
AccDP: Accelerated Data-Parallel Distributed DNN
Training for Modern GPU-Based HPC Clusters

Nawras Alnaasan, Arpan Jain, Aamir Shafi, Hari Subramoni, and Dhabaleswar K Panda
Department of Computer Science and Engineering,

The Ohio State University, Columbus, Ohio, USA,

{alnaasan.1, jain.575, shafi.16, subramoni.1}@osu.edu, panda@cse.ohio-state.edu

Abstract—Deep Learning (DL) has become a prominent ma-
chine learning technique due to the availability of efficient
computational resources in the form of Graphics Processing Units
(GPUs), large-scale datasets and a variety of models. The newer
generation of GPUs are being designed with special emphasis on
optimizing performance for DL applications. Also, the availability
of easy-to-use DL frameworks—like PyTorch and TensorFlow—
has enhanced productivity of domain experts to work on their
custom DL applications from diverse domains. However, existing
Deep Neural Network (DNN) training approaches may not fully
utilize the newly emerging powerful GPUs like the NVIDIA
A100—this is the primary issue that we address in this paper. Our
motivating analyses show that the GPU utilization on NVIDIA
A100 can be as low as 43% using traditional DNN training
approaches for small-to-medium DL models and input data size.
This paper proposes AccDP—a data-parallel distributed DNN
training approach—to accelerate GPU-based DL applications.
AccDP exploits the Message Passing Interface (MPI) communi-
cation library coupled with the NVIDIA’s Multi-Process Service
(MPS) to increase the amount of work assigned to parallel
GPUs resulting in higher utilization of compute resources. We
evaluate our proposed design on different small-to-medium DL
models and input sizes on the state-of-the-art HPC clusters.
By injecting more parallelism into DNN training using our
approach, the evaluation shows up to 58% improvement in
training performance on a single GPU and up to 62% on 16 GPUs
compared to regular DNN training. Furthermore, we conduct an
in-depth characterization to determine the impact of several DNN
training factors and best practices—including the batch size and
the number of data loading workers— to optimally utilize GPU
devices. To the best of our knowledge, this is the first work that
explores the use of MPS and MPI to maximize the utilization of
GPUs in distributed DNN training.

Index Terms—Deep Neural Networks, Graphics Processing
Units, Multi-Process Service, MVAPICH2

I. INTRODUCTION

Today, Deep Learning (DL) is fueling many of the advances

in various application areas—including image processing,

voice/speech recognition, recommender systems, and natural

language processing—and has become the driving engine in

pushing the frontiers of Artificial Intelligence (AI). This has

been possible due to continuous improvements and increasing

efficiency of available DL solutions. While many of the Deep

Neural Networks (DNNs) ideas were first proposed in the late

80s and early 90s [1], their success back then was hindered

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

by the limited availability of computational resources, training

data, and associated models. Consequently, the recent surge

of DL applications can be attributed to the availability of the

following: 1) multi-/many-core processing elements like CPUs

and Graphics Processing Units (GPUs), 2) HPC systems/cloud

platforms that can be used for scaling-up and scaling-out

DL applications 3) large-scale and high-quality datasets such

as ImageNet [2], and 4) highly accurate DL models from

various application domains. These trends have revived the

community’s interest in DL and led to the development of

several software packages and frameworks such as PyTorch [3]

and TensorFlow [4]. These frameworks have enabled the true

“democratization of AI” by making models and datasets avail-

able to the community in a simplified and highly-productive

manner.

In order to address more challenging DL problems and

achieve better performance, models and datasets have been

exponentially growing in complexity and size. As a result,

the memory and computational requirements to train such

models have increased as well. Since training DNN models

inherently involve procedures that can be executed in parallel,

GPUs have enabled developers to significantly reduce the

training time of DNN models. Recent GPU architectures—

such as NVIDIA Ampere—have thousands of cores, large

memory capacity, and DL-specific hardware components.

For instance, the high-end NVIDIA A100 GPU [5] comes

with 80 GB memory, 108 streaming multiprocessors (SMs),

6912 CUDA [6] cores and 4 Tensor Cores per SM. There

are mature and efficient software stacks like CUDA and

cuDNN [7] that have been optimized to take advantage of

the advanced hardware features offered by these devices.

Also, it is possible to connect these GPUs via low-latency

and high-throughput intra-node and inter-node interconnects

like NVLink and InfiniBand. This makes it possible to

accelerate DL training beyond the limits of a single device by

efficiently utilizing multiple accelerators simultaneously—in

parallel—on high-end systems leveraging communication

middleware like Message Passing Interface (MPI) [8] or

NVIDIA Collective Communication Library (NCCL) [9].

Several parallelization techniques including data/model/hybrid

parallelism [10] exist in the literature for parallel execution

of DNN training workloads

32

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/22/$31.00 ©2022 IEEE
DOI 10.1109/HiPC56025.2022.00017

20
22

 IE
EE

 2
9t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 H
ig

h 
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

H
iP

C
) |

 9
78

-1
-6

65
4-

94
23

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
H

iP
C

56
02

5.
20

22
.0

00
17

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



A. Motivation

Fig. 1. NVIDIA A100 GPU utilization during DNN training of different
models with different input sizes.

