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This paper presents EARFace, a system that shows the feasibility of tracking facial landmarks for 3D facial reconstruction
using in-ear acoustic sensors embedded within smart earphones. This enables a number of applications in the areas of
facial expression tracking, user-interfaces, AR/VR applications, affective computing, accessibility, etc. While conventional
vision-based solutions break down under poor lighting, occlusions, and also suffer from privacy concerns, earphone platforms
are robust to ambient conditions, while being privacy-preserving. In contrast to prior work on earable platforms that perform
outer-ear sensing for facial motion tracking, EARFace shows the feasibility of completely in-ear sensing with a natural
earphone form-factor, thus enhancing the comfort levels of wearing. The core intuition exploited by EARFace is that the shape
of the ear canal changes due to the movement of facial muscles during facial motion. EARFace tracks the changes in shape of
the ear canal by measuring ultrasonic channel frequency response (CFR) of the inner ear, ultimately resulting in tracking of the
facial motion. A transformer based machine learning (ML) model is designed to exploit spectral and temporal relationships
in the ultrasonic CFR data to predict the facial landmarks of the user with an accuracy of 1.83 mm. Using these predicted
landmarks, a 3D graphical model of the face that replicates the precise facial motion of the user is then reconstructed. Domain
adaptation is further performed by adapting the weights of layers using a group-wise and differential learning rate. This
decreases the training overhead in EARFace. The transformer based ML model runs on smartphone devices with a processing
latency of 13 ms and an overall low power consumption profile. Finally, usability studies indicate higher levels of comforts of
wearing EARFace’s earphone platform in comparison with alternative form-factors.

CCS Concepts: « Human-centered computing — Ubiquitous and mobile computing; - Hardware — PCB design and
layout.

Additional Key Words and Phrases: Wearable Sensing, Mobile Computing, Earable Computing, Facial Reconstruction, IoT

1 INTRODUCTION

This paper presents a system called EARFace (Earphone Acoustics based Reconstruction of 3D Face), that shows
the feasibility of reconstructing 3D facial motion using sensor embedded smart earphones, which are gaining in

“Co-primary authors

Authors’ addresses: Shijia Zhang, scarlettzhang27@psu.edu, Penn State University, University Park, PA, USA; Taiting Lu, tx15518@psu.edu,
Penn State University, University Park, PA, USA; Hao Zhou, hfz5190@psu.edu, Penn State University, University Park, PA, USA; Yilin Liu,
yzl470@psu.edu, Penn State University, University Park, PA, USA; Runze Liu, rml6043@psu.edu, Penn State University, University Park, PA,
USA; Mahanth Gowda, mahanth.gowda@psu.edu, Penn State University, University Park, PA, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2577-6207/2023/8-ART $15.00

https://doi.org/10.1145/3614438

ACM Trans. Internet Things



2 .« Shijia Zhang, Taiting Lu, Hao Zhou, Yilin Liu, Runze Liu, and Mahanth Gowda

popularity. This enables innumerable applications in the areas of facial expression recognition, emotional well
being monitoring, affective computing, animation rendering, augmented and virtual reality, user interfaces, etc.
For instance, the mental state of people with autism and depression can be constantly assessed, which can provide
critical feedback to healthcare providers [57, 111]. Accessibility applications such as controlling wheel-chair
equipment can also leverage facial motion based user-interfaces [95, 105]. In the context of augmented and mixed
reality applications, a more immersive experience can be created by gauging the interest and attention levels of
each user based on their emotions [32, 33].

Recent works in computer vision [90, 97] show the ability of tracking fine grained 3D facial landmarks with
high accuracy. However, camera based solutions are susceptible to ambient lighting, resolution, occlusions, and
raise privacy concerns. Moreover, the camera needs to be present in front of the user with a clear focus on
the face at all times which might be impractical for applications like wheel-chair equipment control, constant
monitoring of emotional states of people with autism where the user can move freely. In contrast, EARFace
tracks facial landmarks using wearable smart-earphones that are robust to ambient lighting, occlusions, and
offers ubiquitous and portable tracking, anytime and anywhere without the dependency on external infrastructure.

Prior works in the area of wearable based facial tracking includes works like EarFs [82] that inserts electrodes in
the ear. In response to facial expressions, the electrodes can sense changes in electrical fields with electromyogra-
phy (EMG), electrooculography (EOG), and capacitive sensing. EarFs classifies five facial expressions. CanalSense
[22] measures air pressure changes in response to facial expressions for classifying eleven expressions. Similarly,
ECTF [20] uses acoustic sensors in the earphone for classifying facial expressions. In contrast to such works that
classify predefined discrete facial expressions, EARFace performs continuous tracking of facial landmarks for 3D
facial reconstruction, which can be used by any generic application including facial expression classification. Our
work is inspired by recent works such as BioFace3D [112] and EarIO [69] that track facial landmarks. However,
based on the usability study in Section 6, their form-factor can cause discomfort because the sensing happens
outside the ears with the sensors protruding onto the back of the head and slightly on the face. In contrast to
outside-ear sensing in these works, EARFace performs in-ear sensing to sense the shape of ear canal in response
to facial motion. The acoustic sensors are embedded in a natural and small earphone form-factor, thus securing
higher usability ratings. Such a form-factor is gaining in popularity with a number of applications in healthcare,
emotion and human activity recognition, AR/VR, etc [36, 51, 102].

Fig. 1 illustrates the high-level overview of EARFace. The core idea is simple. The shape of the ear canal changes
during motion of facial muscles involved during facial motion of lips, eyes, nose, etc (details in Secion 3). EARFace
senses the changes in ear canal shape using ultrasonic reflections of the ear canal as captured by the acoustic
sensors embedded in the earphones. Towards measuring changes in the shape of the ear canal, the channel
frequency response (CER) of the ear canal is computed and LFCC [122] features are extracted. ML models based
on transformers are then designed to capture rich spectral and temporal relationships in the ear-canal CFR data.
The models are trained to predict facial landmarks which are later converted into a 3D facial reconstruction by
fitting the landmarks into the parameters of FLAME [70], a popular model for facial graphics and animation. Fig.
2 shows examples of 3D facial reconstruction in EARFace which shows the ability to monitor various parts of the
face across a universal group of facial motions. A sample demo is included in the link [37] where it can be seen
that even eye blinks can be captured. We believe these results are promising.

The problem of facial landmark tracking is challenging for a number of reasons: (i) The changes in ear canal
shape due to facial activity is very subtle. (ii) There is no well formed equation or a straightforward relationship

between facial expressions and ear canal shape. (iii) The overhead of training data must be minimal and yet the
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Fig. 1. Overview of EARFace: The ultrasonic reflections from ear canals is used for extracting the CFR. Features are extracted
from the CFR and processed by a 2D transformer based ML model that captures spectral and temporal dependencies in the
ear canal CFR to predict facial landmarks, which are ultimately used for reconstructing the 3D face model of the user.
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Fig. 2. 3D facial reconstruction and landmark estimation in EARFace.

