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Abstract. High-Performance Computing (HPC) is increasingly being
used in traditional scientific domains as well as emerging areas like Deep
Learning (DL). This has led to a diverse set of professionals who interact
with state-of-the-art HPC systems. The deployment of Science Gate-
ways for HPC systems like Open On-Demand has a significant posi-
tive impact on these users in migrating their workflows to HPC sys-
tems. Although computing capabilities are ubiquitously available (as on-
premises or in the cloud HPC infrastructure), significant effort and exper-
tise are required to use them effectively. This is particularly challenging
for domain scientists and other users whose primary expertise lies out-
side of computer science. In this paper, we seek to minimize the steep
learning curve and associated complexities of using state-of-the-art high-
performance systems by creating SAI: an Al-Enabled Speech Assistant
Interface for Science Gateways in High Performance Computing. We use
state-of-the-art Al models for speech and text and fine-tune them for the
HPC arena by retraining them on a new HPC dataset we create. We use
ontologies and knowledge graphs to capture the complex relationships
between various components of the HPC ecosystem. We finally show
how one can integrate and deploy SAI in Open OnDemand and evaluate
its functionality and performance on real HPC systems. To the best of
our knowledge, this is the first effort aimed at designing and developing
an Al-powered speech-assisted interface for science gateways in HPC.

Keywords: HPC + Open OnDemand - Conversational Al - Speech
recognition - Natural Language Processing - Knowledge Graphs

1 Introduction and Motivation

High-Performance Computing (HPC) is an integral part of various traditional
scientific domains like medical research, weather forecasting, and earthquake pre-
diction, as well as emerging areas powered by Deep Learning (DL) and Machine
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Learning (ML). The ability to process and analyze large sets of data on current
HPC systems has led to remarkable advances in science and engineering and has
become an indispensable tool for students, researchers, and industry profession-
als. Examples include social scientists reviewing massive datasets from sources
such as Twitter or Facebook, archaeologists experimenting with LiDAR [18] in
mapping subsurface artifacts, and painters harnessing computer-aided design to
use archives of ancient works as a style guide.

Unfortunately, HPC use and adoption by many is hindered by the complex
way in which these resources need to be used. Utilizing HPC services requires
familiarity with command-line interfaces and custom client software of HPC mid-
dleware, DL/ML frameworks, and performance analysis tools which creates an
accessibility gap that impedes further adoption. For instance, HPC middleware
like high-performance MPI libraries and DL frameworks have various advanced
features and complex user interfaces. While these interfaces are comprehensive
and extensive, they require a steep learning curve, even for expert users, making
them nearly impossible to use for novice users like medical doctors, domain sci-
entists, and other users whose primary expertise lies outside of computer science.

Recent surveys conducted by supercomputing centers [24] indicate that users
are more likely to adopt a GUlI-based interface provided by science gateways
such as Open OnDemand [5]. Open OnDemand is one of only a few open-
source general web interfaces to support remote visualization. It is currently
the most well-known and adopted general web interface within the HPC com-
munity. Although, Open OnDemand reduces the initial accessibility hurdle to
the HPC ecosystem by providing job templates for a small subset of popular
HPC applications, there is still much to be desired in extending this support to
the other components of the HPC ecosystem such as middleware, frameworks,
and tools. While most users are intuitively able to express what they are looking
for in words or text (e.g., “train my model with 32 GPUs on TACC Frontera
with TensorFlow“), they find it hard to quickly adapt to, navigate, and use HPC
interfaces to obtain desired results. Furthermore, surveys of end users conducted
by prestigious firms like Deloitte [4] and PriceWaterhouseCooper [6] clearly indi-
cate that users are more likely to use a conversational Al interface as opposed
to using older keyboard/mouse-style inputs. To the best of our knowledge,
no interface exists that allows end-users to interact conversationally
with state-of-the-art science gateways.
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1.1 Motivation

This challenge leads us to the primary
motivation of the proposed work: can we
design an easy-to-use and productive
conversational interface, utilizing Al,

. Select an HPC
that enables end-to-end abstraction

and automation of the steps involved
Dependencies

wn execution, monitoring, and evalua-

tion of HPC workloads? Fig.1 depicts
our vision of how SAI enhances the pro-
ductivity of end-users. The left side depicts documentation
the multiple steps that the end users must
traditionally perform to execute their HPC
applications. These steps typically include
selecting an HPC application; figuring out
dependencies and installing them and the T G oo

actual HPC application (either manually or

through package managers); consulting the Fig. 1. Motivation behind creating
documentation for appropriate arguments SAI to improve user productivity
and parameters; and finally creating the job

launch scripts. All of these steps are complex and require expertise in interacting
with HPC middleware and tools using their traditional interfaces. The right side
depicts how these same users can extract better productivity by using SAI. The
manager of HPC at the U.S Department of Energy Idaho National Laboratory
had the following strong and enthusiastic statement for SAI work - “We have
seen early demonstrations of the conversational AI Engine on multiple occasions.
We see the proposed work as a paradigm shift that will directly benefit the over
1,200 users on our systems and lower the threshold for HPC usage. The incor-
poration of the AI Engine in a science gateway will serve to lower the time to
science for the vast majority of our HPC users.”
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1.2 Challenges in Enabling Conversational Interface for HPC

