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Abstract—Deep Learning (DL) models are growing exponen-
tially and require increasingly powerful High Performance Com-
puting (HPC) systems to train them. Achieving state-of-the-art
results requires carefully tuning the DL model architecture and
training settings, which is a time-consuming process commonly
relegated to distributed search frameworks and trial-and-error.
However, search frameworks don’t provide a flexible parallelism
scheme within and among the chosen DL framework for modern
out-of-core DL models.

In this paper, we propose Scalable Meta-Parallelism for Deep
Learning Search (ScaMP): a distributed Hyperparameter Opti-
mization (HPO) and Neural Architecture Search (NAS) frame-
work that supports out-of-core models with flexible parallelism
schemes. SCaMP is integrated into the modern DL ecosystem,
and enables both efficient parallel training of concurrent candi-
date architectures and aggregate device memory saturation via
a powerful load balancing engine. SCaMP estimates the memory
requirements of each candidate architecture and automatically
applies the appropriate model-parallel degree and maximum
batch size supported for the given candidate. Further, HPO
and NAS with SCaMP are highly customizable via flexible
configuration options.

We evaluate the benefits of our designs on synthetic training
benchmarks and in training a state-of-the-art vision transformer
model. We select transformers as a candidate DL model type and
demonstrate a 29% improvement in end-to-end HPO time on 32
V100 GPUs on the Lassen and ThetaGPU HPC systems. Further,
we demonstrate a reduction in the proportion of NAS time spent
in communication from 28% to 15%. Finally, we thoroughly
verify the correctness of SCaMP by training a state-of-the-art
SwinIR model.

Index Terms—Neural Networks, DNN, MPI, GPU

I. INTRODUCTION

Deep Learning (DL) methods continue to provide state-of-
the-art results across a variety of data formats with a recent
focus on text processing [1], [2], [3] and image processing
[4], [5], [6], [7] applications. In a nutshell, DL is a subset
of Machine Learning (ML) that uses Deep Neural Networks
(DNNs) to learn implicit relationships between input and
output data. DNNs consist of a matrix of weights that are first
updated in order to minimize prediction loss before applying
the final trained model to a dataset. In some cases such as
deep learning recommendation models [8], DL models can
be composed of multiple DNNs combined with other data
processing schemes (such as embedding tables). DL training
is highly compute-intensive, and requires massive amounts
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of data. Most application improvements are achieved by im-
proving the dataset [9], [10], [11], [12], model architecture
[4], [5], [13], and training environment [14], [15], [16], [17]
(e.g. optimizers, parallelism schemes, etc). In recent years, the
scale of DL models and datasets have exploded to hundreds
of billions of parameters [2] and terabytes of data [12].

As a result, distributed DL has become the standard training
method for new DL models. As the largest models grow from
hundreds of millions [4] to hundreds of billions of parameters
[2], new parallelization schemes have arisen to efficiently train
DL models across thousands of processors [18], [19], [20],
[8], [21]. We denote models that fit within device memory as
in-core models, and models that require more memory than a
single device as out-of-core models. While many prior works
have explored parallelism strategies within a single DL
architecture, few have proposed schemes that efficiently
parallelize the search process over multiple possible DL
architectures or training settings. Significant work has been
performed towards reducing the communication overheads
of each scheme, yet the proportion of training time spent
in communication remains high. Further, such schemes are
only useful for training a single DL model with a single
set of training parameters at a time. We propose shifting the
HPO/NAS parallelism focus from optimizing data parallelism
to optimizing subnet' placement such that communication is
minimized.

Modern large DL models are composed of many possible
settings for training settings (e.g. optimizer settings such as
learning rate, weight initialization, severity of weight and
learning rate decay, number of warmup iterations, etc). There-
fore, a large number of candidate models must be partially
trained before the final model can be trained start-to-finish.
This process is known as hyperparameter optimization.
As models require ever-increasing computational resources to
train, evaluating candidate models has also become computa-
tionally expensive. Another common DL training workflow is
neural architecture search, where details on the underlying
DL architecture itself (e.g. the width and depth of feed-forward
layers, number of attention heads in transformer networks,
etc) is left to an automated optimization process by searching
through candidate models and evolving them to a model with
better performance. Further, candidate architectures commonly

luse the term subnet to denote a single architecture and training setting
combination
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require different amounts of device memory (e.g. changing
the hidden size or number of attention heads in a transformer
model), and it’s common to have a set of subnets with multiple
instances of crossing the device memory boundary. Currently,
the user must empirically determine which subnets lead to
out of memory errors and manually set their model parallel
settings before the full sweep can be run to completion. This
is extremely tedious and error-prone. We wish to estimate the
amount of memory required to instantiate a given subnet,
and automatically choose both the model-parallel degree
required to fit within memory, and the maximum batch
size that fits within memory.

A. Motivation

The key motivator for this work is in reducing unnecessary
data-parallel communication for any DL training scheme that
requires the training of multiple subnets (e.g. HPO and NAS).
Most existing meta-parallel frameworks and techniques rely
upon training one or very few subnets at once, and scale
to many processors with simple data parallelism. While the
use of data parallelism reduces the training time significantly,
ideally by a factor of the number of devices d, it incurs a non-
trivial communication overhead. We believe that thoughtfully
placing concurrent subnets across parallel hardware will nearly
eliminate the communication overhead of data-parallelism
while still reducing the overall subnet training time by a factor
of d.

