
Designing Efficient Pipelined Communication
Schemes using Compression in MPI Libraries

Bharath Ramesh, Qinghua Zhou, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni, Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
Columbus, USA

{ramesh.113, zhou.2595, shafi.16, abduljabbar.1, subramoni.1, panda.2}@osu.edu

Abstract—The emergence of trillion-parameter models in AI,
and the deployment of dense Graphics Processing Unit (GPU)
systems with high-bandwidth inter-GPU and network intercon-
nects underscores the need to design efficient architecture-aware
large message communication operations. GPU-based on-the-fly
compression communication designs help reduce the amount
of data transferred across processes, thereby improving large
message communication performance. In this paper, we first
analyze bottlenecks in state-of-the-art on-the-fly compression-
based MPI implementations for blocking as well as non-blocking
point-to-point communication operations. We then propose ef-
ficient point-to-point designs that improve upon state-of-the-art
implementations through fine-grained overlap of copy, compres-
sion and communication operations. We demonstrate the efficacy
of our proposed designs by comparing against state-of-the-art
communication runtimes using micro-benchmarks and candidate
communication patterns. Our proposed designs deliver 28.7%
improvements in latency, 49.7% in bandwidth, and 36% in bi-
directional bandwidth using micro-benchmarks, and up to 16.5%
improvements for 3D stencil-based communication patterns over
state-of-the-art designs.

Index Terms—HPC, Infiniband, MPI, RDMA, Compression,
GPU

I. INTRODUCTION

The advent of Graphics processing units (GPUs) has en-
abled applications to perform a wide variety of compute
intensive tasks at a much faster rate than CPUs. Owing to their
massive compute capabilities, High Performance Computing
(HPC) clusters such as the #4 supercomputer, named Summit,
on the Top500 list [1] have employed multiple GPUs per
node spanning thousands of nodes. These clusters employ
high-bandwidth inter-node interconnects such as Infiniband [2]
and inter-GPU interconnects such as NVIDIA NVLink [3] to
facilitate large volumes of distributed communication between
GPUs in the system along with low latency. The Message
Passing Interface (MPI) is the de-facto standard for distributed
communication on HPC clusters, providing APIs for point-
to-point as well as collective communication operations. The
trend towards building supercomputers with GPUs and high
performance interconnects is only expected to expand with the
move towards exascale. The onus of utilizing different inter-
connects and compute elements in super-computing systems

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002

while achieving the lowest possible communication latency
between processes falls on MPI libraries.

Researchers in the past [4], [5], [6] have optimized GPU
to GPU data transfers using a mix of efficient software-level
protocols and hardware features such as GPUdirect RDMA,
NVLink load/stores, etc. Even state-of-the-art schemes that
don’t use compression often saturate network links. This
motivated the need to reduce the amount of data communicated
across these links using compression. Observing the high over-
head of compression libraries at runtime for communication
operations, authors in [7] proposed an on-the-fly compression
framework to reduce volume of communication across links
and improve large message data transfer latency in MPI. The
limitation of their approach was primarily the blocking nature
of compression and data transfer operations. This problem is
exacerbated when the time for compression increases, since
the network largely remains under-utilized.

This paper revisits the challenge of designing on-the-fly
compression aware MPI libraries and proposes new designs
to more effectively overlap compute as well as communication
operations involved in transferring messages between GPUs
using compression in MPI. The overall idea is to start the
transfer of inter-process messages as soon as possible and in an
architecture aware fashion. To do this, we identify bottlenecks
at different layers in state-of-the-art on-the-fly compression
implementations and enhance them by overlapping compres-
sion, copy and communication operations. We take ZFP [8]
as the candidate compression library, and NVIDIA V100s as
candidate GPUs, but our designs are compression library/GPU
architecture agnostic.

II. CONTRIBUTIONS

This paper makes the following key contributions:

1) Analyze and highlight bottlenecks in state-of-the-art MPI
implementations that use compression for large message
GPU-based point-to-point messages. C

2) Identify potential areas of overlap for MPI point-to-point
transfers using compression.

3) Propose point-to-point designs for GPU buffers in MPI
that can effectively pipeline compression and message
transfer.



