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Abstract

Cosmic rays have been shown to be extremely important in the dynamics of diffuse gas in galaxies, helping to
maintain hydrostatic equilibrium, and serving as a regulating force in star formation. In this paper, we address the
influence of cosmic rays on galaxies by re-examining the theory of a cosmic ray Eddington limit, first proposed by
Socrates et al. and elaborated upon by Crocker et al. and Huang & Davis. A cosmic ray Eddington limit represents
a maximum cosmic ray energy density above which the interstellar gas cannot be in hydrostatic equilibrium,
resulting in a wind. In this paper, we continue to explore the idea of a cosmic ray Eddington limit by introducing a
general framework that accounts for the circumgalactic environment and applying it to five galaxies that we believe
to be a good representative sample of the star-forming galaxy population, using different cosmic ray transport
models to determine what gives each galaxy the best chance to reach this limit. We show that, while an Eddington
limit for cosmic rays does exist, for our five galaxies, the limit either falls at star formation rates that are much
larger or gas densities that are much lower than each galaxy’s measured values. This suggests that cosmic ray
pressure is not the main factor limiting the luminosity of starburst galaxies.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Galactic winds (572); Interstellar medium (847);
Galaxy structure (622)

1. Introduction

Cosmic rays play an important role in many different
phenomena in our universe. In recent decades, one of the many
areas of study concerning them has been star formation
feedback. Many papers have shown the role of cosmic rays in
regulating star formation by puffing up the galactic gas layers
and helping launch a galactic wind (Breitschwerdt et al. 1991;
Everett et al. 2008; Uhlig et al. 2012; Booth et al. 2013; Hanasz
et al. 2013; Salem & Bryan 2014; Girichidis et al. 2016;
Simpson et al. 2016; Ruszkowski et al. 2017; Mao &
Ostriker 2018; Bustard et al. 2020; Hopkins et al. 2020). In
these works, the effects of cosmic rays on the evolution of the
galaxy are largely dependent on the transport model used to
describe them. Most models show that, if the cosmic rays
diffuse so weakly that they are effectively locked to the thermal
gas (we will refer to this as transport by advection), they will
puff up the galactic disk and quench star formation. But if the
cosmic rays diffuse or stream along magnetic field lines, they
are more effective in driving a galactic wind and limit star
formation through that process, although less so than in the
advection case.

However, many of these papers only show that cosmic rays
aid in driving galactic winds by supplementing the thermal
pressure. They do not show that cosmic rays alone can drive
galactic winds. The pioneering paper by Socrates et al. (2008)
aimed to answer the question of whether a purely cosmic ray
driven wind was possible. In their paper, they laid out the
theoretical framework for what they called a cosmic ray
Eddington limit, assuming that cosmic rays were fully support-
ing the gas against the gravitational field of an isothermal sphere.
In this model, the idea is that a system could have such vigorous

star formation that the resulting cosmic ray luminosity would be
large enough to break hydrostatic equilibrium and blow out the
interstellar medium by launching a wind. In other words,
Socrates et al. (2008) claimed that there is a limiting star
formation rate above which hydrostatic equilibrium cannot be
maintained due to the cosmic ray pressure. Because of the close
connection between the star formation rate and the cosmic ray
production rate and the relatively short timescale on which
blowout would occur, this would set an upper limit on the
luminosity of starburst galaxies.
Crocker et al. (2021a, 2021b) recently re-examined the idea

of a cosmic ray Eddington limit. In their paper, they assumed a
horizontal magnetic field and took the gravitational potential to
be that of a one-dimensional infinite slab, which accurately
portrays the gravitational field close to the galactic disk but
results in constant gravitational acceleration far away from the
disk. They found that, in an Eddington-type model, there exists
a stability limit in galaxies above which hydrostatic equilibrium
can no longer be satisfied. Generally, they found that galaxies
with high gas surface densities and large star formation rates
are less likely to be near this stability limit, due to the large
amounts of hadronic losses that occur in these systems. In
related work, Huang & Davis (2022) examined the initial
stages of wind launching by a fixed flux of cosmic rays at the
base of an atmosphere with a vertical magnetic field along
which cosmic rays could diffuse or stream. This study showed
that the launch mechanism is quite robust under a range of
models for cosmic ray transport and gas physics.
In this paper, we step back from the verisimilitude of the

Crocker et al. (2021a) and Huang & Davis (2022) local 1D
models in order to focus on the global effects introduced by a
bounded galactic gravitational potential and confining pressure
of a circumgalactic medium. A potential that allows g, the
gravitational acceleration, to fall off with distance will make it
more likely that galaxies reach the Eddington limit. In this
work, we formulate our problem for a general gravitational
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potential and then substitute in specific examples that fall off
with distance, such as for a finite mass source, allowing for a
system where the gas can escape the galaxy’s gravity.

The cosmic ray transport model that best leads to reaching the
cosmic ray Eddington limit is something else we wish to
elaborate on. Socrates et al. (2008) assumed a model that
included cosmic ray streaming with a random walk component.
Crocker et al. (2021a) extended this and compared three different
models of cosmic ray transport: streaming with random walk
along field lines, scattering off extrinsic turbulence, and constant
diffusion. Huang & Davis (2022) also considered streaming and
diffusion. We will follow a procedure similar to those of Crocker
et al. (2021a) and Huang & Davis (2022) and compare different
transport models throughout our analysis (see Section 2.2 for our
choices).

To determine if a wind is likely to be blown out by the
systems we are looking at, we will follow the arguments
presented by Parker (1958) in regard to the solar wind. In that
article, Parker assumed the solar corona to be isothermal,
spherically symmetric, and in hydrostatic equilibrium. Under
these assumptions, the asymptotic pressure P(r) approaches an
asymptotic value orders of magnitude larger than the interstellar
pressure, so Parker concluded that hydrostatic equilibrium is
impossible and the corona must be flowing outward.

For our models, we will usually do the same as Parker
(1958) and derive an asymptotic cosmic ray pressure from
hydrostatic equilibrium, assuming that cosmic ray pressure is
the only pressure supporting the system against gravity. We can
then compare that value to the base value of the surrounding
circumgalactic medium (CGM). If the cosmic ray pressure is
determined to be larger than the pressure of the CGM, then we
must conclude that hydrostatic equilibrium has been broken
and a wind would be launched. We describe our procedure for
non-asymptotic systems in Section 3.2.

In Section 2, we outline the basic setup of our problem. In
Section 2.1, we establish our equations for hydrostatic
equilibrium, along with the galactic potential we will be using
throughout our analysis. We continue with outlining the cosmic
ray transport models we will be using in Section 2.2, and we
describe how we implement sources and collisional losses in
Section 2.3. In Section 2.4, we derive analytical forms for the
gas density and cosmic ray transport for different models of
cosmic ray transport without sources and collisions. In
Section 2.5, we describe the five different galaxies that we
will use to model the cosmic ray Eddington limit, and then we
insert their parameters into our analytical solutions in
Section 3.1. We then consider the joint effects of transport,
sources and collisions in Section 3.2 and solve the equations
numerically for the five galaxies of our analysis. Discussion of
these results and a comparison between the analytical and
numerical solutions can be found in Section 4, along with our
final conclusions. Details on the nondimensionalization of the
equations and how we determined the parameters for the
galaxies in our studies are in Appendices A and B.

2. Setup of the Problem

For this analysis, we will assume that we have a purely CR-
supported atmosphere in a gravitational potential that arises
from a spherically symmetric mass distribution at the center of
the galaxy, along with a dark matter halo. This spherical
symmetry will lend itself to using potentials that fall off with
distance. Within the central mass distribution, which we

envision as a region of intense star formation, we will assume
a balance between cosmic ray sources and cosmic ray losses,
which include both collisions and diffusive transport These
conditions will then provide us with initial conditions at the
edge of our mass distribution, many of which we will treat as
constant parameters for each galaxy. There is no reason in
principle why the central starburst region and the central mass
distribution should have the same radius, but for simplicity we
assume this to be the case.
For a system to reach the Eddington limit, one of two

requirements must be met. It must either have vigorous enough
star formation that enough cosmic rays are created to blow
away the surrounding medium, or it must have a low enough
gas density that the cosmic ray pressure supplied by the galaxy
can surpass the conditions for hydrostatic equilibrium. There-
fore, we will specifically focus on the values of ρ0 and Uc0, the
gas density and the cosmic ray energy density at the edge of the
central mass distribution, respectively. We will treat these as
the two boundary conditions with which we solve equations
later, and we will often vary over them to find the values at
which a system reaches the cosmic ray Eddington limit.
A system with asymptotic pressure greater than the CGM

pressure is certainly super-Eddington, but even if this condition
is not met, a cosmic ray supported hydrostatic atmosphere is
subject to at least two minimal reality checks. One is that the
radius at which Pc= PCGM, which we term the confinement
radius Rconf, should be reasonable. The second is that the mass
confined,

M r r dr4 , 1
R

R

conf
2

conf

( ) ( )òp rº

should be a reasonable interstellar mass.