Challenge #1: Creating Custom Datasets and Models for HPC: While
the latest Automatic Speech Recognition (ASR) [9,27] and Natural Language
Understanding (NLU) [10,23] models have achieved impressive accuracy rates,
such as 2% Word Error Rate (WER) [9] on Librispeech [21], these models
often struggle to accurately interpret and understand technical terms (e.g. Allre-
duce and MNIST) and abbreviations (e.g. CPU and HCA) specific to the HPC
domain. Furthermore, current language datasets do not include these technical
terms and abbreviations, making it difficult to create ASR and NLU models that
can accurately interpret and understand words and sentences commonly used in
HPC. Thus, the availability of datasets specifically tailored to HPC domain
is crucial and is key to creating new NLU/ASR models capable of accurately
interpreting HPC-specific words and sentences. To the best of our knowledge,
HPC-specific datasets and models do not exist for use today.
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Challenge #2: Scalable Representations for Complex Relationships
between Components of the HPC Ecosystem: The relationship between
HPC applications, parallel hardware, deep learning (DL) models and problems,
and datasets/inputs is complex with respect to each other. Researchers cur-
rently spend significant time and energy manually understanding and mapping
these relationships through the use of documentation, tutorials, and other online
resources. However, the representation of these complex relationships can be
automated and made more accessible to end-users by leveraging Knowledge
Graphs (KGs). An essential aspect of creating such KGs is the use of a portable,
simple, yet thorough ontology. Recently, the HPC Ontology [17] has been pro-
posed as a way to formally define and represent HPC-related knowledge, includ-
ing vocabularies, semantics, and formal representations. However, it only cap-
tures limited aspects of the complex relationships we want to cover for HPC
workload execution. Thus, a significant expansion and enhancement is required
for the proposed workflow to be truly useful.

Challenge #3: Automating and Abstracting Installation of Packages:
Leveraging High-Performance Computing (HPC) systems requires the use of
various libraries, middleware, and applications. MPI implementations such as
MPICH, OpenMPI, and MVAPICH2 enable parallel computation at scale. Sys-
tem software like compilers and supporting libraries are vital for accelerating
applications. Frameworks like PyTorch and TensorFlow provide high-level APIs
for designing and training deep neural networks. However, installing these soft-
ware packages and their dependencies is a significant challenge, even for those
familiar with HPC systems. While package managers such as Spack simplify the
process, they can still pose a challenge for novice HPC users whose primary
expertise lies outside of computer science.

Challenge #4: Integration of Conversational AI to HPC as Gateway:
Developing a conversational interface framework is only the first step, the next
challenge is to integrate it into a state-of-the-art science gateway to provide end-
users access to it. To achieve this, we need to determine the interface between
the conversational AI interface and the science gateways. The conversational
interface component must also be modular to adapt to future advancements in
DL models and HPC applications without a major revamp. A challenge here is
to ascertain and minimize the changes needed to enable the end-to-end pipeline.

1.3 Contributions

In this paper, we take on the challenge of reducing the complexity of executing
traditional scientific and ML/DL-based HPC workloads through modern science
gateways by proposing, designing, and developing SAI. SAI is a novel conversa-
tional Al-based framework that automates and abstracts the cumbersome steps
involved in accelerating traditional scientific and ML/DL-based applications on
modern HPC systems. SAI simplifies the HPC process for non-experts, such as
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domain scientists and Al researchers. It eliminates the need to learn about dif-
ferent job queues on a cluster, allowing them to focus on their research without
bogged down by technical issues, such as having to learn about the various job
queues on a cluster. With SAI, these researchers can easily submit their jobs and
get the results they need, without needing to become experts in the intricacies
of HPC systems.

To gain a deeper understanding, users can familiarize themselves with the
transition flow of SAI (Fig. 7). This will enable them to reproduce results on the
terminal using the SAI-generated command as discussed in Sect.5. To summa-
rize, this paper makes the following contributions:

1. Proposes and develops a conversational AT interface (SAI) for running HPC
applications and installing required libraries, packages, and frameworks

2. Describes datasets for text and speech with HPC-specific and fine-tuned state-
of-the-art ASR models to recognize HPC terminologies and retrain an Entity-
detection NLU model to understand text command

3. Proposes a general ontology to scalably represent the complex relationships
between various components of the HPC ecosystem

4. Describes KGs to represent the relationship between different scientific/DL
benchmarks/applications, datasets/inputs, package managers, and tools.

5. Integrate and deploy SAI in Open OnDemand and evaluate its functionality
and performance on real HPC systems.

6. Provides a comprehensive explainable flow for SAI, including a detailed expla-
nation of the transition from user input to job output along with generated
job scripts and installed environments. This helps users to understand how
to generate commands and reuse them directly in a terminal in future.

2 Background

2.1 Conversational User Interface

Conversational User Interfaces (CUI) represent a new way for users to inter-
act with applications, moving beyond the traditional Graphical User Interfaces
(GUI). Popularized by voice assistants like Siri, Alexa, and Google Assistant,
CUIs have the ability to understand and respond to multiple variations of natural
language, enabling more intuitive and efficient communication. Studies [12,13]
have shown a strong preference for speech interfaces over traditional GUIs due
to the ease of use and minimal learning curve. The use of CUIs is becoming
increasingly popular in businesses [25] and Data shows that more than half of
US adult mobile phone users use virtual assistants such as Siri or Alexa. [3].

2.2 Open OnDemand

Open OnDemand is an open-source, widely-used, customizable web interface for
interacting with HPC systems. It allows integration with various HPC resources
and job schedulers to make HPC resources more accessible to users who may not
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be familiar with command-line interfaces. It has features such as job submission,
file management, and remote visualization, providing a streamlined and user-
friendly experience for researchers, engineers, and scientists.

2.3 Ontology and Knowledge Graphs

Ontology formalizes knowledge of entities in a domain with limited relationships
and classes for constructing KGs by adding individuals and instantiating the
data and object properties. The data property applies to an individual to capture
features or data about the individual while the object property (relationship)
links individuals of the same or different classes to each other.