As a secondary motivator, many existing subnet training
frameworks do not consider the case of crossing parallelism
boundaries within a subnet sweep (i.e. for what subnet archi-
tectures within the sweep does the model require model- or
hybrid-parallelism?). By estimating the memory requirements
of each subnet before training, we wish to choose the degree
of parallelism before starting the training sweep. This func-
tionality will avoid the significant programmer effort required
by empirically determining which subnets require model- or
hybrid-parallelism, then statically choosing the parallelism
settings for those subnets.

B. Problem Statement

Modern DL training pipelines commonly involve one of
two subnet training schemes: Hyperparameter Optimization
(HPO) or Neural Architecture Search (NAS). HPO involves
finding an optimal set of hyperparameters (e.g. optimizer
settings, batch size, number of epochs, etc). While a number
of distributed hyperparameter search libraries exist, there are
two shortcomings: models are typically trained inefficiently in
sequence with data parallelism, and HPO frameworks rarely
support out-of-core models that require advanced model-
parallel techniques. NAS is the problem of finding the highest-
performing DNN architecture on a given training scheme (i.e.
the dataset and hyperparameters are static while the archi-
tecture is modified). Similar to HPO, NAS frameworks exist,
but they share the same shortcomings as HPO. We propose
shifting the HPO/NAS parallelism focus from optimizing
data parallelism to optimizing subnet placement.
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C. Challenges

There are two broad challenges addressed in this paper. The
first broad challenge is: Can we reduce the time spent in data-
parallel communication by thoughtfully placing concurrent
subnets?. We seek to create a flexible yet efficient framework
that extends to many subnet architectures, sizes, and system
scales. To answer this broad question, we solve the following
concrete challenges:

o How should a framework load-balance a set of subnet
architectures such that the time spent in communication
is minimized?

« How do we expect these meta-parallelism strategies to
behave analytically?

« What benefits can efficient meta-parallelism strategies
provide to reduce overall HPO/NAS training time?

The second broad challenge we resolve is: Can we avoid
empirically determining which subnets don’t fit within device
memory by estimating the memory requirements of each
subnet, automatically choosing the required degree of model-
parallelism and maximum batch size?. We seek to incorporate
a robust memory estimation engine to enable SCaMP to
automatically handle subnets of varying memory overheads.

o Can the memory requirements of a given subnet be
determined before training begins? Can this information
be used to automatically determine the degree of model-
parallelism required to fit within device memory, as well
as the maximum batch size?

Given that subnets often have differing memory re-
quirements that may require varying degrees of model
parallelism, how should these subnets be efficiently load-
balanced and managed by a unified interface?

Can subnets of varying model-parallelism settings still be
load-balanced efficiently at scale?

D. Proposed Solution

We believe that a flexible parallelism suite for training
multiple distributed subnets in parallel will alleviate these
shortcomings. We define parallelism schemes of distributed
subnets as meta-parallelism, and explore its properties. Specif-
ically, we introduce and evaluate Scalable Meta-Parallelism
for Deep Learning Search (SCaMP). SCaMP is a flexible
and efficient meta-parallel framework for any DL problem
involving subnets (e.g. HPO, NAS, parallel inference). SCaMP
monitors and manages subnets in real-time for the end-user,
and is incorporated with modern DL software such as Deep-
Speed [20].

E. Contributions
Our contributions are as follows:

C1) We proposed, designed, and evaluated SCaMP: a scalable
framework for parallel HPO and NAS specifically tar-
geted for transformer models and HPC systems (Section
1)

C2) We modeled and explored the tradeoffs of a variety of
meta-parallelism strategies, and demonstrate why tuning
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each parallelism method leads to significant end-to-end
hybrid parallel subnet training time reductions. (Section
11I)
Vastly improve user productivity for HPO and NAS work-
loads by automatically estimating the device memory
requirements of each subnet setting, therefore allowing
the model-parallel degree and maximum batch size to be
set automatically for a given subnet (Section III-6)
Thoroughly verify the correctness of the SCaMP frame-
work by training a model to state-of-the-art accuracy.
(Table 1II)
C5) Create an analytical model for meta-parallelism strategies
(Section IV) and compare against experimental data (V)
C6) Evaluate SCaMP’s performance on large-scale HPC sys-
tems. Report up to 29% reduction in overall training time
over purely data-parallel training for SwinIR and a reduc-
tion in the proportion of time spent in communication
from 28% to 15% for Megatron. (Section V)
II. BACKGROUND

C3)

C4)

A. Deep Learning

It is well-known that because of the huge amount of
iterations included, training DNN models is highly demanding
in computation and communication resources [22], [23], [24],
[25]. As larger and deeper DNNs appear, there has been
a growing need for distributed training support in order to
scale out model training to more hardware. Traditional deep
learning frameworks such as PyTorch and TensorFlow contain
distributed training support. Recently, frameworks specifically
targeting distributed training such as Horovod by Uber [26]
and DeepSpeed by Microsoft [20] have appeared. A popular
parallelism strategy to distribute DNN training is data par-
allelism. This scheme first copies an instance of the DNN
model to each CPU/GPU. Then, the training data will be
partitioned arcoss all CPUs/GPUs. The size of a batch of data
that is sent to each CPU/GPU at each global training step
is called the batch size. Data parallelism typically requires a
synchronization at the end of each training step to average
the gradients from all processes. This is always achieved by
collective operations such as MPI_allreduce or NCCL. The
averaged gradients will be sent back to each process and
the DNN copies will proceed to the next global training
step with the updated gradients. Model-parallelism is a broad
term referring to any strategy that partitions the model itself
across processors. We denote models that fit within device
memory as in-core models, and models that require more
memory than a single device as out-of-core models. Broadly,
in-core models can be trained with data-parallelism and out-
of-core models require model-parallelism. Note that multiple
data-parallel instances of model-parallel models is the most
common method of training out-of-core models.

