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Abstract—In recent years, the training requirements of many
state-of-the-art Deep Learning (DL) models have scaled beyond
the compute and memory capabilities of a single processor,
and necessitated distribution among processors. Training such
massive models necessitates advanced parallelism strategies [1],
[2] to maintain efficiency. However, such distributed DL par-
allelism strategies require a varied mixture of collective and
point-to-point communication operations across a broad range
of message sizes and scales. Examples of models using advanced
parallelism strategies include Deep Learning Recommendation
Models (DLRM) [3] and Mixture-of-Experts (MoE) [4], [5].
Communication libraries’ performance varies wildly across dif-
ferent communication operations, scales, and message sizes. We
propose MCR-DL: an extensible DL communication framework
that supports all point-to-point and collective operations while
enabling users to dynamically mix-and-match communication
backends for a given operation without deadlocks. MCR-DL also
comes packaged with a tuning suite for dynamically selecting
the best communication backend for a given input tensor. We
select DeepSpeed-MoE and DLRM as candidate DL models and
demonstrate a 31% improvement in DS-MoE throughput on 256
V100 GPUs on the Lassen HPC system. Further, we achieve a
20% throughput improvement in a dense Megatron-DeepSpeed
model and a 25% throughput improvement in DLRM on 32 A100
GPUs with the Theta-GPU HPC system.

Index Terms—Neural Networks, DNN, MPI, GPU

I. INTRODUCTION

Distributed DL has become the standard training method

for many state-of-the-art vision [6], language [7], [8], and

recommendation [9] DL models. As the largest models grow

from hundreds of millions [10] to hundreds of billions of

parameters [7], new parallelization schemes have arisen to

efficiently train DL models across thousands of processors

[11], [1], [12]. While previous data-parallel DL models could

heavily rely on a few collective operations (namely Allreduce),

the model-parallel schemes of new models (e.g. sharding,

pipeline and model parallelism, tensor slicing, etc) require a

mixture of different collective and point-to-point operations

This research is supported in part by NSF grants 1818253, 1854828,
1931537, 2007991, 2018627, 2112606, and XRAC grant NCR-130002.

[3], [13], [11]. These advanced parallelization schemes rely

heavily upon communication backends such as the NVIDIA

Collectives Communication Library NCCL [14] and CUDA-

Aware MPI libraries [15], [16]. However, modern communica-

tion backends have wildly varied performance characteristics

across operations, within operations, and across releases (See

Section I-C for a concrete example).

A. Problem Statement

There are two primary drawbacks to existing distributed

DL frameworks’ communication: a lack of completeness in

support for all communication operations/backends, and a

lack of support for mixed-backend communication. Since

modern distributed DL frameworks such as Horovod and

PyTorch’s Distributed module do not support all MPI or NCCL

operations (e.g. vectored collectives such as Gatherv), DL

researchers are required to either: (Option 1): implement

their desired collectives via Point-to-Point operations (if point-

to-point operations are supported in the chosen framework),

or (Option 2): transfer tensors between the distributed DL

framework and an external MPI Python wrapper such as

mpi4py [17]. Option 1 sacrifices the performance enhance-

ments present in NCCL and most CUDA-Aware libraries,

while option 2 introduces significant program complexity. For

the second drawback, a lack of mixed-backend communication

forces the user to decide where to sacrifice performance, since

no communication backend performs all operations optimally

(see Section I-C for a concrete example). These drawbacks

bottleneck programmer productivity (e.g. a DL scientist must

first implement an MPI Igather before the intended optimiza-

tion) and performance (e.g. NCCL performs well for Allreduce

and MPI performs well for Alltoall. Which backend does one

choose?), respectively.

B. Proposed Solution

We believe that a single unified interface between a given

DL framework and the desired communication backend(s)
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(a) Proportion of computation to communication for distributed
DL training

(b) Breakdown of individual communication operations for dis-
tributed DL training

Fig. 1. Computation vs. Communication and breakdown of Communication operations breakdown for ResNet-50 (64 V100 GPUs on Lassen), DS-MoE (64
V100 GPUs on Lassen), and DLRM (32 A100 GPUs on Theta-GPU)

(MPI, NCCL, etc) will alleviate these performance and pro-

ductivity bottlenecks, while introducing the possibility of

mixed backend communication (e.g. MPI Alltoall and NCCL

Allreduce).

In this paper, we introduce and evaluate a Mix-and-Match
Communication Runtime for Deep Learning (MCR-DL).
Specifically, MCR-DL is a lightweight unified interface be-

tween the DL framework (PyTorch) and any combination of

ABI-compatible1 communication backends. MCR-DL users

can dynamically switch between communication backends

during distributed DL training. MCR-DL supports many ex-

isting communication backends (by implementing them as a

high-level backend class), and provides an extensible design

to enable new communication backends and performance

optimizations.

C. Motivation

First, we profiled the computation and communication

overhead of three representative DL models: DLRM and

DeepSpeed-MoE (state-of-the-art hybrid-parallel DL models),

and ResNet-50 (established data-parallel DL model). The

overall computation vs. communication split as well as com-

munication breakdown profiles are depicted in Figure 1. First,

we note that data-parallelism is strongly compute-dominated,

and its communication overhead is almost entirely made up of

Allreduce. Therefore, data-parallel applications like ResNet-50

are able to achieve the best performance on existing monolithic

distributed DL frameworks, and the choice of communication

backend is simply determined by whichever library has the

fastest CUDA-Aware Allreduce. We note that MCR-DL is

still applicable to data-parallel frameworks with tuning (See

Section V-F and Table II for details), but due to their much

lower communication overhead, the benefits are marginal.