Modern GPUs, like NVIDIA A100, are computational

workhorses in modern HPC systems and are used in parallel to

reduce DNN training time. However, these accelerators are not

fully utilized by DNN training workloads. This is especially

true for small-to-medium DL models and/or input size. Fig-

ure 1 shows an evaluation conducted using NVIDIA Nsight

Systems [11] to support our hypothesis of under-utilization

of modern GPUs for certain DNN training workloads. The

idea here is to find the average percentage of the resources

utilization of NVIDIA A100 GPU during the training phase

of different DNN models—including ResNet18, ResNet34,

ResNet50, ShuffleNet, and MobileNetv2—with two input sizes

of 32 × 32 and 224 × 224. We observe under-utilization of

the GPU across all models with some variation. We observe

lesser GPU utilization for smaller models and input sizes. For

example, ResNet18 [12] achieves a 43% utilization for 32×32
pixels input image size. On the other hand, larger models,

like ResNet50, can achieve 68% utilization with the larger

224× 224 pixels image size. This clearly shows that there are

compute cycles available on these GPUs that can be used to

optimize DNN training even further. Therefore, the primary

motivation of this paper is to explore strategies and methods

to increase the occupancy and utilization of GPUs.

B. Problem Statements
In the context of the motivation presented in Section I-A,

this paper tackles the following problem statements:

1) What hardware/software techniques can be used to in-

crease the utilization of processing elements like GPUs

for DNN training workloads? Can these strategies im-

prove overall hardware efficiency for small-to-medium

DL models and/or input sizes?

2) Is it possible to configure or tune hyperparameters,

including the training batch size and/or input size, to

improve hardware utilization during DNN training? How

can we take advantage of architecture-specific features

to increase GPU utilization for DNN training?

3) In modern DNN training workloads, the performance of

data loading is a sizable portion of the overall DNN

training time. What is the impact of the number of data

loading workers on the overall performance of DNN

training? What is the impact of data loading workers

on the utilization of compute hardware?

These problem statements are elaborated further in Sec-

tion III, which discusses the challenges in maximizing GPU

performance for DNN workloads.

C. Overview

In this paper, we explore the potential of leveraging

NVIDIA’s Multi-Process Service (MPS), which allows run-

ning multiple CUDA applications concurrently on the same

GPU, coupled with MPI for DNN training. We propose Ac-

cDP, a novel data-parallelism-based approach to increase the

parallel workload assigned to the GPU in order to accelerate

the performance of distributed DNN training. We extensively

study the various factors that impact the training throughput of

our approach and the challenges that they present including:

1) Analyzing common data loading mechanisms and their

bottlenecks. 2) Characterizing the impact of batch size on GPU

utilization. 3) Evaluating the impact of varying the number

of MPS processes and percentage of active threads on our

proposed design. 4) Conducting a comparison between the

performance of regular data parallelism and our proposed

design on a single NVIDIA A100 GPU which yields up to

58% improvement in training throughput. 5) Conducting a

multi-node evaluation which shows up to 62% improvement

on 16 NVIDIA A100 GPUs using our proposed design.

D. Contributions

This paper makes the following contributions:

1) Propose a novel data-parallelism-based training ap-

proach using MPS and MPI to improve the utilization

of GPU in distributed DNN training. To the best of our
knowledge, this is the first work that uses MPS and MPI
to accelerate distributed DNN training.

2) Conduct a comprehensive evaluation of our proposed

design on 5 different DNN models and report im-

provements in training throughput of up to 37%, 58%,

33%, 31%, and 25% for models ResNet18, ShuffleNet,

MobileNetv2, ResNet34, and ResNet50 respectively on

a single NVIDIA A100 GPU and up to 62% for the

ShuffleNet model on 16 A100 GPUs.

3) Provide in-depth analysis of the impact of different DNN

training parameters including the mini-batch size, input

data size, model size, number of MPS processes per

GPU, and percentage of active GPU threads per process

on our proposed design.

4) Examine current data loading mechanisms, identify data

loading bottlenecks, study the impact of the number

of data loading workers on training throughput, and

propose guidelines to alleviate the data loading overhead

in DNN training.

The rest of the paper is organized as follows: Section II

establishes the necessary background for key concepts in the

paper. Section III describes the main challenges to improving

33

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



GPU utilization for DNN training workloads. Section IV

introduces our proposed design and its implementation with

existing DL frameworks. Section V provides analysis and

guidelines to optimize data loading. Sections VI and VII

present a comprehensive evaluation and discussion on the

proposed design. Section VIII reviews related works in the

literature. Finally, we conclude the paper in Section IX.

II. BACKGROUND

A. Distributed DNN Training

Deep Neural Networks (DNNs) are neural networks that

have at least two hidden layers between the input and output

layers. The training of DNNs mainly consists of two phases

1) forward propagation and 2) backward propagation. In the

first phase, input is fed into the network and is propagated

throughout the layers to generate an output. Based on that

output, an error is calculated by comparing the generated

and expected outputs. In the backward propagation phase,

gradients are calculated for the different layers. Weights are

then updated based on the calculated gradient values. A form

of the gradient descent algorithm is usually used to optimize

DNN models and minimize the loss. There are many variants

of DNN models that are intended for different purposes and

downstream tasks including Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), and Transformer

models. In this paper, we mainly focus on CNN models.