B. Deep Learning Search

As modern DL models become more complex, efficient
methods for searching over possible neural architectures have
become enormously important. Manual designs of neural
architectures are more time-consuming and often subject
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to errors. Neural Architecture Search (NAS) is an efficient
method of automating neural architecture engineering and a
subfield of AutoML [27]. Several DNNs built with NAS have
outperformed traditional manually crafted neural architectures
in fields such as image classification [28], [29] and object
detection [28]. NAS is often characterized by three dimen-
sions: Search Space, Search Strategy, and Performance
Estimation Strategy. NAS typically features a process that
aims to discover and evaluate candidate networks in a well-
defined search space through an efficient search strategy. Then
the candidate will be evaluated using performance estima-
tion strategy and compared to previous candidates for final
selection. A NAS search space defines a space where all
eligible candidate networks reside. The search strategy draws
the path through which we discover candidate networks in
a search space. The performance estimation strategy is the
method of evaluating a candidate’s performance on unknown
data. NAS methods are generally requiring much computation
resources since within a large search space, there are always
a large number of candidates to be searched, trained and
evaluated. There have been much efforts in reducing search
space complexity [27].

Apart from NAS, Hyper-parameter optimization (HPO) is
also an important compontnet of AutoML in finding optimal
hyper-parameter combinations for neural network architectures
and model training process. Hyper-parameters are parameters
that are cannot be updated during the training of a DNN model.
Typical hyper-parameters include the number of hidden layers,
activation function, learning rate, batch size, optimizer and so
on. HPO is often viewed as the final step of model design and
the first step of actually training a network. In the past, tuning
hyper-parameters are heavily dependent on human expertise
and are set manually before the training process begins. The
process of HPO aims at removing preset humen experience
from a deep learning cycle. However, the automation is at a
cost of extra computational resources. Currently, HPO faces
mainly three challenges [30]: To reduce the work load of
human expertise in tuning networks and smooth the research
and development process; To enhance model quality through
efficient training strategies [31]; and to output optimal hyper-
parameter sets that are reproducible and rational [32].

C. Image Super-Resolution

Image super-resolution has been a long-lasting research
topic in computer vision. It aims at generating one or more
high-resolution image from its low-resolution counterparts. It
welcomes various applications including ultrasound imaging
[33], security [34], [35] and media content enhancement etc.
However, image SR has been challenging since a single low-
resolution image can be mapped towards several possible high-
resolution candidates based on different approaches. Tradi-
tional approaches include prediction-based methods [36], [37]
and statistical methods [38], [39]. In recent years, we have
witnessed the rising of deep learning methods that create
possibilities for various learning-based methods. Starting with
several inspiring precursors [40], [41], [42], [43], convolu-
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tional neural networks (CNN) has been a popular backbone
for image super-resolution with most adoptions focusing on
architecture designs such as residual learning [44] and dense
network connections [42]. Recently, Generative Adversarial
Nets (GAN) have also staged promising results [45].

ITI. DESIGN

We designed and implemented SCaMP: a scalable dis-
tributed meta-learning framework powered by DeepSpeed,
and applicable to transformer architectures including SwinlR.
There are several key features of SCaMP depicted in Figure
1(b), which are:

o User Configurations: These configurations contain infor-
mation on the NAS settings (block architecture, #sub-
nets, #subnet architectures, etc), model training settings
(#epochs, batch size, learning rate, etc), and distributed
training settings (i.e. parallelism and sharding settings for
DeepSpeed).

o Controller: The controller manages training by launching
and monitoring subnet training jobs within training nodes.

o Load Balancer: A powerful estimation engine that ensures
aggregate device memory is saturated while necessary
communication is minimized.

o Trainer: A lightweight interface built atop DeepSpeed to
help the Controller launch and manage training jobs.

At a high level, a typical SCaMP workflow follows these

steps (see Figure 1(b)):

1) The user writes a configuration and passes it to SCaMP,
which launches a controller.

2) The controller instantiates the model and feeds the user
configuration settings into the load balancer

3) The load balancer estimates the model’s memory, chooses
the appropriate subnet placement and batch sizes, and
generates a set of parallel experiments.

4) The controller then takes this experiment set and launch-
es/monitors them on parallel hardware via the trainer
interface.

The controller keeps detailed logs on each subnet run, and
prepares a final summarization on the throughput and loss
curves for each subnet. Once the subnets have completed
training on however many iterations the user configuration dic-
tates, the user reads through the summarization and associated
logs and chooses the best candidate subnet and hyperparamter
combination to fully train with a framework that is external to
SCaMP. Each component is described in detail in the following
sections:

1) User Configurations

We seek to maximize user control over the NAS/HPO
process while minimizing their required knowledge of the
underlying framework. Therefore, we adopt the configuration
approach and allow users to tune as many clearly-documented
knobs as possible without modifying several complex training
files to meet their specific NAS/HPO training job.

A given user configuration is split into a few key parts:

« Settings for the overall meta-learning job. These in-

clude settings such as the number of subnets, what range

of hyperparameters they’re trained over, what search
space to use, etc.

« Model training settings. These include how many train-
ing steps each subnet is trained for, what values to use
for static hyperparameters, training data and dataloader
options, etc.

« Distributed settings. These optional settings can deter-
mine the constraints for SCaMP’s load balancer, includ-
ing the number of nodes/GPUs, how many concurrent
subnets to train at once, etc. If the user wishes to override
the load balancer and instead decide how to map subnets,
they may pass custom mappings of subnets to GPUs.