2.1. Hydrostatic Equilibrium

We will assume that our system starts in hydrostatic
equilibrium, and we then will aim to determine if this
equilibrium is eventually broken by a large enough cosmic
ray pressure. Because we are assuming a system where the
cosmic rays alone are supporting the gas against gravity, our
equilibrium condition will be

dP

dr

d

dr
, 2c ( )r= -

F

where Φ is the gravitational potential, Pc is the cosmic ray
pressure, ρ is the gas density, and r is the distance from the
center of the system.
Although in many cases the solution of Equation (2) can be

written in terms of a general Φ, for quantitative results in this
paper, we will take a Φ that has a dark matter halo component
in addition to the component from a spherical mass distribution
at the center of the galaxy. From Hernquist (1990), the potential
is

r
GM

r a

GM

r
, 3h c( )

( )
( )F = -

+
-

where Mc is the core mass in the center, Mh is the halo mass,
and a is a scale length determined by a semilog plot between
the two points (6 kpc, 1011Me) and (25 kpc, 1013Me).
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2.2. Cosmic Ray Transport

For this work, we will be analyzing the effect that different
cosmic ray transport models have on the Eddington limit. We
will assume transport is controlled by two processes: streaming
at the Alfvén speed vA, and diffusion. The general steady-state
cosmic ray transport equation, taking into account both
processes, is from Breitschwerdt et al. (1991):

u v
u v
P P

P Q1 1 , 4
A c c

A c

· [ ( ) ]
( )( ) · ( ) ( )
g k
g g

 + - 
= - +  + -

where γ is the adiabatic index of the cosmic rays (canonically
taken to be 4/3), u is the velocity of the gas, vA=B/(4πρ)1/2

is the Alfvén speed, κ is the diffusion tensor, and Q represents
both source and losses from collisions in the system. One
subtlety to keep in mind is that vA is to be computed with
respect to the plasma density, not the total gas density. That is
because the frequencies of the waves that scatter the cosmic
rays are generally higher than the rates at which ions and
neutrals collide, so the waves propagate in the plasma
component alone (Kulsrud & Pearce 1969). For our analysis,
we will look at the limit where only one transport process is
present and determine the forms of Pc in that limit. This will
allow us to determine how each transport process affects the
ability of a galaxy to reach the cosmic ray Eddington limit. We
go into more detail on these “pure” transport processes in
Section 2.4.

In the self-confinement model (Kulsrud & Pearce 1969), if
the cosmic ray bulk velocity, vD, is larger than the Alfvén
speed, vA, the cosmic rays will excite Alfvén waves through the
streaming instability. The cosmic rays will be confined by these
same waves, scattering off of them until they reach isotropy in
the wave frame. In a steady state, these waves will transfer
energy and momentum to the surrounding gas (Zweibel 2017).

In the model with purely cosmic ray streaming, we drop the
Q term, assume diffusion is negligible, and set u= 0 so that
Equation (4) becomes

v vP P1 . 5A c A c· ( ) ( ) · ( )g g = - 

We can then use ∇ · B≡ 0 to write v v 2A A· ( · ) ( )r r = - 
and reduce Equation (5) to the form

v
vP P

2
0, 6c

A
A c· · ( )g

r
r-  +  =

which when integrated leads to the polytropic relationship
Pc/ρ

γ/2, meaning this term is constant along a magnetic flux
tube provided that the system is in a steady state. For our
spherically symmetric models, this reduces to

P P , 7c c0
0

2

⎜ ⎟
⎛
⎝

⎞
⎠

( )r
r

=
g

where γ/2= 2/3 and we set Pc0= Pc(R) and ρ0= ρ(R).
In the extrinsic turbulence model (Zweibel 2017), the cosmic

rays are scattered by waves that are a result of a turbulent
cascade or other physical process. In this model, the cosmic
rays still transfer momentum through their pressure gradient,
but no energy transfer occurs and vA disappears from
Equation (4). This model can accurately model diffusion, and
so assuming u= 0 and Q is negligible, our transport equation

for pure diffusion is

P 0. 8c· ( ) ( )k-  =

If we move to a spherical coordinate system and assume that κ
is uniform throughout the galaxy, we can solve Equation (8)
and find the cosmic ray pressure goes as

P r P
R

r
, 9c c0⎛

⎝
⎞
⎠

( ) ( )=

assuming that Pc(R)= Pc0 and P R P R,c c0( )¢ = where R is the
outer radius of our central mass distribution.
The extrinsic turbulence model can also lead to advection in

the limit of small diffusivity. In this model, any motion of the
cosmic rays must only be due to the motion of the surrounding
medium. In the pure advection case, therefore, we drop our
diffusion term and ignore the Q term to derive

u uP P1 . 10c c· ( ) ( ) · ( )g g = - 

Similarly to the streaming case, we can simplify
Equation (10) to get a relation between the cosmic ray pressure
and the gas density. In a steady state, ρ∇ · u=− u ·∇ρ, so if
we substitute this relation into Equation (10) and drop sources
and collisions, we can solve for Pc and find

P P , 11c c0
0

⎜ ⎟
⎛
⎝

⎞
⎠

( )r
r

=
g

which we note is then independent of the velocity of the fluid.
Therefore, we can see that the just advection case follows a
polytropic relation where the cosmic rays behave just like a
relativistic gas.

2.3. Sources and Losses

Finally, in Section 3.2, we will add sources and losses to our
analysis. These effects are represented by the term Q in
Equation (4) and account for the effects of supernovae (the
sources) and hadronic collisions (the losses). As explained
below, in the region r< R, we also include a loss term due to
diffusive transport. We write Q in the general form:

Q S
U

, 12c

L
( )

t
= -

where S is the cosmic ray source density, Uc is the cosmic ray
energy density, and τL is the loss time

2.3.1. Source Term

To implement sources, we assume that the cosmic rays are
injected into our system by supernovae occurring at a rate that
follows the Kennicutt–Schmidt (K-S) law for star formation
(Kennicutt 1998). Equation (4) of Kennicutt (1998) gives the
star formation rate per area ΣSFR (in Me kpc−2 yr−1) as a
function of gas surface density Σgas (in Me pc−2); adopting
mean values, this is

2.5 10 . 13SFR
4

gas
1.4 ( )S = ´ S-

That is, the K-S law is of the form KSFR gasS = Sa . It will be
important to note that the exponent used in the K-S law, α, has
varied since the foundational paper (Schmidt 1959), which
proposed that the SFR is proportional to ρ2 (i.e., to volume
density, not surface density), and then over the past two
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decades since Kennicutt (1998). For example, Liu et al. (2015)
found that α can be 1.01, 1.12, or 1.62, depending on the
assumption of the rate of conversion from CO to H2, while
Kennicutt & De Los Reyes (2021) updated the original K-S law
with an α= 1.5. Therefore, α will be a varied parameter in our
analysis in Section 3.2. The implementation of the K-S law into
our numerical equations is further explained in Appendix A.