However, DLRM and DS-MoE have a significantly higher

communication overhead at scale. Further, their communi-

cation operation requirements are heterogeneous. Therefore,

there is a lot of room for mixing backends according to their

strengths in order to improve training throughput.

1An Application Binary Interface (ABI), is the low-level interface between
two program modules. An ABI determines such details as how functions
are called and the size, layout, and alignment of datatypes. With ABI-
compatibility, programs conform to the same set of runtime conventions.

Consider the case of DS-MoE. Given the communication
breakdown in Figure 1(b) and the collective performance in
Figure 2, which communication backend should be used? A

myriad of application questions would need to be answered

such as which collectives DS-MoE uses, their relative frequen-

cies, and the range of message sizes for each collective. Any

decision on a single communication backend will lose out on

some collectives and at some message ranges. Specifically,

since DS-MoE relies mostly on Allreduce and Alltoall, we

could refer to Figure 2 and reduce communication overhead by

applying MVAPICH2-GDR for Alltoall and NCCL for Allre-

duce. However, such a decision will need to be reevaluated at

each subsequent release cycle of the communication backends.

If the user is able to dynamically switch among communica-

tion backends, they could squeeze more performance out of

their application while reducing the setup cost of changing

communication backends if future communication backend

releases change.

D. Contributions

Our contributions are as follows:

C1) We proposed, designed, and evaluated MCR-DL: an

extensible, scalable API for DL communication opera-

tions. MCR-DL supports all point-to-point and collective

communication operations on PyTorch tensors, and all

collective communication libraries (Section V-A)

C2) We enabled deadlock-free mixed-backend DL communi-

cation via fine-grained synchronization techniques (Sec-

tion V-D)

C3) We fully implemented MCR-DL in a C++ backbone

underneath a thin Python layer, and achieved a maximum

of 5% overhead (compared to a pure micro-benchmark

written in C) for small messages and a 1% overhead

for large messages (down from 18% and 4% in PyTorch

distributed, respectively) (Figure 7)

C4) MCR-DL offers up to 31% throughput improvement

(12% in scaling efficiency) in DeepSpeed-MoE and 25%

throughput improvement (14% improvement in scaling

efficiency) in DLRM by dynamically selecting the best-

performing communication backend at each scale and

message size (Figures 8 and 9)
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(a) 64 GPUs (16 node 4 ppn) - iAllreduce (b) 64 GPUs (16 nodes 4 ppn) - Alltoall

Fig. 2. Comparison of communication backends’ collective performance on basic micro-benchmark with 64 V100 GPUs on Lassen

Studies
Features

Point-to-Point Collectives Vector Collectives Non-Blocking Operations Mixed-Backend Communication Backend as a Class

Horovod � � � NCCL Only Experimental �

PyTorch Distributed Module � � � NCCL Only � �

LBANN � � � � � �

mpi4py[17] � � � � � �

Proposed MCR-DL � � � � � �

TABLE I
FEATURES OFFERED BY MCR-DL COMPARED TO EXISTING FRAMEWORKS

C5) Define and implement a tuning framework within MCR-

DL that enables the best communication backend to be

automatically selected for each communication operation

(Section V-F)

C6) Demonstrate the extensibility of MCR-DL by adding

support for communication compression, logging, and

tensor fusion (Section V-E)

II. RELATED WORK

A. DL Communication Framework Design

DeepSpeed [12] uses PyTorch’s distributed module [18] to

implement optimized DL communication at extreme scales.

Recently, DeepSpeed has added support for Mixture-of-

Experts (MoE) DL models [5], [4]. Horovod [19] is a data-

parallel focused framework that experimentally supports mixed

communications without deadlock-avoidance support. The

Livermore Big Artificial Neural Network Toolkit (LBANN)

is an HPC-centric distributed DL framework that supports

multiple parallelism levels. The MPI for Python package [17]

supplies Python bindings for the MPI standard. Our work

competes with these works by seeking to unify communication

calls into a single interface built atop PyTorch.

B. Mixing MPI with an External Framework

The work in [20] combined an MPI runtime with UPC

in a deadlock-free architecture by unifying the runtimes. The

resulting runtime shared resources between MPI and UPC to

avoid data-dependencies. In recent releases, the MVAPICH2-

GDR [16] CUDA-Aware MPI library has added support for

NCCL collectives. However, this support is not optimized for

non-blocking communication operations like those required

by DLRM. Aluminum [21] is a DL-focused communication

library built on MPI and NCCL, but is focused on latency-

bound communication operations. Our work is complementary

to the above works, since we choose the best backend for each

communication operation.

C. Scaling Mixture-of-Experts and DLRM Models

The work in [13] scaled a 600 billion parameter Mixture-of-

Experts (MoE) model to 2048 TPU v3 processors. DeepSpeed

has recently added support for MoE DL models [4] and scaled

beyond a trillion parameters [5]. MoE models are gradually

being applied to other domains such as vision [22]. DLRM

[3] has scaled beyond a trillion parameters with 4D parallelism

techniques [9]. We demonstrate that our work further improves

the scaling behavior of these complex parallel DL models.

