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Abstract—Deep Learning (DL) has become a prominent ma-
chine learning technique due to the availability of efficient
computational resources in the form of Graphics Processing Units
(GPUs), large-scale datasets and a variety of models. The newer
generation of GPUs are being designed with special emphasis on
optimizing performance for DL applications. Also, the availability
of easy-to-use DL frameworks—like PyTorch and TensorFlow—
has enhanced productivity of domain experts to work on their
custom DL applications from diverse domains. However, existing
Deep Neural Network (DNN) training approaches may not fully
utilize the newly emerging powerful GPUs like the NVIDIA
A100—this is the primary issue that we address in this paper. Our
motivating analyses show that the GPU utilization on NVIDIA
A100 can be as low as 43% using traditional DNN training
approaches for small-to-medium DL models and input data size.
This paper proposes AccDP—a data-parallel distributed DNN
training approach—to accelerate GPU-based DL applications.
AccDP exploits the Message Passing Interface (MPI) communi-
cation library coupled with the NVIDIA’s Multi-Process Service
(MPS) to increase the amount of work assigned to parallel
GPUs resulting in higher utilization of compute resources. We
evaluate our proposed design on different small-to-medium DL
models and input sizes on the state-of-the-art HPC clusters.
By injecting more parallelism into DNN training using our
approach, the evaluation shows up to 58% improvement in
training performance on a single GPU and up to 62% on 16 GPUs
compared to regular DNN training. Furthermore, we conduct an
in-depth characterization to determine the impact of several DNN
training factors and best practices—including the batch size and
the number of data loading workers— to optimally utilize GPU
devices. To the best of our knowledge, this is the first work that
explores the use of MPS and MPI to maximize the utilization of
GPUs in distributed DNN training.

Index Terms—Deep Neural Networks, Graphics Processing
Units, Multi-Process Service, MVAPICH2

I. INTRODUCTION

Today, Deep Learning (DL) is fueling many of the advances
in various application areas—including image processing,
voice/speech recognition, recommender systems, and natural
language processing—and has become the driving engine in
pushing the frontiers of Artificial Intelligence (AI). This has
been possible due to continuous improvements and increasing
efficiency of available DL solutions. While many of the Deep
Neural Networks (DNNs) ideas were first proposed in the late
80s and early 90s [1], their success back then was hindered
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by the limited availability of computational resources, training
data, and associated models. Consequently, the recent surge
of DL applications can be attributed to the availability of the
following: 1) multi-/many-core processing elements like CPUs
and Graphics Processing Units (GPUs), 2) HPC systems/cloud
platforms that can be used for scaling-up and scaling-out
DL applications 3) large-scale and high-quality datasets such
as ImageNet [2], and 4) highly accurate DL models from
various application domains. These trends have revived the
community’s interest in DL and led to the development of
several software packages and frameworks such as PyTorch [3]
and TensorFlow [4]. These frameworks have enabled the true
“democratization of AI” by making models and datasets avail-
able to the community in a simplified and highly-productive
manner.

In order to address more challenging DL problems and
achieve better performance, models and datasets have been
exponentially growing in complexity and size. As a result,
the memory and computational requirements to train such
models have increased as well. Since training DNN models
inherently involve procedures that can be executed in parallel,
GPUs have enabled developers to significantly reduce the
training time of DNN models. Recent GPU architectures—
such as NVIDIA Ampere—have thousands of cores, large
memory capacity, and DL-specific hardware components.
For instance, the high-end NVIDIA A100 GPU [5] comes
with 80 GB memory, 108 streaming multiprocessors (SMs),
6912 CUDA [6] cores and 4 Tensor Cores per SM. There
are mature and efficient software stacks like CUDA and
cuDNN [7] that have been optimized to take advantage of
the advanced hardware features offered by these devices.
Also, it is possible to connect these GPUs via low-latency
and high-throughput intra-node and inter-node interconnects
like NVLink and InfiniBand. This makes it possible to
accelerate DL training beyond the limits of a single device by
efficiently utilizing multiple accelerators simultaneously—in
parallel—on high-end systems leveraging communication
middleware like Message Passing Interface (MPI) [8] or
NVIDIA Collective Communication Library (NCCL) [9].
Several parallelization techniques including data/model/hybrid
parallelism [10] exist in the literature for parallel execution
of DNN training workloads

2640-0316/22/$31.00 ©2022 IEEE 32
DOI 10.1109/HiPC56025.2022.00017
Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore. Restrictions apply.



A. Motivation
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Fig. 1. NVIDIA A100 GPU utilization during DNN training of different
models with different input sizes.

