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Abstract—Deep Learning (DL) models are growing exponen-
tially and require increasingly powerful High Performance Com-
puting (HPC) systems to train them. Achieving state-of-the-art
results requires carefully tuning the DL model architecture and
training settings, which is a time-consuming process commonly
relegated to distributed search frameworks and trial-and-error.
However, search frameworks don’t provide a flexible parallelism
scheme within and among the chosen DL framework for modern
out-of-core DL models.

In this paper, we propose Scalable Meta-Parallelism for Deep
Learning Search (ScaMP): a distributed Hyperparameter Opti-
mization (HPO) and Neural Architecture Search (NAS) frame-
work that supports out-of-core models with flexible parallelism
schemes. SCaMP is integrated into the modern DL ecosystem,
and enables both efficient parallel training of concurrent candi-
date architectures and aggregate device memory saturation via
a powerful load balancing engine. SCaMP estimates the memory
requirements of each candidate architecture and automatically
applies the appropriate model-parallel degree and maximum
batch size supported for the given candidate. Further, HPO
and NAS with SCaMP are highly customizable via flexible
configuration options.

We evaluate the benefits of our designs on synthetic training
benchmarks and in training a state-of-the-art vision transformer
model. We select transformers as a candidate DL model type and
demonstrate a 29% improvement in end-to-end HPO time on 32
V100 GPUs on the Lassen and ThetaGPU HPC systems. Further,
we demonstrate a reduction in the proportion of NAS time spent
in communication from 28% to 15%. Finally, we thoroughly
verify the correctness of SCaMP by training a state-of-the-art
SwinIR model.

Index Terms—Neural Networks, DNN, MPI, GPU

I. INTRODUCTION

Deep Learning (DL) methods continue to provide state-of-

the-art results across a variety of data formats with a recent

focus on text processing [1], [2], [3] and image processing

[4], [5], [6], [7] applications. In a nutshell, DL is a subset

of Machine Learning (ML) that uses Deep Neural Networks

(DNNs) to learn implicit relationships between input and

output data. DNNs consist of a matrix of weights that are first

updated in order to minimize prediction loss before applying

the final trained model to a dataset. In some cases such as

deep learning recommendation models [8], DL models can

be composed of multiple DNNs combined with other data

processing schemes (such as embedding tables). DL training

is highly compute-intensive, and requires massive amounts

This research is supported in part by NSF grants 1818253, 1854828,
1931537, 2007991, 2018627, 2112606, and XRAC grant NCR-130002.

of data. Most application improvements are achieved by im-

proving the dataset [9], [10], [11], [12], model architecture

[4], [5], [13], and training environment [14], [15], [16], [17]

(e.g. optimizers, parallelism schemes, etc). In recent years, the

scale of DL models and datasets have exploded to hundreds

of billions of parameters [2] and terabytes of data [12].

As a result, distributed DL has become the standard training

method for new DL models. As the largest models grow from

hundreds of millions [4] to hundreds of billions of parameters

[2], new parallelization schemes have arisen to efficiently train

DL models across thousands of processors [18], [19], [20],

[8], [21]. We denote models that fit within device memory as

in-core models, and models that require more memory than a

single device as out-of-core models. While many prior works
have explored parallelism strategies within a single DL
architecture, few have proposed schemes that efficiently
parallelize the search process over multiple possible DL
architectures or training settings. Significant work has been

performed towards reducing the communication overheads

of each scheme, yet the proportion of training time spent

in communication remains high. Further, such schemes are

only useful for training a single DL model with a single

set of training parameters at a time. We propose shifting the

HPO/NAS parallelism focus from optimizing data parallelism

to optimizing subnet1 placement such that communication is

minimized.

Modern large DL models are composed of many possible

settings for training settings (e.g. optimizer settings such as

learning rate, weight initialization, severity of weight and

learning rate decay, number of warmup iterations, etc). There-

fore, a large number of candidate models must be partially

trained before the final model can be trained start-to-finish.

This process is known as hyperparameter optimization.

As models require ever-increasing computational resources to

train, evaluating candidate models has also become computa-

tionally expensive. Another common DL training workflow is

neural architecture search, where details on the underlying

DL architecture itself (e.g. the width and depth of feed-forward

layers, number of attention heads in transformer networks,

etc) is left to an automated optimization process by searching

through candidate models and evolving them to a model with

better performance. Further, candidate architectures commonly

1use the term subnet to denote a single architecture and training setting
combination
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require different amounts of device memory (e.g. changing

the hidden size or number of attention heads in a transformer

model), and it’s common to have a set of subnets with multiple

instances of crossing the device memory boundary. Currently,

the user must empirically determine which subnets lead to

out of memory errors and manually set their model parallel

settings before the full sweep can be run to completion. This

is extremely tedious and error-prone. We wish to estimate the
amount of memory required to instantiate a given subnet,
and automatically choose both the model-parallel degree
required to fit within memory, and the maximum batch
size that fits within memory.

A. Motivation

The key motivator for this work is in reducing unnecessary

data-parallel communication for any DL training scheme that

requires the training of multiple subnets (e.g. HPO and NAS).

Most existing meta-parallel frameworks and techniques rely

upon training one or very few subnets at once, and scale

to many processors with simple data parallelism. While the

use of data parallelism reduces the training time significantly,

ideally by a factor of the number of devices d, it incurs a non-

trivial communication overhead. We believe that thoughtfully

placing concurrent subnets across parallel hardware will nearly

eliminate the communication overhead of data-parallelism

while still reducing the overall subnet training time by a factor

of d.