2.4 Spack

Spack is a package manager primarily designed for HPC systems, providing flex-
ibility in build configuration and high compatibility with different systems. It
builds packages and dependencies from source, allowing customization without
interacting with build systems or resolving dependencies. Users interact with
Spack through “specs” specifying package version, compiler, features, and depen-
dencies, which Spack verifies before proceeding with installation.

3 Terminologies

The various terminologies, terms and legends used in this paper are explained
below. A parameter is a value that is given by the user for an argument and
arguments can have multiple parameters.

— Entity: a single or a collection of words that refers to a same class always.
For examples, allreduce and ResNet are algorithms/model.

— HPC-ASR Dataset: an in-house ASR dataset created by us for HPC and
DL terminologies.

— HPC-NLU Dataset: an entity detection and classification dataset created
by us for training NLU models for HPC and DL terminologies.

— Speech and Text Query: Speech query is spoken audio passed to ASR and
NLU models, text query is typed text passed to NLU model.

— WER: WER is a performance metric for ASR models that works by com-
paring words in the predicted and the reference text.

4 Proposed SAI Framework

In this section, we elaborate our design and implementation to enable the Speech
Assistant Interface (SAI) for the HPC domain. Figure 2 depicts the overall flow
of execution and the steps involved in the operation of SAI. We will describe
each step in the following subsections.
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4.1 Generating HPC Datasets for Speech and Text

To address Challenge-#1 (Sect. 1.2), we create an HPC-datasets for text (HPC-
NLU) and speech (HPC-ASR) containing HPC and DL terminologies (for
example NCCL, IntelMPI, ResNet, etc.). @ We generate basic text queries and
label each entity into five broad categories of model/algorithm, data, system,
software, and arguments.

1 Speech Input "

We create a list of Audio| Automatic | Text [ Natural |Enities|eyiey value
arguments that can be Oy == Speech Language Extraction
. . Recognition Understanding
given to the applica- Text Input
tion to generate differ- % Text
ent types of queries on L)
the HPC text dataset. N A @

[o]

(2] W.e gt?nerate all.t.he Eoadback] Com;)'ete Inference
combinations of entities Questions Select KG

. . lYes Software
with different arguments Installer

. No
for each basic sentence < SW Display
structure. For example installed?" Yeq [ Job Script Job
. ple, Generator Output

the number of combina-
tions of the commands

for running MPT bench-  pig 2. High-level design of SAI showing the flowchart
marks amounts to 315K and SAI components - The blue rectangles are compo-
queries. ® To handle nents of SAT while the green boxes show the decision cri-
different ways of say- teria for the direction to proceed based on the process-
ing the same phrase, ing of user input to continue interacting with the user or
we develop synonyms for moving toward submitting the associated user job. (Color
HPC terminologies (like ~figure online)

CPU, processor, central-

processor, and host-processor for CPU) and use them to generate additional
queries. The mentioned MPI benchmarks query set extends to 19 million queries
by using the synonyms. These queries will cover most of the HPC lexicon and
for HPC-ASR we crowd-sourced to 20 different volunteer users—with 6 dialects
and speech patterns— recording portions of it to create the HPC-ASR dataset.
® We include permutations of phrases to restrict DNN from learning any order-
ing of arguments in the dataset. The resulting MPI benchmark dataset contains
7 million rows just by including the permutations. Through each step, the labels
and queries of both HPC-ASR and HPC-NLU are human supervised. For HPC-
ASR, the accents are covered by the TIMIT dataset for training. The recordings
are denoised and verified through human supervision. Using the five broad cat-
egories mentioned, the entities are classified to these 5 types and are passed
to the NLU component for processing and value extraction. Section 6 mentions
train-test data split details.

4.2 Fine-Tuning Speech Recognition Model for HPC Terminologies

As the first step of processing speech input shown in Fig.2 and to address
challenge-#1 (Sect.1.2), we need an ASR model capable of understanding
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domain specific terminologies (e.g. PyTorch, Allreduce, and IntelMPI) in
HPC/DL applications. State-of-the-art ASR models are trained on large speech
datasets like LibriSpeech and TIMIT to recognize English’s large vocabulary
and support different accents. We selected Speech2Text [27] as the base model,
pre-trained on the LibriSpeech 1,000h ASR corpus. To achieve our goal, we
combined the HPC-ASR dataset with TIMIT [1] and fine-tuned the model and
hyperparameters. TIMIT dataset helps supporting different English dialects and
accents. We convert the generated text from the ASR model to lowercase and
used SentencePiece [16] to tokenize the words to be passed to the NLU module.

4.3 Designing an Entity Detection and Classification Model for SAI

The next step depicted in Fig. 2 is to apply natural lan- Tokgn1 Token2 Token3 Tokend
guage understanding on user text input or transcribed
text from ASR to overcome the rest of challenge- i

#1 (Sect. 1.2). Therefore, we designed a BERT-based
entity detection and classification model [11] to extract
entities and classify them into five broad categories:
model/algorithm, data, system name, software, and
arguments to understand and execute the given com- Sentence
mand. Figure 3 shows the architecture of the proposed
DL model used to detect and classify entities in a sen-
tence. To support multi-word terms, we label the first
word as B-Category-Name and consecutive words as I-
Category-Name. Since arguments can have a numerical value, we create key-value
pairs for the argument category by post-processing the NLU output. Arguments
could have floating point values; therefore, we support numbers in numerical
format only (for example we support “4.56” not “four point five six”). The
output of this module is a dictionary of entities with their assigned values like
(‘Model’:‘Inception3’). This list is used to query KGs in the next step.

