.2|0.20 £0.2
NN+Controller 81.2+26.1{0.83+0.1{0.82+0.1{0.22+0.1/53.6=+31.5(/0.86+0.1{0.85+0.1{0.23 £0.1

Table 7: Comparison of Eagle with the current state-of-the-art approaches for different scene complexities.

Approach %Tracking | Centery | Centery | Objsize
PerfectBB+Deep_RL 98.5+8.5 |0.85+0.1|0.81+0.2|0.36 0.1
PerfectBB+Kalman+Controller | 98.3 +8.4 [0.85+0.1]0.83 +0.1|0.33 +0.1

Table 8: Performance of multi-stage approaches when perfect bounding boxes are available from EagleSim simulator.
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Figure 6: Learning curves of custom object detectors.

In complex scenes (Variable backgrounds+Trees+Humans), Eagle
outperforms the following best approach (Yolo+Kalman+Controller)
by 23.8% in tracking duration (% Tracking) and also maintains other
metrics superior. This is because, in more complex scenes, object

detectors face more challenges in identifying the object of interest.

Approach Variable backgrounds+Trees+Humans
%Tracking | Centery | Centery | Objsize
Eagle 99.2 + 4.6 0.86 0.85 0.27
Object Detector(150k) | 82.0 = 29.6 |  0.85 0.84 0.28
Object Detector(150k) | 81.8 + 28.1 0.85 0.84 0.27
Object Detector(50k) | 78.5 + 31.2 0.84 0.85 0.27

Table 9: Comparison of Eagle with PTZ trackers using custom
object detectors.

5.5 Custom Lightweight Object Detectors

The traditional multi-stage pipelines adopt complex neural object
detectors such as YOLO, ResNet-based, and faster R-CNN based as
discussed in Section 2.1. Here, we compare Eagle with pipelines
using very lightweight custom object detectors trained from scratch
for a specific deployment. Training custom object detectors from
scratch demands costly effort to label bounding boxes; hence, it is
challenging to realize in practice. However, the introduced EagleSim
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simulator allows us to train custom object detectors by providing
ground-truth annotations.

We develop custom object detectors with network architecture
similar to Eagle (Table 1) with a modified output layer. The output
layer directly predicts bounding boxes (Xmin, Ymin, Xmax, Ymax)
of vehicles in the images. We generate labeled bounding box image
datasets of sizes 50k, 100k, and 150k using EagleSim by driving 6
different vehicles in the Sc-5 scenario (Table 2) using the tracking
setup discussed in Section 5.3.

Learning curves: We train the networks using the mse loss func-
tion and adam optimizer for 1000 epochs (Figure 6). Three check-
points for each network with different random seeds are trained
using 20% of the data as the validation. In Figure 6, Object Detec-
tor(150k) refers to the model trained using the 150k image dataset.

PTZ tracking performance: A PTZ tracker is realized by using
lightweight custom object detectors followed by a Kalman filter
and a rule-based controller, as discussed in Section 5.4.1. Table 9
compares the performance of Eagle with these custom multi-stage
pipelines. We see that Eagle outperforms the specialized lightweight
detectors significantly by maintaining up to 17% more tracking
duration. We hypothesize that detecting accurate bounding boxes
becomes more challenging in the presence of other objects in the
scenes. We evaluate different training dataset sizes and observe a
slight improvement in tracking performance as the dataset size is
increased.

5.6 Transfer of Eagle to the Real Scene Videos

We show the direct transfer of Eagle policies from simulation to
the real scene videos. EagleSim support capability to simulate pan-
tilt-zoom actions on real videos. This is realized by simulating the
effect of policy actions on an initial wider view containing an object
of interest in the video. This evaluation presents a visual way to
see the behavior of Eagle policies on real scenes.

We simulate the pan-tilt-zoom actions from Eagle policies trained
for Sc-5 on real-scene videos. Tracking videos for real scenes are
available online? The results are shown in Figure 7 for two different
scenes. The left scene consists of a toy blue SUV vehicle moving
on a concrete floor. The variations in this scene are much simpler.
The tracking progress is shown from the top image to the bottom
image in Figure 7:A. The initial bounding box of wide view (PTZ
View) is manually selected, which is given as input to the trained
policy. The actions predicted by the policy are used to update the
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Figure 7: Eagle policies on real videos. The arrows show the vehicle to track in the video scene. The PTZ view is maintained by
Eagle while tracking the vehicle. The top images show the starting point where the PTZ view is not focused.

selected bounding box by moving it left-right for pan and up-down
for tilt. The zoom action controls the size of the bounding box.
The scene in Figure 7:B shows a real vehicle of grey color moving
in a background having trees/patterns. The tracking progress is
again shown from top to bottom, where the first image of PTZ
View shows the wider view given as an input to the policy. As
the tracking progresses, the policy follows the object of interest
(car). For optimal real-world performance, policy training can be
complemented using real-world finetuning. However, here we focus
on a simulation environment and show out-of-box transfer of Eagle
policies to the real scene videos.