Modern GPUs, like NVIDIA A100, are computational
workhorses in modern HPC systems and are used in parallel to
reduce DNN training time. However, these accelerators are not
fully utilized by DNN training workloads. This is especially
true for small-to-medium DL models and/or input size. Fig-
ure 1 shows an evaluation conducted using NVIDIA Nsight
Systems [11] to support our hypothesis of under-utilization
of modern GPUs for certain DNN training workloads. The
idea here is to find the average percentage of the resources
utilization of NVIDIA A100 GPU during the training phase
of different DNN models—including ResNetl8, ResNet34,
ResNet50, ShuffleNet, and MobileNetv2—with two input sizes
of 32 x 32 and 224 x 224. We observe under-utilization of
the GPU across all models with some variation. We observe
lesser GPU utilization for smaller models and input sizes. For
example, ResNet18 [12] achieves a 43% utilization for 32 x 32
pixels input image size. On the other hand, larger models,
like ResNet50, can achieve 68% utilization with the larger
224 x 224 pixels image size. This clearly shows that there are
compute cycles available on these GPUs that can be used to
optimize DNN training even further. Therefore, the primary
motivation of this paper is to explore strategies and methods
to increase the occupancy and utilization of GPUs.

B. Problem Statements

In the context of the motivation presented in Section I-A,

this paper tackles the following problem statements:

1) What hardware/software techniques can be used to in-
crease the utilization of processing elements like GPUs
for DNN training workloads? Can these strategies im-
prove overall hardware efficiency for small-to-medium
DL models and/or input sizes?

2) Is it possible to configure or tune hyperparameters,
including the training batch size and/or input size, to
improve hardware utilization during DNN training? How
can we take advantage of architecture-specific features
to increase GPU utilization for DNN training?

3) In modern DNN training workloads, the performance of
data loading is a sizable portion of the overall DNN

training time. What is the impact of the number of data
loading workers on the overall performance of DNN
training? What is the impact of data loading workers
on the utilization of compute hardware?
These problem statements are elaborated further in Sec-
tion III, which discusses the challenges in maximizing GPU
performance for DNN workloads.

C. Overview

In this paper, we explore the potential of leveraging
NVIDIA’s Multi-Process Service (MPS), which allows run-
ning multiple CUDA applications concurrently on the same
GPU, coupled with MPI for DNN training. We propose Ac-
cDP, a novel data-parallelism-based approach to increase the
parallel workload assigned to the GPU in order to accelerate
the performance of distributed DNN training. We extensively
study the various factors that impact the training throughput of
our approach and the challenges that they present including:
1) Analyzing common data loading mechanisms and their
bottlenecks. 2) Characterizing the impact of batch size on GPU
utilization. 3) Evaluating the impact of varying the number
of MPS processes and percentage of active threads on our
proposed design. 4) Conducting a comparison between the
performance of regular data parallelism and our proposed
design on a single NVIDIA A100 GPU which yields up to
58% improvement in training throughput. 5) Conducting a
multi-node evaluation which shows up to 62% improvement
on 16 NVIDIA A100 GPUs using our proposed design.

D. Contributions

This paper makes the following contributions:

1) Propose a novel data-parallelism-based training ap-
proach using MPS and MPI to improve the utilization
of GPU in distributed DNN training. 7o the best of our
knowledge, this is the first work that uses MPS and MPI
to accelerate distributed DNN training.

2) Conduct a comprehensive evaluation of our proposed
design on 5 different DNN models and report im-
provements in training throughput of up to 37%, 58%,
33%, 31%, and 25% for models ResNet18, ShuffleNet,
MobileNetv2, ResNet34, and ResNet50 respectively on
a single NVIDIA A100 GPU and up to 62% for the
ShuffleNet model on 16 A100 GPUs.

3) Provide in-depth analysis of the impact of different DNN
training parameters including the mini-batch size, input
data size, model size, number of MPS processes per
GPU, and percentage of active GPU threads per process
on our proposed design.

4) Examine current data loading mechanisms, identify data
loading bottlenecks, study the impact of the number
of data loading workers on training throughput, and
propose guidelines to alleviate the data loading overhead
in DNN training.

The rest of the paper is organized as follows: Section II

establishes the necessary background for key concepts in the
paper. Section III describes the main challenges to improving
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GPU utilization for DNN training workloads. Section IV
introduces our proposed design and its implementation with
existing DL frameworks. Section V provides analysis and
guidelines to optimize data loading. Sections VI and VII
present a comprehensive evaluation and discussion on the
proposed design. Section VIII reviews related works in the
literature. Finally, we conclude the paper in Section IX.

II. BACKGROUND
A. Distributed DNN Training

Deep Neural Networks (DNNs) are neural networks that
have at least two hidden layers between the input and output
layers. The training of DNNs mainly consists of two phases
1) forward propagation and 2) backward propagation. In the
first phase, input is fed into the network and is propagated
throughout the layers to generate an output. Based on that
output, an error is calculated by comparing the generated
and expected outputs. In the backward propagation phase,
gradients are calculated for the different layers. Weights are
then updated based on the calculated gradient values. A form
of the gradient descent algorithm is usually used to optimize
DNN models and minimize the loss. There are many variants
of DNN models that are intended for different purposes and
downstream tasks including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Transformer
models. In this paper, we mainly focus on CNN models.