III. BACKGROUND

A. DL Training

Distributed DL can take several forms: data-parallelism,

model-parallelism, and hybrid-parallelism. Data-parallism

places a full model replica on each processor, and splits

the training data among processors. Model parallelism splits

the model across processors, and propagates each data sam-

ple through each device. Hybrid-parallelism splits the model

across sets of processors, and splits the training data among

complete-model sets of processors. There are tradeoffs for

each parallelism scheme: data-parallelism is the simplest and

has low communication overhead but is restricted to models

that fit in processor memory. Hybrid and model-parallelism

can accommodate any model size, but can require com-

plex communication with high overheads. All distributed DL

schemes are increasingly deployed on HPC systems [23], [7].
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B. Distributed DL Frameworks

Horovod is a distributed DL framework with a focus on

distributed data-parallelism to train DNNs [19]. As such,

Horovod primarily relies on Allreduce and Bcast collectives.

Due to Horovod’s focus, they provide a simple API, quick

installations, and powerful data-parallel optimizations and

profiling tools. Horovod supports many major DL frameworks

and communication backends, including MPI and NCCL [14].

PyTorch’s distributed module is a built-in communication

API within the PyTorch [24] DL framework. PyTorch dis-

tributed supports most communication operations, and con-

tains several optimizations for distributed training (e.g. mixed-

precision, gradient bucketing, sharded optimizer states). While

official PyTorch wheels come packaged with the NCCL back-

end, other backends require a PyTorch source installation.

DeepSpeed is a distributed DL framework built atop Py-

Torch’s distributed module. DeepSpeed’s focus is on efficient

training of large-scale models that don’t fit into a single

processor’s memory. A myriad of parallelism schemes and

optimizer sharding techniques are included in DeepSpeed.

C. Communication Backends

MPI is a parallel programming standard that enables pro-

cesses to communicate with each other. CUDA-aware MPI

libraries such as SpectrumMPI [25], OpenMPI [15], and

MVAPICH2 [16] provide optimized support for heteroge-

neous systems containing GPUs. GPU communication opti-

mizations such as staging, CUDA Inter-Process Communica-

tion (IPC), and GPUDirect RDMA enable MPI libraries to

provide superior performance across different combinations of

GPU and interconnect [26].

NCCL implements optimized collective communication

patterns for NVIDIA GPUs [14]. The various collective

communication primitives found in NCCL are: Allgather,

Allreduce, Reduce, ReduceScatter, Alltoall, Point-to-Point,

and Broadcast. NCCL is not MPI-compliant, however, and

does not provide support for many common MPI operations

such as gather, scatter, and variable message-size collectives.

Microsoft’s Synthesized Collective Communication Library

(MSCCL) [27] creates custom collective algorithms for a given

hardware topology. MSCCL supports both AMD and NVIDIA

GPUs, and supports all major collective operations.

D. Mixture-of-Experts

Mixture-of-experts (MoE) is an ensemble machine learn-

ing technique where a collection of ”expert” feed-forward

networks (FFNs) are trained on subtasks of the problem.

Only a few experts are applied to a given data sample. In

recent years, the MoE technique has been applied to trans-

former DL models in an effort to increase the model size

(and therefore accuracy) while lessening the computational

burden. MoE models require less computation to train than

equivalent standard (i.e. ”dense”) models because each token

only propagates through an expert subset of the full model.

Incoming tokens are routed to existing expert FFNs via a

gating function, and this routing as well as its subsequent

combination of FFN outputs require Alltoall operations. Such

Alltoall operations scale with the number of devices, and

quickly become a dominant communication overhead at large

scales. The distributed DL frameworks DeepSpeed [5], [4] and

Fairseq [28] have recently added support for MoE transformer

models.

E. Deep Learning Recommendation Models

Deep Learning Recommendation Models (DLRMs) are a

family of recommendation models that rely upon at least

one deep neural network (DNN) [3], [9]. Such models are

composed of sparse embedding tables and dense multilayer

perceptrons (MLPs). Note that a MLP is a special case of

an FFN where every layer is fully connected to the next

layer in the network. While sparse categorical data must be

processed via embedding lookups (and are memory-bound),

dense continuous data is fed through the bottom MLPs (and are

compute-bound). The MLPs are trained via data-parallelism,

and hence depend on Allreduce. The embedding tables are

split across processes, and must be shuffled with an Alltoall

prior to being fed into the top MLP. Each batch’s Alltoall

operation is overlapped with the previous top MLP’s forward

pass from the previous batch, which necessitates non-blocking

Alltoall.

IV. CHALLENGES

The key challenge addressed in this paper is: Can we
improve the interface between a DL framework and communi-
cation backends with a single unified framework built on top
of PyTorch?. We seek to create an extensible framework that

encapsulates all MPI and NCCL functionality. To answer this

broad question, we solve the following concrete challenges:

• What are the key communication needs of modern dis-

tributed DL models and frameworks? Do existing dis-

tributed DL frameworks provide these needs?

• Can a unified framework improve rapid prototyping for

DL parallelism schemes while enabling mixed-backend

communications?