Listing 1 contains a snippet of an example configuration file.

I # SCaMP Sample User Config

3 {

4 # Distributed Training Settings

5 # Choose the number of subnets to parallelize

6 "num-parallel-subnets": 4

# Optionally map each subnet to a pair of "node

:[list of GPU IDs]

8 "subnet-mappings": {0:[0,1], 0:[2,3], 1:[0,1],
1:[2,3]}

10 # NAS or HPO Settings

1 "num-subnets": 1000,

12 "strategy": "evolutionary",

13 "hidden_size": [1028, 2048, ...],

14 ..

15 # Model Settings and static hyperparameters
16 "scale": 2,

17 "n_channels": 3,

19 # Training Settings and static hyperparameters
20 "train_micro_batch_size_per_gpu": 4,

21 "num_epochs": 10,

2 "log-interval": 10,

23 "checkpointing": True

24 "optimizer": {
bs "type": "Adam",

26 "params": {
7 "lr": 0.0002,

29 }

bo

31 "fplé": true,
"zero_optimization": ({
"stage": 1,

s ),

Listing 1. Example of user configuration in SCaMP

2) Memory Estimation

Estimating the memory of a given subnet configuration.
Specifically, we seek to estimate the GPU memory M required
to fit a model during training.

Mrpor = M + My + M,y + M, ey

Where M, is the memory necessary to fit the model M,
for the optimizer (we assume mixed-precision Adam in this
work), M, for the gradients, and M, for the activations. Given
the number of model parameters p, DeepSpeed ZeRO stage
(ranges from 0 — 3[18]), number of bytes per parameter
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(a) SCaMP Software Stack

(b) SCaMP Architecture

Fig. 1. SCaMP is a scalable and flexible framework for meta-parallelism composed of a Controller (Section III-3), a load balancer (Section III-4), and a

trainer (Section III-5) that directly interfaces with the parallel hardware.

(k = 2 for fpl6, k = 4 for fp32), devices d, tensor parallel
degree ¢ (ranges from 1—d, and ¢t = 1 if no tensor parallelism
is used), sequence length s, batch size b, hidden size h, number
of transformer layers L, the approximate memory overhead in
bytes required by a given model configuration is given by
Equations 2, 3, 4, and 5 below.

6k-p

k- _ z>1
= z=3 d >’ =
My~ { @t 2) Mo~ ©)
%7 else @ 6k - p, else
kp 24
My~d 40 22 4y MymsbhL(104+ =) (5)
t
k-p, else

Note that: (1) while the equations for My, M,, and
M, are specific to DeepSpeed, mixed-precision Adam and
transformer architectures, they can easily be extended to other
architectures and optimizers within the SCaMP framework.
(2) The activation memory equation M, is specific to a
transformer using a selective activation checkpointing scheme
like that used in Megatron[46]. For future work, we intend to
extend these equations to support other optimizers, activation
checkpointing schemes, and DNN architectures common in
distributed DL.

3) Controller

Standard NAS implementations train each subnet archi-
tecture via data-parallelism (e.g. Figure 2(d)), and therefore
inherit the communication overhead from data parallelism
[47]. Instead, SCaMP supports training multiple subnet archi-
tectures at once by specifying the desired mapping within the
user configuration. Consider the difference between Figures
2(a) and 2(d). Training a single subnet at a time via data-
parallelism (i.e. Figure 2(d)) will suffer from communication
overhead, but if the model fits in memory we can assign a
single subnet to each GPU and completely remove the need
for communication operations among GPUs. The controller
launches a distinct training job on each GPU, and monitors
their completion. Note that distributed overhead is small but
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TABLE I
NUMBER OF SUBNETS TRAINED CONCURRENTLY FOR EACH EXAMPLE
PARALLELISM SCHEME IN SCAMP

Parallelism Scheme | Number of Concurrent Subnets
Full DP 1
Number of GPUs
Node DP ~(GPU/Node]
Half-node DP 2 x %
NP Number of GPUs

not zero because each NAS training iteration is synchronous
(i.e. all subnets must complete training and evaluating this
iteration’s subnets before proceeding). Once all subnets within
a NAS iteration have been trained and evaluated, the new
subnet training jobs are assigned across GPUs. Note that this
scheme requires the number of subnets to equal the number
of total GPUs. In order to support any number of subnets,
any intermediate parallelism scheme (e.g. data-parallelism of
a single subnet within each node as in Figure 2(c)) is available
by specifying the desired mapping in a user configuration
file. Finally, SCaMP inherits DeepSpeed’s ability to split large
models that cannot fit inside a single GPU’s memory via three-
dimensional parallelism (e.g. Figure 1(b)).

4) Load Balancer

The load balancer determines how to place subnets so
that resources are maximally used while minimizing data
parallelism within subnets. Depending on the number of
subnets, the number of nodes available and the number of
GPUs available, the load balancer seeks to decide a subnet
parallelism strategy such as those in Figure 2 to minimize
data-parallel communication. A key feature within the load
balancer is the ability to estimate the memory overhead of
each subnet. Specifically, it generates an array where each
element contains the memory overhead necessary to fit a
single replica of that subnet M, (model_def, datatype). Then
the load balancer iterates over this array, and determines the
minimum number of devices required to train each subnet
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without data parallelism with the maximum batch size. Given
that total available GPU memory is given by G, the memory
required by subnet ¢ is M;, batch size is given by B, and
the memory per batch is given by Mp, we seek to find the
minimum number of devices d; required to train a given subnet
while maximizing GPU memory utilization via the batch size.