Distributed DNN training is performed on multiple workers
in parallel. Workers can reside in one (intra) or multiple (inter)
machines. There are several well-established approaches to
distribute DNN training such as a) Data parallelism b) Model
parallelism, and c) hybrid parallelism. In data parallelism,
DNN models are replicated across all workers and the dataset
is divided among workers. The workers simultaneously per-
form forward and backward pass on their chunk of the
datasets. Model instances are synchronized by aggregating
gradients across the workers. The Allreduce communication
operation is used in order to synchronize these models. In
model parallelism, on the other hand, the model is divided
into multiple machines or processing units. Communication
operations are used in order to implement the forward and
backward propagations across the workers.

B. Deep Learning Frameworks

Deep Learning frameworks provide interfaces, building
blocks, and primitives to define and design DL models and
implement training and validation cycles on various types of
accelerators. Most DL frameworks such as TensorFlow [4] and
PyTorch [3] are optimized for GPU performance. These frame-
works rely on GPU-accelerated libraries such as CUDA [6]
and cuDNN [7] to deliver high-performance training and
inference.

Furthermore, many frameworks provide support/API for
distributed DNN training such as PyTorch Distributed [13],
TensorFlow distributed, and Horovod [14]. In this paper, we
use Horovod to perform distributed DNN training. Horovod is
a popular open-source software framework for distributed deep
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learning which supports multiple DL frameworks including
PyTorch, TensorFlow, MXNet, and Keras. Horovod relies on
MPI operations including MPI_Allreduce and MPI_Bcast to
enable communication of model parameters and gradients
between workers. It provides an interface in Python with a
high-level API for users. Horovod supports scaling to multiple
GPUs whether they reside on single or multiple machines by
taking advantage of collective operations.

C. Multi-Process Service (MPS)

MPS is a client-server runtime implementation of the CUDA
API that enables the sharing of GPU resources. It is a logical
partitioning mechanism that is designed to allow the execution
of multi-process CUDA applications concurrently. MPS started
with NVIDIA Kepler-based GPUs and is also extended to
Volta-based GPUs. An MPS server can support up to 16
clients (pre-Volta) and 48 clients (Volta-based) CUDA contexts
per GPU device. These clients are usually launched in the
form of MPI processes. Figure 2 shows the Volta-based MPS
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MPI Rank 3
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Multi T
Process
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CUDA Multi-
Process Service
(MPS)

Fig. 2. NVIDIA Volta-based Multi-Process Service (MPS) scenario launching
4 clients concurrently on a single GPU with 30% active threads per client.

workflow. In this scenario, 4 MPI ranks are submitted to
MPS from the CPU side. On the GPU side, resources are
allocated logically on a need-basis. Each MPS client has its
own GPU address space, which is a security improvement
from its Kepler-based predecessor. Additionally, users can
provision the MPS clients’ resource allocation by assigning
a value to the cupa_MPS_ACTIVE_THREAD_PERCENTAGE €nviron-
ment variable. A client may use threads up to the percentage
defined; however, it cannot exceed that percentage. The logical
allocation scheme allows for oversubscription of resources,
shifting the allocation based on the process’ needs. As shown
in figure 2, in the case of oversubscription where every client
has a 30% limit on resource usage, when rank 1 is not using all
of its allocation, rank 2 can grow and use available resources.

III. CHALLENGES IN MAXIMIZING GPU PERFORMANCE
FOR DEEP LEARNING WORKLOADS

Maximizing GPU utilization for DNN training is challeng-
ing for multiple reasons. First and foremost, there are several
interrelated parameters that impact the training performance
including the number of available CPU cores, batch size,
number of data loading workers on the CPU, training input
size, and memory limitations on the GPU. Each of these
parameters needs to be studied in isolation. Furthermore, using
MPS in the training process introduces more parameters to
take into consideration such as the number of MPI processes
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to run on a single GPU and the allocated percentage of overall
threads per process. In this section, we highlight some of the
key challenges in maximizing the GPU performance for DL
workloads.

Challenge 1: Is it possible to increase the utilization of
a single GPU for DNN training, especially for small-to-
medium sized DNNs? Modern GPUs have an outstanding
ability to process multiple computations simultaneously due
to their great number of cores. Training DNN models can take
advantage of these available cores to execute complex matrix
operations in parallel. However, the nature of DNN training
imposes some sequential order for these operations where the
input of one phase depends on the output of the previous one.
Therefore, the resources available on highly capable GPUs
may not be fully utilized during the training, leaving many
cores idle especially for small-to-medium size DNN models.
There is potential to utilize the idle cores on the GPU, but we
need a new training approach to introduce more parallelism
without disrupting the flow of the data in the different training
phases.