4) Compare proposed designs with existing baseline
compression-based implementations using micro-
benchmarks and 3-D stencil communication patterns.
Our proposed designs outperform state-of-the-art with
28.7% improvements in latency, 49.7% in bandwidth,
and 36% in bi-directional bandwidth at the micro-
benchmark level, and up to 16.5% improvements for 3D
stencil-based communication patterns.

III. MOTIVATION

(a) Time Taken for compression operations using ZFP, with a
fixed-rate of 16 (compression ratio = two). The graph shows a
steep increase in compression time for larger messages.

RTS

CTS

RDMA Write

RDMA Write

Sender Receiver

Compress on GPU

cudaMemcpy to Host

Lost
Overlap

Potential

cudaMemcpy to Device

Decompress on GPU

FIN

(b) State-of-the-art compression design timeline, showing interactions between
the sender and receiver processes. As shown in the figure, the sender process
waits to send an RTS message until the compression operation completes, which
leads to lost overlap potential and under-utilization of the network.

Figure 1: Figures demonstrating compression bottlenecks in
state-of-the-art designs.

We motivate the need for improved designs by highlighting
compression bottlenecks in existing state-of-the-art implemen-
tations. Figure 1(b) shows the general flow of transferring
a message between two processes (a sender and a receiver)
using existing RDMA-based PUT protocols with host-staging
and compression. The sender first uses the GPU to compress
the data to be sent. The sender then sends a ready to send
(RTS) packet (containing metadata) over the network indicat-
ing readiness for sending data to the receiver. The receiver

replies back with a clear to send (CTS) to complete the
handshake and enable the sender to start RDMA operations.
The sender side then initiates asynchronous memory copies to
the host, so that RDMA operations can be performed between
CPUs. Once the memory copy is complete, the host process
issues an RDMA write operation to remote memory resident
on the receiver’s RAM. The problem with this approach is
that the RDMA operation is initiated only after compression
is complete, which results in sub-optimal utilization of the
underlying network since the time for compression is relatively
high for larger messages (shown in figure 1(a)). This brings
us to the challenge of designing a transfer scheme for large
messages that minimizes the impact of compression, increases
potential for overlap, and improves the latency of point-to-
point communication operations.

IV. DESIGN AND IMPLEMENTATION

A. Pipelined Inter-node point-to-point design (Proposed-
pipelined-ZFP)

RTS

CTS

Sender
CPU

Receiver
CPU

RDMA Write

GPU copy
Engine

GPU Compute
(decompress)

GPU compute
(compress)

GPU Copy
Engine

RDMA Write

Chunk 0
Chunk 1

Copy
To 

Host Copy
To 

Device

Figure 2: Data flow for the proposed pipelined point-to-point design.
Orange/blue indicate different chunks of the buffer to be exchanged.
The two chunks operate independently and the compute engines on
the GPU could potentially overlap compression of both chunks.

1) Overview: MPI libraries traditionally use two methods
for transferring data between NVIDIA GPUs depending on the
system characteristics/message size - either through GPUDi-
rect RDMA [9] or by staging through the host [4]. Figure 2
shows the high-level flow of the proposed pipelined design,
in cases where the preferred transfer method is staging to
the host. Note that cases involving GPUDirect RDMA would
follow the same flow, and would only avoid the data staging
operations shown in the figure. The overall idea of the design
is to divide the buffer into a specified number of chunks, and
perform compression/decompression and RDMA operations
by overlapping compute, copy and RDMA operations. The
Figure shows two colors — orange and blue, each denoting a
specific chunk of the message. At first, the sender process initi-
ates asynchronous compression operations for both chunks and
immediately sends an RTS message to the destination process.
The receiver replies back with a CTS containing information

2



required for remote RDMA operations to be performed by
the sender. On completion of any compression operation, the
sender initiates a memory copy to host, followed by an RDMA
write. The receiver side mirrors this step by copying from host
to device and then decompressing buffers as soon as all the
data for a chunk is received. The memory copies to host/device
are chunked to pipeline memory copies and RDMA opera-
tions. Chunking compression operations facilitates overlapping
compression and memory copy operations (and hence RDMA
operations). Each point-to-point operation is associated with a
request object, used to track details on a per send/recv basis.
Specific details are described in subsequent sections.