Tokenizer

Fig. 3. Proposed BERT-
based entity recognition
model for SAI

4.4 Creating the HPC Ontology and Knowledge Graphs

The existing ontologies in Sect. 8 do not capture the relationships between HPC
components for executing workloads. Hence, to address challenge #2 in Sect. 1.2,
we need to create an ontology capable of capturing complex dependencies and
the workload relationships between HPC components like systems, software,
models/algorithms, data, and their related arguments to construct a complete
and useful Knowledge Graph(KG) for different HPC applications. We create a
new ontology—called SAI-O— with 5 major classes of system, software, model,
data, and argument to represent HPC components. Argument has 3 subclasses of
software_arg, model_arg, and system_arg. Software has 3 subclass of framework,
compiler, and library. A subset of relationships are listed in Table 1.
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Table 1. Major object properties in SAI-O ontology

Relation Property Domain Range Description
canBe any any Defines possible values (OR)
Software .-
runs any Captures run capability
or Model
depends Software | System ‘ Captures software dependency
needs any any Defines requirements (no default)
hasArgs any Argument ‘ Defines optional values (defaults)
hasSoftware any Software  Captures software availability

SAI-O contains data properties like “version, hasDefault, default, name,
description” that are common between all the individuals in SAI-O. For exam-
ple, the data property “description” gives a description of the individual to
provide further information upon user requests. There are some data proper-
ties specific to a class of objects. For example, for a queue class that represents
system job queue, we have”size, timeLimit, maximumdJobSize, and maxUsable-
Memory” data properties to describe a job partition information. Note that not
all the properties need to have a value. Due to the lack of space, only a subset of
relationships and data properties are shown in the paper. Through defining stan-
dard and generic” classes/relationships/data” properties in SAI-O, we can cap-
ture different asserted and inferred relationships among HPC system, software,
model/algorithm, data, and their arguments and query later. SAT-O ontology
could be used to add additional HPC applications in the future (Sect.7.4.)

Using SAI-O, we created the KGs for 3 different HPC applications as a proof
of concept in RDF /XML format: OMB Benchmarks [19], Distributed DL train-
ing, and NAS parallel benchmarks. In our KGs, synonyms are connected using
the “Same individual as” relation to each other. An example of the constructed
KG for the Inception3 DL model is shown in Fig.4 to show the requirements
and dependencies to run Inception3 model where green arrows show possible
arguments and grey shows “needs”.

4.5 Knowledge Graph Selection and Inference

SATI has one KG per application and can support multiple applications. To select
the appropriate query for the given query, We define SPARQL [2] queries to query
all the available KGs and see which one gives the max hits — which KG has the
maximum number of entities detected in the given query. We query and process
the selected KG to assemble a list of required arguments with their possible
values and optional arguments with their default values (Defaults are stored in
the KG). The assembled list is compared to the processed user input list if the
required parameters are not complete, SAI generates corresponding question-
s/feedback and interacts with the user back and forth to get the parameters. If
a necessary argument has a list of parameters (for example dataset values for
Inception3), SAT displays the list to the user to select from it. Otherwise, SAI
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Fig. 4. Screenshot of visualizing Inception3 DL model relations in SAI in constructed
DL knowledge graph based on SAI-O ontology - This is only one of the models sup-
ported in SAT DL KG. The type of relations are shown at the top left. The yellow
rectangles represent classes and purple ones represents individuals in KG (Color figure
online)

asks the user to enter the value for a required argument. At the end, we query
the KG to get the software dependencies and libraries, which is used in Software
Installed module (Sect. 4.6).

4.6 Software Installer Check and Interfacing with Spack

After evaluating the completeness of the user’s input, SAI needs to check if the
necessary software and packages are in place through the Software Installer com-
ponent (shown in Fig.2) to execute the query. For this objective (challenge #
3 described in Sect.1.2), SATI takes advantage of Spack to resolve installation
dependencies, install the requirements, and provide the path of the executables
to the Job Script Generator. To enable efficient interaction with Spack, we devel-
oped the Spack Interfacing Layer (SIL) using Spack’s python APIs. To avoid the
conflicts with system /user-level Spack environments, SIL utilizes a user-specified
directory for software installations and its own configuration file that contains
all Spack environments, files, and software installations.

To maintain proper dependencies and correctly bundle software and packages
for installing, SIL creates a single Spack file by gathering dependency information
about each package and combining them into one spec. The installed Spack
environments through SAI can later be activated using Spack when the user
wishes to do testing outside of SAI. SAT also reuses these environments if they are
compatible with new user requests, in order to avoid redundant environments.
SAI uses separate, logical environments that can share installations, ensuring
that software is only installed if it does not already exist within SAI.

To increase efficiency and prevent system blockage during installations, SIL
implements a multi-threaded installation queue and asynchronous installation.
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This allows users to request multiple jobs without SAI being blocked while wait-
ing for installations to complete, even for complex packages like Horovod which
may take an hour to install.

4.7 Integration with Open OnDemand

To address challenge #4 in Sect.1.2, In 7 N
this section we describe the integration of %U Ve:srbzt:f o ‘}
SAI with Open OnDemand Open OnDe- §

mand supports two modes of deployment 5& Si?fh'\/"?:;gg:zf:t ‘J
for applications — “Passenger Apps” and
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. . n . . I
uler, number of available nodes, and parti- ', |_HPC Applications || Deep Learning _| !
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tion/queue list. For both deployments, we
developed SAT setup scripts and job scripts.
For Interactive deployment, we modified the
Open OnDemand interface for node alloca-
tion to include SAI as an application, configured the cluster to enable running
interactive SAI on compute nodes, passed user configuration to the job script,
and developed scripts for pre- and post-processing.

The Passenger SAI application generates scripts for installing dependencies
and executing tasks on the login node, while the Interactive SAI application
handles dependencies installation on the compute node and submits the task
for execution. We also utilize Open OnDemand’s job template method to enable
the creation of user-defined templates generated by SAI’s job script generator.
In the future, we plan to generate RPMs, Singularity images, and Kubernetes
containers for distributing SAI through Open OnDemand.