Challenge 2: How can we identify the impact of varying
the batch size and input size on the GPU utilization during
DNN training? The batch size in DNN training is a critical
parameter for both optimization and performance purposes.
In this paper, we purely focus on the training performance
in order to achieve maximal GPU utilization and in turn the
highest training throughput. While increasing the batch size
improves the performance since more data instances are being
processed in parallel, it can either reach a saturation point
or memory constraints. The input size also has significant
impact on the GPU utilization. The smaller the input size, the
less parallel workload is assigned to the GPU. Therefore, the
impact of both these factors must be taken into consideration
to enhance the GPU utilization for DNN training.

Challenge 3: How can we identify the impact of the
number of data loading workers on the performance
of DNN training? DL frameworks offer multiple tools to
hide the overhead of data loading and augmentation during
DNN training. However, how can we fully exploit the overlap
between data loading and computation in order to accelerate
the training process? This is dependent on the method used
by the DL framework, the number of available cores on the
CPU, and the user-defined number of processes dedicated to
performing the data loading. In order to maximize the overlap,
we need to first analyze how the data loading mechanism
works and conduct an evaluation to determine the best number
of data loading workers based on the model and input sizes.
Challenge 4: How can we take advantage of architecture-
specific features to increase GPU utilization for DNN
training? In order to support a variety of use cases, hardware
manufacturers constantly work on developing new features to
either supplement the architecture limitations or complement
strengths in their designs. As we mentioned in section I-A,
GPUs may be underutilized during DNN training where a
great portion of the compute resources sits idle. NVIDIA
GPUs recently released new features including the multi-
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process services (MPS). The purpose of this service is to
enable concurrent multi-process CUDA applications, balance
tasks between CPU and GPU, and address the inefficiency in
using GPUs by taking advantage of inter-rank parallelism. This
paper explores the potential of exploiting such a feature for
DNN training and integrating it with existing DL frameworks.

IV. PROPOSED DESIGN AND IMPLEMENTATION
A. Utilizing MPS and MPI in GPU-Based DNN Training

In this subsection, we present AccDP—our purposed design
which utilizes MPI and MPS to improve GPU utilization and
reduce overall training time. We first describe the traditional
data parallelism approach and then we show our proposed
distributed data-parallel training solution that combines MPS
and traditional data parallelism to accelerate DNN training.

Data parallelism replicates the model and distributes the
dataset among all participating processes. It executes forward
and backward pass simultaneously on all processes on its data
partition. The MPI Allreduce operation is used to reduce local
gradients and the accumulated gradients are used to update
the model on all processes. Figure 3(a) shows traditional data
parallelism on 2 GPUs in which only one replica is created
per processing element. Training is executed in a loop over
the entire dataset. Each iteration is called a step where a
mini-batch (a random subset of dataset) is used to train the
model. Broadly, DNN training iteration can be divided into
three phases:

1) Data Loading: In this phase, a batch of data is fetched
from the file system into the CPU memory. The CPU then
applies data augmentation and places data in a ready queue.
The GPU fetches data from the queue as it finishes training
on the previous mini-batch.

2) Forward and Backward Propagation: At the beginning
of training, process 0 broadcasts model parameters to all pro-
cessing elements. The forward pass is executed by calculating
the layers’ activations and propagating through the model. The
backward pass is executed by calculating the gradients for each
layer. Gradients are then averaged for all of the data samples
in the current local mini-batch to produce the local gradients.

3) Gradient Aggregation and Weights Update: In this
phase, MPI Allreduce aggregates local gradients on GPUs and
makes the global gradients available to all the GPUs. Each
GPU updates its own version of model parameters using global
gradients.

As shown in figure 1, regular data parallelism may not
utilize all the available GPU resources due to the sequential
nature of DNN training. We improve GPU utilization by
extending data parallelism and proposing a new design that
creates multiple data-parallel processes per GPU. In proposed
method, we replicate the model and distribute the datasets
among multiple processes running on a single GPU. To man-
age the resource allocation, we use NVIDIA’s MPS tool. MPS
can logically and physically allocate resources on a process-
need-basis. Without MPS, different processes cannot share
the physical resources efficiently as GPU daemon uses time
slicing to share GPU cores. Therefore, the GPU would context
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(a) Workflow of traditional data parallelism using two GPU de-
vices.

(b) Workflow of AccDP (proposed design) using data parallelism on two GPU devices
and 3 MPS processes per GPU.

Fig. 3. Comparison of the workflow of traditional data parallelism and proposed design on two GPU devices.

switch between the different processes constantly, which has
a huge performance overhead and does not improve overall
GPU utilization.

Figure 3(b) shows the workflow of AccDP. Each GPU is still
responsible for processing the same portion of the dataset. The
proposed design consists of the following phases:

1) MPS Initialization: In this phase, we generate a settings
file for each GPU. The settings file includes necessary in-
formation for MPS to operate optimally including the user
ID, number of GPUs, number of MPS processes, GPU IDs,
and active thread percentage. The settings file ensures that
each MPS process can only see its designated GPU for added
security. An MPS server is then initialized for each GPU. It is
worth noting that Volta-based GPUs do not require initializing
an MPS server; however, it is a necessary step if we want to
specify the percentage of active threads. Finally, we launch an
MPI job using the settings file to initialize different ranks to
their corresponding GPUs.