M,;
dZ(GM7ML) = I—@.I +mgx{B*]V[B|B*]WB < G]\{} 6)

These memory estimation equations are combined with the
load balancer (discussed in Section III-4) to automatically
fit the maximum batch size for a given user configuration.
Note that when d; = 1, the load balancer will seek to
evenly distribute resources to each subnet for data parallelism,
maximize the batch size for each data parallel instance, and
as nearly approximate the No Parallelism meta-parallelism
scheme in Figure 2 and Table I. When d; > 1, however,
the load balancer must apply model parallelism to the model,
maximize the batch size, and evenly distribute resources to
each subnet for data parallelism. Ideally, the resulting meta-
parallel strategy will still approximate the no-parallelism. An
example of a load-balanced workload for 4 subnets, each
roughly doubling in size, is depicted in Figure 3. If the load
balancer determines that the number of subnets requires more
GPUs than are available, which is often the case, then training
is split into a number of steps, each step containing a load-
balanced set of concurrent subnets.

5) Trainer

The trainer is provided two inputs:

o The controller propagates the user’s configuration file and
information on the state of the system (e.g. number of
nodes, GPUs per node, etc).

o The load balancer provides a mapping of each subnet to
the number of GPUs necessary and the best batch size to
use.

The controller launches training jobs on target GPUs via
the Trainer. In order for the controller to log and synchronize
training jobs, a lightweight API between the controller and
underlying distributed DL training framework (DeepSpeed)
was developed. The full API is depicted in Listing 2. If any
subnet training jobs fail, these failures are summarized and
reported to the user independently of the overall HPO/NAS
workload to avoid unnecessary slowdowns.

I # Maintains overall training information such as

the best subnets, iteration number, etc
> class SCaMP_Status

# Stores the parsed configuration file
class SCaMP_Args config

# Returns subnet training status (e.g.
"complete", "failed")
8 status (int gpu_id)

"training",

10 # Launches a DeepSpeed training job
11 launch (List<int> gpu_ids, SCaMP_Args config)

13 # Evaluates trained subnets and updates status
14 evaluate (List<int> gpu_ids, SCaMP_Status status)

16 # Updates subnet architectures and updates status

17 update_parameters (SCaMP_Args config, SCaMP_Status
status)

18

19 # Synchronizes each subnet step

20 synchronize (List<int> gpu_ids)

21

» # Displays status to user

3 log(List<int> gpu_ids, SCaMP_Status status)

Listing 2. SCaMP API

6) Meta-Parallelism  Strategies
Boundaries

It’s often the case that the model size itself is modified
(either directly or indirectly) by hyperparameter settings. We
wish to account for the case that the model becomes large
or small enough to cross a model-parallelism boundary (e.g.
when increasing a hidden dimension hyperparameter, increase
the model-parallel degree m if the model is estimated to run
out of memory).

Without meta-parallel techniques, the user would need to
1) empirically determine which hyperparameter settings cor-
respond to a given model-parallel degree, 2) split the overall
hyperparameter search into distinct sets, one for each model-
parallel degree. We have added the flexibility within SCaMP to
estimate the memory requirements for a given hyperparameter
set and maximally use available resources on-the-fly.

By estimating the memory requirements of model-parallel
subnets on-the-fly and placing them on a the minimal number
of GPUs possible, SCaMP is able to vastly decrease the
time spent in data parallel communication. Weakening the
reliance on data parallel communication greatly improves the
scalability of meta-parallel schemes such as hyperparame-
ter optimization and neural architecture search. By carefully
placing model-parallel subnets on parallel hardware, SCaMP
is again able to vastly reduce data parallel communication
overhead and improve scalability

Crossing  Parallelism

IV. ANALYTICAL MODEL FOR META-PARALLELISM

1) Basic Parallel Training

We present an anlytical model to estimate the potential
speedup of a given meta-parallelism strategy. The number
of processors used in a given training run are denoted by
d. The computation and communication time are denoted by
Teomm and Teomp. Teomm is itself split into model-parallel
(T'nrp_comm) and data-parallel (I'pp_comm) communication.
We model T p_comm as independent of the total number of
processes®. The time spent in data-parallelism could relate to
the total number of devices d in a myriad of ways depending
on its implementation, but will follow Eq 7 in the vast majority
of cases, and often scales like O(d) or O(log(d)) [48].

Top comm(d) < d
or.conm(®) 0

TDP_cowun ( 1)

2While the model-parallel communication cost does depend on the
number of devices (e.g. the pipeline bubble decreases in size as the data-
parallel degree increases), we will assume that any model-parallel trials are
partitioned across the minimal number of devices to run
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Fig. 2. Comparison of parallelization strategies in SCaMP. Each box within a node is a GPU, and M,, refers to training model subnet n on a given GPU.

All subnets fit within a GPU and are approximately the same size.

Mo M3
Mo M3
M7 M%
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M3 M$
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Node 0 Node 1

Fig. 3. Training across model parallelism boundaries. Each box within a node
is a GPU, and MF refers to training model-parallel partition k of model subnet
n on a given GPU. The model size of each subsequent subnet is roughly
doubled (e.g. subnet O fits on a single GPU, subnet 1 requires two GPUs,
etc).