Fig. 5. Integrating SAI with OnDe-
mand

5 Insights into SAI Usage and Explainable Flow

Following the flow in Fig.2, we describe SAI’s usage after the integration to
OnDemand (Sect. 4.7) to run applications and install dependencies on an HPC
system. We describe how SAI addresses the challenges in Sect. 1.2.

® Users can access SAI through OnDemand gateway that handles user authen-
tication and remote CLI/GUI connection to SAI. The user selects passenger or
interactive deployment of SAI to run. (Challenge #4 in Sect. 1.2)
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® The user can give tasks using the chat box shown in Fig.6. SAI converses
with the user in natural language to understand their requirements. SAI’s chat
interface provides a “Mic” button to record the speech command. SAI does not
force a user to use the speech interface every time, it also has a text-based chat
interface for users concerned about sending voice. SAI converts speech to text
using ASR model and interpreting the ASR output text or user’s text commands
with NLU model to prepare commands for HPC application execution, including
compilation, running and monitoring. (Challenge #1 in Sect. 1.2)

® SAT uses HPC specific ontologies and Knowledge Graphs (KGs) derived from
them to assess the user’s commands for completeness and correctness. Through
the use of these KGs, if SAI realizes that the information provided by the user
is not complete, SAI can either use default values for missing information or
interacts with the end-user again to get the needed information. (Challenge #2
in Sect. 1.2)

® Once the user’s input has been obtained  gpeech Assistant Interface @
and validated, SAI executes the end-user’s

HPC application on the available hardware AT e
resources. Under the hood, SAI installs the processes per node
application and necessary dependencies, exe- Do you want to change any
. values?

cutes the workload, monitors the progress,
and reports the results of the application’s

. . please select the argument you
execution. Users can give the path to the N

Hi, I am SAI. How can | help you?

yes

pre-installed software too. (Challenge #3 in e T [ T
Sect. 1 2) message size, memory Limit,

. . . minimum message size, target,

Figure 6 show an example interaction of a AT G

user with implementation of SAI where the number of nodes
user tells SAI all the essential parameters in iteration
the initial input and changes a parameter. SAT Rlease/piovideliterationivalue;
selects and incorporates OMB’s Knowledge A
Graph-based on max hits among all KGs — e CERER) e T

. . . (default) to 200. Do you want to
to validate input accuracy, checking for errors, e Ay othar rales?
inconsistencies, or missing information result- .
ing in reducing the risk of errors in the job exe- Completed all required
cution. With all required parameters provided Sependencies
by the user, SAI engages with the user for con- SO CE ARy

optional parameters

firmation and prompts for potential modifica-

. e L. . Running the job with ID 411891
tions before submitting the job.

Response Send

SAI Features: SAT’s main features include

job script generation, job execution, the abil- Fig. 6. Screenshot of an user inter-
ity to run jobs on multiple nodes with differ- < "ol QAT the user is run-
ent architectures including GPUs, and OnDe-  yine Allreduce benchmark from
mand integration. SAI automatically finds OMB and changing default values
package dependencies based on HPC system before submitting the job.

and architecture and supports package instal-



414 P. Kousha et al.

lation as well as verification. For applications and job variables, SAI provides the
default values, their descriptions, completeness check, and argument validity to
reduce the likelihood of errors. The frequency of using SAI chat/speech interface
depend on the user’s HPC needs. It can be used whenever they want to build or
run applications on an HPC system, as well as for tasks such as scaling and job
submission. The natural language interface is both user-friendly and accessible,
which may encourage more frequent interactions with HPC systems, ultimately
resulting in increased overall HPC usage.

Insights into SAI’s Flow: Transparency in the internal workflow and output
of each component in SAI, from input to output, is of utmost importance. This
transparency fosters user understanding and trust, ensuring that SAT is executing
tasks as intended. Moreover, it can familiarize new HPC users with the process
by showing them the steps taken to understand the flow and reproduce results.
To achieve this, we have developed an interface within SAI that offers insights
into the transition and output of each component, accessible with a simple click.
Additionally, the interface displays the total and component-specific latency for
SAI, providing further insight into its performance and enabling users to evaluate
its efficiency. Figure 7 illustrates the complete transformation of the user text
query initially mentioned in Fig.6 to job output. In Fig.7-®, the generated
entities from NLU are presented, which are then processed and forwarded to
the knowledge graph selection module. Figure 7-@ displays the output obtained
after querying the KG, revealing a dictionary with required arguments labeled as
“need”, optional values identified as “defaults”, and the selected KG presented
to the user. Figure 7-® showcases the listed —parameters following the processing
of the KG query—including required and optional values, along with details of
the Spack environment path and working directory path. These parameters are
transferred to the job composer by SAI for the creation of the job script. Then, as
depicted in Fig. 7-@, the software installer ensures the installation of necessary
packages, exhibits the executed commands, and provides users with an option
to verify the successful installation of all binaries.

Figure 7-®, demonstrates the generated job script by SAI to execute the users
job. SAT simplifies the process of submitting jobs to an HPC cluster by creating a
batch script and a Spack environment. Once familiar with the process, users can
submit jobs directly using the job script and Spack environment generated by
SAI. While SAT streamlines the process using SAI is optional, and users are free
to use the command line instead with SAI’s generated commands and scripts.
Figure 7-® displays the final job output of the user’s request.
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Speech Assistant Interface @

-- User: kousha.2 | System: head.ri2.cse.ohio-state.edu | Date: 2023-01-02 | Time: 7:49:55 PM

Total Latency 0.0257:
( Total Latency s) (Total Latency 0.0257s)

Automatic Natural Knowledge
Job Job
Spack
Composer | PC Output
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Fig. 7. Visual representation of SAI’s implemented pipeline for the user input from
Fig. 6: showing series of transformations of through various SAI components, with each
step generating an output. The screenshot provides a clear illustration of the flow of
data and the transition of input to output at each stage.