We derive an equation for S in terms of gas density in the
starburst region by assuming star formation takes place in a
layer of thickness z, that the mass in stars required to produce
one supernova is mSN, and that each supernova produces
energy òc in cosmic rays. Generally, we will assume z=
200 pc, m M100 SNSN

1= - (Mannucci et al. 2005), and
òc= 1050 erg. Note that we have chosen a fairly optimistic
value for the supernova rate per unit mass from Mannucci et al.
(2005), although it can vary greatly based on the age,
luminosity, and galaxy type. With these assumptions, the
source function S can be written in terms of gas density as

S z1.9 10 erg cm s . 1472 1.4
0
1.4

c
3 1( ) ( )r= ´ - - -

2.3.2. Loss Terms

In the region r> R, where we solve for the structure of the
atmosphere and adopt an explicit transport model, we assume
losses are due entirely to hadronic collisions, which occur at
rate τC. From Crocker et al. (2021a), the collision time can be
written as

100 Myr
10 3.2 10

s. 15C

24 9

⎜ ⎟
⎛
⎝

⎞
⎠

( )t
r r

= =
´- -

In r< R, we also include a diffusive transport term τT, where
we envision diffusion as due to propagation on tangled field
lines along which cosmic rays are scattered by small-scale,
small-amplitude fluctuations. We take for the transport time:

z
, 16T

2
( )t

k
=

where κ is the diffusivity. The loss rates due to collisions and
transport are additive, and lead to a loss time τL:

. 17L
C T

C T
( )t

t t
t t

=
+

Using Equation (15), we have:

z

z
3.2 10

3.2 10
. 18L

9
2

9
0

2( )
( )t

k r
= ´

´ +
-

-

2.3.3. Cosmic Ray Pressure in the Core

We determine conditions in the core by assuming sources
balance losses. From Equations (14) and (18):


U z

z
6.08 10

3.2 10
19c0

81 3.4 0
1.4

c

9
0

2
( )

( )
( )

r

k r
= ´

´ +
-

-

in erg cm−3. It is straightforward to adapt Equation (19) to any
exponent α in the star formation law. The prefactor, of course,
will change, but the factor of z3.4 should be read as zα+2, and
the factor of 0

1.4r should be read as 0r
a.

We can check the reliability of our formulae by applying it to
the starburst core of M82, for which many of the relevant

parameters are observable or constrained by independent
modeling. Applying Equation (13) for the parameters given in
Table 1, we predict an SFR of 4.9Me yr−1, which is lower by a
factor of 2 than the accepted value of 10Me yr−1. Using the
Milky Way value, κ= 3× 1028 cm2 s−1 (Strong et al. 2007) in
Equation (19), and again taking z= 200 pc gives Uc0= 210 eV
cm−3, also about a factor of 2 less than the best-fit value of
525 eV cm−3 obtained in Yoast-Hull et al. (2013). We regard
this level of agreement as satisfactory, given the many
assumptions underlying the analysis and models.
It may be more appropriate to derive Uc0 directly from the

star formation rate, if the latter is known. In that case, we can
define the cosmic ray luminosity due to star formation as


L

m

SFR
, 20SFR

c

SN
( )=

where SFR is the star formation rate in Me yr−1. The source
density S then is just Lc/Venc, where we will assume that again
the star formation is occurring in a disk close to the midplane of
the galaxy. Therefore,


S

m R z

SFR
. 21c

SN
2

( )
p

=

Finally, to obtain Uc0, we take SτL, where τL is the same as
defined in Equation (18):



22

U
z

m R z
1.01 10

SFR

3.2 10
erg cm .c0

16 c

SN
2 9

0
2

3

( )
( )p k r

= ´
´ +

-
-

-

Because the SFR is known for all the galaxies analyzed in this
paper, we will use Equation (22) and this will allow us to move
between Uc0 and SFR when needed.
We have already seen two transport models that lead to

polytropic relationships between Pc and ρ (Equations (7) and
(11)). Yet another polytropic relation holds if sources and
collisional losses dominate, which we term the calorimetric
limit. From Equation (12),

S
U

23c

C
( ) ( )r

t
=

in this case. We can use the Kennicutt–Schmidt law
( KSFR gasS = Sa ) to obtain the form of our source term, while
we can calculate the value of τC from Equation (15). Thus, we
have

S
P3

, 240
0

c

C,0 0

⎜ ⎟
⎛
⎝

⎞
⎠

( )r
r

r
t r

=
a

where τC,0= 3.2× 10−9. Solving Equation (24) for Pc, we
find:

P
S

P
3

. 25c
0 C,0

0

1

c0
0

1

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )t r
r

r
r

= =
a a- -

2.4. Cosmic Ray Supported Atmospheres with Polytropic
Equations of State

In order to show the methodology of our work a little more
clearly, we will first solve for the Eddington limit of a more
simple system where a numerical solver will not be required.
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As shown in Sections 2.2 and 2.3, the streaming, advection,
and calorimetric limit models will obey a polytropic relation-
ship where

P P , 26
a

c c0
0

⎜ ⎟
⎛
⎝

⎞
⎠

( )r
r

=

where a is a general exponent that is related to the familiar
polytropic index n from stellar structure theory by
n= (a− 1)−1.

We will treat the core quantities Pc0 and ρ0 as our starting
(base) values for the cosmic ray pressure and gas density,
respectively (where Pc0=Uc0/3). We can then substitute
Equation (26) into Equation (2) for a general potential Φ:

d

dr
P

d

dr
, 27

a

c0
0

⎜ ⎟⎜ ⎟
⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠
⎛
⎝

⎞
⎠

( )r
r

r= -
F

from which ρ(r) is found to be

Rr
a

a P
r1

1
. 28

a

0
0

c0

1 1

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ( ) ( )) ( )
( )

r r
r

F= +
-

- F
-

Equation (28) is valid for any spherically symmetric potential
Φ, but when evaluating it we will always assume Φ is given by
Equation (3) so that Φ(R)=−GMc/R−GMh/(R+ a).

Substituting Equation (28) into the polytropic relation from
Equation (26), we have

RP r P
a

a P
r1

1
. 29

a a

c c0
0

c0

1

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ( ) ( )) ( )
( )

F
r

= +
-

- F
-

For Equation (28), we can see that, assuming Φ→ 0 as
r→∞ , the density at infinity satisfies

a

a

R

P
1

1
, 30

a

0
0

c0

1 1

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( )

r r
r

= +
- F

¥

-

while similarly for Equation (29):

R
P P

a

a P
1

1
. 31

a a

c c0
0

c0

1
⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )r F
= +

-
¥

-

Note that the quantity ρ0Φ(R)/Pc0 will appear in many of our
equations throughout this paper. It is a quantity that essentially
represents the balance of cosmic ray pressure against the force
of gravity. If we note the squared cosmic ray sound speed,
v Pc0
2

c0 0rµ , and squared escape velocity, v Resc
2 ∣ ( )∣Fµ , then

we can rewrite this quantity as

R

P

v

v
. 320

c0

esc

c0

2

⎜ ⎟
⎛
⎝

⎞
⎠

∣ ( )∣
( )

r F
µ

Therefore, ρ0Φ(R)/Pc0 is a good measure of how well-confined
a system is, and its value will be of particular interest for us in
understanding the galaxies we study. It appears in the
dimensionless equations introduced in Appendix A as the
parameter ò.

Following Parker’s argument for the necessity of the solar
wind (Parker 1958), we will find the asymptotic value of the
cosmic ray pressure for the extrinsic turbulence, self-confine-
ment, and calorimetric models. If this asymptotic value occurs
above the assumed pressure of the CGM, then we can

definitively say that system is super-Eddington. For a typical
value of the CGM pressure, we have referred to Ji et al. (2020)
and found an approximate average value of PCGM∼
10−15 erg cm−3 for the thermal pressure.
We can conclude the Eddington cosmic ray pressure will be

the initial pressure that results in the pressure asymptoting at
PCGM. Defining this as PEdd and setting the asymptotic pressure
to PCGM in Equation (31):
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2.4.1. Advection

For advection, we showed in Section 2.2 that a= γ= 4/3.
Substituting a= 4/3 into Equation (30),
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and substituting it into Equation (31),
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We can see here that Pc∞< 0 if Pc0< ρ0|Φ(R)|/4, which we
can interpret as the gas always being confined.
To obtain the cosmic ray pressure needed for the Eddington

limit, we use Equation (33):
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Equation (36) is best solved numerically for PEdd, but we can
make an analytical approximation to the solution by noting
that, generally, we expect the asymptotic pressure, PCGM, to be
much smaller than the base pressure at the edge of our mass
distribution. Assuming PCGM= Pc0, we find
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2.4.2. Cosmic Ray Streaming

In the self-confinement model, we know from Equation (7)
that a= 2/3, and thus
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for the density and

R
P P

P
1

2
39c c0

0

c0

2

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

r F
= -¥

-

for the cosmic ray pressure. For this case, contrary to the
advection case, Pc∞ is always positive, so the radius of the
cosmic ray supported envelope is limited only by the confining
pressure of the CGM.
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An approximate solution of Equation (33), valid for
ρ0|Φ(R)|/PCGM? 1, is

R
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. 40Edd CGM
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2.4.3. Calorimetric Limit

In the calorimetric case, we will use two different K-S laws,
one where α= 2 and another where α= 1.4. The corresp-
onding polytropic exponents will be a= 1 and a = 0.4,
respectively.