ML models designed must be generalizable to a diverse pool of users and facial motion. (iv) The form factor of
the sensing device must be small enough to ensure comfortable level of wearing.
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EARFace exploits a number of opportunities in hardware and machine learning to solve these challenges: (i)
EARFace captures CFR within the ear canal using ultrasonic frequencies with a large range upto 40 kHz. The
high-frequency CFR provides sufficient resolution to capture subtle variations in-ear canal shape. (ii) EARFace
designs ML models based on transformers to efficiently learn both spectral and temporal relationships that map
the high resolution acoustic CFR data into facial landmarks. Furthermore, EARFace incorporates FLAME model
parameters which enable efficient reconstruction of the 3D face using the estimated facial landmarks. (iii) EARFace
performs domain adaptation to achieve a sweet spot between training overhead and model customizability to an
individual user. A group-wise learning rate is designed for domain adaptation where different layers are updated
with different learning rates for efficient adaptation. (iv) EARFace integrates ultrasonic speakers and microphones
into a natural earphone with a small form-factor for capturing the ear-canal shape using ultrasonic CFR data.

Because of requirement of long range of sound frequencies until 40 kHz, EARFace develops its own earphone
platform. We embed a Sonion EST65DB01 speaker and Sonion P11AC03 microphone operating in ultrasonic
frequency ranges upto 40 kHz for capturing acoustic CFR using which the ear canal shape and hence the facial
landmarks can be estimated. The ML models in EARFace are implemented on smartphones using TensorFlowLite.
Evaluated over several experiments across diverse users, EARFace achieves an accuracy of 1.83 mm in facial
landmark tracking. Furthermore, our experiments validate robustness to natural variation in earphone wearing
positions, body and head motion, and the ability to track different parts of the face (eyes, mouth, nose). Therefore,
we believe EARFace offers a practical solution.

Summarizing the above possibilities, we enumerate our contributions below: (i) Feasibility of tracking facial
landmarks for 3D facial reconstruction using in-ear sensing with a earphone form-factor — a first such attempt to
the best of our knowledge. (ii) Design of transformer based ML model to capture the rich spectral and temporal
relationships across acoustic data to track facial landmarks. (iii) Domain adaptation where various layers are
adapted with different learning rates depending on their importance levels. This decreases the training overhead
in EARFace. (iv) Design of an earphone embedded with acoustic sensors with a form-factor that is comfortable
for wearing. (v) Implementation and experimentation across diverse users to demonstrate the feasibility and
robustness.

2 RELATED WORK

Table 1 contrasts EARFace in the context of key related works. This section elaborates on the details.

Vision: OpenPose [30] is a widely popular system that can capture 2D facial landmarks corresponding to eyes,
mouth using monocular camera images. More recent works [90, 97] have shown the feasibility of tracking 3D
facial landmarks using camera images. The facial features extracted from cameras are fit into the FLAME model
[70] parameters that can precisely represent the 3D facial shape, pose, and expression. However, camera based
solutions are susceptible to ambient lighting, resolution, and occlusions, in addition to raising privacy concerns.
Moreover, the camera needs to be present in front of the user with a clear focus on the face at all times which
might be impractical for applications like wheel-chair equipment control, constant monitoring of emotional state
of people with autism. C-Face [34] can track facial motion using earphone cameras, but it still needs clear lighting
conditions, and can be privacy-sensitive since the placement of the camera is such that it can capture people in
the surroundings. Moreover, wearable cameras can be power hungry for implementation. In contrast to vision
based solutions, EARFace uses smart earphones that are robust to ambient conditions (lighting/occlusions), and
offers ubiquitous and portable tracking, anytime and anywhere.
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Table 1. Summary of Main Related Work. For brevity, several other works not in the table are discussed in Section 2. The
accuracy metric NME is a normalized mean error in percentage (lower the better), defined formally in Section 6. Portability
indicates the ability to sense anywhere without external infrastructure. Robustness to Ambience indicates the ability to be
unaffected by ambient conditions such as lighting, occlusions, etc.

Earphone | Face Landmark | 3D Face | Robustness to

System Sensor Form-factor Tracking Rendering Ambience Portability | Accuracy (NME)
SAN GT [40] Camera N/A v v X X 3.98 %
SDM [124] Camera N/A v v X X 5.67 %
CFSS [113] Camera N/A v v X X 487 %
BioFace3D [112] | EMG and EOG X v v v v 3.38%
EarlIO [69] Acoustic X v v v v -
FaceListener [99] Acoustic X X X v v No Tracking
ECTF [20] Acoustic v X X v v No Tracking
CanalSense [22] Pressure v X X v v No Tracking
EarFS [82] Electric Fields v X X v v No Tracking
EARFace (Ours) Acoustic v v v v v 3.14 %

Earables: Smart earphones have been a popular platform for facial activity detection. EarFs [83] classifies
five facial expressions by embedding electrodes into the ear that can sense electric field changes due to facial
expressions. CanalSense [22] measures air pressure changes in response to facial expressions for classifying eleven
expressions. ExpressEar [108] uses the eSense [56] earphone platform with IMU sensors for facial expression
classification. ECTF [20] uses acoustic sensors in the earphone for classifying facial expressions. FaceListener [99]
uses headphones to capture ultrasnoic reflections from the facial surface to classify facial expressions. PPGFace
[35] uses PPG reflections inside the ear to classify seven facial expressions. In contrast to such works that classify
predefined discrete facial expressions, EARFace performs continuous 3D tracking of facial landmarks, which can
be used by any generic application including facial expression classification. Most similar to our work, BioFace3D
[112] tracks facial landmarks. However, the form factor can cause discomfort (usability study in Section 6) because
the sensors are placed outside the ears to sense EMG and EOG signals from the skin surface. The sensor protrudes
on to the face and head. In contrast, EARFace performs in-ear sensing using a natural earphone form-factor that
can be more comfortable. Most recently, EarlO [69] shows the feasibility of tracking facial landmarks. However,
EarIO also senses outside-ear skin deformation due to facial motion, and therefore, the sensors are placed outside
the ears resulting in a bulky format. Thus, the problem of potential discomfort still remains as validated by
usability studies in Section 6. Moreover, the sensing can be difficult for users with long hairs as reported by EarIO.
In contrast to these works on outside-ear sensing, EARFace performs in-ear sensing to sense the shape of the
ear canal, which changes due to facial motion. This allows embedding of the sensors into a natural and small
earphone form-factor, thus securing higher usability ratings.

Other Wearables and Biosensors: EMG signals are captured by attaching electrodes to the surface of the face
at various locations such as cheeks, noise bridge, eyebrows, for classifying various emotions and facial expressions
[98]. Similarly, electroencephalography (EEG) electrodes can be attached to the head for capturing brain signals
which can be analyzed for emotion and facial expression classification [86]. Electrocardiography (ECG) signals
have also been used for capturing the emotional state of the user [55]. However, the electrodes are known to be
uncomfortable for wearing under daily usage conditions [19]. Work in [80] designs smart glasses with optical
and inertial sensors capable of detecting facial gestures for applications in hands-free user interfaces. CapGlasses
[84] embeds transparent capacitive sensors into smart-glasses for detecting facial and head related gestures for
applications in tracking emotional and physical well being. Work in [81] embeds 17 photo reflective sensors
capable of measuring proximity changes between skin surface and the sensors, thus being able to detect 8 facial
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expressions. SonicFace [42] uses an external acoustic speaker and microphone array for capturing reflections
from the face for detecting six facial expressions. In contrast to such works, which focus on predefined facial
gesture classification, EARFace shows the feasibility of tracking continuous 3D motion of the face, thus enabling a
broader class of applications. Furthermore, EARFace uses earphones which are gaining in popularity as a sensing,
interfacing, and entertainment platform because of high comfort levels of wearing [44].