• What benefits can mixed-backend communications pro-

vide to improve DL training throughput?

V. DESIGN

MCR-DL is split into a C++ implementation layer under-

neath a thin Python wrapper. Each backend is implemented

as an object of a class, and implements the MCR-DL API in

accordance with each backend’s requirements.

A. MCR-DL API

MCR-DL implements all communication operations as de-

picted below in Listing 1.

1 def get_backends()
2 def init(list<str> backends)
3 def finalize(list<str> backends)
4 def synchronize(list<str> backends)
5 def get_size(str backend)
6 def get_rank(str backend)
7 def send(str backend, torch.Tensor t, int rank,

bool async_op)
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8 def recv(str backend, torch.Tensor t, int rank,
bool async_op)

9 def all_to_all_single(str backend, torch.Tensor
output, torch.Tensor input, bool async_op)

10 def all_to_all(str backend, list<torch.Tensor>
output, list<torch.Tensor> input, bool async_op
)

11 def all_reduce(str backend, torch.Tensor output,
ReduceOp op, bool async_op)

12 def all_gather(str backend, torch.Tensor output,
torch.Tensor input, bool async_op)

13 def gather(str backend, torch.Tensor output, int
root, bool async_op)

14 def scatter(str backend, torch.Tensor output, int
root, bool async_op)

15 def reduce(str backend, torch.Tensor output, int
root, ReduceOp op, bool async_op)

16 def reduce_scatter(str backend, torch.Tensor output
, int root, ReduceOp op, bool async_op)

17 def bcast(str backend, torch.Tensor output, int
root, bool async_op)

18 def gatherv(str backend, torch.Tensor output, int
root, list<int> rcounts, list<int> displs, bool
async_op)

19 def scatterv(str backend, torch.Tensor output, int
root, list<int> scounts, list<int> displs, bool
async_op)

20 def all_to_allv(str backend, torch.Tensor output,
torch.Tensor input, list<int> scounts, list<int
> rcounts, list<int> def sdispls, list<int>
rdispls, bool async_op)

21 def all_gatherv(str backend, torch.Tensor output,
int root, list<int> rcounts, list<int> displs,
bool async_op)

Listing 1. High-level MCR-DL API

1 # Before MCR-DL
2 def allgather_host(self,
3 comm,
4 cupy_sign,
5 cupy_rbuf_sign,
6 cupy_scale,
7 cupy_rbuf_scale):
8

9 # 1. Convert cupy to numpy
10 numpy_rbuf_sign = np.zeros(
11 [comm.Get_size(),
12 cupy_sign.size],
13 dtype=cupy_sign.dtype)
14 numpy_rbuf_scale = np.zeros([comm.Get_size(),
15 1],
16 dtype=

cupy_scale.dtype)
17

18 numpy_sign = cupy.asnumpy(cupy_sign)
19 numpy_rbuf_sign = cupy.asnumpy(cupy_rbuf_sign)
20 numpy_scale = cupy.asnumpy(cupy_scale)
21 numpy_rbuf_scale = cupy.asnumpy(cupy_rbuf_scale

)
22 cupy.cuda.get_current_stream().synchronize()
23

24 # 2. Communicate numpy buffers
25 comm.Allgather(numpy_sign, numpy_rbuf_sign)
26 comm.Allgather(numpy_scale, numpy_rbuf_scale)
27 comm.Barrier()
28

29 # 3. Convert numpy back to cupy
30 cupy_sign = cupy.asarray(numpy_sign)
31 cupy_rbuf_sign = cupy.asarray(numpy_rbuf_sign)
32 cupy_scale = cupy.asarray(numpy_scale)
33 cupy_rbuf_scale = cupy.asarray(numpy_rbuf_scale

)
34 cupy.cuda.get_current_stream().synchronize()

35

36 return cupy_sign, cupy_rbuf_sign, cupy_scale,
cupy_rbuf_scale

37

38

39 # After MCR-DL
40 def allgather_host(self,
41 comm,
42 sign,
43 rbuf_sign,
44 scale,
45 rbuf_scale):
46

47 comm.all_gather_base(rbuf_sign, sign)
48 comm.all_gather_base(rbuf_sign, sign)
49

50 return sign, rbuf_sign, scale, rbuf_scale

Listing 2. Example of simplified prototyping with MCR-DL

There are a few key takeaways from this API listing:

• All operations take either a single backend string that

matches an underlying backend class (e.g. ”mv2-gdr”,

”nccl”, etc) or a special backend flag ”auto”, which will

dynamically choose the best message size for a given

scale and message size if tuning tables are available.

(Note: MCR-DL comes packaged with a tuning suite

which first runs communication operation benchmarks for

each backend, and uses this data to map each message

size, scale, and operation to a given backend. This optimal

backend choice is then used at runtime if ”auto” is

chosen)

• We conform to the PyTorch distributed module API

conventions when possible to ease code refactoring to

MCR-DL. An example of this is all to all, which shuffles

lists of tensors rather than individual tensor elements.

This is a common usecase in distributed PyTorch ap-

plications. Another example is all to all single, which

directly shuffles the tensor elements themselves on each

rank.

• Vectored collectives (e.g. gatherv/scatterv) and non-

blocking collectives are supported for all backends.