In the first case, α= 2, we get an isothermal polytropic
relation where Pc= Pc0(ρ/ρ0) and Pc0= S0τc0/3. We cannot
use our general asymptotic form for ρ and Pc from
Equations (30) and (31) here. Instead, we find that the density
is

r e , 41Rr P
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0 c0( ) ( )( ( ) ( ))r r= r F- F -

with a cosmic ray pressure of
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The asymptotic values of ρ and Pc are
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P
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Setting Pc∞= PCGM, Pc0= PEdd leads to the transcendental
equation for PEdd:
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In the other case, α= 1.4, we find
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Assuming that Pc∞= PCGM and that Pc0= PEdd, Equation (47)
becomes
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which has the approximate solution
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2.4.4. Diffusion

In the case of diffusive transport, a polytropic relationship
cannot be defined. Instead, we have that

r
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for a spherical system. If we assume that κ is uniform
throughout the galaxy, the cosmic ray pressure goes as
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assuming that Pc(R)= Pc0 and P R P Rc c0( )¢ = - . Substituting
into Equation (2), we get a density of
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where we define Φ0=GMc/R. We note that this density would
be constant without a dark matter halo. It is also important to
note then that the base density for just diffusion is
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We can first note from Equation (51) that the pressure will
always approach zero as r→∞ . Therefore, our definition of
the asymptotic value being larger than PCGM will never work
here. Thus, in this case, we could define a CGM radius, say
RCGM, at which, if the cosmic ray pressure is still above the
CGM pressure, the system could be considered super-
Eddington. Therefore, we find that PEdd is just given by

P P
R

R
. 54Edd CGM

CGM ( )=

To further illuminate this model, let us run a quick check of
its results for M82, a starburst galaxy, whose parameters can be
found in Table 1. First, let us assume that, instead of going to
infinity, the boundary between the ISM and the CGM occurs at
20 kpc. If we just solve for the Eddington cosmic ray pressure,
we find that PEdd= 10−13 dynes cm−2, equivalent to a cosmic
ray energy density of UEdd= 0.19 eV cm−3, about three orders
of magnitude lower than M82ʼs actual Uc0. Therefore, at a first
glance, diffusion seems like a great candidate to reach a cosmic
ray Eddington limit. However, if we then solve for ρ0 in
Equation (53) using this PEdd as our Pc0, we find that the
corresponding value is ρEdd= 4.11× 10−28 g cm−3. This is
extremely small and obviously not physically reasonable for
any galaxy, including M82.
It is worth stating that, while the assumption of constant κ is

surely unrealistic, allowing κ to scale as a power of density, as
assumed in Crocker et al. (2021a), is more general but equally
ad hoc, and it produces a density that drops off extremely
slowly with r.
To illustrate further that a variable diffusion coefficient also

creates problems for reaching an Eddington limit, we now
assume that κ= κ0(r/R)

β, where β is some constant that can be
chosen freely (we assume β� 0). Plugging this form for κ into
Equation (8), we find

r
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which when integrated gives
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where we have assumed that Pc(R)= Pc0 and used P Rc ( )¢ =

P 1 r

Rc0
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. Proceeding as we did to derive
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Equation (54), we find an Eddington pressure of

P P
R

R
. 57Edd CGM

CGM
1

⎛
⎝

⎞
⎠

( )
( )

=
b+

We can see that, for β= 0, we arrive back at the solution for
our constant diffusion coefficient.

We can then define the Eddington densities for this model by
assuming that our base pressure is the Eddington pressure,
PEdd. Therefore, we can plug Equation (57) into Equation (2)
and solve for ρ(r):
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which gives a base density of
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If we write Equation (59) in terms of our density for constant
diffusion (Equation (53), we derive
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We recall that, for M82 with constant diffusion, we found that
ρEdd= 4.11× 10−28 g cm−3. Taking the parameters of M82
and plugging those into Equation (60) to find an Eddington
density equivalent to M82ʼs density from Table 1, we solve and
find that β= 3.012 gives us the exact density for M82.
However, we note that, for this beta, we can solve
Equation (57) and find that PEdd= 1.057× 10−7 dynes cm−2.
This Eddington pressure is equivalent to a base cosmic ray
energy density of UEdd= 1.98× 105 eV cm−3, which is well
above the actual cosmic ray energy density for M82. We can
see from this model then that, if we get a more reasonable base
density, we get a huge Eddington cosmic ray energy density
that the galaxy would never be able to obtain. Therefore,

regardless of the model we use for diffusion, we find in general
that it does not produce a system capable of reaching the
Eddington limit.
Due to these results and to our finding that sources and

collisions do not heavily affect these conclusions (to be shown
in Section 3.2), we will ignore diffusion as a method of cosmic
ray transport for the rest of this paper, and we will instead
largely focus on streaming.
We summarize the results of these transport models as

follows. The quantity ρ0Φ(R)/Pc0 appears in all cases as a
figure of merit that represents the depth of the gravitational
potential well relative to the energy per mass available for
driving an outflow. At first glance, we might expect that this
parameter must be of order unity or less in a super-Eddington
galaxy. For the advective and α= 2 calorimetric cases, this is
indeed true. But as Equations (40) and (49) show, under certain
conditions—transport by streaming or calorimetry with an
α= 1.4 star formation law, in the cases studied here—
substantially smaller base cosmic ray pressures can unbind
the system as well. In terms of the polytropic index n, systems
with n> 0 have PEdd∼ ρ0|Φ(R)|, while systems with n< 0
have RP P n n

Edd CGM
1

0
1 1( ∣ ( )∣)r F~ - + .

It will now be useful to apply these models to galaxies for
which the input parameters are known.

2.5. Parameter Values

For this work, we will want to examine the viability of a
wind being launched solely by cosmic rays for a few different
galaxy types. Therefore, we have chosen five different galactic
models to analyze for the rest of this work, represented in
Table 1.
The five galaxies we have chosen are the Milky Way

(a large, older, spiral galaxy), M82 (a starburst galaxy), the
Large Magellanic Cloud (LMC) (a dwarf galaxy), NGC 4449
(a dwarf starburst galaxy), and DRC-8 (a massive, young,
starbursting galaxy). It is important to note that winds have
been observed for M82 (O’Connell & Mangano 1978;
Strickland & Heckman 2009) and NGC 4449 (McQuinn

Table 1
Parameters for the Five Galaxies Modeled

Galaxy Mc Mhalo Rdyn a 0
gasr 0

ionr B0 SFR UC,0 ρ0|Φ(R)|/Pc0

MW 1.4 × 109 (a) 1.3 × 1012 (b) 0.23 (c) 16.6 1249 (c) 16.7 (c) 10 (d) 0.01 (e) 10 (f) 8.56 × 105

M82 1 × 109 (g), (h) 5.5 × 1011 (i) 0.2 (h) 13.0 1580 (h) 167 (h) 300 (j) 10 (h) 525 (j) 1.26 × 104

LMC 4 × 109 (k) 2 × 1011ℓ 1.7 (k) 8.84 7.9 (k) 3.34 (k) 4 (k) 0.4 (k) 0.58 (j) 3.35 × 104

NGC 4449 2.1 × 109 (m) 2 × 1011 (m) 1.83 (m) 8.84 4.90 (n) 3.40 (n) 12 (o) 0.97 (m) 3.82 3.32 × 103

DRC-8 8.2 × 1010 (p) 9 × 1012 (p) 10 (p) 24.6 (q) 3950 (q) 52.8 (q) 1000 (q) 394 (p) 3.18 1.3 × 108