Other Applications of Earable Sensing: Photoplethysmography (PPG) sensor integrated in the ear has
been exploited for heart rate and blood pressure monitoring [27]. Speaker and microphones in earphones have
been exploited for tracking the human hand for applications in user-interfaces [29]. Applications in chewing and
eating activity monitoring have also been explored [75]. Speech enhancement and silent speech recognition have
been studied using earphone embedded IMUs and acoustic sensors [54, 59, 100, 102, 120]. Tongue gesture sensing
for interactive applications using in-ear pressure sensors has been performed [79]. Human activity recognition
and exercise monitoring [51, 52], teeth activity sensing [92], augmented reality [115] are some of the other recent
applications. Our work is inspired by such prior works that show innumerable sensing opportunities in the
area of earable sensing. We extend the literature by enabling an application in 3D facial reconstruction using
completely in-ear sensing with a natural earphone form-factor — a first such attempt to the best of our knowledge.

Transformer based ML models: Transformer-based ML models with self-attention mechanism are popular
in vision and NLP [39, 41, 107] that exploit relationships not only between various parts of the images or audio but
also between inputs and currently decoded outputs. The popular BERT language model [39] uses the transformer
architecture and is trained by masking words in sentences, and having the model predict them from context.
Transformers have been used in the area of image processing for extracting the spatial relationships across
images for applications like automatic captioning [47, 68], super-resolution [71, 78, 114]. Transformers are also
popular in applications in automatic speech recognition [31, 85] and speech enhancement [60, 116] because of
their ability to extract rich relationships across different speech segments and contextual information. In contrast
to prior work, EARFace designs attention-modules to simultaneously capture dependencies across frequencies
and time.

Domain Adaptation: Transfer-learning based domain adaptation is popular in vision and speech processing.
For example, AlexNet model [63] pretrained on ImageNet database [38] was fine-tuned for classifying images in
medical domain[123], remote-sensing [45] and breast-cancer [87]. Similarly, a pre-trained BERT language model
[39] was fine-tuned for tasks such as text-summarizing [117], question answering [94], etc. This significantly
reduces the burden of training for a new task. Domain adaptation techniques are recently gaining popularity in
the area of wearable sensing including smartphones, earphones, smartwatches, wearable IMU, etc. For example,
IMUTube [64] shows the feasibility of adapting video-based training data for inferring on IMU across multiple
users for human activity recognition. As a similar approach, ZeroNet [73] harvests training data from videos
and adapts it across users for finger motion tracking with IMU. Work in [26] adapts wrist EMG data across
different days and users by using the idea maximum-independence domain adaptation which transforms features
based on the Hilbert-Schmidt independence criterion. Likewise, there is another study [72, 74] that leverages
wrist EMG data from diverse users to develop multi-user models and employ domain adaptation techniques to
unseen new target user. SWL-Adapt [50] proposes domain adaptation model with sample weight learning for
cross-user Wearable Human Activity Recognition (WHAR) which could achieve a parameterized network on
the new user. AdaptNet [21] propose a semi-supervised bilateral domain adaptation method in human activity
recognition which enables information fusion of two different data domains using both unlabeled and labeled
data. To predict freezing of gait in Parkinson’s disease and generalize the model to other patients, [106] uses
domain adaptation algorithms to address the domain disparity between data from different patients. By keeping
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Fig. 3. (a) Facial muscle anatomy[3] (b) Ear canal anatomy[20]

the CNN layers unchanged and by adapting some hidden and fully connected layers, work in [58] increases
the robustness of human activity detection across users and devices. Liquidmeter [119] shows the feasibility of
fine tuning batch normalization layers to minimize the training data overhead for users for an application in
liquid intake monitoring using smart earphones. In a similar spirit, we use a pretrained model from one user and
fine-tune it by employing differential layer-wise learning rate and applying stochastic weight averaging for a
different user to significantly decrease the training overhead without losing much accuracy.

3 BACKGROUND

We begin with a brief background about the following: (i) Facial motion and the muscles involved. (ii) Facial
muscles and their relationship with the shape of the ear canal. (iii) Capturing ear canal shape changes using
ultrasonic reflections. (iv) 3D model for representing a human face.

3.1 Facial Muscles and Expressions

Human beings are emotional creatures whose state of mind can usually be observed through their facial expres-
sions. With 43 different muscles, our faces are capable of making more than 10,000 different expressions [7]. The
muscles for facial expressions (depicted in Fig. 3a), which are also named as mimetic muscles, can generally be
divided into three categories: orbital, nasal, and oral [4]: (i) The orbital facial muscles include three main muscles:
Frontalis, Orbicularis oculi and Corrugator supercilii. They mainly control the movement of the eyelids and play
a role in protecting cornea from potential injury. (ii) The nasal facial muscles, which are typically composed
from three muscles called nasalis, procerus, and depressor septi nasi, are responsible for the motions of the nose
and its surrounding skin. (iii) The oral facial muscles, as the name suggests, can manage the movements of the
lips and mouth: For example, temporalis is a fan-shaped muscle that helps your jaw close; lateral pterygoid is a
fan-shaped muscle that helps your jaw open. These muscles broadly originate from the surface of the skull and
insert onto facial skin. Their contraction pulls on the facial skin tending to make various facial expressions on
our faces. For instance, facial expressions like fear or surprise consist of eye movements, which are controlled by
orbital facial muscles; oral facial muscles contribute to happiness, sadness or contempt by changing shapes of the
mouth [118].

3.2 Relationship between Facial Motion and Ear Canal Shape

Each human facial expression can consist of multiple groups of facial muscle movements, and the shape of our ear
canal changes according to it. Fig. 3b depicts human ear anatomy. There is a strong relationship between shape
changing (distortion) of the ear canal and the mandibular condylar (shown in Fig. 3b) movements [93]. Some
Facial expressions such as fear or surprise contain mouth opening motions, which will cause the mandibular
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condylar to slide ahead and create a small void. This whole process changes the volume of the ear canal and
deforms the tissue inside it, thus changing its shape. Besides, the ear canal is connected with the temporalis
muscle through the mastoid (shown in Fig. 3b) [20]. Temporalis is the largest muscle on our head (Fig. 3a),
and can even forward mechanical artifacts from other muscle groups, for example, orbital and nasal muscle
groups, towards the ear canal [83]. By exploiting these properties, EARFace can detect movements like raising the
eyebrow, wrinkling the nose, or motion of the mouth by observing changes in the shape of the ear canal. In the
next subsection, we outline the process for tracking changes in the shape of ear canal via ultrasonic reflections,
which will ultimately lead to 3D reconstruction of the human face.

3.3 Capturing Ear Canal Shape via Acoustic Reflections

Air column resonance is caused due to superimposition of incident and reflected waves inside a tube. When
we wear earphones, our ear canal with ear buds can be regarded as a short air tube with a length of 2-3 cm, so
generally, the frequency of the first harmonic of the resonance is 5 to 7 kHz, and then can have further harmonics
of 10-14 kHz, 15-21 kHz and even higher frequency band [104]. The strengths and attenuation of the resonance
can change according to the differences in the shape of our ear canal, and because of this, distinct ear canal
shapes can be extracted by transmitting a wide frequency range of swept signal and analyzing the reflections
(6, 48]. Accordingly, EARFace computes the CFR of the ear canal which captures such effects over a wide range of
frequencies. CFR computation is outlined in Section 5.1, which is ultimately used by the ML models in EARFace
for facial landmark tracking. We measure the variation in Channel frequency response (CFR) of the ear canal
reflections as a function of facial expressions across different users. Based on the experiments in Fig. 4, we note
that the CFR is consistent over time for the same facial expression for same user and different across different
facial expressions. We believe this is promising evidence of the feasibility that the CFR can be used for tracking
facial landmarks. Later experiments in Section 6.3 confirm the high accuracy of tracking the facial landmarks
using the CFR. Across different users, although there are some differences in CFR due to the differences in
shapes across individual users, domain adaptation techniques are able to handle such differences and exploit the
similarity across users for consistently tracking facial landmarks across different expressions and users.