6 Experimental Evaluation

6.1 Evaluation Platform

We conduct our evaluation experiments on a 58-node Infiniband EDR cluster.
It has two sets of nodes: 1) Intel 28 cores Broadwell(BDW) CPU running at
2.40 GHz nodes with a single NVIDIA Volta V100-32 GB GPU, and 2) Intel
28 cores SkyLake(SKX) CPU running at 2.6 GHz node with two NVIDIA K80
GPUs.

DL Framework: PyTorch [22] defines and trains DNNs for ASR and NLU
DNNs: Speech2Text [27], BERT-based entity detection and classification [11]
Datasets: LibriSpeech [21], TIMIT [1], HPC-ASR, and HPC-NLU
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6.2 Evaluation Methodology

In this section, we describe our evaluation methodology used to conduct exper-
iments. In Sect. 6.3, we compare the performance of the existing pre-trained
Speech2Text model and fine-tuned Speech2Text (Sect.4.2) on the HPC test
dataset. Then, we test the NLU model trained from scratch — since there is
no pre-trained NLU available for HPC — in Sect. 6.4 to predict the entities for
the given text query or speech query transcript. The end-to-end performance of
the ASR and NLU model is evaluated in Sect. 6.5. Section 6.6 provides the over-
head of running the SAI pipeline from deep learning inferencing to determining
whether the requested software is installed or not. We evaluate the scaling of
SAT as an Open OnDemand Passenger App in Sect. 6.7 and the performance of
SAI as an Open OnDemand Interactive App in Sect. 6.8.

6.3 Evaluating ASR Model

We evaluate the performance of pre- Table 2. Evaluation of ASR model using
trained ASR Speech2Text model on Word Error Rate (WER) - Lower is better
our HPC-ASR dataset. Our HPC-

ASR dataset has HPC terminolo- Train Dataset Test Dataset WER
gies and TIMIT dataset has differ- Base (LibriSpeech) HPC-ASR  |86.2

. . B TIMIT4+HPC-ASR | HPC-ASR | 3.7
ent accents, which will make our aset +

proposed design available to a wide
range of speakers. The final test
results for WER on TIMIT and
HPC test set is shown in Table2.
We observed that the existing off-
the-shelf ASR model is not suitable
for SAI conversational needs as it
does not recognize HPC-related ter-
minologies in the test set resulting L T

in high WER. This motivated us to Numbers of Steps

fine-tune our ASR model. Using our

fine-tuned ASR model, we were able Fig.8. SAI’'s ASR Model evaluation for
to improve the performance on the Loss, WER and Latency

HPC-ASR test set and achieved a

better WER, closer to that of state-of-the-art models. Figure 8 shows the fine-
tuning of Speech2Text on HPC-ASR + TIMIT datasets. Eval WER is the WER
for the ASR model on the validation dataset and Eval Latency is the runtime of
one step in ASR model validation.
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6.4 Evaluating NLU Model

Since no pre-trained NLU model is available Table 3. Evaluation of NLU model
for HPC terminologies, we trained BERT- for entity recognition - Higher is bet-
based entity detection and classification ter
model (SeCt' 43) from scratch llSil’lg HPC- Test Dataset Fl-score Precision Recall
NLU dataset. We evaluate the performance gponru sm) 0.999 |0.999 | 0.999
of predicting entities and extracting them
for our trained NLU model against human-
supervised and labeled HPC-NLU dataset.

The training set consists of 60,000 ran- 1
domly selected queries for DL, OMB, and 01
NAS phrases from the HPC-NLU dataset
including the combinations, permutations,
and synonyms. Then, we used 5 million
randomly selected queries from the rest 0.0001

. 0 5 10 16 21 26 32 37 42

of the dataset for testing. We calculated Number of Steps
the performance metrics by comparing the
NLU output versus the human-supervised Fig. 9. Validation loss for NLU model
labeled HPC-NLU dataset. of SAI

Table 3 shows the final test Fl-score,
precision, and recall on the HPC-NLU test set and achieving 99% accuracy for
entity detection and classification. Figure 9 shows the validation loss of the NLU
model on the HPC-NLU dataset.

0.01

Loss

0.001

6.5 Performance Evaluation of Combined ASR and NLU Models

In this experiment, ASR and NLU modules are evaluated together as a pipeline
to assess the success rate of SAI for converting speech query to the classified enti-
ties. We use our trained NLU and ASR models to calculate inference accuracy. A
speech test dataset of 100 queries from 4 individuals’ were chosen for end-to-end
inference with the following demographic: User 1 with Mandarin accents, User 2
with Middle East accents, and User 3 and 4 with American accents. The testing
queries did not exist in the training queries.

As the predicted sentences
of the ASR model can have Table 4. Word Error Rate and inference accuracy

for ASR+NLU pipeline of SAI on 4 users where the

different generated lengths X .
models were not trained on 2 users - Lower is better

based on the accent from the

Onglna‘l Sentences’ the NLU Metric User 1 User 2 User 3 User 4 Average
model cannot compare enti- \wggr 103 |8.6 8.3 4.9 8.03

ties pairwise. Thus, we desig-  “Accuracy M2 0.97 0.90 080 095 |0.907
nate two metrics for end-to- “Accuracy M1 0.84 [0.81 [083 |0.92 |0.849
end testing: Metric 1 (M1):
if a predicted sentence has more words than the original sentence, we drop the
last few words in prediction to make sure they have the same lengths and vice
versa. Metric 2 (M2): we first drop less important words like articles, preposi-
tions, and grammatically wrong words inside the ASR-generated query and then
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repeat the process in metric 1. Table 4 shows the results of end-to-end inference.
This end-to-end result shows the practicability of our design because ASR and
NLU models have never trained with recordings from User 1 and 4 but still yield
96.8% and 90.7% test accuracy. This implies flexibility of the end-to-end model
for recognizing new users’ voices.