As a secondary motivator, many existing subnet training

frameworks do not consider the case of crossing parallelism

boundaries within a subnet sweep (i.e. for what subnet archi-

tectures within the sweep does the model require model- or

hybrid-parallelism?). By estimating the memory requirements

of each subnet before training, we wish to choose the degree

of parallelism before starting the training sweep. This func-

tionality will avoid the significant programmer effort required

by empirically determining which subnets require model- or

hybrid-parallelism, then statically choosing the parallelism

settings for those subnets.

B. Problem Statement

Modern DL training pipelines commonly involve one of

two subnet training schemes: Hyperparameter Optimization

(HPO) or Neural Architecture Search (NAS). HPO involves

finding an optimal set of hyperparameters (e.g. optimizer

settings, batch size, number of epochs, etc). While a number

of distributed hyperparameter search libraries exist, there are

two shortcomings: models are typically trained inefficiently in

sequence with data parallelism, and HPO frameworks rarely

support out-of-core models that require advanced model-

parallel techniques. NAS is the problem of finding the highest-

performing DNN architecture on a given training scheme (i.e.

the dataset and hyperparameters are static while the archi-

tecture is modified). Similar to HPO, NAS frameworks exist,

but they share the same shortcomings as HPO. We propose
shifting the HPO/NAS parallelism focus from optimizing
data parallelism to optimizing subnet placement.

C. Challenges

There are two broad challenges addressed in this paper. The

first broad challenge is: Can we reduce the time spent in data-
parallel communication by thoughtfully placing concurrent
subnets?. We seek to create a flexible yet efficient framework

that extends to many subnet architectures, sizes, and system

scales. To answer this broad question, we solve the following

concrete challenges:

• How should a framework load-balance a set of subnet

architectures such that the time spent in communication

is minimized?

• How do we expect these meta-parallelism strategies to

behave analytically?

• What benefits can efficient meta-parallelism strategies

provide to reduce overall HPO/NAS training time?

The second broad challenge we resolve is: Can we avoid
empirically determining which subnets don’t fit within device
memory by estimating the memory requirements of each
subnet, automatically choosing the required degree of model-
parallelism and maximum batch size?. We seek to incorporate

a robust memory estimation engine to enable SCaMP to

automatically handle subnets of varying memory overheads.

• Can the memory requirements of a given subnet be

determined before training begins? Can this information

be used to automatically determine the degree of model-

parallelism required to fit within device memory, as well

as the maximum batch size?

• Given that subnets often have differing memory re-

quirements that may require varying degrees of model

parallelism, how should these subnets be efficiently load-

balanced and managed by a unified interface?

• Can subnets of varying model-parallelism settings still be

load-balanced efficiently at scale?

D. Proposed Solution

We believe that a flexible parallelism suite for training

multiple distributed subnets in parallel will alleviate these

shortcomings. We define parallelism schemes of distributed

subnets as meta-parallelism, and explore its properties. Specif-

ically, we introduce and evaluate Scalable Meta-Parallelism
for Deep Learning Search (SCaMP). SCaMP is a flexible

and efficient meta-parallel framework for any DL problem

involving subnets (e.g. HPO, NAS, parallel inference). SCaMP

monitors and manages subnets in real-time for the end-user,

and is incorporated with modern DL software such as Deep-

Speed [20].

E. Contributions

Our contributions are as follows:

C1) We proposed, designed, and evaluated SCaMP: a scalable

framework for parallel HPO and NAS specifically tar-

geted for transformer models and HPC systems (Section

III)

C2) We modeled and explored the tradeoffs of a variety of

meta-parallelism strategies, and demonstrate why tuning
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each parallelism method leads to significant end-to-end

hybrid parallel subnet training time reductions. (Section

III)

C3) Vastly improve user productivity for HPO and NAS work-

loads by automatically estimating the device memory

requirements of each subnet setting, therefore allowing

the model-parallel degree and maximum batch size to be

set automatically for a given subnet (Section III-6)

C4) Thoroughly verify the correctness of the SCaMP frame-

work by training a model to state-of-the-art accuracy.

(Table II)

C5) Create an analytical model for meta-parallelism strategies

(Section IV) and compare against experimental data (V)

C6) Evaluate SCaMP’s performance on large-scale HPC sys-

tems. Report up to 29% reduction in overall training time

over purely data-parallel training for SwinIR and a reduc-

tion in the proportion of time spent in communication

from 28% to 15% for Megatron. (Section V)

II. BACKGROUND

A. Deep Learning

It is well-known that because of the huge amount of

iterations included, training DNN models is highly demanding

in computation and communication resources [22], [23], [24],

[25]. As larger and deeper DNNs appear, there has been

a growing need for distributed training support in order to

scale out model training to more hardware. Traditional deep

learning frameworks such as PyTorch and TensorFlow contain

distributed training support. Recently, frameworks specifically

targeting distributed training such as Horovod by Uber [26]

and DeepSpeed by Microsoft [20] have appeared. A popular

parallelism strategy to distribute DNN training is data par-

allelism. This scheme first copies an instance of the DNN

model to each CPU/GPU. Then, the training data will be

partitioned arcoss all CPUs/GPUs. The size of a batch of data

that is sent to each CPU/GPU at each global training step

is called the batch size. Data parallelism typically requires a

synchronization at the end of each training step to average

the gradients from all processes. This is always achieved by

collective operations such as MPI allreduce or NCCL. The

averaged gradients will be sent back to each process and

the DNN copies will proceed to the next global training

step with the updated gradients. Model-parallelism is a broad

term referring to any strategy that partitions the model itself

across processors. We denote models that fit within device

memory as in-core models, and models that require more

memory than a single device as out-of-core models. Broadly,

in-core models can be trained with data-parallelism and out-

of-core models require model-parallelism. Note that multiple

data-parallel instances of model-parallel models is the most

common method of training out-of-core models.