3.4 3D Facial Modeling using FLAME

EARFace uses the popular Faces Learned with an Articulated Model and Expressions (FLAME) [70] model for
representing the face in 3D. FLAME is a statistical model that allows expressing complex facial geometry and
articulations mainly using the following three simple sets of parameters in three highly compressed spaces
respectively : (i) Shape Parameters (/3; € S = R/l Defines the deformations in the face due to the unique
identity of the subject. (ii) Pose Parameters (5 € P = RI9): Defines the deformation in the face because of the
rotation of the head around the neck or motion of the jaw. (iii) Expression Parameters (/ € & = RI¥!): Defines
the deformation in the face due to facial muscle activation that can change the expression of the face to happy,
sad, anger, etc. Ultimately, the FLAME model, maps these three sets of parameters into 3D locations of meshes (N
= 5023 vertices) that form the face as indicated in the below mathematical model.

FLAME(F, 6, ) : RIFXIGIXIV1 _, j3N

Each of the three sets of parameters above (shape E pose 5 and expression q;) are represented in a highly
compressed space, the bases (i.e., S, P, and &) of which are determined by performing PCA on a dataset of 33,000
3D facial scans, spanning a wide range of ages, ethnicities, genders, etc. In details, FLAME starts from a neutral
template mesh T € R3N. To take the shape variation of different identities into consideration, a linear shape

blendshape function Bg (/3;; S) = Zllel BnSn adds the offsets to the template T, where ﬁ = [B1, P2, s ﬁIEI]T denotes
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Fig. 4. Feasibility of Facial Landmark Tracking Using CFR. CFR is consistent acorss multiple days for same facial expressions
of a user and it varies with change in facial expressions. Although there are some similarities across different users for same
facial expressions, there are also differences due to individual differences in ear canal shape which can be handled by domain
adaptation. Detailed facial reconstruction results are presented in Section 6.

the coeflicients for shape variations and § = [S3, S, ..., S| 5\] denotes the orthogonal shape basis. Similarly, the

offsets calculated from a pose blendshape function Bp(é; %) and an expression blendshape function Bg/( ﬁ; &)
will be added into the template for correcting the pose deformations and facial expressions, respectively. As a
result, the reconstructed 3D mesh will be the neutral template with added shape, pose, and expression variances.
This allows for compactly representing complex facial geometry as well as articulation. Fig. 5a shows an example
where the action of each of the three FLAME parameters (ﬁ, , q_S)) is depicted. Despite FLAME being precise
and accurate and compatible with existing rendering methods [28, 91], FLAME decomposes faces into three
highly compressed spaces, thus more appropriate for real-time applications. Described in Section 5.4, EARFace
uses FLAME for converting the facial landmarks (depicted in Fig. 5b) predicted by the ML model into a 3D
reconstruction of the face.

3.5 Difference between Facial Reconstruction and Facial Landmarks Tracking

Human face has a complex geometry and it is capable of sophisticated articulation. Accordingly, the facial
landmarks (eyes, nose, mouth, etc, with total 51 landmarks) tracked in EARFace provides a convenient way
of representing the 3D facial geometry in a compressed space [25, 103, 112] thus enhancing the accuracy and
efficiency of tracking them using machine learning with limited training data. Finally, we reconstruct the 3D
facial model of the user using these landmarks for animation and qualitative analysis purposes. Accordingly,
we provide results of 2D facial landmark tracking (quantitative) as well as 3D facial reconstruction (qualitative)
in the paper. While landmark tracking can provide a quantitative measure of the performance of our system,
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3D facial reconstruction is more qualitative and it is suitable for applications in animations, 3D avatars, scene
reconstruction, etc [65, 67]. We leave a thorough investigation of the application space for future research.

4 PLATFORM DESIGN

Because of requirement of long range of sound frequencies until 40 kHz, EARFace develops its own earphone
platform.In this section, we outline the design and implementation details of a new portable platform in the
form-factor of an earphone to capture the shape of the ear canal. Fig. 7 shows the architecture of the earphone
platform which consists of a earphone module and a data acquisition module. The details are elaborated in
subsequent paragraphs.

Earphone Module: The earphone depicted in Fig. 6 is embedded with an ultrasonic speaker (Sonion EST65DB01
[10]) with a frequency of operation from 10 Hz to 70 kHz. The speaker illuminates the ear canal to be able to
capture the shape via reflections. Towards capturing these reflections, we embed a MEMS microphone (Sonion
P11ACO03 [11]) with a frequency of operation ranging from 18 Hz - 80 kHz as shown in Fig. 6. The earbud is
designed to conveniently fit the varying size of ear canals of different users’, developed using 3D printing material
Thermoplastic polyurethane (TPU) material for flexibility and comfortable skin contact, as shown in Fig. 6. The
depth of the earphone placement is completely natural and it can accommodate different users’ comfort and habit
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Fig. 7. Design of the earphone platform in EARFace

thus allowing an overall comfortable experience of wearing. To assess the robustness of the earphone placement,
we conducted a test where we removed and remounted the earphones to simulate natural variations in position,
as described in Section 6.3. This facilitates capturing of ear canal shape with sufficient resolution which is used
for facial motion tracking.

Data Acquisition Module: As shown in Fig. 7 the core of the data acquisition module is a Teensy 4.0 [16]
micro-controller. It has a single-core ARM Cortex-M7 that runs at 600 MHz. We add Teensy Audio board [14] to
control the speaker. We integrate a Texas Instruments OPA344 [13] rail-to-rail precision amplifier to amplify audio
signal from the microphone. Next, the micro-controller’s inbuilt Analog to Digital Converters (ADC) converts
the ultrasonic reflections captured by the microphone into samples with a 12-bit resolution at a sampling rate
of 80 kHz. To wirelessly stream collected data, we add ESP32 [2] as a co-processor with built-in WiFi module.
The collected data is streamed over WiFi to a smartphone for running the ML models that track facial motion.
We use a Li-Po 500 mAh battery to power the data acquisition module and the earphone module. The power
consumption of the module is about 245 mA and its form-factor is similar to a smartphone and fits in the pocket.

Software: The software side of the acquisition module includes three main components: (i) Controlling the
speaker; (ii) Collecting audio data from the microphone; (iii) Streaming audio data from acquisition module to
smartphone. The software is implemented on the Teensy 4.0 board using Teensyduino [15] and appropriate
library for playing MP3, DA/AD converting data and streaming audio data to smartphone by WiFi [17, 101, 109].
The audio data is collected by Teensy 4.0 with high sampling rate 80 kHz and streamed by WiFi using AESP32
libraries WiFiNINA [17] to smartphone for data processing. More details on data processing are discussed in
Section 5.