Distributed DNN training is performed on multiple workers

in parallel. Workers can reside in one (intra) or multiple (inter)

machines. There are several well-established approaches to

distribute DNN training such as a) Data parallelism b) Model

parallelism, and c) hybrid parallelism. In data parallelism,

DNN models are replicated across all workers and the dataset

is divided among workers. The workers simultaneously per-

form forward and backward pass on their chunk of the

datasets. Model instances are synchronized by aggregating

gradients across the workers. The Allreduce communication

operation is used in order to synchronize these models. In

model parallelism, on the other hand, the model is divided

into multiple machines or processing units. Communication

operations are used in order to implement the forward and

backward propagations across the workers.

B. Deep Learning Frameworks

Deep Learning frameworks provide interfaces, building

blocks, and primitives to define and design DL models and

implement training and validation cycles on various types of

accelerators. Most DL frameworks such as TensorFlow [4] and

PyTorch [3] are optimized for GPU performance. These frame-

works rely on GPU-accelerated libraries such as CUDA [6]

and cuDNN [7] to deliver high-performance training and

inference.

Furthermore, many frameworks provide support/API for

distributed DNN training such as PyTorch Distributed [13],

TensorFlow distributed, and Horovod [14]. In this paper, we

use Horovod to perform distributed DNN training. Horovod is

a popular open-source software framework for distributed deep

learning which supports multiple DL frameworks including

PyTorch, TensorFlow, MXNet, and Keras. Horovod relies on

MPI operations including MPI Allreduce and MPI Bcast to

enable communication of model parameters and gradients

between workers. It provides an interface in Python with a

high-level API for users. Horovod supports scaling to multiple

GPUs whether they reside on single or multiple machines by

taking advantage of collective operations.

C. Multi-Process Service (MPS)

MPS is a client-server runtime implementation of the CUDA

API that enables the sharing of GPU resources. It is a logical

partitioning mechanism that is designed to allow the execution

of multi-process CUDA applications concurrently. MPS started

with NVIDIA Kepler-based GPUs and is also extended to

Volta-based GPUs. An MPS server can support up to 16

clients (pre-Volta) and 48 clients (Volta-based) CUDA contexts

per GPU device. These clients are usually launched in the

form of MPI processes. Figure 2 shows the Volta-based MPS

Fig. 2. NVIDIA Volta-based Multi-Process Service (MPS) scenario launching
4 clients concurrently on a single GPU with 30% active threads per client.

workflow. In this scenario, 4 MPI ranks are submitted to

MPS from the CPU side. On the GPU side, resources are

allocated logically on a need-basis. Each MPS client has its

own GPU address space, which is a security improvement

from its Kepler-based predecessor. Additionally, users can

provision the MPS clients’ resource allocation by assigning

a value to the CUDA_MPS_ACTIVE_THREAD_PERCENTAGE environ-

ment variable. A client may use threads up to the percentage

defined; however, it cannot exceed that percentage. The logical

allocation scheme allows for oversubscription of resources,

shifting the allocation based on the process’ needs. As shown

in figure 2, in the case of oversubscription where every client

has a 30% limit on resource usage, when rank 1 is not using all

of its allocation, rank 2 can grow and use available resources.

III. CHALLENGES IN MAXIMIZING GPU PERFORMANCE

FOR DEEP LEARNING WORKLOADS

Maximizing GPU utilization for DNN training is challeng-

ing for multiple reasons. First and foremost, there are several

interrelated parameters that impact the training performance

including the number of available CPU cores, batch size,

number of data loading workers on the CPU, training input

size, and memory limitations on the GPU. Each of these

parameters needs to be studied in isolation. Furthermore, using

MPS in the training process introduces more parameters to

take into consideration such as the number of MPI processes

34

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



to run on a single GPU and the allocated percentage of overall

threads per process. In this section, we highlight some of the

key challenges in maximizing the GPU performance for DL

workloads.

Challenge 1: Is it possible to increase the utilization of
a single GPU for DNN training, especially for small-to-
medium sized DNNs? Modern GPUs have an outstanding

ability to process multiple computations simultaneously due

to their great number of cores. Training DNN models can take

advantage of these available cores to execute complex matrix

operations in parallel. However, the nature of DNN training

imposes some sequential order for these operations where the

input of one phase depends on the output of the previous one.

Therefore, the resources available on highly capable GPUs

may not be fully utilized during the training, leaving many

cores idle especially for small-to-medium size DNN models.

There is potential to utilize the idle cores on the GPU, but we

need a new training approach to introduce more parallelism

without disrupting the flow of the data in the different training

phases.

Challenge 2: How can we identify the impact of varying
the batch size and input size on the GPU utilization during
DNN training? The batch size in DNN training is a critical

parameter for both optimization and performance purposes.

In this paper, we purely focus on the training performance

in order to achieve maximal GPU utilization and in turn the

highest training throughput. While increasing the batch size

improves the performance since more data instances are being

processed in parallel, it can either reach a saturation point

or memory constraints. The input size also has significant

impact on the GPU utilization. The smaller the input size, the

less parallel workload is assigned to the GPU. Therefore, the

impact of both these factors must be taken into consideration

to enhance the GPU utilization for DNN training.