B. Deep Learning Search

As modern DL models become more complex, efficient

methods for searching over possible neural architectures have

become enormously important. Manual designs of neural

architectures are more time-consuming and often subject

to errors. Neural Architecture Search (NAS) is an efficient

method of automating neural architecture engineering and a

subfield of AutoML [27]. Several DNNs built with NAS have

outperformed traditional manually crafted neural architectures

in fields such as image classification [28], [29] and object

detection [28]. NAS is often characterized by three dimen-

sions: Search Space, Search Strategy, and Performance
Estimation Strategy. NAS typically features a process that

aims to discover and evaluate candidate networks in a well-

defined search space through an efficient search strategy. Then

the candidate will be evaluated using performance estima-

tion strategy and compared to previous candidates for final

selection. A NAS search space defines a space where all

eligible candidate networks reside. The search strategy draws

the path through which we discover candidate networks in

a search space. The performance estimation strategy is the

method of evaluating a candidate’s performance on unknown

data. NAS methods are generally requiring much computation

resources since within a large search space, there are always

a large number of candidates to be searched, trained and

evaluated. There have been much efforts in reducing search

space complexity [27].

Apart from NAS, Hyper-parameter optimization (HPO) is

also an important compontnet of AutoML in finding optimal

hyper-parameter combinations for neural network architectures

and model training process. Hyper-parameters are parameters

that are cannot be updated during the training of a DNN model.

Typical hyper-parameters include the number of hidden layers,

activation function, learning rate, batch size, optimizer and so

on. HPO is often viewed as the final step of model design and

the first step of actually training a network. In the past, tuning

hyper-parameters are heavily dependent on human expertise

and are set manually before the training process begins. The

process of HPO aims at removing preset humen experience

from a deep learning cycle. However, the automation is at a

cost of extra computational resources. Currently, HPO faces

mainly three challenges [30]: To reduce the work load of

human expertise in tuning networks and smooth the research

and development process; To enhance model quality through

efficient training strategies [31]; and to output optimal hyper-

parameter sets that are reproducible and rational [32].

C. Image Super-Resolution

Image super-resolution has been a long-lasting research

topic in computer vision. It aims at generating one or more

high-resolution image from its low-resolution counterparts. It

welcomes various applications including ultrasound imaging

[33], security [34], [35] and media content enhancement etc.

However, image SR has been challenging since a single low-

resolution image can be mapped towards several possible high-

resolution candidates based on different approaches. Tradi-

tional approaches include prediction-based methods [36], [37]

and statistical methods [38], [39]. In recent years, we have

witnessed the rising of deep learning methods that create

possibilities for various learning-based methods. Starting with

several inspiring precursors [40], [41], [42], [43], convolu-
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tional neural networks (CNN) has been a popular backbone

for image super-resolution with most adoptions focusing on

architecture designs such as residual learning [44] and dense

network connections [42]. Recently, Generative Adversarial

Nets (GAN) have also staged promising results [45].

III. DESIGN

We designed and implemented SCaMP: a scalable dis-

tributed meta-learning framework powered by DeepSpeed,

and applicable to transformer architectures including SwinIR.

There are several key features of SCaMP depicted in Figure

1(b), which are:

• User Configurations: These configurations contain infor-

mation on the NAS settings (block architecture, #sub-

nets, #subnet architectures, etc), model training settings

(#epochs, batch size, learning rate, etc), and distributed

training settings (i.e. parallelism and sharding settings for

DeepSpeed).

• Controller: The controller manages training by launching

and monitoring subnet training jobs within training nodes.

• Load Balancer: A powerful estimation engine that ensures

aggregate device memory is saturated while necessary

communication is minimized.

• Trainer: A lightweight interface built atop DeepSpeed to

help the Controller launch and manage training jobs.

At a high level, a typical SCaMP workflow follows these

steps (see Figure 1(b)):

1) The user writes a configuration and passes it to SCaMP,

which launches a controller.

2) The controller instantiates the model and feeds the user

configuration settings into the load balancer

3) The load balancer estimates the model’s memory, chooses

the appropriate subnet placement and batch sizes, and

generates a set of parallel experiments.

4) The controller then takes this experiment set and launch-

es/monitors them on parallel hardware via the trainer

interface.

The controller keeps detailed logs on each subnet run, and

prepares a final summarization on the throughput and loss

curves for each subnet. Once the subnets have completed

training on however many iterations the user configuration dic-

tates, the user reads through the summarization and associated

logs and chooses the best candidate subnet and hyperparamter

combination to fully train with a framework that is external to

SCaMP. Each component is described in detail in the following

sections:
1) User Configurations
We seek to maximize user control over the NAS/HPO

process while minimizing their required knowledge of the

underlying framework. Therefore, we adopt the configuration

approach and allow users to tune as many clearly-documented

knobs as possible without modifying several complex training

files to meet their specific NAS/HPO training job.
A given user configuration is split into a few key parts:

• Settings for the overall meta-learning job. These in-

clude settings such as the number of subnets, what range

of hyperparameters they’re trained over, what search

space to use, etc.