6.6 Overhead Analysis of SAI

In this experiment, we evaluate the overhead of our full pipeline deployed as
a passenger app: from user speech/text input to submitting a job based on the
user input. The interactive application performance would be the same or better.
Since different packages available through Spack have varying installation times,
we skip the overhead of package installation and job execution. In subsequent
requests involving the same sets of software, this overhead won’t be observed
since the software is already installed.

Figure 10 showcases the average 708
. “© X Text Query A
end-to-end duration to process speech & A4
. . . c 0.6 |A Speech Query A A
and text queries of varying lengths in g A A4
. = A * AA
SAI end-to-end pipeline. In general, g 04 i
it can be seen that the time taken 3 X X + XX X XX X X x x X
to process speech increases with an - 92
. . . o0
increase in the number of words in the £ o
. . >
query. This is expected as the ASR < 0 5 10 15

model takes an input of the varying Number of words in query

size and hence bigger inputs take more
time. The time taken to process a text
query is more or less constant as the
input size of the NLU model is fixed.

Fig. 10. End-to-end latency evaluation of
SAT for 13 different queries on passenger
app on speech and text queries consisting
of different numbers of words - each data
point is an average of 200 iterations

6.7 Overhead Analysis of Scaling Passenger App Users

As mentioned in Sect.4.7, resources
are shared among users of SAI when
deployed as a passenger app. This
experiment evaluates the end-to-end
overhead of SAI when multiple users
interact with it at the same time.
To do this we use selenium with the
chrome web driver to simulate dif-
ferent amounts of users using the
SAI passenger app at once for text
and speech queries. We use a barrier
to ensure the concurrency of users’
requests for each iteration. The test
uses a text/speech query of 8 words
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Fig. 11. Boxplot comparison of end-to-end
latency of SAI passenger deployment as a
varying number of concurrent users utiliz-
ing SAI for both speech and text - the host
node is equipped with BDW 28 cores CPU
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for 200/100 iterations per user. Figure 11 shows the box plot of scaling the users
from 1 to 32 concurrent users utilizing SAT as a passenger app. We observe that
as the number of users scales up both the average latency and the variance in
latency scale up for both speech and text with speech increasing at a greater
rate. Moreover, the performance of the login node hosting the passenger app
degrades significantly. The increased latency and significant jitters of multi-user
passenger apps motivate us to develop SAI as an interactive app to ensure a
smooth user experience with lower latency.

6.8 Analysis of SAI Interactive App on Different Architectures

The performance degradation of SAI during scaling up the number of concurrent
users motivated us to develop and evaluate SAI as an interactive application to
ensure exclusive resources. The user selects the partition/architecture to run
SAIL In this experiment, we evaluate the breakdown and the total latency of
SAT’s both deployment on different architectures for the same 8-word text and
speech query running 100 and 400 iterations for speech and text respectively.
The passenger test was conducted during the winter break and as many users
were not using the system hence, shows the best scenario of the passenger case.
The K80 GPU node did not support ASR inference. Table5 summarizes the
median end-to-end latency of total time and breakdown of latency across SAI’s
sub-components. We observe the latency of ASR and NLU modules decreases
when inference happened on the V100 GPU node and overall the total latency
is lower than the passenger deployment.

Table 5. Total latency and its breakdown for the deployment of SAI on different 1-
node architectures as Interactive and Passenger app inside OnDemand - Numbers show
the median of running 8-word speech/text query for 100/400 iterations respectively.

Architecture Deployment  Total ASR NLU KG
/Model type latency module module module
BDW speech Interactive | 0.4919 |0.23865 | 0.02275 | 0.22655
Passenger 0.50245 | 0.2366 | 0.0217 |0.2274
BDW text Interactive | 0.2665 | N/A 0.0227 |0.24335
Passenger 0.27125 N/A 0.0218 1 0.24795
SKX speech 0.44085 | 0.24105 | 0.0174 |0.1754
SKX text 0.22095 N/A 0.0242 | 0.19585
V100 speech | Interactive |0.40735 | 0.16585 |0.0172 |0.224
V100 text 0.2664 |N/A 0.0225 | 0.2433
K80 text 0.2676 |N/A 0.0225 |0.2448
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7 Discussion

7.1 Security and Authentication

SAT leverages Open OnDemand’s user authentication and access privileges vali-
dation features and uses “spack verify” command, as shown in Fig. 7, to confirm
the integrity of all installed binaries at any time after installation, ensuring
that no files have been tampered with or modified. This added layer of security
enhances user trust and the reliability of the installed packages.

7.2 Handling Ambiguous Queries in SAI

We discuss the limitations of SAI and the level of ambiguity SAI handles. We
seek to see at what point SAI will not understand the user and how we han-
dle those cases. Our developed dataset is limited to popular HPC/DL phrases
hence, SAT does not understand all existing HPC synonyms or all available DL
models. The HPC-ASR and HPC-NLU dataset contains synonyms and different
combinations of the phrases but is limited. We have trained ASR model with
20 volunteer individuals targeting diverse dialect, but our HPC-ASR dataset is
still limited. This limitation may result in SAI predicting wrong text output. To
address this, SATI displays the transcript in the input text field and allows the
user to correct mistakes in speech recognition if there are any. The users can
switch between text and speech to resolve any discrepancies on speech recogni-
tion during conversation.