Challenge 3: How can we identify the impact of the
number of data loading workers on the performance
of DNN training? DL frameworks offer multiple tools to

hide the overhead of data loading and augmentation during

DNN training. However, how can we fully exploit the overlap

between data loading and computation in order to accelerate

the training process? This is dependent on the method used

by the DL framework, the number of available cores on the

CPU, and the user-defined number of processes dedicated to

performing the data loading. In order to maximize the overlap,

we need to first analyze how the data loading mechanism

works and conduct an evaluation to determine the best number

of data loading workers based on the model and input sizes.

Challenge 4: How can we take advantage of architecture-
specific features to increase GPU utilization for DNN
training? In order to support a variety of use cases, hardware

manufacturers constantly work on developing new features to

either supplement the architecture limitations or complement

strengths in their designs. As we mentioned in section I-A,

GPUs may be underutilized during DNN training where a

great portion of the compute resources sits idle. NVIDIA

GPUs recently released new features including the multi-

process services (MPS). The purpose of this service is to

enable concurrent multi-process CUDA applications, balance

tasks between CPU and GPU, and address the inefficiency in

using GPUs by taking advantage of inter-rank parallelism. This

paper explores the potential of exploiting such a feature for

DNN training and integrating it with existing DL frameworks.

IV. PROPOSED DESIGN AND IMPLEMENTATION

A. Utilizing MPS and MPI in GPU-Based DNN Training

In this subsection, we present AccDP—our purposed design

which utilizes MPI and MPS to improve GPU utilization and

reduce overall training time. We first describe the traditional

data parallelism approach and then we show our proposed

distributed data-parallel training solution that combines MPS

and traditional data parallelism to accelerate DNN training.

Data parallelism replicates the model and distributes the

dataset among all participating processes. It executes forward

and backward pass simultaneously on all processes on its data

partition. The MPI Allreduce operation is used to reduce local

gradients and the accumulated gradients are used to update

the model on all processes. Figure 3(a) shows traditional data

parallelism on 2 GPUs in which only one replica is created

per processing element. Training is executed in a loop over

the entire dataset. Each iteration is called a step where a

mini-batch (a random subset of dataset) is used to train the

model. Broadly, DNN training iteration can be divided into

three phases:

1) Data Loading: In this phase, a batch of data is fetched

from the file system into the CPU memory. The CPU then

applies data augmentation and places data in a ready queue.

The GPU fetches data from the queue as it finishes training

on the previous mini-batch.

2) Forward and Backward Propagation: At the beginning

of training, process 0 broadcasts model parameters to all pro-

cessing elements. The forward pass is executed by calculating

the layers’ activations and propagating through the model. The

backward pass is executed by calculating the gradients for each

layer. Gradients are then averaged for all of the data samples

in the current local mini-batch to produce the local gradients.

3) Gradient Aggregation and Weights Update: In this

phase, MPI Allreduce aggregates local gradients on GPUs and

makes the global gradients available to all the GPUs. Each

GPU updates its own version of model parameters using global

gradients.

As shown in figure 1, regular data parallelism may not

utilize all the available GPU resources due to the sequential

nature of DNN training. We improve GPU utilization by

extending data parallelism and proposing a new design that

creates multiple data-parallel processes per GPU. In proposed

method, we replicate the model and distribute the datasets

among multiple processes running on a single GPU. To man-

age the resource allocation, we use NVIDIA’s MPS tool. MPS

can logically and physically allocate resources on a process-

need-basis. Without MPS, different processes cannot share

the physical resources efficiently as GPU daemon uses time

slicing to share GPU cores. Therefore, the GPU would context

35

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



(a) Workflow of traditional data parallelism using two GPU de-
vices.

(b) Workflow of AccDP (proposed design) using data parallelism on two GPU devices
and 3 MPS processes per GPU.

Fig. 3. Comparison of the workflow of traditional data parallelism and proposed design on two GPU devices.

switch between the different processes constantly, which has

a huge performance overhead and does not improve overall

GPU utilization.

Figure 3(b) shows the workflow of AccDP. Each GPU is still

responsible for processing the same portion of the dataset. The

proposed design consists of the following phases:

1) MPS Initialization: In this phase, we generate a settings

file for each GPU. The settings file includes necessary in-

formation for MPS to operate optimally including the user

ID, number of GPUs, number of MPS processes, GPU IDs,

and active thread percentage. The settings file ensures that

each MPS process can only see its designated GPU for added

security. An MPS server is then initialized for each GPU. It is

worth noting that Volta-based GPUs do not require initializing

an MPS server; however, it is a necessary step if we want to

specify the percentage of active threads. Finally, we launch an

MPI job using the settings file to initialize different ranks to

their corresponding GPUs.

2) Data Loading: This phase is similar to the traditional

data parallelism method, except that we further divide the

fetched data. The number of mini-batches corresponds to the

number of GPUs multiplied by the number of processes per

GPU.

3) Forward and Backward Propagation: At the beginning

of this phase, model parameters are broadcasted to all GPUs.

Each GPU replicates the model multiple times depending on

the number of MPS processes. In figure 3(b), we have three

processes per GPU; thus, we replicate the model three times

on each GPU. We proceed normally with the forward pass

where it is executed by computing the layers’ activations and

propagating the activations through the model. The backward

pass is executed by computing the gradients for each layer.