• Model training settings. These include how many train-

ing steps each subnet is trained for, what values to use

for static hyperparameters, training data and dataloader

options, etc.

• Distributed settings. These optional settings can deter-

mine the constraints for SCaMP’s load balancer, includ-

ing the number of nodes/GPUs, how many concurrent

subnets to train at once, etc. If the user wishes to override

the load balancer and instead decide how to map subnets,

they may pass custom mappings of subnets to GPUs.

Listing 1 contains a snippet of an example configuration file.

1 # SCaMP Sample User Config
2

3 {
4 # Distributed Training Settings
5 # Choose the number of subnets to parallelize
6 "num-parallel-subnets": 4
7 # Optionally map each subnet to a pair of "node

:[list of GPU IDs]
8 "subnet-mappings": {0:[0,1], 0:[2,3], 1:[0,1],

1:[2,3]}
9 ...

10 # NAS or HPO Settings
11 "num-subnets": 1000,
12 "strategy": "evolutionary",
13 "hidden_size": [1028, 2048, ...],
14 ...
15 # Model Settings and static hyperparameters
16 "scale": 2,
17 "n_channels": 3,
18 ...
19 # Training Settings and static hyperparameters
20 "train_micro_batch_size_per_gpu": 4,
21 "num_epochs": 10,
22 "log-interval": 10,
23 "checkpointing": True
24 "optimizer": {
25 "type": "Adam",
26 "params": {
27 "lr": 0.0002,
28 ...
29 }
30 },
31 "fp16": true,
32 "zero_optimization": {
33 "stage": 1,
34 ...
35 },
36 ...
37 }

Listing 1. Example of user configuration in SCaMP

2) Memory Estimation
Estimating the memory of a given subnet configuration.

Specifically, we seek to estimate the GPU memory M required

to fit a model during training.

MTot = Mm +Mo +Mg +Ma (1)

Where Mm is the memory necessary to fit the model,Mo

for the optimizer (we assume mixed-precision Adam in this

work), Mg for the gradients, and Ma for the activations. Given

the number of model parameters p, DeepSpeed ZeRO stagez
(ranges from 0 − 3[18]), number of bytes per parameterk
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(a) SCaMP Software Stack (b) SCaMP Architecture

Fig. 1. SCaMP is a scalable and flexible framework for meta-parallelism composed of a Controller (Section III-3), a load balancer (Section III-4), and a
trainer (Section III-5) that directly interfaces with the parallel hardware.

(k = 2 for fp16, k = 4 for fp32), devices d, tensor parallel

degree t (ranges from 1−d, and t = 1 if no tensor parallelism

is used), sequence length s, batch size b, hidden size h, number

of transformer layers L, the approximate memory overhead in

bytes required by a given model configuration is given by

Equations 2, 3, 4, and 5 below.

Mm ≈
{

k·p
d·t , z = 3
k·p
t , else

(2) Mo ≈
{

6k·p
d , z ≥ 1

6k · p, else
(3)

Mg ≈
{

k·p
d , z ≥ 2

k · p, else
(4) Ma ≈ sbhL(10 +

24

t
) (5)

Note that: (1) while the equations for Mm, Mo, and

Mg are specific to DeepSpeed, mixed-precision Adam and

transformer architectures, they can easily be extended to other

architectures and optimizers within the SCaMP framework.

(2) The activation memory equation Ma is specific to a

transformer using a selective activation checkpointing scheme

like that used in Megatron[46]. For future work, we intend to

extend these equations to support other optimizers, activation

checkpointing schemes, and DNN architectures common in

distributed DL.

3) Controller
Standard NAS implementations train each subnet archi-

tecture via data-parallelism (e.g. Figure 2(d)), and therefore

inherit the communication overhead from data parallelism

[47]. Instead, SCaMP supports training multiple subnet archi-

tectures at once by specifying the desired mapping within the

user configuration. Consider the difference between Figures

2(a) and 2(d). Training a single subnet at a time via data-

parallelism (i.e. Figure 2(d)) will suffer from communication

overhead, but if the model fits in memory we can assign a

single subnet to each GPU and completely remove the need
for communication operations among GPUs. The controller

launches a distinct training job on each GPU, and monitors

their completion. Note that distributed overhead is small but

TABLE I
NUMBER OF SUBNETS TRAINED CONCURRENTLY FOR EACH EXAMPLE

PARALLELISM SCHEME IN SCAMP

Parallelism Scheme Number of Concurrent Subnets
Full DP 1

Node DP Number of GPUs
(GPUs/Node)

Half-node DP 2× Number of GPUs
(GPUs/Node)

NP Number of GPUs

not zero because each NAS training iteration is synchronous

(i.e. all subnets must complete training and evaluating this

iteration’s subnets before proceeding). Once all subnets within

a NAS iteration have been trained and evaluated, the new

subnet training jobs are assigned across GPUs. Note that this

scheme requires the number of subnets to equal the number

of total GPUs. In order to support any number of subnets,

any intermediate parallelism scheme (e.g. data-parallelism of

a single subnet within each node as in Figure 2(c)) is available

by specifying the desired mapping in a user configuration

file. Finally, SCaMP inherits DeepSpeed’s ability to split large

models that cannot fit inside a single GPU’s memory via three-

dimensional parallelism (e.g. Figure 1(b)).