B. Advanced Communication Support

Most distributed DL frameworks do not support the full

underlying communication backend, only the operations that

matter for DL parallelism (e.g. Allreduce). If a user needs a

communication operation that is not currently supported by

their distributed DL framework (e.g. advanced parallelism or

data processing), they would need to sacrifice performance or

productivity as mentioned in Section I-C.

MCR-DL is a thin layer atop each currently-supported

backend, and fully implements each backend on PyTorch

tensors (See Figure 3 for the software stack). The MCR-DL

”Backend” class can be easily extended to new communication

backends such as MSCCL [27], Gloo, oneAPI, etc.

C. Synchronization

One of the most important design considerations for a

distributed framework is synchronization. We seek to add

enough synchronization to rid the programmer of having to
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Fig. 3. The MCR-DL Software Stack. MCR-DL is a thin layer between
a target DL framework and the HPC system, and supports any number of
stream-aware communication backends along with CUDA-Aware MPI.

frequently debug deadlocks and data validation issues, while

achieving enough overlap to maintain high performance at

scale. With the right synchronization strategy, we are able to

efficiently both overlap computation with communication, and

overlap across communication backends without deadlocks or

data validation issues.

1 import torch
2 import mcr_dl
3

4 def tensor():
5 return torch.rand(1,1)
6

7 x = tensor().cuda()
8 y = tensor().cuda()
9 mcr_dl.init('nccl')

10

11 h = mcr_dl.all_reduce('nccl', x, async_op=True)
12 y = y + y
13 h.wait('nccl')
14 result = x + y

Listing 3. Example of available overlap between communication and
computation in a DL setting

(a) Naive synchronization (b) Synchronization in MCR-DL

Fig. 4. Synchronization diagrams of Listing 3 for the naive scheme and MCR-
DL’s fine-grained CUDA event scheme

First consider a naive synchronization scheme where a) all

communication operations are posted to the PyTorch default

stream, and b) we synchronize operations with cudaStream-

Synchronize on that stream. We demonstrate the behavior of

this scheme in Listing 3, a prototypical example of available

communication/computation overlap faced in distributed DL.

The resulting serial execution is depicted in Figure 4(a)2.

In MCR-DL, we exploit communication/computation overlap

by creating a pool of communication streams for each

backend. These streams are managed internally to MCR-DL.

Communication operations posted to a backend’s stream(s) are

synchronized with fine-grained CUDA events. For figure 4(b),

this translates to: (1): An all reduce(x) operation is posted to a

NCCL communication stream in MCR-DL, and a distributed

work handle is stored in h, (2): MCR-DL records a CUDA

event e onto the communication stream and begins executing

the all reduce(x), (3): the PyTorch default stream is able to

progress with operations unrelated to x, (4): when a data-

dependency on x is encountered, the user must call wait() on

the work handle h, which MCR-DL uses internally to wait on

the prior event e.

This scheme is similar to PyTorch’s distributed module, but

there are a few key implementation details that enable greater

performance: (1): The use of multiple streams enables con-

current small-message operations (concurrent large-message

operations are bandwidth-bound and show no benefit), (2):
Instead of having an overall communication stream, each back-

end contains its own stream for overlap across backends. This

synchronization behavior is extended to multiple backends in

MCR-DL, which we will now discuss.

D. Mixed-Backend Communications

Since MCR-DL is a thin layer atop communication back-

ends, we can pass the desired backend for any given com-

munication operation dynamically within a Python script. An

example of this is depicted below in Listing 4.

1 import torch
2 import mcr_dl
3

4 def tensor():
5 return torch.rand(1,1)
6

7 x = tensor().cuda()
8 y = tensor().cuda()
9 z = tensor().cuda()

10 mcr_dl.init(['nccl', 'mpi'])
11

12 h1 = mcr_dl.all_reduce('nccl', x, async_op=True)
13 h2 = mcr_dl.all_reduce('mpi', y, async_op=True)
14 z = z + z
15 h1.wait()
16 h2.wait()
17 result = x + y + z

Listing 4. Example of explicit mixed-backend communications in MCR-
DL. All inter-backend synchronization is performed internally. MCR-DL can
dynamically choose the best backend to use at runtime if ’auto’ is passed as
the backend (See Section V-F)

However, each communication backend conforms to its own

synchronization scheme. NCCL and its derivatives are syn-

chronized on the CUDA streams, while MPI is synchronized

on a host thread. If we are to mix backends without deadlocks,

2The length of operation boxes in Figures is purely for synchronization
discussion
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Fig. 5. In MCR-DL, communication backends can be explicitly chosen, or
users can dynamically choose the best backend for a given operation with
”auto”

we will need to loop over each implemented backend and syn-

chronize with their respective thread/stream. For the mixture of

CUDA-Aware MPI and non-blocking NCCL, for example, this

entails a call to CUDA-event based synchronization for NCCL

(as discussed in section V-C), followed by an MPI Wait for

MPI. Handling CUDA-aware MPI is a challenge since CUDA

streams are not exposed by MPI to the application, this leads

to two options (which MCR-DL provide at the initialization

of an MPI backend): (1): Allow MPI to handle all streams,

which sacrifices some MCR-DL overlap across backends, but

preserves multiple CUDA stream logic (if it exists) within

MPI. (2): Intercept calls to cudaStreamCreate and manage

streams in MCR-DL, which exploits overlap across backends,

but could potentially lead to deadlocks if multi-stream logic

is used in MPI3. An example of streams managed by MCR-

DL is depicted by Figure 5. For ease of synchronization,

every work handle’s wait() call waits on the PyTorch default

stream (i.e. synchronization purely between communication

streams is not supported). We note that stream-aware MPI like

the implemention by MPICH [29] allows MCR-DL to fully

overlap communication backends by self-managing streams.