2) Maintaining buffer pools: We maintain two kinds of
memory pools — one on the GPU and another on the host. The
GPU memory pool is used as a staging area for compression
and decompression operations. The host memory pool is used
as a staging area for RDMA transfers between CPUs, and
is useful in cases where using GPUDirect RDMA results in
bottlenecks [4]. The size of buffers in the pool is equal to the
maximum message size supported for data transfer. If transfers
that exceed the buffer size are performed, they are chunked so
that the maximum amount of data transfer handled at any time
is the size of the buffers in the pool. All pools are initialized in
MPI Init and are hence a one-time cost. All buffers in the pool
are registered using ibv reg mr, so that the HCA can perform
data transfers using them. A registration cache is maintained
to amortize the cost of registration operations in the critical
path. All temporary buffers used for compression/data staging
are obtained from the two memory pools described here.

3) Finding ideal chunk sizes: The number of chunks used
can directly impact the latency of communication operations
when pipelining. We empirically determine this number based
on timing information of prior runs of the same buffer/message
size combination. Based on our observations, splitting buffers
into two/four chunks yield the best results in most cases,
though this could potentially change with other architec-
tures/systems.

4) InfiniBand transport considerations: We only consider
using RC transports, due to guarantees provided with respect to
ordering of messages and ease of implementation. All RDMA
writes described in our designs are actually RDMA write with
immediate operations (with request object pointers as imme-
diate data), which generate a notification of completion on
the receiver side and hence reduce the need for sending many
finish (FIN) messages. However, notification of completion
does not guarantee that the data is resident in the receiver’s
memory. To handle this, we wait for another message to arrive
on the same Queue Pair (QP) before processing any RDMA
write completion event. Due to this, our design only ends up
using one FIN message per QP (for the last chunk sent in the
point-to-point operation).

V. EXPERIMENTAL EVALUATION

In this section, we describe experiments we conducted to
evaluate our proposed pipelined designs (Proposed-pipelined-
ZFP). We use ZFP as the underlying compression library. We

only compare our proposed design against MVAPICH2-GDR
2.3.7 with ZFP support (referred to as MVAPICH2-GDR-ZFP
in the graphs), which is the only publicly available production
MPI library with support for compression. Since compression
based schemes are known to outperform implementations that
do not use compression [7], we omit results comparing against
other popular production MPI libraries. All numbers reported
are an average of five runs, to minimize effects of system noise
showing up in the final results.

A. Experimental setup
The cluster we use for our experiments comprises of

dual socket IBM POWER9 processors, with two NVIDIA
V100 GPUs per socket connected via NVLinks. We use
MVAPICH2-GDR 2.3.7 with support for compression as the
baseline for our comparisons, using parameters as proposed
by authors in [7]. The cluster runs RHEL 7.9 as the operating
system, with MLNX OFED LINUX 4.7 on a v4.14 ppc64le
kernel.

B. Micro-Benchmark Evaluation
In this section, we explain our observations on running

the OSU micro-benchmarks suite [10] v5.9. All experiments
are run with the default number of iterations set by the
benchmark. We demonstrate the efficacy of our proposed
designs on latency, uni-directional bandwidth as well as bi-
directional bandwidth benchmarks using different window
sizes. All micro-benchmark evaluations below are for inter-
node operations.

(a) ZFP Rate 8

(b) ZFP Rate 16

Figure 3: Comparison of proposed pipelined implementation
against MVAPICH2-GDR-ZFP with different compression rates using
osu latency for message sizes ranging from 4M to 128M bytes.
Lower is better.

1) osu latency: Figure 3 shows results on running com-
parisons using osu latency. For a compression rate of 8

3



(indicating a compression ratio of 128/32 = 4), we observe
up to 28.7% improvements over MVAPICH2-GDR-ZFP for
a message size of 128MB. Our proposed designs only show
nominal improvements for relatively smaller messages because
the cost of running multiple chunked compression operations
far exceeds the cost of compressing the entire buffer. The
improvements are more pronounced at larger message sizes as
larger messages involve high compression costs which result in
better bandwidth utilization when using chunked compression
schemes. The trend remains largely the same with a rate of
16, where we reduce the latency by 28.7% over MVAPICH2-
GDR-ZFP.