2) Data Loading: This phase is similar to the traditional
data parallelism method, except that we further divide the
fetched data. The number of mini-batches corresponds to the
number of GPUs multiplied by the number of processes per
GPU.

3) Forward and Backward Propagation: At the beginning
of this phase, model parameters are broadcasted to all GPUs.
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Each GPU replicates the model multiple times depending on
the number of MPS processes. In figure 3(b), we have three
processes per GPU; thus, we replicate the model three times
on each GPU. We proceed normally with the forward pass
where it is executed by computing the layers’ activations and
propagating the activations through the model. The backward
pass is executed by computing the gradients for each layer.
Gradients are then averaged for all of the data samples in the
current mini-batch to produces the local gradients.

4) Gradient Aggregation and Weights Update: In this
phase, local gradients from each MPI rank are aggregated
using MPI_Allreduce to obtain the global gradients. MPI is
necessary to facilitate communication for all of the following
cases: 1) between nodes 2) between GPUs on the same node 3)
between MPS processes on a single GPU. Model parameters
for each MPI rank are then updated separately using the
obtained global gradients. The training then moves on to the
next step (i.e. iteration).

B. Integration of MPS with Existing Distributed Training
Frameworks

We implement our proposed design using a combination
of shell scripts and Python code and integrate it with the
Horovod code in order to automate the process of initial-
izing MPS servers, setting appropriate runtime parameters,
assigning sufficient workload to GPUs, and launching MPI
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jobs. MPS servers are first initialized on each GPU device on
the different nodes. While Volta-based MPS does not require
initializing MPS servers, doing so can allow us to set the
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE, which in turn leads
to optimized performance as shown later in the evaluation
section. After the initialization of the servers, we isolate
GPU visibility on each set of processes for added security
and restrict processes to a single GPU. This guarantees that
processes are submitted to their designated GPUs correctly
and does not use other GPUs on the node. Finally, we launch
the MPI job with the number of processes equal to:

#Procs = #Nodes x GPUs/Node x Clients/GPU

V. ANALYSIS AND GUIDELINES TO OPTIMIZE THE DATA
LOADING MECHANISM IN PYTORCH

Data loading is a critical component of DNN training that
can lead to severe performance bottlenecks. If not handled
properly, data loading can drastically limit any effort to
improve DNN training performance. Therefore, in order to
alleviate the overhead caused by data loading, we provide in-
depth analysis and suggest guidelines to overcome data loading
limitations. In this section, we first dissect the data loading
mechanism used by common deep learning frameworks such
as PyTorch. Then we identify data-loading-related bottlenecks
using the benchy profiling tool [15]. Finally, we propose
guidelines to minimize the data loading overhead.

A. Analyzing the workflow of the data loading mechanism
used in PyTorch

The PyTorch framework contains several useful tools
to ensure smooth data loading and augmentation. The
torch.utils.data.Dataloader class offers compatibility and
flexibility to work for both map-style and iterable-style
datasets. This class is used to fetch data from disk to host
memory and from host memory to GPU if GPUs are used
in the training. PyTorch supports two types of data loading
schemes: 1) sequential and 2) parallel. In the sequential
scheme, for each loop iteration, we wait for the data loader to
fetch the data and then we perform the model computations. In
the parallel scheme, multiple data loaders work concurrently
to fetch the data and overlap it with the model computation on
GPUs. Among other options, the user can specify the number
of data loading workers when defining the data loader object.
Varying the number of workers leads to significant change
in performance. In order to select the optimal number of data
loading workers, we need to first analyze how PyTorch utilizes
the multi-process scheme to improve data loading.

In figure 4, we analyze the workflow of the multi-process
data loading scheme in PyTorch. The figure is divided into the
following three sections:

1) Application-Level Code: The application-level code is
the part that is exposed to the user. The user is responsible for
defining the data sampler and the data loader objects. Inside
the training loop, the user expects the data loader to fetch the
data for each loop iteration.
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Fig. 4. Multi-process data loading workflow with the PyTorch framework.

2) Data Loader Code: The data loader code is responsible
for initializing the data queue, the index queue, and the data
loading workers. Data loading module checks if the batch size
is greater than one and if the number of workers is greater
than zero. If either is not true, the code uses the sequential
data loader. If both conditions are satisfied, the multi-process
scheme is used. Two queues are initialized in the next step;
1) The data queue where the workers store the data instances
and are later popped by the training loop and 2) The index
queue which stores the next set of indices to be fetched by
the data loading workers and stored in the data queue. In the
next step, each worker is initialized. Finally, indices are loaded
into the index queue. This process is done once during the
initialization phase and the number of initial indices to be
loaded is determined by the number of workers multiplied by
a prefetch factor.

3) Worker-Level Code: This part of the code defines the
logic of the independent data loading workers initialized by
the data loader. Each worker keeps checking for entries in the
index queue. If entries are found, the worker fetches the new
data instances (or mini-batch) and places them in the data
queue. This process is repeated as long as the data loading
worker is alive.