We can model the overall time spent in communication as

Tco’mm (d) = T]\/IP_comm + TDP_comm(d) (8)

We will operate under the basic assumption that the time
spent in computation is inversely proportional to the data-
parallel degree. Therefore, the baseline time to train a single
subnet is given by Eq 9

single
Ttotal

(@) = 5% Teamp + Teomm ()
2) Meta-Parallelism Strategies
In order to perform hyperparameter optimization or neural
architecture search, a series of n subnets are first defined.
Each subnet is trained up to a given number of steps, and
the resulting model accuracy is recorded. The best subnet is
then chosen for full training. Given that we have n subnets to

(€))
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evaluate, and that we wish to naively train them sequentially,
the time it takes to train all subnets is given in Eq 10.
1 .
POECEEE

(d) . d comp (d) )

This method of training wastes significant time in communi-
cation if the model fits within less memory than the aggregate
device memory. Therefore, we wish to reduce the time spent in
communication and increase the time spent in computation. To
do this, we train ¢ concurrent subnets which we call Partial-
node DP. There are many possible subnet placement strategies
available, some of which are depicted in Figure 2. The time
to train n subnets is now given by Eq 11.

n

TFull—DP

i
total +T

comm

(10)

n/ec

" : o
Tt PP () = 7 mas{(5 % Ty + Tomm ()
J Cc
=1

total

(i —=1)xc<j<ixc} (11)

Where 0 = ¢ mod d. No Parallelism (NP) is given by Eq
11 with ¢ = d, and Full DP is given by Eq 11 with ¢
1. In all of these meta-parallel strategies, the time spent in
computation is increased proportional to ¢ while the time spent
in communication is reduced proportional to c.

V. PERFORMANCE CHARACTERIZATION

1) Node Architecture

All experimental evaluations® were conducted on the Lassen
cluster at Lawrence Livermore National Laboratory and on the
ThetaGPU cluster at Argonne Leadership Computing Facil-
ity [49]. ThetaGPU is comprised of 24 NVIDIA DGX A100
nodes. Each node is equipped with 2 AMD Rome CPUs, 1TB

3The choice of cluster for a given application was purely made out of
external factors such as available compute and ease of software compatibility
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(a) Time to train subnets in SCaMP using a variety of parallelism strategies and
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Fig. 4. Performance of various parallelism strategies in SCaMP. Most previous HPO/NAS frameworks rely on Fully DP or Node DP, which are subject to
significant data-parallel communication overheads. SCaMP is able to reduce the data-parallel communication overhead required to train a set of subnets by

using meta-parallelism strategies such as those in Figure 2.

3-lane NVLink <— X-Bus
(75 GB/s) (64 GB/s)

<-> 8-lane PCle Gen4 = |nfiniband EDR
(16 GB/s) (12.5 GBIs)

- - >

>
P Port0  Port1 y

Fig. 5. Node topology of the Lassen supercomputer at LLNL

DDR4 memory, and 8 NVIDIA A100 Tensor Core GPUrs.
The NVIDIA DGX A100 GPU has 40GB HBM2, and is
connected with the second generation NVIDIA NVSwitch.
Each node is connected with Mellanox ConnectX-6 VPI HDR
InfiniBand/Ethernet network adapters, and the overall cluster
includes 20 Mellanox QM9700 HDR200 switches wired in
a fat-tree topology. Lassen is the #34-ranked machine in
the TOP500[50] as of December 2022 and consists of 792
GPU nodes each with four 16 GB memory NVIDIA Volta
V100 GPUs. Lassen nodes contain two 44-core IBM Power 9
architecture CPUs, and are connected via Mellanox Infiniband
EDR in a fat-tree topology

2) Software Libraries

We used MVAPICH2-GDR 2.3.7 [51] for all DL experi-
ments. All backends and frameworks were built with CUDA
11.4.152 on ThetaGPU and CUDA 11.4.100 on Lassen. All
micro-benchmark evaluations were carried out with OSU
Micro-Benchmarks (OMB) 6.1. For our DL evaluations, we
used source-built PyTorch v1.12.1 and DeepSpeed v0.7.4.

3) DL Training Settings

For vision models, we used a mixture of SwinIR[52] and
vision transformers (ViT)[53]. We fully trained a NAS/HPO
model based on SwinIR. Details and results are in Section V-A
and Table II, respectively.

For text-based models, we used Megatron-DeepSpeed[54].
These models were used to evaluate model-parallel subnets.
We modified only the tensor parallelism degree in SCaMP,
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keeping pipeline parallelism constant (we intend to extend
the load balancer to exploit multiple degrees of parallelism
in future work. See Section VII). All Megatron-DeepSpeed
models were GPT-based and dense transformers.

4) Application Results

We first evaluated our distributed meta-learning framework
(SCaMP) on a variety of system scales within the Lassen
supercomputer (Node architecture in Figure 5). The results
of training each of the parallelism strategies using ViT-based
Megatron-DeepSpeed subnets are in Figure 2 with SCaMP on
4-32 V100 GPUs on Lassen are depicted in Figures 4(a) and
4(b). Note that No Parallelism (NP) refers to the parallelism
strategy in Figure 2(a), Half-Node Data-Parallel (half-node
DP) refers to Figure 2(b), Node Data-Parallel (Node DP)
refers to Figure 2(c), and Fully Data-Parallel (Fully DP) refers
to Figure 2(d).

@ Sequential Comp @ SCaMP Comp [ESequential Comm & SCaMP Comm

100%

80%
60%
40%
20% N
0%
2 3 4 5 6
Number of Subnets
Fig. 6. Proportion of communication to computation for various meta-

parallelism strategies. Each subsequent subnet is roughly double the size of
the previous subnet (see Figure 3 for an example of 4 subnets). We denote
the training of a single subnet at a time without load balancing as sequential.