Notes. The various dynamical masses (Me), halo masses (Me), radii confining the dynamical mass (kpc), the scale height for the dark matter halo (kpc), gas, and ion
mass densities (in units of 10−24 g cm g cm−3), base magnetic fields (μG)), star formation rates (Me yr−1), and cosmic ray energy densities (eV cm−3) for each galaxy
that we model. The last column includes the value of ρ0Φ(R)/Pc0 for each galaxy, which as mentioned in Section 2.4 will be a particular quantity of interest for this
work. For Φ(R), we have assumed our potential is the Hernquist potential, shown in Equation (3), where Φ(R) = Φ(Rdyn) in that equation. Note that Pc0 = Uc0/3. For
the Alfvén speed, we need to find the ion density specifically, as the waves that scatter the cosmic rays are sufficiently high-frequency that the plasma and neutrals are
decoupled. For some galaxies, like our Galaxy and M82, we have tried to constrain ourselves to their central molecular zones (CMZs), while for the other three
galaxies, we have generally incorporated the entire galaxy into our potential well. Our values for Rdyn reflect these differences in the potential wells. Finally, we have
obtained the gas and ion mass densities from the gas and ion surface densities provided in Table 2 of McQuinn et al. (2012).
References. (a) Launhardt et al. 2002; (b) Posti & Helmi 2019; (c) Ferrière et al. 2007; (d) Guenduez et al. 2020; (e) Yoast-Hull et al. 2014; (f) Everett et al. 2008; (g)
Divakara Mayya & Carrasco 2009; (h) Yoast-Hull et al. 2013; (i) Oehm et al. 2017; (j) Yoast-Hull et al. 2016; (k) Bustard et al. 2020; (r) Lucchini et al. 2020; (m)
McQuinn et al. 2019; (n) McQuinn et al. 2012; (o) Chyży et al. 2000; (p) Long et al. 2020; (q) A. Long 2022, personal communication.
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et al. 2019). There is also evidence for outflows from the LMC
(Staveley-Smith et al. 2003; Barger et al. 2016), and some
analyses have interpreted the observation of soft, diffuse X-ray
emission in some regions of the Milky Way as evidence of a
wind (Everett et al. 2008). For the penultimate column in
Table 1, we calculated values of Uc0 for NGC 4449 and DRC-8
using Equation (22). The mass densities listed in Table 1 have
been calculated from the number densities or total masses and
volumes quoted in the paper cited next to each mass density.
The conversion we are utilizing for this is

n n1.67 10 3.95 10 ,

61
ion

24
ion gas

24
gas

( )
r r= ´ = ´- -

assuming that we have a helium abundance of 10% by number,
all the hydrogen is in molecular form, and most of the ions are
protons (i.e., He is neutral).

Further details about Table 1 are given in Appendix B. We
note here, however, that the parameter ρ0Φ(R)/Pc0 is very
large in all cases, suggesting that all these galaxies are sub-
Eddington unless cosmic rays are transported by streaming
and/or calorimetric with a star formation rate that declines
relatively slowly with gas density, in which case more careful
modeling is required.

3. Results

3.1. Analytical Results

We can substitute the galactic parameters from Section 2.5
into each system from Section 2.4 and determine if it can reach
its Eddington limit. The Eddington star formation rates for
advection and cosmic ray streaming are shown in Table 2,
along with the observed star formation rates for each galaxy
that were quoted in Table 1. The Eddington star formation rates
were derived using Equation (33) for advection, streaming, and
the calorimetric model with α= 1.4, whereas for α= 2 we
used Equation (45). The resulting derived PEdd were then
plugged into Equation (22) (Uc= 3Pc) to solve for the star
formation rate.

We can see that, for all of the advection models, the star
formation rate required to reach the cosmic ray Eddington limit
is much larger than the actual star formation rate of all five
galaxies. When we implement cosmic ray streaming, the
Eddington value becomes closer to the observed value but is
still much larger for all galaxies. This is qualitatively consistent
with the discussion at the end of Section 2.

The galaxy that gets the closest to its observed star formation
rate is M82. We find that M82ʼs Eddington star formation rate
is about five times larger than its actual star formation rate,
while the next closest, NGC 4449, would have to have a star
formation rate about 11 times its observed value to be super-
Eddington. Therefore, initially with just the transport models,
while streaming allows the system to get closer to the
Eddington limit, it looks extremely unlikely that the star
formation rates of any of these galaxies are capped by their
cosmic ray Eddington limit.
In Figure 1, we have plotted how the radius of confinement

Rconf and mass confined Mconf (see Equation (1)) change with
Uc0 for the pure streaming model for all five galaxies.
It is also of interest to compare the cosmic ray enthalpy flux

at the inner boundary of each galaxy with the enthalpy flux at
the radius of confinement (where Pc= 10−15 dynes cm−2). For
cosmic ray streaming, the enthalpy will show us the energy lost
due to the heating of the interstellar gas. The removal of this
energy from the cosmic rays is modeled in Equation (4) as
the− vA∇Pc term. We define the cosmic ray enthalpy flux as

F v U P v P
R

r 1
, 62c A c c A,0 c

2
0
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⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )
r
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where we have used Uc= Pc/(γ− 1) and have taken B∝ 1/r2

to ensure ∇ · B= 0.
We can then find the difference in the enthalpy luminosities

at the inner boundary and the radius of confinement for each
system. This difference can be derived from Equation (4)
without sources, losses, or diffusion, which we first rewrite as

F v P , 63c A c· · ( ) =

where we have substituted in Equation (62). If we integrate
both sides over the shell comprising the cosmic ray supported
envelope, we find

L R L R r v P dr4 , 64h h
R

R

conf
2
A c

conf

( ) ( ) · ( )òp- = 

where Lh(r)= 4πr2Fc(r) is the enthalpy luminosity. Therefore,
Equation (64) shows that the difference in enthalpy luminos-
ities (Lh here) at the confinement radius and at the base of our
mass distribution equals the heat deposited. We can see from
Figure 1 that essentially all the cosmic ray energy is expended
between R and Rconf. Although a detailed study of thermal
balance is beyond the scope of this work, we note that

Table 2
The Eddington Star Formation Rates for All Five Galaxies with Various Transport Models)

Galaxy SFRadv
Uc0

adv SFRstr
Uc0

str SFR2Cal
Uc0

2Cal SFR1.4Cal
Uc0

1.4Cal SFRobs
Uc0

obs

MW 4.98 × 104 2.13 × 106 76.0 3251.2 1.03 × 104 4.44 × 105 0.38 16.1 0.01 10

M82 3.82 × 104 1.64 × 106 63.6 2733.0 8.07 × 103 3.47 × 105 0.34 14.5 10 525

LMC 1049.8 4737.8 12.4 56.1 317.7 1.43 × 103 0.31 1.41 0.4 0.58

NGC 4449 783.7 3.09 × 103 10.73 42.26 245 965 0.3 1.19 0.97 3.82

DRC-8 2.54 × 109 2.17 × 107 1.78 × 106 1.53 × 104 4.74 × 108 4.05 × 106 4765 40.8 394 3.18

Notes. First, note the units for SFRs here are (Meyr−1) and that the units for Uc0 are (eVcm−3). The first and second columns are the calculated star formation rates
and cosmic ray energy densities required to reach the Eddington limit for our different galaxy models for advection, while the third and fourth columns are the same
for cosmic ray streaming. The fifth and sixth columns, denoted as “2Cal,” are the Eddington SFR and Uc0 for the calorimetric limit where α = 2, while the seventh and
eighth columns, denoted as “1.4Cal,” are the values for the calorimetric limit where α = 1.4. Finally, we have pulled the observed star formation rates from Table 1,
along with their calculated values of Uc0 from Equation (22), and placed them in last two columns for easy comparison.
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collisionless cosmic ray heating has been argued to be
important for warm, ionized, extraplanar gas in the Milky
Way (Wiener et al. 2013). To roughly estimate the potential
importance of heating, we define a heating timescale τh as the
ratio of the confined mass thermal energy content to the cosmic
ray enthalpy flux integrated over the area of the base:

M k T

mR P v

3

32
, 65h

Bconf
2

Edd A0
( )t

p
º

where T and m are the mean temperature of the atmosphere and
mean particle mass, respectively. Taking parameters from
Tables 1 and 2 and assuming T= 104 K, m= 1.0× 10−24 g,
we find τh∼ 5.0× 105 yr for the Milky Way and 2.1× 105 yr
for NGC 4449. These short timescales suggest that, even
though PEdd itself is much larger than any known value, a more
modest cosmic ray pressure could heat the confined gas to the
point that it provides additional thermal pressure, possibly
leading to loss of hydrostatic equilibrium.