5.7 Runtime of Eagle on Embedded Cameras

We measure the runtime of Eagle policies on Raspberry Pi 4B
and Jetson Nano devices which are also supported by embedded
PTZ cameras [1]. We compare Eagle with the next best traditional
approach using a general-purpose object detector from Table 7:
Yolo+Kalman+Controller . Eagle policies have only 79k network pa-
rameters compared to Yolo5s’ 7.2 million parameters. The inference
latency of Eagle and Yolo5s is reported in Table 10. On Raspberry Pi,
we optimize the inference for Eagle and Yolo5s using TensorFlow
Lite®. On Jetson Nano, the Yolo5s model has an inference latency

®https://www.tensorflow.org/lite
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[ Device | Raspberry Pi 4B | Jetson Nano |
Eagle 9.2+ 1.3 ms 6.2+ 2ms
Yolo5s | 1817 +14.1ms |86.2 + 1.5 ms

Table 10: Inference time in milliseconds (ms) of Eagle and
optimized Yolo5s on embedded camera platforms.

of 218 milliseconds (ms). We optimize Yolo5s for Jetson Nano using
TensorRT’ and further, quantize the model to float16 to reduce its
inference latency. The inference latency of optimized Yolo5s on
Jetson Nano is reported in Table 10.

The PTZ camera [1] supports a frame rate of 120 Hz, which
when tested with neural network inference reduces to 100 Hz. The
camera supports PTZ actions with a resolution of 1 degree and has
an actuation delay of 10 ms. When using Eagle for PTZ control
on Raspberry PI, the end-to-end delay is around 30 ms (10 ms for
inference, 10 ms for sensing (100 Hz), and 10 ms for actuation), en-
abling a real-time deployment with 33 FPS. Yolo5s has an inference
latency of 1817 ms on Raspberry PI, making it completely infeasible
to run Yolo+Kalman+Controller on Raspberry PL

On Jetson Nano, Eagle achieves an even higher FPS of 38 (in-
ference latency of 6.2ms and similar sensing+actuation delay of

"https://github.com/tensorflow/tensorrt
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Figure 8: A sample scene with multiple objects of interest.

20ms). Yolo+Kalman+Controller, even when using optimized Yolo5s,
has a significantly higher inference latency of 86.2ms on Jetson
Nano. Considering the sensing and actuation delays, the total end-
to-end delay for Yolo+Kalman+Controller is 106.2 ms, which results
in a very low FPS of 9. Hence, for real-time deployment, Eagle
policies represent a lightweight controller with superior control
performance.

6 DISCUSSION

Policy behavior on multiple objects of interest: Eagle policies
in Section 3.3 are trained by assuming a single object of interest from
class A is present in the scene, while the same policy generalizes
across all objects of class A. Here, we test the trained policy by
adding multiple objects from class A to the same scene, as shown
in Figure 8. We see that the reward of Equation 1 incentivizes an
agent to track the larger object lying closer to the center of the
image to achieve a higher expected sum of rewards. We test the
policy of the Sc-5 scenario. As seen in the images from left to the
right, the policy tracks the larger car and continues tracking it after
it gets focused.

Speed of objects: We evaluated controller performance on vehicles
moving at an average speed of 6m/s (max speed of 16m/s). The
action space of Section 5.2 also tracks slow-moving humans. To
track even faster-moving objects, the action space can have more
options, or the end-to-end delay can be reduced to modify the PTZ
parameters faster.

Multiple cameras: EagleSim can capture bounding boxes of mul-
tiple objects of interest and also allows the control of multiple PTZ
cameras in the same scenes. Multiple cameras present a problem of
collaborative tracking. We leave the study of end-to-end controllers
for collaborative tracking as future exploration.

Limitations of Eagle: The multi-stage pipeline is modular, allow-
ing the replacement of each stage with several alternatives; however,
the end-to-end controller cannot be modified in this fashion. Chang-
ing the tracking goal in a multi-stage pipeline is easier by filtering
the outputs from object detectors. Modifying the tracking goal in
Eagle to a new type of object may require retraining from scratch.
EagleSim simulator is designed to automate the retraining and alle-
viate the labeling efforts. We also saw that runtime tasking in Eagle
to selectively track humans and vehicles comes at a performance
cost. Runtime tasking in multi-stage approaches can be enabled by
changing their tracking goal by adopting general-purpose object
detectors. In light of these limitations, Eagle is more suitable for
applications where the general categories of objects to track are
known ahead, and lightweight controllers are required.
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7 CONCLUSION

We introduced a new lightweight approach called Eagle that outper-
forms prior state-of-the-art and provides superior end-to-end PTZ
control performance. We benchmark Eagle on different scenarios
with varying tracking complexity and evaluate its generalizability
on unseen objects/surroundings. To automate the training and eval-
uation of PTZ camera controllers, we also presented an accompa-
nying simulator called EagleSim. Further, the availability of Oracle
bounding boxes in EagleSim enables us to study prior multi-stage
approaches by removing errors in their object detection pipeline
showing upper-performance bounds. End-to-end control enabled
by Eagle can slightly outperform these upper bounds. Finally, the
action predicted by end-to-end Eagle policies trained purely in
photo-realistic simulation can transfer to real-world videos, sug-
gesting it is a promising alternative to the current approaches.
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