Gradients are then averaged for all of the data samples in the

current mini-batch to produces the local gradients.
4) Gradient Aggregation and Weights Update: In this

phase, local gradients from each MPI rank are aggregated

using MPI Allreduce to obtain the global gradients. MPI is

necessary to facilitate communication for all of the following

cases: 1) between nodes 2) between GPUs on the same node 3)

between MPS processes on a single GPU. Model parameters

for each MPI rank are then updated separately using the

obtained global gradients. The training then moves on to the

next step (i.e. iteration).

B. Integration of MPS with Existing Distributed Training
Frameworks

We implement our proposed design using a combination

of shell scripts and Python code and integrate it with the

Horovod code in order to automate the process of initial-

izing MPS servers, setting appropriate runtime parameters,

assigning sufficient workload to GPUs, and launching MPI

36

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



jobs. MPS servers are first initialized on each GPU device on

the different nodes. While Volta-based MPS does not require

initializing MPS servers, doing so can allow us to set the

CUDA_MPS_ACTIVE_THREAD_PERCENTAGE, which in turn leads

to optimized performance as shown later in the evaluation

section. After the initialization of the servers, we isolate

GPU visibility on each set of processes for added security

and restrict processes to a single GPU. This guarantees that

processes are submitted to their designated GPUs correctly

and does not use other GPUs on the node. Finally, we launch

the MPI job with the number of processes equal to:

#Procs = #Nodes×GPUs/Node× Clients/GPU

V. ANALYSIS AND GUIDELINES TO OPTIMIZE THE DATA

LOADING MECHANISM IN PYTORCH

Data loading is a critical component of DNN training that

can lead to severe performance bottlenecks. If not handled

properly, data loading can drastically limit any effort to

improve DNN training performance. Therefore, in order to

alleviate the overhead caused by data loading, we provide in-

depth analysis and suggest guidelines to overcome data loading

limitations. In this section, we first dissect the data loading

mechanism used by common deep learning frameworks such

as PyTorch. Then we identify data-loading-related bottlenecks

using the benchy profiling tool [15]. Finally, we propose

guidelines to minimize the data loading overhead.

A. Analyzing the workflow of the data loading mechanism
used in PyTorch

The PyTorch framework contains several useful tools

to ensure smooth data loading and augmentation. The

torch.utils.data.Dataloader class offers compatibility and

flexibility to work for both map-style and iterable-style

datasets. This class is used to fetch data from disk to host

memory and from host memory to GPU if GPUs are used

in the training. PyTorch supports two types of data loading

schemes: 1) sequential and 2) parallel. In the sequential

scheme, for each loop iteration, we wait for the data loader to

fetch the data and then we perform the model computations. In

the parallel scheme, multiple data loaders work concurrently

to fetch the data and overlap it with the model computation on

GPUs. Among other options, the user can specify the number

of data loading workers when defining the data loader object.

Varying the number of workers leads to significant change

in performance. In order to select the optimal number of data

loading workers, we need to first analyze how PyTorch utilizes

the multi-process scheme to improve data loading.

In figure 4, we analyze the workflow of the multi-process

data loading scheme in PyTorch. The figure is divided into the

following three sections:

1) Application-Level Code: The application-level code is

the part that is exposed to the user. The user is responsible for

defining the data sampler and the data loader objects. Inside

the training loop, the user expects the data loader to fetch the

data for each loop iteration.

Fig. 4. Multi-process data loading workflow with the PyTorch framework.

2) Data Loader Code: The data loader code is responsible

for initializing the data queue, the index queue, and the data

loading workers. Data loading module checks if the batch size

is greater than one and if the number of workers is greater

than zero. If either is not true, the code uses the sequential

data loader. If both conditions are satisfied, the multi-process

scheme is used. Two queues are initialized in the next step;

1) The data queue where the workers store the data instances

and are later popped by the training loop and 2) The index

queue which stores the next set of indices to be fetched by

the data loading workers and stored in the data queue. In the

next step, each worker is initialized. Finally, indices are loaded

into the index queue. This process is done once during the

initialization phase and the number of initial indices to be

loaded is determined by the number of workers multiplied by

a prefetch factor.

3) Worker-Level Code: This part of the code defines the

logic of the independent data loading workers initialized by

the data loader. Each worker keeps checking for entries in the

index queue. If entries are found, the worker fetches the new

data instances (or mini-batch) and places them in the data

queue. This process is repeated as long as the data loading

worker is alive.

B. Identifying data loading bottlenecks

Data loading bottlenecks are caused when the average time

needed to load a data instance takes longer than the average

time needed to run forward and backward computations on it.

In order to identify such cases, we use the benchy profiling

tool [15] to run three sets of experiments measuring throughput

for 1) Full training which is the throughput of the regular DNN

training, 2) Synthetic training which is the training throughput

37

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



on dummy data (That is no data loading is involved in these

experiments), and 3) I/O which is the throughput of loading

data from the file system to the host memory to the GPU

memory.

Fig. 5. Analysis of data loading impact on DNN training with ResNet18.

Fig. 6. Analysis of data loading impact on DNN training with ResNet50.

Figure 5 shows the three throughput measures discussed

earlier for training the ResNet18 model with 32 × 32 input

size on two NVIDIA A100 GPU. The reported numbers are

per GPU. In this experiment, we can see the full training

performance is bottlenecked by the I/O throughput. Synthetic

training represents the potential capability of the GPU to

perform forward and backward computations if not capped

by the data loading performance. However, in this case, the

full training throughput cannot exceed the I/O throughput;

therefore, we observe this kind of bottleneck. Still, we can

improve the performance by picking the number of workers

that maximizes the I/O. Figure 6 shows the same set of

experiments but for the ResNet50 model. Since ResNet50 is a

larger model, it achieves lower synthetic training throughput.