While Figure 5 depicts the mixture of a stream-aware

backend (NCCL) and a backend without streams exposed to

the user (MPI), the combination of any number of stream-

aware backends (NCCL, SCCL, etc) is supported in MCR-DL

and synchronized with CUDA events. Further, the combination

of ABI-compatible MPI backends is supported4. In our exper-

iments, the initialization overhead for multiple communication

libraries is negligible after being amortized over a few (< 10)
DL training steps.

E. Communication Optimization Extensibility

In PyTorch’s distributed module and Horovod, there are a

number of commmunication optimizations (e.g. Tensor Fusion,

3In our experiments, we find that the best choice for this option is dependent
on the MPI library

4In our experiments, we found that mixing at most one non-stream-aware
backend is optimal for overlap

Padding, etc) built atop the communication layer to improve

performance. Similarly, by encapsulating all communication

operations into MCR-DL, these optimizations can be easily in-

tegrated into all communication operations and backends. One

can utilize the rich Python ecosystem to insert optimizations

into MCR-DL’s Python layer as depicted in Figure 6. As exam-

ples, we have implemented lossy communication compression

with zfp [30], Tensor Fusion (combining small tensors into a

bandwidth-optimal large tensor), and communication logging

(which is used to generate Figures 1 and 12). Further, future

optimizations (e.g. persistent collectives) can be easily added

with minimal changes among backends and operations. These

optimizations can be applied to incoming messages with only

a few lines of Python code before routing the operation to its

respective C++ backend.

There are two parameters for Tensor Fusion: the maximum

fusion buffer size B and the maximum time T to wait

for that fusion buffer to fill with small tensors. MCR-DL

introduces a small optimization for Tensor Fusion, where if

the Fusion buffer does not reach B before T (and therefore

does not saturate bandwidth), the communication is overlapped

with other backends’ Fusion buffers, if available. This Tensor

Fusion optimization is used in all DL training results in Section

VI.

Fig. 6. In MCR-DL, communication backends can be explicitly chosen, or
users can dynamically choose the best backend for a given operation with the
”auto” backend option. Further, MCR-DL routes all communication operations
through an optional set of optimizations, including Tensor Fusion (combining
small tensors into a bandwidth-optimal large tensor), message compression,
and logging.

F. Communication Tuning

Tuning is an established problem in distributed communica-

tion [31], [32], [33]. MCR-DL comes packaged with a tuning

suite that seeks to map an input communication operation

(with associated message size) to the best-performing backend

(e.g. all reduce → NCCL). This introduces additional com-

plication since not only are distinct communication operations

mixed-backend (e.g. all reduce and gather), but MCR-DL

allows a single operation to choose the best backend with

the ”auto” backend option (e.g. mcr dl.gather(”auto”) routes

{small-message gather} → MPI, and {large-message gather}
→ NCCL). This behavior is depicted in Figure 6, where solid

lines depict the backend chosen for a given operation.

This tuning is implemented as a static tuning table. The

tuning suite is composed of a set of micro-benchmark scripts
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Message Size Backend

256 MVAPICH2-GDR

512 MVAPICH2-GDR

1024 MVAPICH2-GDR

2048 MVAPICH2-GDR

4096 NCCL

8192 NCCL

16384 SCCL

32768 SCCL

TABLE II
EXAMPLE TUNING TABLE FOR THE ALL GATHER COLLECTIVE OPERATION

AT A SINGLE WORLD SIZE GENERATED BY MCR-DL

that evaluate end-to-end time on a set of overlapped com-

munication operations for each backend. By choosing the

backend with the minimum end-to-end time for each input

tensor size, MCR-DL generates a table like Table II for each

world size (i.e. the number of GPUs) trained over. Every

collective requires its own static tuning table. The size of each

collective’s tuning table is dependent both on the number of

specific message sizes we wish to tune for, as well as the

number of scales (world size) we are tuning over. Specifically,

a given table entry is first mapped by the world size, then

by the message size. Therefore, the total number of tuning

table entries is given by: (Num Collectives × Num Scales ×
Num Message Sizes). Since the performance of each com-

munication backend depends heavily on the combination of

inter-node fabric, intra-node fabric, and compute hardware

used, tuning tables are not transferable across HPC systems.

However, we find that general trends tend to hold across

systems with a coarsely similar architecture (e.g. MVAPICH2-

GDR consistently performs the best for small messages).

VI. PERFORMANCE CHARACTERIZATION

1) Node Architecture
All experimental evaluations5 were carried out on the

Lassen cluster at Lawrence Livermore National Laboratory

and the ThetaGPU cluster at Argonne Leadership Computing

Facility [34]. Lassen is composed of 792 nodes each consisting

of four 16 GB NVIDIA V100 GPUs and two 44-core IBM

Power 9 CPUs. Nodes are connected via Mellanox Infiniband

5The choice of cluster for a given application was purely made out of
external factors such as available compute and ease of software compatibility

Fig. 7. Overhead over OMB for MCR-DL and PyTorch Distributed for a
fixed backend on ThetaGPU (32 A100 GPUs). MCR-DL reduces overhead
by ensuring top-level Python logic is minimal.