We can see from Figure 1 that, around the Eddington cosmic
ray energy density (the vertical line in each plot), the radius of

confinement and especially the values of the mass confined
sharply turn vertical. Therefore, a reasonably accurate measure
of where the cosmic ray Eddington limit is for each galaxy is to
find the Uc0 around where this asymptotic behavior begins.
However, we want to caution that, while the mass confined will
be well-defined for values of Uc0 far from the Eddington limit,
as it gets closer to UEdd, very small changes in Uc0 make large
changes in Rconf, and so Mconf will not be as well-defined near
that boundary.
One is able to derive a similar relationship for ρEdd as we do

for PEdd in Equation (33). In this case, the Eddington density
describes the maximum density for each model where the fixed
star formation rate can still reach the Eddington limit and
launch a wind. The Eddington densities for each galaxy are
shown in Table 3, along with their observed base densities. We
have again plotted the radius of confinement and mass of
confinement, but for a varying ρ0, in Figure 2. The value of
ρEdd for each galaxy is shown as a vertical line for each galaxy
in Figure 2, where we have fixed our value of Uc0 and vary the
value of ρ0. Note that, for these plots, the values of ρ0 chosen
do not line up with the values for the galaxy listed in Table 1.
We have done this to ensure that we can find the Eddington
limit for these galaxies, even if it occurs at extremely small
values that are far below the calculated values for each galaxy.
We can see a similar behavior in these plots as with the

varying Uc0 plots, where around the value of ρEdd, the lines turn
vertical and approach an asymptotic value. Similarly to what
we found when we varied Uc0, none of the five galaxies have
observed densities that fall below their Eddington density. The
two galaxies that come the closest to reaching their respective
Eddington gas densities are NGC 4449 and M82, with both
being about or a little over an order of magnitude away from
their Eddington values.
From this analysis, we can see then that there are two ways

to reach the Eddington limit for cosmic rays. A galaxy either
needs to have a large enough star formation rate that it can
break hydrostatic equilibrium or have a gas density that is low
enough that it requires very little energy injected into cosmic
rays to launch a wind. However, because we are generally
interested in the star formation rate and amount of cosmic ray
injection needed to launch a wind, we will focus on just
varying Uc0 for the rest of this work.
Now that we have analyzed the pure transport model results,

we will add in sources from star formation and losses from

Figure 1. The radius of confinement, mass confined, and ratio of cosmic ray
enthalpy luminosities in and out of our systems as functions of Uc0 for each
galaxy in our sample, assuming pure streaming (transport with Q set to zero).
The Eddington cosmic ray energy density derived from the star formation rates
in Table 2 is marked with a vertical line for each galaxy.

Table 3
The Eddington Gas Densities for All Five Galaxies with Various Transport

Models

Galaxy Edd
advr Edd

strr 0
obsr

MW 5.91 × 10−27 2.16 × 10−25 1.27 × 10−21

M82 5.56 × 10−25 1.47 × 10−22 1.75 × 10−21

LMC 1.34 × 10−27 1.18 × 10−26 1.12 × 10−23

NGC 4449 1.0 × 10−26 2.26 × 10−25 8.3 × 10−24

DRC-8 1.23 × 10−28 1.16 × 10−27 4.0 × 10−21

Note. The Eddington gas densities in units of (g cm−3) for each galaxy in the
pure advection and streaming models compared to their calculated values from
observations in the last column. Note that our method for calculating mass
densities from observations is noted at the end of Section 2.5.
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hadronic collisions to determine their effects on our system
with cosmic ray streaming.

3.2. Numerical Results

Now that we have calculated the Eddington limit for simple
systems, we can expand our analysis to include the sources and
collisions and observe their effects on these galactic models. To
make this easier for us when calculating, we nondimensionalize
our equations to the base values as outlined in Appendix A. We
then vary the value of Uc0 to determine the point at which the
system becomes super-Eddington. However, because these
models have no analytical form—and based on the solutions,
they do not seem to asymptote to a specific value—we need to
use a more empirical method to determine if the Eddington
limit is reached. As Tumlinson et al. (2017) note, a specific
point for the boundary between the CGM and the ISM is not
well-defined, but Hopkins et al. (2020) explain in a footnote of
their work that the CGM typically is taken to begin somewhere
between 10 and 30 kpc and ends at its virial radius, which can
fall anywhere between 200 and 400 kpc. This is a bit of an

arbitrary range, and so to attempt to be as accurate as possible,
we will instead find the value for Uc0 at which the Eddington
curve turns upward, as we saw in Figure 1.
For our description of cosmic ray sources, we will assume

two different K-S laws: one for which α= 2 in Equation (13)
and another for which α= 1.4. The results for α= 2 are shown
in Figure 3, while the α= 1.4 results are shown in Figure 4.
Note that the vertical lines in each plot show where UEdd for the
pure streaming case occurred.
We can see that, in general, the addition of sources and

collisions has an effect on the cosmic ray Eddington limit of a
galaxy. Sources tend to reduce the Eddington limit, while
losses increase it. By construction, sources dominate losses at
the inner boundary r= R, where S=Uc0/τL>Uc0/τC, but
decline more steeply with radius, due to their higher
dependence on density ρ2 or ρ1.4 versus ρ, so losses dominate
sources in the bulk of the domain. While the streaming term
also declines with r, it dominates both sources and losses, due
to its ρ−1/2 dependence and relatively slow geometrical decline
of B with radius. Due to collisions dominating near the inner
boundary, we find, especially for non-starburst galaxies, that
the Eddington limit is pushed to larger values of Uc0 to
counteract collisions taking energy away from the cosmic ray
population.
We also find that the choice of our exponent in the K-S law

seems to almost make no difference in the overall effect of
sources and collisions. The only galaxies that exhibit only
minor shifts based on the K-S law are the LMC and M82. For
the LMC, we can see when comparing Figures 3–4 that its
confined radii and mass are slightly larger for the final value of
Uc0 when α= 1.4. M82ʼs change is even more difficult to see,
but a close analysis of the shape of the curves in both plots
shows that their two shapes are slightly different.

4. Summary and Conclusions

In this paper, we explored the feasibility of a cosmic ray
Eddington limit based on the important idea first proposed by
Socrates et al. (2008) but reformulated to reflect current
understanding of the circumgalactic environment. Our frame-
work was based on E.N. Parker’s argument for the existence of
the solar wind: that the solar corona cannot be in hydrostatic
equilibrium because its pressure asymptotes to a value much
larger than the interstellar pressure. We applied this argument
by developing a family of models of the ISM in which thermal
gas is supported solely by cosmic ray pressure Pc and searching
for conditions under which these models have an asymptotic
pressure greater than the circumgalactic pressure PCGM.
We have provided a comprehensive summary of all the

Eddington Uc0 values for each galaxy in each different
transport model in Table 4. For the cases of streaming with
sources and collisions, we have estimated the Eddington Uc0 by
choosing the specific point at which the mass confined begins
to asymptote vertically. We showed in Figure 1 that this
asymptotic behavior is a good indicator of having reached the
Eddington limit.
Details of the models—geometry, galactic gravitational

potential, modes of cosmic ray transport, sources due to star
formation, and losses due to hadronic collisions—are described
in Section 2. We considered three transport mechanisms: self-
confinement due to Alfvénic streaming, diffusion with constant
diffusivity κ, and the limit κ→ 0, which we termed the
advection model, because the cosmic rays are essentially frozen

Figure 2. The radius of confinement, mass confined, and ratio of cosmic ray
enthalpy luminosities as functions of ρ0, with the galaxy models assuming pure
streaming transport with Q set to zero and Uc0 set to the value for each galaxy
found in Table 1. The Eddington gas densities from Table 3 are represented by
vertical lines on each plot.
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to the gas and would be advected by any gas flow that was
present. For sources, we adopted a Kennicutt–Schmidt law,
leading to a cosmic ray injection rate proportional to a power of
the thermal gas density ρ.