5 ACOUSTIC SENSOR DATA TO 3D FACIAL RECONSTRUCTION

In this section, we provide an overview of signal processing and machine learning components involved in
transforming the acoustic data from earphones into a 3D reconstruction of the user’s face. It consists of four main
components. (i) Estimating the CFR of ear canal reflections and feature extraction. (ii) Design of a transformer
based ML model to estimate the facial landmarks using CFR data. (iii) Efficient domain adaptation for decreasing
the training overhead. (iv) 3D facial reconstruction using the landmarks predicted by the ML model.
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5.1 Extracting Ear Canal CFR

Channel Frequency Response Estimation: We capture the channel frequency response (CFR) of the ear
canal in the acoustic domain to track changes in the shape of the ear canal, which can capture the facial motion
(discussed in Section 3). Towards this end, a linear sine-sweep signal [12] over 16-40 kHz of length 4000 samples
(0.05 seconds) is first generated and played through the embedded speaker in the earphone. The SPL level is about
60 dB which is pretty much below the thresholds for health and safety as our speaker component was tested for
compliance with safety regulations by the manufacturer (more details in Section 7). The 16-40 kHz signal ensures
that the transmitted sound is within the ultrasound frequencies to eliminate audible noise for the user as well as
avoid interference from background noise. On the other hand, with high end of the frequency extending till 40
kHz, this provides enough resolution to track fine-grained changes in the ear canal shape thereby enabling high
precision tracking of facial motion. The microphone will record the reflections of the speaker’s transmitted sound
from the ear canal. With the knowledge of the known sine-sweep sequence, the CFR is estimated as follows.

Y(k)
H(k) = —= Vk €{1,2,..4000}, 1
() = S Yk e ) )
where X denotes the FFT of the transmitted sine-sweep signal, and Y denotes the FFT of the received sine-sweep
signal. H is the estimated CFR. The CFR is tracked over a sliding window (step size of 0.033 seconds) continuously

with a frequency of 30 Hz. LFCC features as elaborated next are extracted from the CFR for further processing.

Feature Extraction: CFR extracted in the previous step is processed further to extract Linear Frequency
Cepstral Coefficients (LFCC) features as explained below. Frequency filters as depicted in Fig. 8 are applied to the
CFR. Each filter extracts energies in the appropriate parts of the spectrum. This provides a compact representation
of the high resolution CFR data, thus helping decrease the number of parameters in the ML model. We note that
typical speech recognition applications use non-linear filters (with log scale in MFCC [62] features) to mimic the
auditory response of the human ear with more discriminative power at lower frequencies. In contrast, with a
different application in-ear canal shape detection, EARFace adopts linear scale with LFCC filters so as to capture
sufficient information from all frequencies, and particularly at higher frequencies which can capture finer changes.
The LFCC features thus computed serve as input to ML models described next for tracking facial motion.

5.2 Facial Landmark Estimation

The high level architecture of the ML model is depicted in Fig. 9. While the model is developed based on the
popular transformer architecture, our design fuses a spectral transformer (for exploiting rich relationships in the
data across frequencies) with a temporal transformer that exploits relationships and dependencies in the data
over time: The various components of the architecture are elaborated next.

Input: The LFCC features extracted from CFR serve as the input to the model. 9 successive frames of 100
LFCC features (hyperparameters chosen based on grid search) at 16-40 kHz from both earphones (dimension
9% 100 % 2) are used as inputs instead of a single frame (each frame is of dimension 100 X 2). This helps the model
exploit rich relationships across time in performing the predictions of facial landmarks.

Spectral Transformer: Each of the individual frames is first passed through a spectral transformer, where
the LFCC features are converted into intermediate representations that encode the spectral relationships across
different frequencies. Depending on the facial motion or expression being performed by the user, different muscles
in the nasal, orbital, and oral regions move at a different rate, and this manifests as a characteristic spectral
pattern in the changes in the shape of the ear canal. The spectral transformer extracts such dependencies in its
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Fig. 9. ML model combines spectral and temporal transformer for predicting facial landmarks from earphone acoustic sensor
data

representations. The encoded representations serve as input to the temporal transformer.

Temporal Transformer: The temporal transformer takes as input representations from individual times
which capture dependencies across frequencies. The representations are further enhanced by exploiting the
relationships across time. Similar to natural languages where surrounding words offer context about what the
next word could be, a lot of contextual information can be exploited across time. For example, when user is
smiling or expressing surprise, there will be a progressive change in various groups of facial muscles which

follow a specific trend. The temporal transformer encodes such rich context into the representations, which can
be further utilized for robust inference.

Transformer Encoder: The individual input CFR frames of dimension 100 X 2 are passed through a linear
projection layer that outputs a tensor that is of size 100 X 1. The input is then passed through two transformer
encoders. Within each encoder, positional embeddings are first added to the data which are later utilized in
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the self-attention layer to encode dependencies (across frequencies and time) into the learned representations.
The encoder consists of a self-attention module (elaborated next) within the multi-head attention layers, and a
multilayer perceptron (MLP), in addition to normalization layers. Residual connections are incorporated at both
multi-head attention and MLP layers to boost the convergence of the ML models [46].

The Role of Self-Attention Layers: The heart of the transformer encoder lies in the self-attention module,
which creates representations for the input that captures dependencies over time and frequencies. We explain
the self-attention layers in the context of the temporal transformer that exploits dependencies across time. The
action of the spectral transformer that exploits dependencies across frequencies is analogous. Towards capturing
temporal dependencies, the self-attention module in the temporal transformer firstly computes query (g;), key
(k;), and value (v;) vectors for i" input frame’s embedding by multiplying it by weight matrices Wy, Wi, and W,
respectively obtained during training. Secondly, an attention-score is computed for each input frame by performing
a dot product between the query and key values. Specifically, the dot product g; - k; represents the attention-score
between i*" and j** frames. These scores capture the temporal dependency between various parts of the input.
Finally, the output of an attention-head for input frame i is the normalized sum of attention-scores weighted by
the value vector (Zji\](qi - kj)v;). Similar to how multiple convolutional kernels can capture different patterns,
we use six attention heads with different projected versions of queries, keys; and values, and fuse their attention
scores together in a combined representation. This captures a representation for i*? input frames in a given
attention module. The two attention modules in the two transformers (spectral and temporal transfromers in Fig.
9) capture dependencies over time and frequencies respectively for all input frames.

Regression Head and Final Output: The output representations from the temporal transformer are passed
through a fully connected layer which converts the representations into facial landmarks as depicted in Fig. 5b.
These landmarks are critical for 3D facial reconstruction. The actual rendering of the 3D model of the face using
these landmarks is elaborated in the next subsection.

Loss Function and Normalization: The ML model is trained by minimizing the mean squared error (MSE)
loss of the predicted landmarks by the model and those predicted by a camera based ground truth [24]. The
locations of facial landmarks as captured by the vision ground truth can vary due to changes in head location
and pose. Towards consistently tracking the facial expressions independent of the head location and pose, we
normalize the extracted facial landmarks to a consistent frame of reference by performing the following sequence
of transformations on the landmarks captured by the ground truth. (i) The tip of the nose is chosen as the origin.
(ii) The direction from the centre of one eye to the centre of the other eye is considered as the direction of x-axis.
(iii) The landmarks extracted are rotated such that the line joining the two eyes is aligned with the x-axis, and
translated such that the tip of the nose is at the center. (iv) Finally, the landmark locations are scaled uniformly
about the origin such that the interocular distance is set to 1. The interocular distance is defined as the distance
between the pupils of the left and right eyes when the eyes are in normal fixation, which can be captured by the
camera.