EDR in a fat-tree topology. ThetaGPU is composed of 24

NVIDIA DGX A100 nodes, each containing two AMD Rome

CPUs and eight 40 GB NVIDIA A100 GPUs.

2) Communication Backends
We used a mixture of MVAPICH2-GDR 2.3.7 [16], Open-

MPI v5.1.0 [15] (built with UCX v1.13.1), the latest MSCCL

[27], and NCCL 2.14.3-1 [14] for all DL experiments. All

backends and frameworks were built with CUDA 11.4.152 on

ThetaGPU and CUDA 11.4.100 on Lassen.

3) Software Libraries
All micro-benchmark evaluations were carried out with

OSU Micro-Benchmarks (OMB) 6.1. For our DL evaluations,

we used source-built PyTorch v1.12.1 and DeepSpeed v0.7.4.

4) DL Training Settings
For both DS-MoE and DLRM, we had to replace all

dependencies on PyTorch’s distributed module with MCR-DL

calls. Since MCR-DL conforms to the PyTorch API wherever

possible, this step is a straightforward search-and-replace.

We trained a 4B parameter DS-MoE model (350M+PR-

MoE-32/64) on the Pile [35]. For more details on this model

and on DS-MoE, see [5].

For DLRM, we trained 100 synthetic data batches of size

8k with bottom and top MLPs of size (512-512-64) and (1024-

1024-1024-1), respectively. The embedding table size used is

1e6 × (num ranks).

The dense Megatron-DeepSpeed model contained 6.7B pa-

rameters with a model-parallelism degree of 2 and ZeRO stage

2. It was also trained on the Pile [35].

A. Micro-Benchmarks

Before proceeding to application-level performance evalu-

ations, we first created simple collective and point-to-point

benchmarks to ensure MCR-DL doesn’t introduce significant

performance overhead when compared to micro-benchmarks

implemented at the C-level, as investigated earlier with OMB.

As demonstrated in Figure 7, MCR-DL introduces an overhead

of around 5% for small MPI Alltoall operations (under 4kB).

However, this overhead quickly reduces to 1% in the MB

message range, which is the message range expected for most

DL training applications [36]. PyTorch’s distributed module

built atop MVAPICH2-GDR, however, has a high overhead

(18%) for small messages, and converges to a higher overhead

(4%) in the MB message range. MCR-DL doesn’t introduce

significant overhead for communication operations.

In order to spare users the OMB evaluations like Figure

2, we created a tuning suite to generate a static tuning

table for later use in applications. The tuning suite first runs

basic collective and point-to-point evaluations over a range of

message sizes, scales, and backends. Then, the tuning scripts

create a tuning table which maps a given message size and

number of processes to a given communication backend. The

tables for Lassen and ThetaGPU are used in subsequent DL

evaluations. This tuning table is used whenever the ”auto”

backend is passed to a collective as described in Section

V. The difference between static-backend mixing and tuned
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mixing is depicted in all DL training figures as MCR-DL and

MCR-DL-T, respectively.

B. DL Training

With the setup described above in VI-1 through VI-4,

we carried out DL training evaluations with MCR-DL on

the Lassen HPC system. Baseline experiments were carried

out with PyTorch’s distributed module built against a single

communication backend (e.g. “Baseline SCCL“ is PyTorch

distributed built with the SCCL backend). Neither tensor

fusion nor compression from Section V-E were used in eval-

uations6. Further, to compare coarse-grained mix-and-match

(i.e. one backend per collective such as NCCL Allreduce and

MPI Alltoall) against fine-grained mix-and-match (i.e. one

6While we expect performance benefits from tensor fusion and compres-
sion, we wish to isolate the effect of mixing communication backends.

backend per (collective, message size) pair such as NCCL

Allreduce for 1MB messages and MPI Allreduce for 512KB
messages. These two settings of MCR-DL are depicted in

Figures 8-10 as MCR-DL and MCR-DL-T, respectively.

First, we run pre-training throughput experiments DS-MoE

for pure NCCL, pure MVAPICH2-GDR and mixed backends.

Results are depicted in 8(a). At smaller scales, NCCL performs

better than MVAPICH2-GDR because Alltoall is not yet a

dominant factor in communication time. We see a crossover

threshold from Allreduce-bound to Alltoall-bound communi-

cation at around 32 GPUs, beyond which MVAPICH2-GDR’s

improved Alltoall starts to show benefits. The performance

difference between pure NCCL and pure MVAPICH2-GDR

is still small, however, because NCCL’s Allreduce collective

is more performant than MVAPICH2-GDR’s at this message

range.