B. Identifying data loading bottlenecks

Data loading bottlenecks are caused when the average time
needed to load a data instance takes longer than the average
time needed to run forward and backward computations on it.
In order to identify such cases, we use the benchy profiling
tool [15] to run three sets of experiments measuring throughput
for 1) Full training which is the throughput of the regular DNN
training, 2) Synthetic training which is the training throughput
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on dummy data (That is no data loading is involved in these
experiments), and 3) I/O which is the throughput of loading
data from the file system to the host memory to the GPU
memory.
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Fig. 5. Analysis of data loading impact on DNN training with ResNet18.
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Fig. 6. Analysis of data loading impact on DNN training with ResNet50.

Figure 5 shows the three throughput measures discussed
earlier for training the ResNet18 model with 32 x 32 input
size on two NVIDIA A100 GPU. The reported numbers are
per GPU. In this experiment, we can see the full training
performance is bottlenecked by the I/O throughput. Synthetic
training represents the potential capability of the GPU to
perform forward and backward computations if not capped
by the data loading performance. However, in this case, the
full training throughput cannot exceed the I/O throughput;
therefore, we observe this kind of bottleneck. Still, we can
improve the performance by picking the number of workers
that maximizes the I/0O. Figure 6 shows the same set of
experiments but for the ResNet50 model. Since ResNet50 is a
larger model, it achieves lower synthetic training throughput.
The 1/0O throughput catches up with the synthetic training
throughput at around 11 data loading workers. However, we
can see an overhead between the full and synthetic training
due to the partial overlap between the data loading and
computation.

C. Guidelines to select the optimal number of data loading
workers

As we have seen in figures 5 and 6, the number of data
loading workers has a significant effect on the full training
throughput. Increasing the number of workers beyond a cer-
tain point exhausts the CPU resources which is undesirable
especially when the CPU is responsible for data loading and
augmentation for more than one GPU. In subsection V-B, we
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TABLE I
HARDWARE CONFIGURATION FOR NODES USED IN THE EVALUATION

Two NVIDIA A100 with
40GB of GPU memory

PClIe

Two AMD EPYC 7713 64-core

GPU

GPU Interconnect

CPU processors @3.7GHz (128 cores)
Memory 256 GB of RAM
Storage Lustre file system

Mellanox ConnectX-6 InfiniBand
Interconnect

EDR 100Gb/s Adapter

identified two types of bottlenecks 1) I/O bottleneck and 2)
Computation bottleneck. To maximize the performance in the
first case, we simply pick the number of workers that gives the
best I/O throughput. In the second case, we keep increasing
the number of workers until the I/O throughput exceeds or
matches the synthetic training throughput. By running a few
preliminary iterations before the actual training, we can find
the optimal number of data loading workers. We use this
approach throughout the evaluation section to optimize both
the regular training and proposed design runs.

VI. EVALUATION OF PROPOSED DESIGN

This section provides a comprehensive evaluation of the
proposed design and comparison with regular distributed data-
parallel DNN training both on a single GPU and multiple
nodes. First, we describe the experimental setup we used
on the software and hardware levels. Then we explore the
effects of the training batch size on the GPU utilization. We
then evaluate the impact of the number of MPS processes
launched on a single GPU and the percentage of active threads
per process on the training throughput. Next, we provide a
comparison to highlight the benefits of the proposed design
on a single GPU. Finally, we evaluate the scalability of the
proposed design and compare it with the regular distributed
DNN training.

A. Experimental Setup

1) Software: Our experimental environment uses Python
3.9.7 [16], PyTorch 1.10.2 [3], Torchvision 0.11.3 [17],
Horovod 0.23.0 [14] with CUDA 11.3 [6] and cuDNN
8.2.0 [7]. For communication, we use MVAPICH2-GDR
v2.3.7 [18]. The system runs on Ubuntu SMP Linux ker-
nel 4.18.0-348.2.1. We use two ImageNet-like datasets each
consisting of 400,000 images with sizes 32 x 32 pixels and
224 x 224 pixels respectively.

2) Hardware: Our experimental testbed utilizes an HPC
system with 16 compute nodes each consisting of two EPYC
AMD CPUs with 64 cores each and two NVIDIA A100 GPUs
with 40GB of graphic memory. Table I shows the hardware
configuration per node.

B. Impact of Batch Size on GPU Utilization

Our evaluation starts by analyzing the impact of the training
batch size on the GPU utilization with regular DNN training.
This experiment is repeated for all future evaluations where
we pick the batch size that yields the best overall performance.
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We expect to see an increase in GPU utilization as we increase
the batch size. This is because we are assigning more parallel
workload to the GPU. However, at a certain point, the GPU
utilization either saturates or we run out of GPU memory.
Figure 7 shows the GPU utilization for different batch sizes

60%
50%

I
o
X

GPU Utilization

128
Batch Size

256

Fig. 7. Impact of the training batch size on GPU utilization for the ResNet18
model with 224 x 224 input size.

with the ResNet18 model and input size of 224 x 224. The
GPU reaches a max of 52% utilization where it peaks and
saturates at batch size 512. It is also worth noting that the
GPU runs out of memory at batch size 2048.