5.3 Decreasing Training Overhead via Domain Adaptation

For the machine learning model proposed above, training separate models for each user will be burdensome.
Therefore, we explore domain adaptation strategies to pretrain a model with one (source) user and fine-tune it to
adapt to new users with low training overhead.
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The main steps in the domain adaptation process are as follows: (i) We generate a model for one user (source)
by extensively training the model with labeled data from that user — known as the pretrained model. (ii) We
collect small training data with only few labels from the new (target) user. Instead of developing the model
for the target user from scratch, we initialize the model weights to be same as the pretrained model. (iii) We
make various layers in the model trainable at different learning rates so as to increase the efficiency of domain
operation with limited training data (elaborated next). Using the few labels from the target user, we update the
trainable layers to minimize the loss function. This is called fine tuning. The model thus generated will be used
for making inferences on the target user. We explore the below complementary approaches for performing the
domain adaptation.

(i) Grouped Layer-wise Learning Rate: During domain adaptation, we apply discriminative learning
rates for different layers instead of using the same learning rate for all layers of the transformer model. This is
expected to improve the efficiency of domain adaptation for deep neural networks as shown for tasks such as text
classification [49, 76, 77, 121]. Specifically, we break all the layers into two groups: hidden layers and self-attention
layers. The learning rates are set differently for these two groups. The learning rate for hidden layers is 2e-3
and the decay rate is 0.99 while the learning rate for self-attention layers is 1e-3 and the decay rate is 0.9. The
intuition is that the hidden layers encode user specific information whereas the self-attention layers encode more
generic information useful across multiple users. Therefore adapting the hidden layers with a larger learning
rate will likely generate a model that fits the new user with high accuracy. Moreover, the hidden layers have
smaller number of parameters size than self-attention layers thus making the domain adaptation easier with small
amounts of training data.

(ii) Stochastic Weight Averaging: While deep neural networks are typically optimized using Stochastic
Gradient Decent (SGD), we incorporate latest advances into our design based on stochastic averaging for better
stability [53]. Specifically, we take the average weights during the last 25% of the total 300 epochs during
training time. This is expected to further enhance the accuracy and generalization during domain adaptation
with group-wise learning rates as explained above.

5.4 3D Rendering

We render a 3D model of the user’s face that provides a realistic visualization of the facial expression and
articulation. Towards this end, we perform an optimization that finds the best set of FLAME model parameters
described in Section 3.4 (shape, pose, expression), that minimizes the error between the set of 2D landmarks
predicted by EARFace and the ones projected into 2D from the FLAME model parameters. Before optimization,
the 3D head model is initialized with a default template. Then, the optimization is performed in two steps: (i)
In the first step, camera calibration is achieved by optimizing the parameters of scale, rotation, and translation,
thus minimizing the Ly error between the 2D landmarks predicted by EARFace and corresponding 2D projection
from the current 3D head model in FLAME!. (ii) In the second step, the FLAME model parameters (shape, pose,
expression) are adjusted to further minimize the L, error between the projected 2D points from the FLAME model
and the ones predicted by EARFace. The above two steps are iterated multiple times until the L, error converges.
This ultimately renders a 3D face shape with a realistic appearance, facial expression, and articulation that best
fits the facial landmarks predicted by the ML model. Note that 3D rendering of EARFace does not require camera
parameters because 3D faces are rendered at relative scales from a predefined template mesh. We found this 3D
rendering is sufficient for qualitative purposes because as shown in Fig. 2, by iteratively optimizing using the

We adopted code from FLAME's official codebase: https://github.com/TimoBolkart/TF_FLAME/
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above steps, any deformation that accounts for the user’s pose, facial expression, etc., can be reflected. Therefore,
EARFace is free of camera settings, which makes the system more ubiquitous.

6 EVALUATION

In this section, we evaluate the EARFace system. Below, first we summarize our findings and later describe the
data collection and present the detailed results.

e The overall accuracy of facial landmark tracking is 1.83 mm which is consistent across diverse users and
comparable to prior works including vision based systems.

e The accuracy is consistent across days and multiple sessions with the sensor removed and remounted thus
indicating robustness to natural variation in sensor position and orientation.

o The accuracy generalizes to various facial motion and is consistent across different facial regions such as mouth,
nose, and eyes, as well as robust to body and head motion.

e The ML models are implemented on smartphone devices with a latency of 13 ms and a low power consumption
profile.

o Usability studies depicts the benefits of earphone based sensing platform in EARFace over alternative platforms
due to EARFace’s design with a small form-factor, in-ear sensing with appearance of a typical earphone, and
comfort levels particularly with long duration of wearability.

6.1 User Study

Data Collection Methodology: Our study was approved by the IRB committee. The users wear the smart
earphones (Section 4) with embedded acoustic sensors as shown in Fig. 6 on both ears. 20 users participated in the
study with 12 males and 8 females, with their ages ranging from 21 to 55 and body weight ranging from 56 to 94
kgs. The users were then instructed to perform a sequence of facial motion cycling through following universal
expressions of emotion [7] in a random order: happy, sad, anger, contempt, fear, disgust, and neutral. These expres-
sions are depicted in Fig 2, and the users were shown pictures of these expressions before and during the study.
While the facial expressions are provided as a guideline to capture diverse motion, EARFace is designed to track
not only the expressions but also the continuous transition of facial landmarks between them. Elaborated later in
this section, we also validate EARFace for other facial motion without the above facial expressions which indicates
the generalizability of the system to arbitrary facial motion. In addition, to assess the robustness of the earphone
placement, we conducted a test where we removed and remounted the earphones to simulate natural variations
in position. We followed up with all the users over multiple days to evaluate the robustness over time and natural
variation in the placement of the earphone. Finally, we also conduct experiments where the users also performed
other activities such as walking or moving the head randomly so as to evaluate the robustness due to body motion.

Labels for Training and Testing: While the users perform the facial motion, acoustic data from both ear-
phones were collected at a sampling rate of 80 kHz. Towards, validating the accuracy of EARFace, videos of
the user’s face were captured. We use the front-facing camera of a smartphone [96] to collect the ground truth
such that the full view of the user’s face is included in the camera. Facial landmarks are extracted from the
video using techniques in [24], which serve as the ground truth. The facial landmarks predicted by EARFace are
compared with the above ground truth using the MAE and NME error metrics as elaborated further in this section.

Training Data: Each session of data collection lasted for 60 seconds. A total of 24 sessions were conducted

for each user with sufficient rest in between sessions. The earphone sensor was removed and remounted across
sessions to validate the robustness to natural changes in sensor positions during daily usage. 5 mins of data (5
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sessions) was used for training (accuracy saturates after that based on Fig. 11b) and the rest was used for testing in
a randomized cross-validation fashion. With domain adaptation, a pretrained model from one user was fine-tuned
to a new user with only 2 minutes (2 sessions) of user-specific training data thus decreasing the training overhead
further. Users can conveniently use their smartphone front-facing cameras for collecting the small training
data that is needed for domain adaptation. This is a one-time task. The users need to expose their complete
faces to the camera and perform a set of basic facial expressions. However careful placement or alignment of
the camera is not needed because the extracted landmarks from the camera will be normalized to a standard
framework — more details as discussed in Section 5.2. Therefore, we believe this training data is not a big overhead.