(a) DS-MoE Throughput (b) DS-MoE Scaling Efficiency

Fig. 8. Throughput and scaling efficiency improvements for DS-MoE with pure MVAPICH2-GDR, pure NCCL, and mixed-backends with MCR-DL on
Lassen

(a) DLRM Throughput (b) DLRM Scaling Efficiency

Fig. 9. Throughput and scaling efficiency improvements for DLRM with pure MVAPICH2-GDR, pure NCCL, and mixed-backends with MCR-DL on
ThetaGPU

(a) Megatron-DeepSpeed Dense Model Throughput (b) Megatron-DeepSpeed Dense Model Scaling Efficiency

Fig. 10. Throughput and scaling efficiency improvements for dense Megatron-DeepSpeed with pure MVAPICH2-GDR, pure SCCL, and mixed-backends with
MCR-DL on ThetaGPU
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MCR-DL is able to exploit MVAPICH2-GDR’s improved

Alltoall and NCCL’s improved Allreduce to perform best

at all scales without deadlocks. At 256 GPUs, we see a

31% improvement over pure MVAPICH2-GDR and a 35%

improvement over pure NCCL. Scaling efficiency 8(b) is also

greatly improved with MCR-DL, maintaining a 81% efficiency

at 256 V100 GPUs.

Second, we have evaluated pure NCCL, pure MVAPICH2-

GDR and mixed backends on the ThetaGPU HPC system

for DLRM. Results are depicted in Figure 9(a). NCCL again

beats MVAPICH2-GDR at small scales due to its improved

Allreduce. At higher scales, MVAPICH2-GDR again starts

to perform better due to Alltoall’s scaling, and MCR-DL is

able to use each backend’s strengths to improve performance,

achieving a 25% improvement over pure MVAPICH2-GDR

and a 30% improvement over pure NCCL. Scaling efficiency

is less that of DS-MoE, but still improved by MCR-DL,

maintaining a 75% efficiency at 32 A100 GPUs.

Fig. 11. Comparison of MCR-DL against competing PyTorch-compatible
frameworks on a Mixture-of-Experts transformer using 256 Lassen V100
GPUs.

In order to directly compare the performance of MCR-DL

with all PyTorch-compatible7 competing frameworks in Table

I-B, we swapped all communication operations in Megatron-

DeepSpeed with each respective framework’s implementation.

The results on 256 Lassen V100 GPUs is depicted in Figure

11. In order to compare each framework’s best performance,

MCR-DL, Horovod, and PyTorch-distributed were run with

tensor fusion enabled, which leads to the performance gap

between mpi4py and both Horovod and PyTorch-distributed.

MCR-DL performs the best due to its mixed-backend opti-

mizations coupled with tensor fusion.

For completeness, we have also trained a dense Megatron-

DeepSpeed model on the ThetaGPU cluster with a mixture

of MSCCL [27] and MVAPICH2-GDR [16]. As a secondary

result, we have taken the compute vs. communication break-

down for DS-MoE and DLRM when using MCR-DL at 256

Lassen V100 GPUs and 32 ThetaGPU A100 GPUs, respec-

tively. MCR-DL is an important component in reducing the

computation bottleneck at scale, demonstrating a 9% reduction

in communication time for DS-MoE and a 7% reduction in

communication time for DLRM.

7LBANN does not provide any MoE implementation, and is not compatible
with any mainstream DL frameworks such as PyTorch

(a) DS-MoE (b) DLRM

Fig. 12. Communication overhead reduction with MCR-DL at 256 Lassen
V100 GPUs (DS-MoE) and 32 ThetaGPU A100 GPUs (DLRM).

VII. DISCUSSION

The throughput and scaling efficiency improvements in

Figures 8, 9, and 10 demonstrate that a mixed-backend DL

communication framework can significantly improve the per-

formance of emerging DL models by reducing the commu-

nication bottleneck. Further, it was confirmed that a C++

backbone underneath a thin Python layer ensures low-overhead

communication operations, which enables the exploration of

small-message latency-bound operations for emerging models.

These results are in agreement with the original observation

that modern communication backends vary widely in per-

formance characteristics across operations, within operations,

and across releases. By mix-and-matching backends for a

given operation (and within an operation), significant commu-

nication performance improvements were achieved. Further,

since our communication operations are implemented in low-

latency C++ code underneath a thin Python interface, we have

maintained low overhead while ensuring compatibility with

Python-based DL frameworks.

The performance improvements inherent in mixing commu-

nication backends are consistent with the findings of previous

NCCL and MPI studies [37] and studies exploring the mixture

of MPI with external runtimes in [20].

VIII. CONCLUSION

State-of-the-art deep learning (DL) models are pushing the

boundaries of existing fields while pioneering entirely new

areas of study. However, such DL models are often impossible

or impractical to train on single processors or small-scale

workstations. Further work in novel parallelism schemes and

optimizations will require a robust and extensible interface

between DL frameworks and communication backends. In

this paper, we present and evaluate MCR-DL: a Mix-and-

Match Communication Runtime for DL. MCR-DL supports all

communication operations and backends, and enables mixed-

backend communication to ensure the most performant back-

end is being used for a given communication operation. The

proposed design is demonstrated on state-of-the-art DL models

such as DLRM [3] and Mixture-of-Experts (MoE) [4], [5]. We

report up to a 31% improvement in DeepSpeed-MoE through-

put on 256 V100 GPUs on the Lassen HPC system and a 25%

improvement in DLRM on 32 A100 GPUs on the Theta-GPU

HPC system. We believe that MCR-DL will pave the way

for designing and implementing future DL communication

enhancements and distributed DL frameworks.
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