The I/O throughput catches up with the synthetic training

throughput at around 11 data loading workers. However, we

can see an overhead between the full and synthetic training

due to the partial overlap between the data loading and

computation.

C. Guidelines to select the optimal number of data loading
workers

As we have seen in figures 5 and 6, the number of data

loading workers has a significant effect on the full training

throughput. Increasing the number of workers beyond a cer-

tain point exhausts the CPU resources which is undesirable

especially when the CPU is responsible for data loading and

augmentation for more than one GPU. In subsection V-B, we

TABLE I
HARDWARE CONFIGURATION FOR NODES USED IN THE EVALUATION

GPU
Two NVIDIA A100 with
40GB of GPU memory

GPU Interconnect PCIe

CPU
Two AMD EPYC 7713 64-core
processors @3.7GHz (128 cores)

Memory 256 GB of RAM
Storage Lustre file system

Interconnect
Mellanox ConnectX-6 InfiniBand
EDR 100Gb/s Adapter

identified two types of bottlenecks 1) I/O bottleneck and 2)

Computation bottleneck. To maximize the performance in the

first case, we simply pick the number of workers that gives the

best I/O throughput. In the second case, we keep increasing

the number of workers until the I/O throughput exceeds or

matches the synthetic training throughput. By running a few

preliminary iterations before the actual training, we can find

the optimal number of data loading workers. We use this

approach throughout the evaluation section to optimize both

the regular training and proposed design runs.

VI. EVALUATION OF PROPOSED DESIGN

This section provides a comprehensive evaluation of the

proposed design and comparison with regular distributed data-

parallel DNN training both on a single GPU and multiple

nodes. First, we describe the experimental setup we used

on the software and hardware levels. Then we explore the

effects of the training batch size on the GPU utilization. We

then evaluate the impact of the number of MPS processes

launched on a single GPU and the percentage of active threads

per process on the training throughput. Next, we provide a

comparison to highlight the benefits of the proposed design

on a single GPU. Finally, we evaluate the scalability of the

proposed design and compare it with the regular distributed

DNN training.

A. Experimental Setup

1) Software: Our experimental environment uses Python

3.9.7 [16], PyTorch 1.10.2 [3], Torchvision 0.11.3 [17],

Horovod 0.23.0 [14] with CUDA 11.3 [6] and cuDNN

8.2.0 [7]. For communication, we use MVAPICH2-GDR

v2.3.7 [18]. The system runs on Ubuntu SMP Linux ker-

nel 4.18.0-348.2.1. We use two ImageNet-like datasets each

consisting of 400,000 images with sizes 32 × 32 pixels and

224× 224 pixels respectively.

2) Hardware: Our experimental testbed utilizes an HPC

system with 16 compute nodes each consisting of two EPYC

AMD CPUs with 64 cores each and two NVIDIA A100 GPUs

with 40GB of graphic memory. Table I shows the hardware

configuration per node.

B. Impact of Batch Size on GPU Utilization

Our evaluation starts by analyzing the impact of the training

batch size on the GPU utilization with regular DNN training.

This experiment is repeated for all future evaluations where

we pick the batch size that yields the best overall performance.

38

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



We expect to see an increase in GPU utilization as we increase

the batch size. This is because we are assigning more parallel

workload to the GPU. However, at a certain point, the GPU

utilization either saturates or we run out of GPU memory.

Figure 7 shows the GPU utilization for different batch sizes

Fig. 7. Impact of the training batch size on GPU utilization for the ResNet18
model with 224× 224 input size.

with the ResNet18 model and input size of 224 × 224. The

GPU reaches a max of 52% utilization where it peaks and

saturates at batch size 512. It is also worth noting that the

GPU runs out of memory at batch size 2048.

C. Impact of Number of MPS Processes and Percentage of
Active Threads on DNN Training Performance

In this subsection, we evaluate the impact of varying the

MPS initialization options on our proposed design. The pur-

pose of these experiments is to highlight the importance of

selecting the appropriate number of MPS processes per GPU

and the percentage of active threads. Again, these experiments

are repeated for all future evaluations for the different models

where the final goal is to maximize the GPU utilization

and in turn the DNN training throughput. Figure 8 shows

Fig. 8. Impact of number of MPS processes on DNN training throughput for
the ResNet18 model with 224× 224 pixels input size.

the throughput in images per second of the proposed design

while varying the number of MPS processes per GPU for

the ResNet18 model with 224 × 224 input size. We include

the best performance from the regular training as a baseline

for reference. We observe that using 4 MPS processes per

GPU yields the highest throughput of around 2,700 images

per second. We also observe that increasing the number of

MPS processes beyond 4 decreases the performance.

Figure 9 shows the throughput in images per second of the

proposed design while varying the percentage of active threads

per MPS process for a total of 4 MPS processes. The model

Fig. 9. Impact of varying the percentage of active GPU threads per MPS
process on the ResNet18 model and 224× 224 for input size.

used for training is ResNet18 with 224× 224 input size. We

observe the best performance when we slightly oversubscribe

the GPU resources at 30% per process. This gives each MPS

process the flexibility to use more or fewer resources with a

5% margin of the overall available GPU cores. Loosening this

constraint further at 35% and 40% affects the performance

negatively.