4) Load Balancer
The load balancer determines how to place subnets so

that resources are maximally used while minimizing data

parallelism within subnets. Depending on the number of

subnets, the number of nodes available and the number of

GPUs available, the load balancer seeks to decide a subnet

parallelism strategy such as those in Figure 2 to minimize

data-parallel communication. A key feature within the load

balancer is the ability to estimate the memory overhead of

each subnet. Specifically, it generates an array where each

element contains the memory overhead necessary to fit a

single replica of that subnet Mi(model def, datatype). Then

the load balancer iterates over this array, and determines the

minimum number of devices required to train each subnet
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without data parallelism with the maximum batch size. Given

that total available GPU memory is given by GM , the memory

required by subnet i is Mi, batch size is given by B, and

the memory per batch is given by MB , we seek to find the

minimum number of devices di required to train a given subnet

while maximizing GPU memory utilization via the batch size.

di(GM ,Mi) = � Mi

GM
�+max

B
{B ∗MB |B ∗MB < GM} (6)

These memory estimation equations are combined with the

load balancer (discussed in Section III-4) to automatically

fit the maximum batch size for a given user configuration.

Note that when di = 1, the load balancer will seek to

evenly distribute resources to each subnet for data parallelism,

maximize the batch size for each data parallel instance, and

as nearly approximate the No Parallelism meta-parallelism

scheme in Figure 2 and Table I. When di > 1, however,

the load balancer must apply model parallelism to the model,

maximize the batch size, and evenly distribute resources to

each subnet for data parallelism. Ideally, the resulting meta-

parallel strategy will still approximate the no-parallelism. An

example of a load-balanced workload for 4 subnets, each

roughly doubling in size, is depicted in Figure 3. If the load

balancer determines that the number of subnets requires more

GPUs than are available, which is often the case, then training

is split into a number of steps, each step containing a load-

balanced set of concurrent subnets.

5) Trainer
The trainer is provided two inputs:

• The controller propagates the user’s configuration file and

information on the state of the system (e.g. number of

nodes, GPUs per node, etc).

• The load balancer provides a mapping of each subnet to

the number of GPUs necessary and the best batch size to

use.

The controller launches training jobs on target GPUs via

the Trainer. In order for the controller to log and synchronize

training jobs, a lightweight API between the controller and

underlying distributed DL training framework (DeepSpeed)

was developed. The full API is depicted in Listing 2. If any

subnet training jobs fail, these failures are summarized and

reported to the user independently of the overall HPO/NAS

workload to avoid unnecessary slowdowns.

1 # Maintains overall training information such as
the best subnets, iteration number, etc

2 class SCaMP_Status
3

4 # Stores the parsed configuration file
5 class SCaMP_Args config
6

7 # Returns subnet training status (e.g. "training",
"complete", "failed")

8 status(int gpu_id)
9

10 # Launches a DeepSpeed training job
11 launch(List<int> gpu_ids, SCaMP_Args config)
12

13 # Evaluates trained subnets and updates status
14 evaluate(List<int> gpu_ids, SCaMP_Status status)
15

16 # Updates subnet architectures and updates status
17 update_parameters(SCaMP_Args config, SCaMP_Status

status)
18

19 # Synchronizes each subnet step
20 synchronize(List<int> gpu_ids)
21

22 # Displays status to user
23 log(List<int> gpu_ids, SCaMP_Status status)

Listing 2. SCaMP API

6) Meta-Parallelism Strategies Crossing Parallelism
Boundaries

It’s often the case that the model size itself is modified

(either directly or indirectly) by hyperparameter settings. We

wish to account for the case that the model becomes large

or small enough to cross a model-parallelism boundary (e.g.

when increasing a hidden dimension hyperparameter, increase

the model-parallel degree m if the model is estimated to run

out of memory).

Without meta-parallel techniques, the user would need to

1) empirically determine which hyperparameter settings cor-

respond to a given model-parallel degree, 2) split the overall

hyperparameter search into distinct sets, one for each model-

parallel degree. We have added the flexibility within SCaMP to

estimate the memory requirements for a given hyperparameter

set and maximally use available resources on-the-fly.

By estimating the memory requirements of model-parallel

subnets on-the-fly and placing them on a the minimal number

of GPUs possible, SCaMP is able to vastly decrease the

time spent in data parallel communication. Weakening the

reliance on data parallel communication greatly improves the

scalability of meta-parallel schemes such as hyperparame-

ter optimization and neural architecture search. By carefully

placing model-parallel subnets on parallel hardware, SCaMP

is again able to vastly reduce data parallel communication

overhead and improve scalability

IV. ANALYTICAL MODEL FOR META-PARALLELISM

1) Basic Parallel Training
We present an anlytical model to estimate the potential

speedup of a given meta-parallelism strategy. The number

of processors used in a given training run are denoted by

d. The computation and communication time are denoted by

Tcomm and Tcomp. Tcomm is itself split into model-parallel

(TMP comm) and data-parallel (TDP comm) communication.

We model TMP comm as independent of the total number of

processes2. The time spent in data-parallelism could relate to

the total number of devices d in a myriad of ways depending

on its implementation, but will follow Eq 7 in the vast majority

of cases, and often scales like O(d) or O(log(d)) [48].

TDP comm(d) ∝ d

TDP comm(1) = 0
(7)

2While the model-parallel communication cost does depend on the
number of devices (e.g. the pipeline bubble decreases in size as the data-
parallel degree increases), we will assume that any model-parallel trials are
partitioned across the minimal number of devices to run
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(a) No Parallelism (NP) (b) Partially Data Parallel (Half-node
DP)

(c) Node-boundary Data Parallelism
(Node DP)

(d) Fully Data Parallel (Fully DP)

Fig. 2. Comparison of parallelization strategies in SCaMP. Each box within a node is a GPU, and Mn refers to training model subnet n on a given GPU.
All subnets fit within a GPU and are approximately the same size.