SAI shows the internal workflow (Sect.5) enabling the user to see the param-
eters and packages and shows the default values. SAI always checks user argu-
ment versus the allowed range in the corresponding KG and confirms it with
the user. In case anything is missing, SAI provides feedback by asking ques-
tions. For example, user can say “train resnet” and as SAI checks the related
KG, it inquiries the user for an image dataset and number of nodes/processes
as requirements. Currently, SAT does not support directly querying the KG. For
example, users cannot ask “what are the datasets for DL image processing?”
Also, SAT does not give the option to users to update the KGs.

7.3 Trade-offs for Converting Speech to Entities

There are two ways to convert speech to entities: 1) ASR followed by entity
detection and classification, and 2) direct speech to entity detection and classi-
fication. Our design uses the first approach, which first converts audio to text
then uses NLU to detect and classify entities. We chose this approach for several
reasons: first, a speech to entity model requires a large corpus of labeled HPC
speech datasets for optimal accuracy; second, since SAI supports both speech
and text input, creating separate datasets would be necessary (one for NLU and
one for ASR); Third, pre-trained DL models for similar tasks are not available.
Fourth, this approach allows for easy integration of new software, only requiring
a few minutes of audio recordings containing its terminologies.
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7.4 Portability for New Software and Systems

To extend SAI support to a new HPC software, SAI-O ontology can be used to
capture the relationships of a new application to be added to SAI. We repre-
sent these relationships by using KGs, which capture the connections between
software, data, models/algorithms, systems, and arguments.

Adding a new application to SATI requires two steps: (1) creating a KG for the
application using the SAI-O ontology and the supported relationships (Table 1),
and (2) adding application-specific terms to the HPC-ASR dataset. SAT will
provide easy-to-use scripts for fine-tuning the ASR model on new audio sam-
ples, enabling support for new terminologies in ASR model. The KG Inference
module selects the appropriate KG using “spack verify”, allowing us to reuse
the general query manager and simplify the addition of new applications. We
have trained the NLU module on a large dataset and therefore, it can detect
entities and classify them into broad categories based on the sentence struc-
ture. In rare cases, the performance of the NLU module may degrade due to
new terminologies, but SAI provides an easy-to-use dataset generator script to
generate new text commands based on models/algorithms, datasets, software,
arguments, and systems to fine-tune the DL model and improve performance for
the new application. Figure 7 shows a setting interface where users can upload
their customized trained DL models to be used for SAI.

The modularity of our design allows the KG to be ported to multiple systems
by updating a template (Sect.9) with the new platform’s system information.
Integrating SAI with Open OnDemand makes it even easier to port to new
system architectures, as many XSEDE/ACCESS systems use OnDemand. The
KG’s system portion is the same for all applications on a system, simplifying the
deployment of SAT on a new HPC system.

8 Related Work

Our previous work [14] introduced a new conversational AI interface for HPC
profiling tools like OSU INAM [15], with a focus on extracting performance-
related terminologies, intents, and slots for HPC tools and scope of profiling
tools. In this paper, we expand upon our previous work by capturing a broader
range of HPC runtime terminologies, and by incorporating an NLU entity recog-
nition model to process user inputs. Additionally, we introduce new features
to enhance the interface’s usability and effectiveness, such as integration with
OnDemand, a software installer component, and job submission capabilities. Sev-
eral studies [20,26] exist in literature that uses an end-to-end based approach to
convert the voice to intent and slots, combining ASR and NLU into one model.
The trade-off is discussed in Sect. 7.3 and maintaining and updating a list intent
and slots causes the KG query module not to be portable. Another approach is to
combine ASR and NLU models to understand the context of speech samples. The
state-of-the-art ASR models [9,27] have been proposed in the literature that pro-
vides good performance for publicly available datasets and common words found
in day-to-day conversation. However, we need to fine-tune these ASR models to
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recognize technical terms found in computer science and HPC. Similarly, NLU
models [7,8,10,23] are trained for publicly available datasets. Hence, to develop
a system for HPC software installation and usage tool, we need to generate our
own dataset and retrain models from scratch to get better accuracy. To the best
of our knowledge, this is the first work that develops a conversational Al-based
interface for HPC software installation and execution.

9 Future Work

As part of future work, we plan to simplify the process of creating KGs for HPC
software by providing easy-to-use templates to create a KG for a given appli-
cation and collaborating with multiple HPC centers to identify common appli-
cations and make corresponding templates available to users. We will provide
examples of existing applications to assist in filling the template. To create a new
application’s KG, users need to provide the model/application, data, arguments,
and dependencies to the KG template. As the repository of model commons for
the templates grows, users can update the templates with new features and sys-
tem information and contribute to the repository, ultimately saving time and
effort of generating KGs’s template for common applications. Furthermore, we
plan to expand the SAI-O ontology to capture a broader range of HPC applica-
tions and runtimes, including those with complex inter-dependencies and unique
configurations. Finally, we plan to release SAI and our solutions.

10 Conclusion

In this paper, we proposed - SAI, a Conversational Al-Enabled Interface for
science gateways in HPC. We created an HPC speech and text dataset to train
Automatic Speech Recognition and Entity detection and classification model
to understand the input. By defining a new ontology, called SAI-0, we pro-
vided a general approach for any HPC application by using knowledge graphs
to check and validate the task given by the user. This allowed us to get default
values for optional arguments and design a conversational interface to get the
required arguments for running the application. We demonstrated the capability
of the proposed design by supporting three different HPC applications: 1) OSU
Microbenchmarks, 2) Distributed DNN training, and 3) NAS parallel bench-
marks. Finally, we integrated SAI in Open OnDemand and deployed it on real
HPC systems. We also evaluated its performance and functionality. To the best
of our knowledge, this is the first attempt in the HPC field to enhance the user
experience by designing a Al-powered speech-assisted interface. Early users have
shown interest and found SAI features very useful to onboard domain scientists
to HPC.
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