In fact, we empirically find that the settings shown above

at 4 MPS processes per GPU and 30% active threads per

MPS process deliver the best performance for the majority

of the upcoming training scenarios whether we are running

on a single GPU or scaling out to more number of nodes.

D. Single GPU Evaluation of proposed design

In this subsection, we evaluate our proposed design on

single GPU using 5 different CNN models: 1) ResNet18, 2)

ResNet34, 3) ResNet50 [12], 4) ShuffleNet [19], and 5) Mo-

bileNetV2 [20]. We use regular DNN training on a single GPU

as a baseline for comparison. To ensure a fair comparison, we

run multiple regular training experiments while incrementing

the batch size and number of data loading workers. We choose

the best performance and include it in the evaluation as we

are purely interested in training throughput. We use a similar

method with the proposed design where we increment the

number of MPS processes, batch size, and number of data

loading workers to get the best performance. We perform these

experiments for two different image sizes 1) 32 × 32 pixels

and 2) 224× 224 pixels.

Figure 10 shows throughput in thousands of images per

second for both the regular training and proposed design for

the 5 different CNN models. We observe a max of 58%

improvement using the proposed design over regular training

with the ShuffleNet model. The improvement varies between

25%-58% based on the model. We notice that for relatively

smaller models like ResNet18 and ShuffleNet we get better

improvement. Looking back at figure 1, this behavior can be

attributed to the fact that the GPU utilization for the smaller

models is lower than the mid-sized models.

Figure 11 shows throughput in thousands of images per

second for the regular training and proposed design but with a

larger input size of 224 × 224 pixels. We can still observe

up to 42% improvement with the ShuffleNet model. The

improvement varies between 7%-42% based on the model

size. By also looking at figure 1, we can see that the GPU

39

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



utilization for the input size of 224×224 pixels is higher across

all models. This explains the slightly smaller improvement

compared to the 32× 32 pixels input size.

Fig. 10. Training throughput comparison between regular training and AccDP
(proposed design) for different DNN models on single GPU with 4 MPS
clients and 32× 32 pixels image size.

Fig. 11. Training throughput comparison between regular training and AccDP
(proposed design) for different DNN models on single GPU with 4 MPS
clients and 224× 224 pixels image size.

E. Multi-node Evaluation of proposed design

In this subsection, we expand on the single GPU exper-

iments by comparing the regular training to the proposed

design on up to 16 GPUs. We run this evaluation on three

models: 1) ResNet18 2) ResNet34 and 3) ShuffleNet. We fix

the input size to 224 × 224 pixels to highlight the scaling

potential on a larger image size similar to what is commonly

used in DNN applications. We choose the optimal values for

the batch size and number of data loading workers to report

the best possible performance for both the proposed design

and regular training. Figure 12 shows the training throughput

Fig. 12. ResNet18 training throughput comparison between regular training
and AccDP (proposed design) for different DNN models on up to 8 nodes 2
GPUs per node (16 GPUs) with 4 MPS clients per GPU.

in thousands of images per second for the ResNet18 model.

We can observe the benefits of using the proposed design

across different number of GPUs. On 16 GPUs, we observe

a 30% improvement which is consistent with the single node

experiments.

Fig. 13. ResNet34 training throughput comparison between regular training
and AccDP (proposed design) for different DNN models on up to 8 nodes 2
GPUs per node (16 GPUs) with 4 MPS clients per GPU.

Fig. 14. ShuffleNet training throughput comparison between regular training
and AccDP (proposed design) for different DNN models on up to 8 nodes 2
GPUs per node (16 GPUs) with 4 MPS clients per GPU.

Figure 13 shows the training throughput for the regular

training and proposed design with the ResNet34 model. We

also see consistent improvement regardless of the number of

used GPUs. We report an improvement of 15% on 16 GPUs.

Figure 14 shows the scaling of the ShuffleNet model. We see

a considerable benefit of 62% on 16 GPUs.

VII. DISCUSSION AND SUMMARY OF RESULTS

In figure 1, we have shown that the GPU may be under-

utilized during regular DNN training across different model

sizes and input sizes. Figure 7, shows that increasing the

batch size leads to better utilization, but at a certain point,

the improvement can either saturate or be limited by available

GPU memory. In figures 8 and 9, we show the impact of the

number of MPS processes per GPU and the percentage of ac-

tive threads per MPS process. We empirically find that running

4 MPS process and oversubscribing the GPU resources at 30%

active thread percentage lead to the best performance across

different models and input sizes. In figures 10 and 11, we

observe the improvement gained by using AccDP with differ-

ent models and input sizes. We report a max improvement of

58% in training throughput for input size 32×32 and 42% for

input size 224×224 with the ShuffleNet model. In figures 12,

13, and 14, we evaluate the performance of AccDP on up

to 16 GPUs for different models with input size 224 × 224.

For the multi-node experiments, we observe a max of 62%

improvement for the ShuffleNet model. Throughout all of these

experiments, we take into consideration the optimal number

40

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 



of data loading workers following the guidelines defined in

section V-C.