Fig. 3. Training across model parallelism boundaries. Each box within a node
is a GPU, and Mk

n refers to training model-parallel partition k of model subnet
n on a given GPU. The model size of each subsequent subnet is roughly
doubled (e.g. subnet 0 fits on a single GPU, subnet 1 requires two GPUs,
etc).

We can model the overall time spent in communication as

Tcomm(d) = TMP comm + TDP comm(d) (8)

We will operate under the basic assumption that the time

spent in computation is inversely proportional to the data-

parallel degree. Therefore, the baseline time to train a single

subnet is given by Eq 9

T single
total (d) =

1

d
∗ Tcomp + Tcomm(d) (9)

2) Meta-Parallelism Strategies
In order to perform hyperparameter optimization or neural

architecture search, a series of n subnets are first defined.

Each subnet is trained up to a given number of steps, and

the resulting model accuracy is recorded. The best subnet is

then chosen for full training. Given that we have n subnets to

evaluate, and that we wish to naively train them sequentially,

the time it takes to train all subnets is given in Eq 10.

TFull−DP
total (d) =

n∑
i=1

(
1

d
∗ T i

comp + T i
comm(d)) (10)

This method of training wastes significant time in communi-

cation if the model fits within less memory than the aggregate

device memory. Therefore, we wish to reduce the time spent in

communication and increase the time spent in computation. To

do this, we train c concurrent subnets which we call Partial-
node DP. There are many possible subnet placement strategies

available, some of which are depicted in Figure 2. The time

to train n subnets is now given by Eq 11.

TPartial−DP
total (d) =

n/c∑
i=1

max
j

{( c
d
∗ T j

comp + T j
comm(

d

c
))

|(i− 1) ∗ c < j ≤ i ∗ c} (11)

Where 0 ≡ c mod d. No Parallelism (NP) is given by Eq

11 with c = d, and Full DP is given by Eq 11 with c =
1. In all of these meta-parallel strategies, the time spent in

computation is increased proportional to c while the time spent

in communication is reduced proportional to c.

V. PERFORMANCE CHARACTERIZATION

1) Node Architecture
All experimental evaluations3 were conducted on the Lassen

cluster at Lawrence Livermore National Laboratory and on the

ThetaGPU cluster at Argonne Leadership Computing Facil-

ity [49]. ThetaGPU is comprised of 24 NVIDIA DGX A100

nodes. Each node is equipped with 2 AMD Rome CPUs, 1TB

3The choice of cluster for a given application was purely made out of
external factors such as available compute and ease of software compatibility
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(a) Time to train subnets in SCaMP using a variety of parallelism strategies and
system scales

(b) Percent improvement in SCaMP parallelism strategies over pure data
parallelism

Fig. 4. Performance of various parallelism strategies in SCaMP. Most previous HPO/NAS frameworks rely on Fully DP or Node DP, which are subject to
significant data-parallel communication overheads. SCaMP is able to reduce the data-parallel communication overhead required to train a set of subnets by
using meta-parallelism strategies such as those in Figure 2.

Fig. 5. Node topology of the Lassen supercomputer at LLNL

DDR4 memory, and 8 NVIDIA A100 Tensor Core GPUs.

The NVIDIA DGX A100 GPU has 40GB HBM2, and is

connected with the second generation NVIDIA NVSwitch.

Each node is connected with Mellanox ConnectX-6 VPI HDR

InfiniBand/Ethernet network adapters, and the overall cluster

includes 20 Mellanox QM9700 HDR200 switches wired in

a fat-tree topology. Lassen is the #34-ranked machine in

the TOP500[50] as of December 2022 and consists of 792

GPU nodes each with four 16 GB memory NVIDIA Volta

V100 GPUs. Lassen nodes contain two 44-core IBM Power 9

architecture CPUs, and are connected via Mellanox Infiniband

EDR in a fat-tree topology

2) Software Libraries
We used MVAPICH2-GDR 2.3.7 [51] for all DL experi-

ments. All backends and frameworks were built with CUDA

11.4.152 on ThetaGPU and CUDA 11.4.100 on Lassen. All

micro-benchmark evaluations were carried out with OSU

Micro-Benchmarks (OMB) 6.1. For our DL evaluations, we

used source-built PyTorch v1.12.1 and DeepSpeed v0.7.4.

3) DL Training Settings
For vision models, we used a mixture of SwinIR[52] and

vision transformers (ViT)[53]. We fully trained a NAS/HPO

model based on SwinIR. Details and results are in Section V-A

and Table II, respectively.

For text-based models, we used Megatron-DeepSpeed[54].

These models were used to evaluate model-parallel subnets.

We modified only the tensor parallelism degree in SCaMP,

keeping pipeline parallelism constant (we intend to extend

the load balancer to exploit multiple degrees of parallelism

in future work. See Section VII). All Megatron-DeepSpeed

models were GPT-based and dense transformers.

4) Application Results

We first evaluated our distributed meta-learning framework

(SCaMP) on a variety of system scales within the Lassen

supercomputer (Node architecture in Figure 5). The results

of training each of the parallelism strategies using ViT-based

Megatron-DeepSpeed subnets are in Figure 2 with SCaMP on

4-32 V100 GPUs on Lassen are depicted in Figures 4(a) and

4(b). Note that No Parallelism (NP) refers to the parallelism

strategy in Figure 2(a), Half-Node Data-Parallel (half-node
DP) refers to Figure 2(b), Node Data-Parallel (Node DP)

refers to Figure 2(c), and Fully Data-Parallel (Fully DP) refers

to Figure 2(d).