We found several limiting cases in which Pc is related to ρ
by a polytropic equation of state, for which hydrostatic
equilibrium models are easily constructed, and which share a
universal figure of merit: ρ0Φ(R)/Pco, the depth of the
gravitational well confining the system in units of pressure.
These models give rise to an Eddington limit in the sense that,
for given values of Pc and ρ at a fiducial base radius R, the
pressure either drops to PCGM at some confinement radius
Rconf, in which case the model is sub-Eddington, or never falls
to PCGM, in which case the model is super-Eddington. Thus, at
least for the simplifying assumptions satisfied by our models,
the concept of an Eddington limit for cosmic rays is well-
founded. From the polytropic solutions, models with n> 0
(a> 1) have PEdd∼ ρ0|Φ(R)|, while models with n< 0 (a< 1)
have RP P n1 n

Edd CGM 0
1 1( ∣ ( )∣)r F~ - + . Based on this find-

ing we conclude that Alfvénic streaming, the only transport
model that leads to a negative polytropic index, is the most

likely candidate for reaching the Eddington limit. The
calorimetric limit with star formation rate SFR∝ ρ1.4 also
leads to a model with n< 0, but this limit is only reached for
extremely large gas densities and star formation rates.
Our models are very general, and so for concreteness, we

picked five different galaxies that we believe are representative
of the many types of star-forming galaxies in our universe: a
large spiral (the Milky Way), a gas-rich dwarf (the LMC), a
large starburst (M82), a dwarf starburst (NGC 4449), and a
large, gas-rich, dusty galaxy viewed at z≈ 4 (DRC-8). Their
parameters are given in Table 1.
We found that advection as a method of cosmic ray transport

is not capable of reaching a cosmic ray Eddington limit, almost
always requiring a star formation rate three or more orders of
magnitude larger than any actual observed SFR. Diffusion at
constant diffusivity turns out to be a poor model for reaching
the cosmic ray Eddington limit. In order for a model to have
cosmic ray diffusion as the primary mode of transport, one of
two things must occur. One way is that the density of the
galaxy must be extremely low (≈ 10−27 g cm−3), down to a
level that just is not physically possible for most galaxies in

Figure 3. The radius of confinement, mass confined, and ratio of cosmic ray enthalpy luminosities into and out of our system as functions of Uc0 for the galactic
models with streaming, sources, and collisions, assuming an α = 2 K-S law. The Eddington cosmic ray energy density for pure streaming is marked with a vertical
line for each galaxy in order to make easy comparisons.
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areas of star formation. More general values of κ that scale as
powers of ρ do not lead to realistic super-Eddington models
either.

This left us with only the self-confinement model as a
possible avenue for a cosmic ray Eddington limit. However, we
found it still was unable to bring the Eddington star formation
rate low enough to allow any of our galaxies to be realistically
in reach of the Eddington limit. Thus, our analytical results
suggested that a cosmic ray Eddington limit was not something
that could be viably reached by any known galaxy. The dwarf
starburst NGC 4449 comes within an order of magnitude of its
Eddington limit, however, which suggests that cosmic ray
blowout could play a role in limiting star formation in this type
of galaxy, however—especially given the uncertainties in some
of our parameters, and the simplifying assumptions made in
constructing our models. We also found that almost all the
cosmic ray energy injected at the base of our models has been
expended as heat by the time the confinement radius is reached,
and that the heating may be significant. Accounting for the
effect of this heating is beyond the scope of this paper, but

might contribute indirectly to an Eddington limit by raising the
thermal gas pressure.
To further our analysis, we continued with the self-

confinement model but added in sources from star formation
and losses from hadronic collisions. While keeping our form
for collisions the same throughout our analysis, we modified
the K-S law to judge how a different star formation rate scaling
with density would modify our findings. For one case, we
assumed that α= 2 in Equation (4), pictured in Figure 3, and in
the other assumed that α= 1.4, shown in Figure 4.
As noted at the end of Section 3.2, the addition of sources

and collisions to our pure streaming model does affect the
Eddington limit for some of our galaxies. We find that
collisions dominate over sources and streaming close to the
inner boundary of our galaxies. However, our disks are very
thin, which leads to the collisions falling off rapidly and the
streaming term dominating at larger radii. Therefore, the
Eddington limit, especially for non-starburst galaxies, gets
pushed to larger values of Uc0. We also showed that the K-S
law one uses has a negligible effect on the Eddington limit.
Because sources fall off so quickly with density, compared to

Figure 4. The radius of confinement, mass confined, and ratio of cosmic ray enthalpy luminosities into and out of our system as functions of Uc0 for the galactic
models with streaming, sources and collisions, assuming an α = 1.4 K-S law. The Eddington cosmic ray energy density for pure streaming is marked with a vertical
line for each galaxy, in order to make easy comparisons.
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collisions and streaming, the K-S exponent we use will largely
have no effect.

We also want to circle back to the main conclusions of both
Socrates et al. (2008) and Crocker et al. (2021a) to see how our
conclusions compare to their own. In Socrates et al. (2008),
they theorized the existence of a cosmic ray Eddington limit, a
point at which the cosmic ray energy density is so large that
hydrostatic equilibrium is broken and the cosmic rays
themselves drive a wind. We would argue our results seem to
back up this conclusion. For most systems, typically the
smaller galaxies we modeled, we found that a cosmic ray
Eddington limit is reached. Our analysis indicates that cosmic
ray streaming provides the best-case scenario for reaching this
Eddington limit, but once it is reached, the radius of
confinement for the gas explodes and grows to large values
well beyond the typical radius of a galaxy.

Crocker et al. (2021a) found that, regardless of cosmic ray
transport, as the gas column density was increased, cosmic rays
became less important to the overall physics of the galaxy.
Therefore, cosmic rays are only important in galaxies with low
densities where collisional losses will be minimized. Our
results seem to correlate well with this conclusion. We see that,
even with streaming, most of our systems (other than M82)
would require extremely low gas densities, on the order of
10−25 g cm−3, in order to break hydrostatic equilibrium.
Furthermore, for three of our five galaxies, we see that when
sources and hadronic collisions are added to our analysis, the
Eddington limit becomes even more difficult to reach, due to
the strong calorimetry near the base of each galaxy. Therefore,
the large gas densities utilized throughout our different galaxy
models appear to constitute one of the main reasons why an
Eddington limit is not reached in the parameter spaces of each
galaxy. Although the particulars of our models and those of
Crocker et al. (2021b) are quite different, we find it reassuring
that the galaxies we analyzed in common are found to be sub-
Eddington within both their framework and ours (see Figure 4
of Crocker et al. 2021b).

Thus, we can see that an Eddington limit for cosmic rays
does exist for most galaxies. However, regardless of the cosmic
ray transport model used, the addition of sources and collisions,
or the type of K-S law used, we have found for our large range
of models that no galaxy is realistically capable of reaching an
Eddington limit for cosmic rays and launching a wind, based
on the currently observed parameters. Our results seem to
indicate that, in systems with high-density gas, the cosmic rays
cannot build up enough of a pressure gradient to launch the
wind, matching the results of Crocker et al. (2021a). However,
based on the Eddington value for ρ0 in the streaming cases

presented in Table 3, it is possible that cosmic rays could move
to regions of lower-density gas in the galaxy and drive a wind.

The authors would like to thank the referee for providing
thoughtful insights and suggestions that improved this paper.
We would also like to thank Chad Bustard, Arianna Long, and
Jay Gallagher for useful discussions. E.M.H. and E.G.Z. are
supported by NSF AST 2007323 and the University of
Wisconsin–Madison.

Appendix A
Nondimensional Equations

In order to facilitate comparison between models, we
nondimensionalize all of our quantities first. If we assume
spherical coordinates and simplify Equation (4), we obtain
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where we have defined Q= S(ρ)−Uc/τC(ρ), where S(ρ)
represents our sources and τC(ρ) represents the time between
collisions for the cosmic rays (hadronic loss time).
To make the equations nondimensional, we first define the

new variables:

x
r

R
p x

P r

P
s x

r
, A2c

c0 0

( ) ( ) ( ) ( ) ( )r
r

º º º

where we have nondimensionalized Pc and ρ by their base
values at r= R. We define R here as the inner radius at which
we reach the boundary of our point mass, which is a
representation of the galaxy’s core.
For the Alfvén speed, we know that v B 4 iA

1 2( )pr= . In
order for∇ · B= 0, we must have B∝ 1/r2. Therefore, because
vA is proportional to both 1/r2 and i

1 2r , we can rewrite it as

v
v

x s
, A3A

A,0
2 1 2

( )=

where v B 4A,0 0 ion,0
1 2( )pr= . Note that the Alfvén speed is

defined using the base ion density and not the total base
density. However, we assume throughout this work that the
plasma density and total gas density scale with r in the
same way.