C. Impact of Number of MPS Processes and Percentage of
Active Threads on DNN Training Performance

In this subsection, we evaluate the impact of varying the
MPS initialization options on our proposed design. The pur-
pose of these experiments is to highlight the importance of
selecting the appropriate number of MPS processes per GPU
and the percentage of active threads. Again, these experiments
are repeated for all future evaluations for the different models
where the final goal is to maximize the GPU utilization
and in turn the DNN training throughput. Figure 8 shows
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Fig. 8. Impact of number of MPS processes on DNN training throughput for
the ResNet18 model with 224 x 224 pixels input size.

the throughput in images per second of the proposed design
while varying the number of MPS processes per GPU for
the ResNetl18 model with 224 x 224 input size. We include
the best performance from the regular training as a baseline
for reference. We observe that using 4 MPS processes per
GPU yields the highest throughput of around 2,700 images
per second. We also observe that increasing the number of
MPS processes beyond 4 decreases the performance.

Figure 9 shows the throughput in images per second of the
proposed design while varying the percentage of active threads
per MPS process for a total of 4 MPS processes. The model
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Fig. 9. Impact of varying the percentage of active GPU threads per MPS

process on the ResNet18 model and 224 x 224 for input size.

used for training is ResNet18 with 224 x 224 input size. We
observe the best performance when we slightly oversubscribe
the GPU resources at 30% per process. This gives each MPS
process the flexibility to use more or fewer resources with a
5% margin of the overall available GPU cores. Loosening this
constraint further at 35% and 40% affects the performance
negatively.

In fact, we empirically find that the settings shown above
at 4 MPS processes per GPU and 30% active threads per
MPS process deliver the best performance for the majority
of the upcoming training scenarios whether we are running
on a single GPU or scaling out to more number of nodes.

D. Single GPU Evaluation of proposed design

In this subsection, we evaluate our proposed design on
single GPU using 5 different CNN models: 1) ResNetl8, 2)
ResNet34, 3) ResNet50 [12], 4) ShuffleNet [19], and 5) Mo-
bileNetV2 [20]. We use regular DNN training on a single GPU
as a baseline for comparison. To ensure a fair comparison, we
run multiple regular training experiments while incrementing
the batch size and number of data loading workers. We choose
the best performance and include it in the evaluation as we
are purely interested in training throughput. We use a similar
method with the proposed design where we increment the
number of MPS processes, batch size, and number of data
loading workers to get the best performance. We perform these
experiments for two different image sizes 1) 32 x 32 pixels
and 2) 224 x 224 pixels.

Figure 10 shows throughput in thousands of images per
second for both the regular training and proposed design for
the 5 different CNN models. We observe a max of 58%
improvement using the proposed design over regular training
with the ShuffleNet model. The improvement varies between
25%-58% based on the model. We notice that for relatively
smaller models like ResNet18 and ShuffleNet we get better
improvement. Looking back at figure 1, this behavior can be
attributed to the fact that the GPU utilization for the smaller
models is lower than the mid-sized models.

Figure 11 shows throughput in thousands of images per
second for the regular training and proposed design but with a
larger input size of 224 x 224 pixels. We can still observe
up to 42% improvement with the ShuffleNet model. The
improvement varies between 7%-42% based on the model
size. By also looking at figure 1, we can see that the GPU
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utilization for the input size of 224 x 224 pixels is higher across
all models. This explains the slightly smaller improvement
compared to the 32 x 32 pixels input size.
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Fig. 10. Training throughput comparison between regular training and AccDP
(proposed design) for different DNN models on single GPU with 4 MPS
clients and 32 x 32 pixels image size.

S8 40 Regular Training
3.5
88 2 AccDP
P 3.0 30%
¥ s
E 0,
= 20 13%
= 24%
g 15 i \ 7%
0

-gC? 1.0
=
£ 00

ResNet18 ShuffleNet ~ MobileNetv2 ResNet34 ResNet50

Model

Fig. 11. Training throughput comparison between regular training and AccDP
(proposed design) for different DNN models on single GPU with 4 MPS
clients and 224 x 224 pixels image size.