The key takeaway of Figures 4(a) and 4(b) is that each
parallelism strategy has a progressively less demanding data-
parallel communication overhead. Consider the case at 8§
GPUs. Node DP removes the inter-node communication
present in Fully DP, half-node DP removes the X-Bus
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communication present in Node DP*, and NP removes the
data-parallel communication overhead entirely, culminating in
a 29% reduction in overall training time. Note that the meta-
parallelism strategy is dependent on the number of concurrent
subnets being trained at a given time. The exact number
of concurrent subnets that can be trained for each meta-
parallelism scheme is depicted in Table 1.

Calling back to the motivation stated in Section I-A, SCaMP
seeks to reduce the data-parallel communication overhead, and
therefore shift the overall application time from communica-
tion to computation. Therefore, we profiled the time spent in
each communication call and used this to calculate the overall
proportion of time spent in computation and communication
on the ThetaGPU system (8 A100 GPUs per node). We have
evaluated the case where each subsequent subnet requires
roughly double the memory to fit within memory (i.e. by
doubling the number of layers, so that 2Mm-subnets GPUs is
needed to fit all of the subnets in aggregate memory). An
example of this scheme with 4 subnets is depicted in Figure
3. The resulting communication vs computation data both with
SCaMP’s load balancing engine versus training a single subnet
at a time without load balancing using GPT-based Megatron-
DeepSpeed subnets is depicted in Figure 6. The main takeaway
from this result is that SCaMP’s load balancing strategies
greatly reduce the time spent in data-parallel communication,
even if model-parallel communication is still required by larger
subnet architectures. Another insight is that both SCaMP and
Sequential require significantly more communication once the
largest model-parallel subnet is split across nodes.

Finally, we wish to compare experimental results against
the analytical model defined on IV. We first measure the
resulting experimental error on Lassen with a static number
of devices but across meta-parallelism strategies. These results
are depicted in Figure 7. To ensure that the analytical model
also holds at multiple system scales, we also measure the
experimental error across a range of GPU scales. This result
is depicted in Figure 8.

35 2.5%

@ 30
g 25 2.0% (gé
w 20 1.5% €
= 8
= 15 1.0% 5
o 10 i
g 5 0.5% S
g o0 Bi0%, I

Fully DP Node DP Half-Node NP

DP
[JAnalytical [ZZExperimental -m-Error

Fig. 7. Comparison of analytical model and experimental results for various
meta-parallelism strategies at 32 V100 GPUs on Lassen

4Recall that pairs of GPUs are connected via NVLINK on Lassen. See
Figure 5
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Fig. 8. Comparison against analytical model across GPU scales on Lassen
for half-node (Figure 2) parallelism strategy

A. SwinIR NAS

We trained our NAS SwinIlR (which we denote as
SwiNASIR) using the same hyperparameters as the original
SwinlR paper. We trained on the DIV2K dataset [9] and eval-
uated on the Set5 [55], Setl4 [56], BSD100 [57], Urban100
[58], and Mangal09 [59] test datasets. High-quality and low-
quality image pairs are generated with a bicubic interpolation
kernel. We trained for 500K iterations and set the batch size
to 32. The learning rate is initialized to 2e-4 and halved at
iterations: [250K, 400K, 450K, 475K]. We used the Adam
[15] optimizer with 5, = 0.9 and [z = 0.99.

From Table II, we can see that the SwiNASIR and
SwiNASIR+ model architectures built with NAS slightly out-
perform the manually defined models SwinIR and SwinIR+,
respectively. We believe this is strong evidence for the cor-
rectness of SCaMP’s NAS/HPO meta-parallelism strategies.

VI. RELATED WORK

In this sections, we briefly review past research on image
super-resolution (SR) and deep learning search strategies such
as neural architecture search (NAS) and hyperparameter opti-
mization (HPO) for its relevancy in our work.

Most prior works on training parallel image SR models
focus on data-parallel CNNs [60], [61] or ViTs [52]. While
these works focus on either the use of HPC systems in training
large state-of-the-art models, or the tuning of HPC middleware
for modern SR models, our work uses image SR as an example
use case for meta-training paradigms (e.g. NAS and HPO).
Specifically, we are interested in parallelism schemes among
DL training settings, not within a single setup. Therefore, these
prior works are complementary to ours.

Much work has been done on DL parallelism schemes.
Both data-parallel [26], [62], [25] and model-parallel [20],
[16], [17], [24], [63] designs and frameworks have emerged to
tackle the problems of training in-core and out-of-core models,
respectively. Similar to prior image SR model papers, these
are complimentary to our work. Since DeepSpeed is a current
frontrunner 3D parallism DL framework, we have chosen it to
power ScaMP’s training engine.

To our knowledge, we are the first to train a state-of-the-
art super-resolution model with NAS. We have built atop the
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TABLE II
QUANTITATIVE COMPARISON BETWEEN STANDARD SWINIR AND A MODEL TRAINED AUTOMATICALLY BY SCAMP’S HPO/NAS FEATURES.
EVALUATIONS ARE CARRIED OUT FOR CLASSICAL IMAGE SR ON BENCHMARK DATASETS USING THE AVERAGE PSNR/SSIM AS AN EVALUATION
METRIC. BEST AND SECOND BEST PERFORMANCE ARE COLORED RED AND BLUE, RESPECTIVELY.