2) osu bw: We run bandwidth benchmarks using two dif-
ferent window sizes. The window size represents the total
number of concurrent data transfers that are initiated by a
process. Figure 4 shows the comparison between our proposed
designs and MVAPICH2-GDR-ZFP. We observe up to 26.9%
improvements for 128M messages with a window size of two,
and up to 49.7% improvements for a window size of four.
This demonstrates that pipelining compression significantly
improves the utilization of the network, as network operations
are initiated a lot sooner than sequential compress and send
schemes.

(a) Window size = 2

(b) Window size = 4

Figure 4: Comparison of proposed pipelined implementation against
MVAPICH2-GDR-ZFP with a compression rate of 8 using osu bw
for message sizes ranging from 4M to 128M bytes. Higher is better.

3) osu bibw: Our evaluation of bi-directional bandwidth
is done using the same window sizes used in the osu bw
evaluation. The bi-bandwidth benchmark emulates communi-
cation patterns where two processes send and receive multiple
messages at the same time. As shown in Figure 5, our proposed
designs improve bi-directional bandwidth by up to 36% for a
window size of two, and up to 27.5% for a window size of
four.

(a) Window size = 2

(b) Window size = 4

Figure 5: Comparison of proposed pipelined implementation against
MVAPICH2-GDR-ZFP with a compression rate of 8 using osu bibw
for message sizes ranging from 4M to 128M bytes. Higher is better.

C. 3D stencil communication evaluation

3D stencil is a near-neighbor communication pattern that
involves exchange of data in three directions - x, y and z. The
pattern often involves concurrent non-blocking point-to-point
operations, and is used widely in a variety of applications. In
this evaluation, we run 3D stencil experiments for data buffers
resident on the GPU. Figure 6 shows the latency of running a
3D stencil communication pattern for two process grid sizes.
The 2 * 2 * 2 grid is run using 8 GPUs, with one GPU per node
and the 4 * 2 * 2 grid is run on 16 GPUs, with two GPUs per
node. The trends for 3D stencil follow a similar pattern as seen
in the micro-benchmark evaluations. As shown in Figure 6(a)
and 6(b), we observe up to 16.5% over MVAPICH2-GDR-ZFP
for a message size of 128MB.

VI. RELATED WORK

Compression technologies have been utilized to accelerate
the MPI libraries and HPC applications. In [11], Ke et al. in-
tegrated CPU-based compression algorithms in an MPI library
to compress the messages. In the CoMPI library [12], multiple
compression algorithms were integrated into an MPI library to
accelerate various operations and achieved benefits for appli-
cations running on CPUs. In [13], Filgueira et al. developed
a Dynamic-CoMPI library that can adaptively select the best
compression algorithm under a specific communication envi-
ronment. The performance of compression algorithms has been
pushed forward with advanced hardware accelerators such as
GPUs. Some GPU-based compression algorithms GFC [14],
MPC [15] have outperformed the CPU-based algorithms. Re-
cently, NVIDIA released the lossless GPU-based compression

4



(a) Grid size = 2 * 2 * 2

(b) Grid size = 4 * 2 * 2

Figure 6: 3D stencil communication latency for on 8 nodes, for 8
GPUs and 16 GPUs respectively. The grid sizes map to the layout
of how processes are arranged in 3D.

library nvCOMP [16] for HPC applications. To achieve a
higher compression ratio, lossy compression algorithms such
as SZ [17] and ZFP [8] have been developed and applied
to various scientific applications. A recent dual-quantization
scheme of SZ was proposed [18] based on advanced NVIDIA
GPU architectures. The study [19] showed high compression
throughput and good error-bounded accuracy at scale. To solve
the bottleneck of existing network bandwidth and further im-
prove the performance of transferring large GPU data, an on-
the-fly compression framework [7] was proposed to integrate
the GPU-based compression algorithms MPC [15] and ZFP [8]
into MPI library. This on-the-fly compression is an initiative
work along this direction. However, there are limitations in
their point-to-point based compression as analyzed in this
paper and we proposed designs to overcome those limitations.