Evaluation Metric: We evaluate EARFace using the following two metrics. (i) We use the Mean Absolute
Error (MAE) metric which is defined as follows. MAE = % X |lo—e|l x 3;’; where v and e denote the landmarks
extracted from vision ground truth and EARFace in a normalized coordinate frame (discussed in Section 5.2). d,,
denotes the real interocular distance in mm (we measure d,, for each user who participates in the study) and d,,
denotes the interocular distance in the normalized coordinate frame (d,, = 1 from Section 5.2). This provides the
MAE in units of mm which is the primary metric used for evaluating EARFace. (ii) Normalized Mean Error (NME)
is a metric popular in the compute vision community for validating the accuracy of facial landmarks. To compare
with computer vision and other prior works, we also compute NME. This is the mean error between the ground
truth and reconstructed landmarks, normalized by a factor of d,,. NME = % X % X 100% where d,,, is the

interocular distance in the normalized coordinate plane as defined in Section 5.2.

6.2 Implementation

EARFace is implemented on a combination of desktop and smartphone devices. The ML model is implemented
with TensorFlow [18] packages and the training is performed on a desktop with Intel i7-8700K CPU, 16GB RAM
memory, and Nvidia GTX 1080 GPU. We use the Adam optimizer[61] with a learning rate of 0.001. To avoid
over-fitting issues that may happen in the training process, we add dropouts [110] with a parameter of 0.5
following each RELU activations. Once a model is generated from training, the inference is done entirely on
smartphone devices using TensorFlowLite [43] on Samsung S20, and Oneplus 9 Pro smartphones [89, 96].

6.3 Performance Results

Qualitative Results: Fig. 2 depicts the qualitative rendering results in EARFace across various facial expressions.
Evidently, the 3D rendering closely follows the real expression of the user. For example, the contempt expression
indicates how the 3D rendered model accurately follows the asymmetric motion of the mouth. The surprise
expression shows the ability of the model to capture the raising eyebrows and mouth wide open. The smiling
expression captures the motion of the cheek. Fig. 10 depicts how the facial motion varies as the expression
changes from a neutral expression. Overall, the 3D model captures all facial features such as mouth, eyes, cheek,
nose, etc. Furthermore, a demo video is included in the url [37] where even the blinking of the eye is evident. We
believe these results are encouraging.

Accuracy vs Users: Fig. 11a depicts the accuracy across users who participated in the study. The graph
displays both user-dependent and domain adaptation results. For user-dependent results, we use 5 minutes
of training data, while for domain adaptation results, we use 2 minutes of training data from the target user.
Therefore, this is a reduced dataset than the full dataset. The pretrained model for domain adaptation comes from
a random user because our experiments suggest that the accuracy will only vary by 0.1mm when we vary the
user from which we obtain the pre-trained model. Evidently, the accuracy is consistent across users with diversity
in facial shapes, natural posing behaviour, gender, etc. Regardless of the characteristic of the user, the ML models
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Fig. 10. Progression of facial feature changes as predicted by EARFace

in EARFace can learn the mapping between facial motion and the ear canal shape, and learn to recognize them
through ultrasonic sensing. Therefore, we believe the sensing and ML techniques in EARFace generalizes across
multiple users. The overall mean accuracy is 1.83mm (MAE) and 3.17 (NME), which is comparable to vision based
systems (elaborated later) and suitable for several applications including facial animation generation, emotion
recognition.
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Fig. 11. (a) Accuracy vs Users: EARFace achieves consistent accuracy across all users (b) Accuracy as a function of size of
training data. EARFace’s ML models converge with relatively low overhead in training

Accuracy vs Size of Training Data: Fig. 11b depicts the accuracy as a function of the size of training data.
Evidently, even with 1 minute of training data, the accuracy is already at 4.36 mm whereas it saturates at 5
minutes of training data to about 1.83 mm. Given the training overhead is only a one-time cost for a few minutes,
we believe this is not an overhead.

Decreasing Training Overhead by Domain Adaptation: To further decrease the training overhead, a
pre-trained model from a different user was taken and fine-tuned using techniques in Section 5.3 such that only a
small fraction (120 seconds) of user-specific training data is used for developing a model for the user. Fig. 12a and
Fig. 12b compares the difference between a user-dependent model and the model with domain adaptation. The
requirement of training data can be significantly reduced by domain adaptation without much degradation in
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performance.

Accuracy vs Days: Fig. 12a depicts the accuracy over different days of the user study. Although the earphones
can fit snugly, there might be small variations in earphone position across days. The training and test data sets
were sampled across completely different days to validate robustness to variation in earphone positions. The
accuracy is consistent across days because the training data incorporates such diversity thus enhancing the
robustness of the models.
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Fig. 12. (a) Accuracy is consistent across different days of experimenting, with robustness to natural variation in sensor
position and orientation (b) EARFace can track commonly occurring facial expressions

Accuracy vs Facial Expressions: Fig. 12b depicts the accuracy as a function of various facial expressions.
Minor variation in accuracy occurs across facial expressions depending on the range of motion of various facial
features. EARFace is able to track various expressions with accuracy close to 2 mm. This indicates the viability of
EARFace in modeling complex facial motion occurring in daily life.

Accuracy vs Facial Features: Fig. 13 provides a breakup of the accuracy as a function of different facial
features: eyebrows, eyes, nose, and mouth. Evidently, the accuracy is consistent across all features on the face.
The eyes and nose have a slightly lower error because of their smaller range of motion in comparison to eyebrows
and mouth. Nevertheless, the overall accuracy is close to 2mm for all the facial features, which indicates reliable
tracking.

Accuracy vs Number of Earphones: Fig. 14a depicts the accuracy as a function of number of earphones.
While usage of both earphones can provide the best accuracy by integrating sensor data from both ears, the
accuracy with individual earphones (left or right) is also close (~ 2.40 mm, 2.36 mm). This provides the opportunity
to integrate the acoustic earphones in only one of the earphones while leaving the other one open for potentially
integrating other sensors.

Generalizability of the Model: Our machine learning models are trained with universal facial expressions
as discussed earlier. These universal expression are known to include most movements of the facial parts in daily
life. Therefore, we expect the model to generalize to any facial motion that might not be exactly identical to these
universal expressions. To validate this, we conduct new experiments involving arbitrary motions as shown in
Fig. 14b, which shows a consistent accuracy for capturing various facial motion. We believe this indicates the
generalizability of EARFace to any facial motion. We want to emphasize that we have considered and integrated
all of the unseen facial expressions of our users. Although the graph only shows one user’s photo to represent
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the unseen facial expression, the results comprise data from all 20 users. According to our findings, our system
can accurately track unseen facial expressions across different users.

Robustness to Body and Head Motion: We conducted additional experiments where users walk naturally,
as well as shake the head and change the head pose to emulate normal usage scenarios of body and head motion.
During the process, we also followed the user with a camera but we had to manually change the camera angle to
clearly capture the user’s face for ground truth purposes. The MAE under this setting was 1.90 mm whereas the
MAE when the user is sitting on a desk is 1.83 mm. Body and head motion can cause minor variations in earphone
position and orientation. However, EARFace is robust to natural variation in sensor position as evaluated in Fig.
12a. Moreover, the earphone is snugly fit to the extent possible. Thus, we did not notice any significant changes
in accuracy due to body and head motion.