Model Scale | Training Dataset Set5 Set14 BSD100 Urban100 Mangal09
PSNR | SSIM PSNR SSIM | PSNR | SSIM | PSNR [ SSIM | PSNR | SSIM
SwinIR x2 DIV2K 38.35 | 0.962 34.14 0.9227 | 32.44 | 0.903 334 0.9393 | 39.6 0.9792
SwinIR+ x2 DIV2K 38.38 | 0.9621 | 34.24 0.9233 | 3247 | 0.9032 | 33.51 0.9401 | 39.7 0.9794
SwiNASIR (Ours) x2 DIV2K 38.42 | 0.9623 | 34.27 0.9236 | 3248 | 0.9034 | 33.56 | 0.9406 | 39.7 0.9793
SwiNASIR+ (Ours) | x2 DIV2K 38.45 | 0.9625 | 34.32 0.9241 | 32.52 | 0.9035 | 33.65 | 0.9412 | 39.9 0.9795
SwinIR x3 DIV2K 34.89 | 0.9318 | 30.77 0.8503 | 29.37 | 0.8124 | 29.29 | 0.8744 | 34.74 | 0.9518
SwinIR+ x3 DIV2K 3495 | 0.9322 | 30.83 0.8511 | 29.41 0.813 29.42 | 0.8761 | 34.92 | 0.9526
SwiNASIR (Ours) x3 DIV2K 35.09 | 0.9324 | 31.01 0.854 29.51 0.8153 | 29.65 0.879 35.03 | 0.9531
SwiNASIR+ (Ours) | x3 DIV2K 35.16 | 0.9328 | 31.07 0.8545 | 29.56 | 0.8159 | 29.75 0.8803 | 35.19 | 0.954
SwinIR x4 DIV2K 32.72 | 0.9021 | 28.94 0.7914 | 27.83 | 0.7459 | 27.07 | 0.8164 | 31.67 | 0.9226
SwinIR+ x4 DIV2K 32.81 0.9029 | 29.02 0.7928 | 27.87 | 0.7466 | 27.21 0.8187 | 31.88 | 0.9423
SwiNASIR (Ours) x4 DIV2K 329 0.9041 | 29.07 0.7945 | 27.9 0.7487 | 27.39 | 0.8231 | 31.99 | 0.9258
SwiNASIR+ (Ours) | x4 DIV2K 32.95 | 0.9046 | 29.717 | 0.796 2793 | 0.7492 | 2745 | 0.825 32.17 | 0.9269

work performed by previous works on NAS for ViT models,
such as GIiT [64] and Autoformer [65].

Attention-based methods have also been applied towards
image super-resolution and were able to achieve state-of-
the-art results [66], [67], [52]. TTSR [67] was one of the
first transformers for image super-resolution. It uses attention
mechanisms to efficiently transfer relevant textures from high-
resolution reference images towards target low-resolution im-
age. Proposed by Chen et al [66], IPT serves as a backbone
model for various image restoration tasks based on large
pre-trained Transformer. IPT depends on a huge number of
parameters, large-scale datasets and contrastive learning to
achieve multi-task compatibility. Recently, Swin Transformer
[68] has laid path for more potential in image super resolution
with its reduced computational complexity and multi-scale
feature integration. SwinIR [52] is a image super-resolution
transformer based on swin transformer and has been topping
several benchmark with notable performance.

While NAS has been applied to find better CNN archi-
tectures [29], it is still hard to shift towards transformer
architectures since search space of transformer models are
extremely large and thus requires well-designed search space
and aggressive search strategies. GLiT [64] designed a hi-
erarchical neural architecture search method that aims to
search for the optimal vision transformer from two levels
with evolutionary algorithm. AutoFormer [65] proposed a new
one-shot architecture search framework that applies weight
entanglement to different blocks in the same layers to increase
training efficiency on subnets.

Some prior works have studied parallelism for meta-learning
tasks. In particular, the works in Tune [69]. As Hyperparam-
eter Optimization (HPO) gradually becomes important in the
model selection stage, more and more hyperparameter tuning
frameworks emerge. Tune [69] was introduced as an open-
sourced tuning framework that supports efficient distributed
training on the Ray platform as well as a variety of state-
of-the-art HPO algorithms. Optuna [70] features dynamic
construction of search space, efficient pruning strategy and
minimum setup requirements to deploy both small and large
scale experiments. With a focus on production environment,
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Katib [71] was the first cloud native framework that elaborates
on cross-team collaboration.

VII. CONCLUSION AND FUTURE WORK

State-of-the-art deep learning (DL) models are pushing
the boundaries of existing fields while pioneering entirely
new areas of study. However, choosing the DNN architecture
settings or set of hyperparameters to maximize model accuracy
requires a significant amount of trial-and-error and compute
resources. In this paper, we present and evaluate SCaMP: a
Scalable Meta-Parallelism framework for efficiently training
multiple candidate architectures or hyperparameter sets con-
currently. SCaMP supports flexible user configurations, effi-
cient load balancing, and robust memory estimation. SCaMP
is demonstrated on DL models such as Megatron [63] and
SwinlR [52]. We report up to a 29% reduction in overall
hyperparameter optimization time over basic data parallelism
on 32 V100 GPUs on the Lassen HPC system, and a reduction
in the proportion of overall time spent in communication from
28% to 15% on the ThetaGPU HPC system. To verify the
correctness of our result, we have trained a state-of-the-art
SwinlR model. We believe that the meta-parallelism strategies
and load-balancing designs introduced in SCaMP will vastly
reduce the time spent in HPO/NAS workloads.

As future work, we intend to extend SCaMP to support
other DNN architectures beyond transformer-based models.
The load-balancer currently only supports a single method
of model parallelism, but we will add support for balancing
multiple dimensions of model-parallelism (e.g. tensor paral-
lelism within a node and pipeline parallelism across nodes)
to efficiently train model-parallel subnets. Further, we will
support and evaluate more NAS/HPO search strategies.
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