VIII. RELATED WORK

While our work focuses on improving the training workload

in DL applications by enhancing the GPU resource utilization,

there are several works that explore improving the infer-
ence throughput in DL applications. Jain et al. [21] propose

a dynamic space-time scheduling technique that combines

batch-level, temporal (CUDA context switching), and spatial

(CUDA Hyper-Q [22]) multiplexing to improve GPU inference

performance. Dhakal et al. [23] propose GSLICE which is a

platform to support cloud-based low-latency inference applica-

tions that builds on top of CUDA MPS. It provides a dynamic

management scheme to appropriate GPU resources across

different Inference Functions (IFs) and multiplex multiple

instances of them on the GPU. Chen et al. [24] propose

EUGE, which takes advantage of CUDA MPS to improve the

GPU utilization for DNN-based video analysis applications.

They employ model sharing to save GPU memory since DNN

inference does not alter the state of the model like training

does. Yu et al. [25] conduct a survey on multi-tenant Deep

Learning Inference on GPU. They explore different techniques

that can be used to enhance the GPU utilization for DL

inference applications including NVIDIA Hyper-Q and MPS.

Gray et al. [26] explore using MPS with GROMACS [27]

which is a simulation package for biomolecular systems. They

propose running multiple simulations concurrently on the GPU

to increase the application throughput.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed AccDP, a data-parallelism based

design to improve the GPU utilization for DNN training by

leveraging CUDA MPS and MPI. Our motivating analysis

shows that modern GPUs, like NVIDIA A100, may not be

fully utilized by DNN training workloads. Our design extends

data parallelism to instantiate multiple concurrent processes on

the same GPU. Our evaluation yields up to 37%, 58%, 33%,

31%, and 25% training throughput improvements for models

ResNet18, ShuffleNet, MobileNetv2, ResNet34, and ResNet50

respectively on a single NVIDIA A100 GPU and up to 30%,

62%, and 15% for the ResNet18, ShuffleNet, and ResNet34

models on 16 A100 GPUs. Additionally, we examine the data

loading mechanism used in PyTorch, identify data loading

bottlenecks, and propose guidelines to reduce the data loading

overhead and optimize our design. Furthermore, we study the

impact of varying the batch size, input size, number of MPS

processes per GPU, and percentage of active threads per GPU.

In future work, we would like to explore combining our design

with other resource management tools such as Hyper-Q and

Multi-GPU Instance (MIG). To the best of our knowledge,

this is the first work that uses MPS and MPI to accelerate

distributed DNN training.

REFERENCES

[1] H. Wang and B. Raj, “On the origin of deep learning,” 2017.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, 2015,” Software available
from tensorflow. org, 2016.

[5] NVIDIA, “Nvidia a100 tensor core gpu.” https://www.nvidia.com/en-us/
data-center/a100/.

[6] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,”
2020.

[7] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” 2014.

[8] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, Mar 1994.

[9] NVIDIA, “Nvidia collective communication library (nccl).” https://
developer.nvidia.com/nccl.

[10] A. Jain, A. Shafi, Q. Anthony, P. Kousha, H. Subramoni, and D. K.
Panda, “Hy-fi: Hybrid five-dimensional parallel dnn training on high-
performance gpu clusters,” (Berlin, Heidelberg), Springer-Verlag, 2022.

[11] NVIDIA, “NVIDIA Nsight Systems.”
https://developer.nvidia.com/nsight-systems.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[13] PyTorch, “torch.distributed.” https://pytorch.org/docs/stable/distributed.
html, 2021. [Online; accessed November 15, 2022].

[14] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 2018.

[15] Romero, Josh, “Benchy profling tool.” https://github.com/romerojosh/
benchy.

[16] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[17] S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package
of torch,” in Proceedings of the 18th ACM International Conference on
Multimedia, MM ’10, (New York, NY, USA), p. 1485–1488, Association
for Computing Machinery, 2010.

[18] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p. 101208, 2021. Case Studies in Translational Computer Science.

[19] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” 2017.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018.

[21] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” 2018.

[22] NVIDIA, “Nvidia hyper-q.” https://developer.download.nvidia.
com/compute/DevZone/C/html x64/6 Advanced/simpleHyperQ/doc/
HyperQ.pdf.

[23] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “Gslice: Controlled
spatial sharing of gpus for a scalable inference platform,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, SoCC ’20, (New
York, NY, USA), p. 492–506, Association for Computing Machinery,
2020.

[24] Q. Chen, G. Ding, C. Xu, W. Qian, and A. Zhou, “Euge: Effective
utilization of gpu resources for serving dnn-based video analysis,” in
Web and Big Data (X. Wang, R. Zhang, Y.-K. Lee, L. Sun, and Y.-S.
Moon, eds.), (Cham), pp. 523–528, Springer International Publishing,
2020.

[25] F. Yu, D. Wang, L. Shangguan, M. Zhang, C. Liu, and X. Chen, “A
survey of multi-tenant deep learning inference on gpu,” 2022.

[26] A. Gary and S. Páll, “Maximizing gromacs
throughput with multiple simulations per gpu us-
ing mps and mig.” https://developer.nvidia.com/blog/
maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-\
\using-mps-and-mig, Nov 2021.

[27] P. Bauer, B. Hess, and E. Lindahl, “Gromacs 2022.2 manual,” June 2022.

41

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:17:48 UTC from IEEE Xplore.  Restrictions apply. 