E. Multi-node Evaluation of proposed design

In this subsection, we expand on the single GPU exper-
iments by comparing the regular training to the proposed
design on up to 16 GPUs. We run this evaluation on three
models: 1) ResNetl18 2) ResNet34 and 3) ShuffleNet. We fix
the input size to 224 x 224 pixels to highlight the scaling
potential on a larger image size similar to what is commonly
used in DNN applications. We choose the optimal values for
the batch size and number of data loading workers to report
the best possible performance for both the proposed design
and regular training. Figure 12 shows the training throughput

5% 40 Regular Training
g § O AccDP 30%
é}o 3 30
o <
g F
= 20 =
5
Q.
g 10 —
: N
E o+ NYE
2 4 8 16

#GPUs

Fig. 12. ResNet18 training throughput comparison between regular training
and AccDP (proposed design) for different DNN models on up to 8 nodes 2
GPUs per node (16 GPUs) with 4 MPS clients per GPU.

in thousands of images per second for the ResNet18 model.
We can observe the benefits of using the proposed design
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across different number of GPUs. On 16 GPUs, we observe
a 30% improvement which is consistent with the single node
experiments.
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Fig. 13. ResNet34 training throughput comparison between regular training
and AccDP (proposed design) for different DNN models on up to 8 nodes 2
GPUs per node (16 GPUs) with 4 MPS clients per GPU.
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Fig. 14. ShuffleNet training throughput comparison between regular training
and AccDP (proposed design) for different DNN models on up to 8 nodes 2
GPUs per node (16 GPUs) with 4 MPS clients per GPU.

Figure 13 shows the training throughput for the regular
training and proposed design with the ResNet34 model. We
also see consistent improvement regardless of the number of
used GPUs. We report an improvement of 15% on 16 GPUrs.
Figure 14 shows the scaling of the ShuffleNet model. We see
a considerable benefit of 62% on 16 GPUs.

VII. DISCUSSION AND SUMMARY OF RESULTS

In figure 1, we have shown that the GPU may be under-
utilized during regular DNN training across different model
sizes and input sizes. Figure 7, shows that increasing the
batch size leads to better utilization, but at a certain point,
the improvement can either saturate or be limited by available
GPU memory. In figures 8 and 9, we show the impact of the
number of MPS processes per GPU and the percentage of ac-
tive threads per MPS process. We empirically find that running
4 MPS process and oversubscribing the GPU resources at 30%
active thread percentage lead to the best performance across
different models and input sizes. In figures 10 and 11, we
observe the improvement gained by using AccDP with differ-
ent models and input sizes. We report a max improvement of
58% in training throughput for input size 32 x 32 and 42% for
input size 224 x 224 with the ShuffleNet model. In figures 12,
13, and 14, we evaluate the performance of AccDP on up
to 16 GPUs for different models with input size 224 x 224.
For the multi-node experiments, we observe a max of 62%
improvement for the ShuffleNet model. Throughout all of these
experiments, we take into consideration the optimal number
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of data loading workers following the guidelines defined in
section V-C.

VIII. RELATED WORK

While our work focuses on improving the training workload
in DL applications by enhancing the GPU resource utilization,
there are several works that explore improving the infer-
ence throughput in DL applications. Jain et al. [21] propose
a dynamic space-time scheduling technique that combines
batch-level, temporal (CUDA context switching), and spatial
(CUDA Hyper-Q [22]) multiplexing to improve GPU inference
performance. Dhakal et al. [23] propose GSLICE which is a
platform to support cloud-based low-latency inference applica-
tions that builds on top of CUDA MPS. It provides a dynamic
management scheme to appropriate GPU resources across
different Inference Functions (IFs) and multiplex multiple
instances of them on the GPU. Chen et al. [24] propose
EUGE, which takes advantage of CUDA MPS to improve the
GPU utilization for DNN-based video analysis applications.
They employ model sharing to save GPU memory since DNN
inference does not alter the state of the model like training
does. Yu et al. [25] conduct a survey on multi-tenant Deep
Learning Inference on GPU. They explore different techniques
that can be used to enhance the GPU utilization for DL
inference applications including NVIDIA Hyper-Q and MPS.
Gray et al. [26] explore using MPS with GROMACS [27]
which is a simulation package for biomolecular systems. They
propose running multiple simulations concurrently on the GPU
to increase the application throughput.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed AccDP, a data-parallelism based
design to improve the GPU utilization for DNN training by
leveraging CUDA MPS and MPI. Our motivating analysis
shows that modern GPUs, like NVIDIA A100, may not be
fully utilized by DNN training workloads. Our design extends
data parallelism to instantiate multiple concurrent processes on
the same GPU. Our evaluation yields up to 37%, 58%, 33%,
31%, and 25% training throughput improvements for models
ResNet18, ShuffleNet, MobileNetv2, ResNet34, and ResNet50
respectively on a single NVIDIA A100 GPU and up to 30%,
62%, and 15% for the ResNetl8, ShuffleNet, and ResNet34
models on 16 A100 GPUs. Additionally, we examine the data
loading mechanism used in PyTorch, identify data loading
bottlenecks, and propose guidelines to reduce the data loading
overhead and optimize our design. Furthermore, we study the
impact of varying the batch size, input size, number of MPS
processes per GPU, and percentage of active threads per GPU.
In future work, we would like to explore combining our design
with other resource management tools such as Hyper-Q and
Multi-GPU Instance (MIG). To the best of our knowledge,
this is the first work that uses MPS and MPI to accelerate
distributed DNN training.
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