Fig. 6. Proportion of communication to computation for various meta-
parallelism strategies. Each subsequent subnet is roughly double the size of
the previous subnet (see Figure 3 for an example of 4 subnets). We denote
the training of a single subnet at a time without load balancing as sequential.

The key takeaway of Figures 4(a) and 4(b) is that each

parallelism strategy has a progressively less demanding data-

parallel communication overhead. Consider the case at 8

GPUs. Node DP removes the inter-node communication

present in Fully DP, half-node DP removes the X-Bus
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communication present in Node DP4, and NP removes the

data-parallel communication overhead entirely, culminating in

a 29% reduction in overall training time. Note that the meta-

parallelism strategy is dependent on the number of concurrent

subnets being trained at a given time. The exact number

of concurrent subnets that can be trained for each meta-

parallelism scheme is depicted in Table I.

Calling back to the motivation stated in Section I-A, SCaMP

seeks to reduce the data-parallel communication overhead, and

therefore shift the overall application time from communica-

tion to computation. Therefore, we profiled the time spent in

each communication call and used this to calculate the overall

proportion of time spent in computation and communication

on the ThetaGPU system (8 A100 GPUs per node). We have

evaluated the case where each subsequent subnet requires

roughly double the memory to fit within memory (i.e. by

doubling the number of layers, so that 2num subnets GPUs is

needed to fit all of the subnets in aggregate memory). An

example of this scheme with 4 subnets is depicted in Figure

3. The resulting communication vs computation data both with

SCaMP’s load balancing engine versus training a single subnet

at a time without load balancing using GPT-based Megatron-

DeepSpeed subnets is depicted in Figure 6. The main takeaway

from this result is that SCaMP’s load balancing strategies

greatly reduce the time spent in data-parallel communication,

even if model-parallel communication is still required by larger

subnet architectures. Another insight is that both SCaMP and

Sequential require significantly more communication once the

largest model-parallel subnet is split across nodes.

Finally, we wish to compare experimental results against

the analytical model defined on IV. We first measure the

resulting experimental error on Lassen with a static number

of devices but across meta-parallelism strategies. These results

are depicted in Figure 7. To ensure that the analytical model

also holds at multiple system scales, we also measure the

experimental error across a range of GPU scales. This result

is depicted in Figure 8.

Fig. 7. Comparison of analytical model and experimental results for various
meta-parallelism strategies at 32 V100 GPUs on Lassen

4Recall that pairs of GPUs are connected via NVLINK on Lassen. See
Figure 5

Fig. 8. Comparison against analytical model across GPU scales on Lassen
for half-node (Figure 2) parallelism strategy

A. SwinIR NAS

We trained our NAS SwinIR (which we denote as

SwiNASIR) using the same hyperparameters as the original

SwinIR paper. We trained on the DIV2K dataset [9] and eval-

uated on the Set5 [55], Set14 [56], BSD100 [57], Urban100

[58], and Manga109 [59] test datasets. High-quality and low-

quality image pairs are generated with a bicubic interpolation

kernel. We trained for 500K iterations and set the batch size

to 32. The learning rate is initialized to 2e-4 and halved at

iterations: [250K, 400K, 450K, 475K]. We used the Adam

[15] optimizer with β1 = 0.9 and β2 = 0.99.

From Table II, we can see that the SwiNASIR and

SwiNASIR+ model architectures built with NAS slightly out-

perform the manually defined models SwinIR and SwinIR+,

respectively. We believe this is strong evidence for the cor-

rectness of SCaMP’s NAS/HPO meta-parallelism strategies.

VI. RELATED WORK

In this sections, we briefly review past research on image

super-resolution (SR) and deep learning search strategies such

as neural architecture search (NAS) and hyperparameter opti-

mization (HPO) for its relevancy in our work.

Most prior works on training parallel image SR models

focus on data-parallel CNNs [60], [61] or ViTs [52]. While

these works focus on either the use of HPC systems in training

large state-of-the-art models, or the tuning of HPC middleware

for modern SR models, our work uses image SR as an example

use case for meta-training paradigms (e.g. NAS and HPO).

Specifically, we are interested in parallelism schemes among
DL training settings, not within a single setup. Therefore, these

prior works are complementary to ours.

Much work has been done on DL parallelism schemes.

Both data-parallel [26], [62], [25] and model-parallel [20],

[16], [17], [24], [63] designs and frameworks have emerged to

tackle the problems of training in-core and out-of-core models,

respectively. Similar to prior image SR model papers, these

are complimentary to our work. Since DeepSpeed is a current

frontrunner 3D parallism DL framework, we have chosen it to

power ScaMP’s training engine.

To our knowledge, we are the first to train a state-of-the-

art super-resolution model with NAS. We have built atop the

399

Authorized licensed use limited to: The Ohio State University. Downloaded on September 13,2023 at 13:21:42 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
QUANTITATIVE COMPARISON BETWEEN STANDARD SWINIR AND A MODEL TRAINED AUTOMATICALLY BY SCAMP’S HPO/NAS FEATURES.