VII. CONCLUSION AND FUTURE WORK

The rapid adoption of GPU systems in large scale su-
percomputers motivate the need to optimize communication
operations for distributed applications. Interconnect links are
often saturated due to the disparity between the volume of
data exchanged and available bandwidth. Compressing large
messages is known to be an effective approach in reducing
the volume of data exchanged. In this paper, we analyzed
bottlenecks of state-of-the-art compression based point-to-
point schemes in MPI libraries and proposed designs to
more efficiently pipeline compression, communication and
copy operations. Our proposed designs show up to 28.7%
improvements in latency, 49.7% in bandwidth and 36% in bi-
directional bandwidth over state-of-the-art designs. As future

work, we plan to evaluate our designs at larger scales and
more complex application communication patterns.

VIII. ACKNOWLEDGEMENTS

We would like to thank LLNL for providing resources.

REFERENCES

[1] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “TOP 500
Supercomputer Sites,” http://www.top500.org.

[2] InfiniBand Trade Association, http://www.infinibandta.com.
[3] “NVIDIA NVLink and NVSwitch,” https://www.nvidia.com/en-us/data-

center/nvlink/.
[4] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda,

“Efficient Inter-node MPI Communication Using GPUDirect RDMA
for InfiniBand Clusters With NVIDIA GPUs,” in Parallel Processing
(ICPP), 2013 42nd International Conference on. IEEE, 2013, pp. 80–
89.

[5] K. Hamidouche, A. Venkatesh, A. A. Awan, H. Subramoni, C. H. Chu,
and D. K. Panda, “Exploiting GPUDirect RDMA in Designing High
Performance OpenSHMEM for NVIDIA GPU Clusters,” in 2015 IEEE
International Conference on Cluster Computing, Sept 2015, pp. 78–87.

[6] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni,
and D. K. Panda, NV-Group: Link-Efficient Reduction for Distributed
Deep Learning on Modern Dense GPU Systems. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3392717.3392771

[7] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed,
H. Subramoni, and D. K. Panda, “Designing high-performance mpi
libraries with on-the-fly compression for modern gpu clusters*,” in 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021, pp. 444–453.

[8] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, 08 2014.

[9] NVIDIA, “NVIDIA GPUDirect,” https://developer.nvidia.com/gpudirect,
2011, Accessed: September 24, 2023.

[10] OSU Micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/.
[11] Jian Ke, M. Burtscher, and E. Speight, “Runtime Compression of MPI

Messanes to Improve the Performance and Scalability of Parallel Ap-
plications,” in SC ’04: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, 2004, pp. 59–59.

[12] R. Filgueira, D. Singh, A. Calderón, and J. Carretero, “CoMPI: Enhanc-
ing MPI Based Applications Performance and Scalability Using Run-
Time Compression,” in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, Sep. 2009, pp. 207–218.

[13] R. Filgueira, J. Carretero, D. Singh, A. Calderón, and A. Núñez,
“Dynamic-CoMPI: Dynamic optimization techniques for MPI parallel
applications,” The Journal of Supercomputing, vol. 59, pp. 361–391, 04
2012.

[14] M. A. O’Neil and M. Burtscher, “Floating-Point Data Compression at
75 Gb/s on a GPU,” in Fourth Workshop on General Purpose Processing
on Graphics Processing Units, March 2011.

[15] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, “MPC: A Massively
Parallel Compression Algorithm for Scientific Data,” in IEEE Cluster
Conference, September 2015.

[16] NVIDIA, “nvCOMP,” https://github.com/NVIDIA/nvcomp, 2020, Ac-
cessed: September 24, 2023.

[17] S. Di and F. Cappello, “Fast Error-bounded Lossy HPC Data Com-
pression with SZ,” in International Parallel and Distributed Processing
Symposium(IPDPS), 2016.

[18] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood,
S. Jin, X. Liang, J. Calhoun, D. Tao, and F. Cappello, “Cusz: An
efficient gpu-based error-bounded lossy compression framework for
scientific data,” in Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
3–15. [Online]. Available: https://doi.org/10.1145/3410463.3414624

[19] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. P.
Ahrens, “Understanding GPU-Based Lossy Compression for Extreme-
Scale Cosmological Simulations,” ArXiv, vol. abs/2004.00224, 2020.

5