Comparison with Vision and Other Systems: The last column in Table 1 directly contrasts the accuracy in
EARFace with state-of-the-art vision systems and wearable systems. Since vision based systems typically only
provide a relative error based on NME metric (because camera parameters may not be available ) instead of the
MAE metric which is absolute, we compare all systems using the NME metric. Note that EarIO [69] computes
neither NME nor MAE (in mm) but only a relative MAE with respect to the camera used for ground truth. We did
not find sufficient details in the EarIO paper about camera processing to convert their metric into an NME or
absolute MAE in mm. However, we were able to compare EARFace using the NME metric with other systems.
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Table 2. Ablation Study

Method MAE (mm)
Encoder Decoder (CNN) 2.25
Transformer (Temporal) 1.93
Transformer (Temporal + Spectral) 1.83

The vision based works are evaluated on datasets with manually labeled ground truth that can be highly accurate.
Because EARFace’s dataset is self-collected and ground truth is based on a ML model that automatically extracts
landmarks from cameras [24], the comparison may not be entirely fair. Nevertheless, we believe a comparable
accuracy to vision based systems is encouraging. Overall, the accuracy in EARFace is comparable to prior works
while offering extra benefits of robustness to occlusion/lighting/head-motion, ubiquitous sensing anywhere
(without needing a camera in front of the face always or other external infrastructure), and higher levels of
comfort owing to in-ear sensing with an earphone form-factor.

Ablation Studies: Table 2 depicts the accuracy as a function of different configurations of the ML model. A
basic CNN architecture in an encoder-decoder form [23] achieves an MAE of 2.25 mm. However, the transformer
architecture can capture richer temporal dependencies, which decreases the MAE to 1.93 mm. Finally, the design
in EARFace that incorporates both spectral and temporal transformers achieves the best MAE of 1.83 mm.

Latency and Power Consumption: The power consumption of the sensor device itself was discussed in
Section 4. Here, we analyze the latency and power consumption of the ML model of EARFace as implemented
on smartphones. Fig. 15a depicts the latency of executing ML models in EARFace. Fig. 15b depicts the power
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Fig. 15. (a) Latency of ML model execution on smartphone devices (b) Power Consumption on Smartphone Devices

consumption of executing ML models in EARFace on smartphone devices. Evidently, the latency for executing
the ML model for computing facial landmarks is only 13 ms. For profiling the energy of the TensorflowLite
model, we use Batterystats and Battery Historian [5, 66] tools. We compare the difference in power between two
states: (i) The device is idle with the screen on. (ii) The device is making inferences using the TensorflowLite
model. Fig. 15b depicts a low power consumption profile, with the discharge rate supporting upto 8-9 hours
of continuous operation. The device can be put under sleep when not in active use to extend the battery life further.

Usability Study: We conducted a user experience survey among the study participants who wore the sensors
continuously under free-living conditions for six hours at their apartments. Each user wore all of the different
platform so that they can compare the platforms with each other. The users conducted normal daily life activities
which included working on their laptops (typing, browsing, etc), eating, drinking, watching movie, etc while
they continue to wear the sensor. We compare EARFace and three other alternatives: (i) OpenBCI based sensing
as employed in BioFace3D [112] where the electrodes surround the ear and the controller device sticks to the
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Fig. 16. User experience survey on EARFace compared with three alternative sensing platforms

back of the head. (ii) Headphone based sensing as used in FaceListener [99]. (iii) EarIO [69] based platform where
sensors are placed outside the ear to capture facial skin deformation due to facial expressions. Note that we only
create a dummy prototype of EarlO based on size and weight specifications in the paper because full details
of the electronics is not publicly available. Participants rated the four devices anonymously based on comfort,
weight and appearance from 0 to 10. Fig. 16 depicts the results. Higher the rating, better the usability of the
device. BioFace3D, FaceListener and EarlO platforms were perceived bulky, whereas earphone devices designed
in EARFace are miniature enough to get a high rating on the weight feature. Also, some of the users complained
about the discomfort in wearing the BioFace3D platform because it surrounds the ear and the user needs to have
a device at the back of the head. Similarly, the EarIO platform protruding outwards and behind the ear was a
matter of concern for many users, more so for users with longer hairs. While FaceListener platform rated better
than the BioFace3D and EarlO form-factors on comfort, some users expressed feeling pain in the ear, especially
for longer duration of wearability. On the otherhand, the earphone platform in EARFace scored higher across
all three dimensions owing to its small form-factor that fits naturally within the ears. Because of higher levels
of usability ratings, earphones are gaining in popularity with many applications in mobile health [36, 51], user
interfaces [29], speech enhancement [59, 102], etc.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Safety of Ultrasound Sensing: We have enough evidence that our device is safe for daily wearing, since: (i)
Based on Centers for Disease Control and Prevention(CDC)[9] recommendations, a person can continuously
be exposed to 85 dB over 8 hours in the work space. Additionally, U.S. Environmental Protection Agency (EPA)
recommends an average exposure level of less than 70 dB over a 24 hour time period [88]. Our device only has a
power level of 60-65 dB when emitting ultrasound signals, lesser than both of the above limits. The actual average
exposure is likely to be much lower since the device is used only when tracking is needed; (ii) Accordingly,
speaker components (EST65DB01) of our hardware manufactured by Sonion have passed safety legislation around
ultrasound to confirm that the power levels are under safety limits. Thus, we believe the usage of ultrasound for
sensing does not cause adverse effects.

Impact of Head and Body Motion: The data was collected while users perform natural head and body motion.
In addition, as identified in Section 6 we conducted experiments while having the users move their heads in a
more pronounced manner and walk naturally. Because the earphone platform is snugly fit to the ears and other-
wise robust to minor variation in sensor positions (Fig. 12a), the accuracy is not impacted by body and head motion.
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Wireless Earphone: In the current form, the earphone is connected to a smartphone-like controller with wire-
less streaming of sensor data that lets the user move freely while using the device for facial motion tracking. In the
future, we plan to develop a fully wireless earphone like Apple AirPods [1] by exploiting advances in True Wire-
less Stereo (TWS) [8], in which two earbuds could communicate with smartphone simultaneously using Bluetooth.

Applications: EARFace designs a generic pipeline for facial motion tracking using earphone platforms that
are gaining in popularity. Without needing a camera to always face or follow the user or dependency on external
infrastructure, EARFace can provide ubiquitous sensing anywhere and anytime. We believe several applications
can be built on the top of EARFace such as facial expression recognition for sensing emotional well being, driver
behavior monitoring, fatigue and stress detection, AR/VR applications, user interfaces including accessibility
applications, etc. We leave a thorough investigation of the application space for future research.

8 CONCLUSION

This paper designs EARFace, a system that showed the feasibility of reconstructing the 3D face of a user with
in-ear sensing. To enable EARFace, an earphone platform is designed with microphones and speakers that can
track the shape of the ear canal by sensing high bandwidth ultrasonic reflections. By tracking changes in-ear
canal shape, EARFace can track the facial motion. A transformer architecture is designed to exploit the spectral
and temporal dependencies of ear canal CFR, ultimately leading to highly accurate and continuous tracking of
facial motion. An extensive study with 20 users provides an accuracy of 1.83 mm in tracking facial landmarks.
The ML models run on smartphones with a latency of 13 ms and low power consumption. Despite progress, we
believe we only scratched the surface. A number of applications in the areas of affective computing, emotional
well being monitoring, facial expression recognition, AR/VR, accessibility and user interfaces can be explored.
We leave this to future work.
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