Table 4
The Eddington Values for Uc0 in Units of eV cm−3 for All Transport Models and Galaxies in This Paper

Galaxy Uc0
adv Uc0

str Uc0
2Cal Uc0

1.4Cal Uc0
SSC Uc0

obs

MW 2.13 × 106 3251.2 3.7 × 104 16.1 5700 10

M82 1.64 × 106 2733.0 4.1 × 104 14.5 2700 525

LMC 4737.8 56.1 1434 1.41 65 0.58

NGC 4449 3.09 × 103 42.26 9.1 1.19 41 3.82

DRC-8 2.17 × 107 1.53 × 104 1.46 × 105 40.8 1.67 × 104 3.18

Note. We have combined the two cases of streaming with sources and collisions (α = 2 and α = 1.4), as it appears that the K-S law’s exponent has no discernible
effect on the results of adding sources and collisions. Here, SSC just stands for streaming with sources and collisions.
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We can similarly make the diffusion coefficient dimension-
less by using vA,0 and defining

v R R
, A4

A,0

A,0
2

( )c
k kt

= =

where we have defined a base Alfvén transport time,
τA,0= R/vA,0. Based on this definition, χ depends on the ion
density as ion,0

1 2r and will increase as the ion density increases.
For the loss term, we will nondimensionalize according to

Equation (13) from Crocker et al. (2021a), which states

t 100 Myr, A5col 24
1 ( )r= -

-

where ρ−24= ρ/10−24 g cm−3. Because the coefficient out in
front may change based on the parameters of the galaxy
modeled, we can more generally use a base value for the
collisional loss time, τC,0, and define our loss time as

, A6C C,0
0 ( )t t

r
r

=

where τC,0≡ 100Myr(10−24/ρ0), and we have substituted in
our dimensionless density as well.

For the source term, because we already have a diffusion and
loss time, it will be convenient to also have a base cosmic ray
injection timescale, τinj,0. The source term will also be
proportional to the star formation rate, which we take to be
of the form S∝ ρα, where 1< α< 2 generally. Therefore, we
can substitute for S:

S
U s

, A7c0

inj,0
( )

t
=

a

where we have substituted in our dimensionless density.
Equation (A7) defines τinj,0.

Finally, we relate Pc and Uc by

P U1 . A8c c( ) ( )g= -

Substituting in these definitions and simplifying, Equation (A1)
becomes
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where we have defined c= τA,0/τinj,0 and ℓ= τA,0/τC,0.
To get the nondimensional form of the hydrostatic

equilibrium equation, we rewrite Equation (2) in terms of the
scaled variables, yielding
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For the potential given by Equation (3), we write
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where we have defined μ=Mh/Mc to be the mass ratio
between the halo and galaxy core and have defined Φ0≡

−GMc/R. Substituting Equation (A11) into Equation (A10)
yields

dp

dx
s

x a R x

1
, A12
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+
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where ò≡Φ0ρ0/Pc0.
Using Mathematica, we can then solve Equations (A9) and

(A12) together and observe how both p(x) and s(x) change with
respect to x. For these two potentials, we need to set some
boundary conditions, which we take to be s(1)= 1 and p
(1)= 1. When diffusion is included, we need one more
boundary condition, which is set by hydrostatic equilibrium
and forces p s1 1( ) ( )¢ = .
For easier access, we put all of these different parameter

values into Table 5. Note that these values will remain constant
throughout all of our transport models and will remain
unaltered by our choice of ρ0 and Uc0.
In order to accurately solve these equations, we then need to

find forms for the injection time and collision time. From
Equation (A5), we can see that, for ρ0= 10−24 g cm−3, the
collision time will be 100Myr, which when converted to cgs
units is 3.15× 1015 s. Because our collision time will vary
inversely with the density, we find their product is

3.154 10 10 3.154 10 , A13C,0 0
15 24 9( ) ( )t r = ´ = ´- -

which we can use to find τC,0 for other galaxies.
We then similarly need to derive a value for τinj,0. From

Yoast-Hull et al. (2016), we know that the power imparted to
cosmic rays from supernovae is 7× 1048 erg yr−1 and that the
volume of the CMZ is 2.5× 107 pc3. Converting our units into
CGS and finding the power per volume, we have

P

V
3.02 10 erg cm s . A14SN 22 3 1 ( )= ´ - - -

From Equation (A7), we can see that this term has the same
units as our source term, S. Therefore,

S
U s

3.02 10 erg cm s . A15c0

inj,0

22 3 1 ( )
t

= = ´
a

- - -

For M82, Uc0= 525 eV cm−3 while at the base value of the
density, s= 1, so Equation (A7) is satisfied for τinj,0:

2.78 10 s 8.82 10 yr. A16inj,0
12 4 ( )t = ´ = ´

The injection time for each galaxy will vary based on its
density and the K-S law that we used. Therefore, because we
assume inside our mass distribution that star formation follows
a K-S law with α= 1.4, we can use the product of τinj,0 and 0

1.4r
to obtain a value for τinj,0 for other galaxies. For M82, the base
value of the density can be taken to be 1.75× 10−21 g cm−3,

Table 5
Various Parameter Values and Variable Definitions for All Transport Models

μ Mh/M s ρ/ρ0
Pc0 Uc0/3 p Pc/Pc0

κ 3 × 1028 cm2 s−1 χ κτA,0/R
2

Φ0 GM/R ò Φ0ρ0/Pc0

vA,0 B 40 0
1 2( )pr τA,0 R/vA,0

c τA,0/τinj,0 ℓ τA,0/τC,0
x r/R
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and so the product becomes

2.78 10 1.75 10 2.42 10 .

A17
inj,0 0

1.4 12 21 1.4 17( )( )
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t r = ´ ´ = ´- -

We can now use Equation (A17) to find τinj,0 for any galaxy.
Finally, for convenience, we restate all of our nondimen-

sional equations here, along with the constants we solve for to
keep the star formation and hadronic collision physics the
same:



s
p

x

p s

x
s

x
x

p

x

x s s c pℓ

dp

dx
s

x a R x

2

1

3.154 10

2.42 10 . A18

3 2 2

2 5 2 1

2 2

C,0 0
9

inj,0 0
1.4 17

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )

g
c

m

t r

t r

¶
¶

-
¶
¶

-
¶
¶

¶
¶

= -

=
+

+

= ´

= ´

a-

-

-

Figures 1, 3, and 4, which depict properties of the hydrostatic
solutions for fixed based density ρ0 and varying Uc0, were
made by repeatedly solving Equations (A18) for fixed values of
c and l, χ≡ 0, and only varying ò.

Values of c and ℓ are given in Table 6 for the five galaxies
modeled in this paper. We can see that, for all galaxies, ℓ is
much larger than c, which is expected because we find
collisions dominate sources for all five systems.

Appendix B
Galaxy Parameters

In this section, we outline the many different calculations we
performed to obtain different parameter values throughout this
paper, including the mass densities and cosmic ray energy
densities.

B.1. Mass Densities

For some galaxies, we were given the gas and ion number
densities themselves, and therefore we just needed to multiply
by a mean mass to the get the gas densities. However, for NGC
4449, we were given the ion and gas mass for the galaxy and
then converted that into a mass density by dividing it by the
volume of the disk of that galaxy.

For the MW, we got the number densities from Figure 7 in
Ferrière et al. (2007), where ngas∼ 102.5 cm−3 and nion∼
10 cm−3. We then converted them to mass densities using
Equation (61). We did the same thing for both M82 and the

LMC. For M82, we got the number densities from Table 1
(molecular gas) and Table 3 (ionized gas), where ngas∼
400 cm−3 and nion∼ 100 cm−3. For the LMC, we got the
number densities from Bustard et al. (2020) of ngas=
nion= 2 cm−3.
For NGC 4449, we obtained the used the total gas surface

densities from Table 2 of McQuinn et al. (2012), where
they had that Σgas= 24.5Me pc−2. They assume that
Σion= 10Me pc−2 and so M14.5 pcH

2
2S = - . Converting to

CGS units and then dividing by the height of the disk
(z= 200 pc), we obtain the mass densities listed in Table 1.
For DRC-8, we estimated based on discussions with Arianna

Long that ngas= 103 cm−3 and that nion= 101.5 cm−3. We then
obtained the mass densities using the conversions from
Equation (61).

B.2. Cosmic Ray Energy Densities

To calculate the base cosmic ray energy densities for NGC
4449 and DRC-8, we found the cosmic ray luminosity:


L

m

SFR
, B1c

c

SN
( )=

where we took òc= 1050 erg and m M100 SNSN
1= - .

We then found the cosmic ray lifetime using Equation (18),
where

, B2T

T
L

C

C
( )t

t t
t t

=
+

where τT= z2/κ (z is the height of the disk), κ= 3×
1028 cm2 s−1 is the transport time, and τC= 3.2× 10−9/ρ0 s
is the collisional loss time.
We then get Uc0 using Equation (22) so that

U
L

V
, B3c0

c L

enc
( )t

=

where Venc is the volume of the disk in which the star formation
is occurring. For our solutions, Venc= πR2z.
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