EVALUATIONS ARE CARRIED OUT FOR CLASSICAL IMAGE SR ON BENCHMARK DATASETS USING THE AVERAGE PSNR/SSIM AS AN EVALUATION

METRIC. BEST AND SECOND BEST PERFORMANCE ARE COLORED RED AND BLUE, RESPECTIVELY.

Model Scale Training Dataset
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR x2 DIV2K 38.35 0.962 34.14 0.9227 32.44 0.903 33.4 0.9393 39.6 0.9792
SwinIR+ x2 DIV2K 38.38 0.9621 34.24 0.9233 32.47 0.9032 33.51 0.9401 39.7 0.9794
SwiNASIR (Ours) x2 DIV2K 38.42 0.9623 34.27 0.9236 32.48 0.9034 33.56 0.9406 39.7 0.9793
SwiNASIR+ (Ours) x2 DIV2K 38.45 0.9625 34.32 0.9241 32.52 0.9035 33.65 0.9412 39.9 0.9795
SwinIR x3 DIV2K 34.89 0.9318 30.77 0.8503 29.37 0.8124 29.29 0.8744 34.74 0.9518
SwinIR+ x3 DIV2K 34.95 0.9322 30.83 0.8511 29.41 0.813 29.42 0.8761 34.92 0.9526
SwiNASIR (Ours) x3 DIV2K 35.09 0.9324 31.01 0.854 29.51 0.8153 29.65 0.879 35.03 0.9531
SwiNASIR+ (Ours) x3 DIV2K 35.16 0.9328 31.07 0.8545 29.56 0.8159 29.75 0.8803 35.19 0.954
SwinIR x4 DIV2K 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226
SwinIR+ x4 DIV2K 32.81 0.9029 29.02 0.7928 27.87 0.7466 27.21 0.8187 31.88 0.9423
SwiNASIR (Ours) x4 DIV2K 32.9 0.9041 29.07 0.7945 27.9 0.7487 27.39 0.8231 31.99 0.9258
SwiNASIR+ (Ours) x4 DIV2K 32.95 0.9046 29.717 0.796 27.93 0.7492 27.45 0.825 32.17 0.9269

work performed by previous works on NAS for ViT models,

such as GliT [64] and Autoformer [65].

Attention-based methods have also been applied towards

image super-resolution and were able to achieve state-of-

the-art results [66], [67], [52]. TTSR [67] was one of the

first transformers for image super-resolution. It uses attention

mechanisms to efficiently transfer relevant textures from high-

resolution reference images towards target low-resolution im-

age. Proposed by Chen et al [66], IPT serves as a backbone

model for various image restoration tasks based on large

pre-trained Transformer. IPT depends on a huge number of

parameters, large-scale datasets and contrastive learning to

achieve multi-task compatibility. Recently, Swin Transformer

[68] has laid path for more potential in image super resolution

with its reduced computational complexity and multi-scale

feature integration. SwinIR [52] is a image super-resolution

transformer based on swin transformer and has been topping

several benchmark with notable performance.

While NAS has been applied to find better CNN archi-

tectures [29], it is still hard to shift towards transformer

architectures since search space of transformer models are

extremely large and thus requires well-designed search space

and aggressive search strategies. GLiT [64] designed a hi-

erarchical neural architecture search method that aims to

search for the optimal vision transformer from two levels

with evolutionary algorithm. AutoFormer [65] proposed a new

one-shot architecture search framework that applies weight

entanglement to different blocks in the same layers to increase

training efficiency on subnets.

Some prior works have studied parallelism for meta-learning

tasks. In particular, the works in Tune [69]. As Hyperparam-

eter Optimization (HPO) gradually becomes important in the

model selection stage, more and more hyperparameter tuning

frameworks emerge. Tune [69] was introduced as an open-

sourced tuning framework that supports efficient distributed

training on the Ray platform as well as a variety of state-

of-the-art HPO algorithms. Optuna [70] features dynamic

construction of search space, efficient pruning strategy and

minimum setup requirements to deploy both small and large

scale experiments. With a focus on production environment,

Katib [71] was the first cloud native framework that elaborates

on cross-team collaboration.

VII. CONCLUSION AND FUTURE WORK

State-of-the-art deep learning (DL) models are pushing

the boundaries of existing fields while pioneering entirely

new areas of study. However, choosing the DNN architecture

settings or set of hyperparameters to maximize model accuracy

requires a significant amount of trial-and-error and compute

resources. In this paper, we present and evaluate SCaMP: a

Scalable Meta-Parallelism framework for efficiently training

multiple candidate architectures or hyperparameter sets con-

currently. SCaMP supports flexible user configurations, effi-

cient load balancing, and robust memory estimation. SCaMP

is demonstrated on DL models such as Megatron [63] and

SwinIR [52]. We report up to a 29% reduction in overall

hyperparameter optimization time over basic data parallelism

on 32 V100 GPUs on the Lassen HPC system, and a reduction

in the proportion of overall time spent in communication from

28% to 15% on the ThetaGPU HPC system. To verify the

correctness of our result, we have trained a state-of-the-art

SwinIR model. We believe that the meta-parallelism strategies

and load-balancing designs introduced in SCaMP will vastly

reduce the time spent in HPO/NAS workloads.
As future work, we intend to extend SCaMP to support

other DNN architectures beyond transformer-based models.

The load-balancer currently only supports a single method

of model parallelism, but we will add support for balancing

multiple dimensions of model-parallelism (e.g. tensor paral-

lelism within a node and pipeline parallelism across nodes)

to efficiently train model-parallel subnets. Further, we will

support and evaluate more NAS/HPO search strategies.
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