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Abstract—MPI Neighborhood collectives are used for non-
traditional collective operations involving uneven distribution of
communication amongst processes such as sparse communication
patterns. They provide flexibility to define the communication
pattern involved when a neighborhood relationship can be
defined. PETSc, the Portable, Extensible Toolkit for Scientific
Computation, used extensively with scientific applications to
provide scalable solutions through routines modeled by partial
differential equations, utilizes neighborhood communication pat-
terns to define various structures and routines.

We propose GPU-aware MPI Neighborhood collective opera-
tions with support for AMD and NVIDIA GPU backends and
propose optimized designs to provide scalable performance for
various communication routines. We evaluate our designs using
PETSc structures for scattering from a parallel vector to a
parallel vector, scattering from a sequential vector to a parallel
vector, and scattering from a parallel vector to a sequential
vector using a star forest graph representation implemented with
nonblocking MPI neighborhood alltoallv collective operations.
We evaluate our neighborhood designs on 64 NVIDIA GPUs on
the Lassen system with Infiniband networking, demonstrating
30.90% improvement against a GPU implementation utilizing
CPU-staging techniques, and 8.25% improvement against GPU-
aware point-to-point implementations of the communication
pattern. We also evaluate on 64 AMD GPUs on the Spock system
with slingshot networking and present 39.52% improvement
against the CPU-staging implementation of a neighborhood GPU
vector type in PETSc, and 33.25% improvement against GPU-
aware point-to-point implementation of the routine.

Index Terms—Neighborhood Collectives, GPU, MPI

I. INTRODUCTION

Traditional collective operations in the Message Passing
Interface (MPI) typically involve a root process synchronizing
with multiple processes or all processes within a commu-
nicator, synchronizing with each other. The communication
pattern is defined and involves all the processes. This leads
to non-traditional operations involving many processes but
not adhering to a unified communication pattern being imple-
mented using point-to-point operations. This is an inefficient
solution that can lead to sub-optimal performance and unloads
the responsibility of defining the communication to the user
or application developer rather than utilizing a collective call
pre-implemented and optimized for any sparse communication
pattern workload. This problem has been referred to in past
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work as sparse communication and addressed in the MPI
3.0 standard with the introduction of Neighborhood collective
operations. Neighborhood collectives allow for sparse commu-
nication patterns involving unevenly balanced communication
loads and patterns. Every process in the communicator can
have a different number of neighbors it is sending to and
receiving from with varying data loads.

Neighborhood Collective operations within MPI enable
communication over process topologies [1]. MPI process
topologies are an additional component that can be provided
for a communicator within MPI, representing a virtual topol-
ogy related to the communication. In a scenario where linear
ranking is not suitable (i.e. when the pattern of communication
is a two-dimensional or three-dimensional grid and cannot be
represented by a collective operation in the traditional sense
of 0 to n-1 ranks, linearly defined), MPI process topologies al-
lows for defining the topological process of the communication
and naming the processes. This also enable a means of map-
ping the processes to the hardware. The virtual topology being
defined for a neighborhood communication pattern provides
optimization opportunities that can utilize this knowledge of
the virtual topology to improve the communication and better
map the processes to the physical hardware.

Top supercomputers [2] are equipped with GPUs and high-
speed interconnects that allow for optimal communication
paths yielding minimal latency and high throughput amongst
these GPUs. The adoption of many HPC and Deep Learn-
ing workloads to operate on GPU-based systems motivates
a need for enhanced communication operations to address
the different requirements of these applications. In particular,
sparse communication patterns utilized in these applications
are often bound by the performance of traditional collective
operations or by point-to-point implementations of a non-
traditional communication pattern. In order to address scal-
ability issues with traditional collectives being reliant on all
processes in the communicator, neighborhood collectives can
optimize the workload to involve specific relevant processes
in the topology graph and efficiently distribute the work.

A. Motivation

While previous work has addressed optimizations for neigh-
borhood collectives, in practice within MPI libraries, many
neighborhood collective operations are still reliant on a tradi-



tional point-to-point implementation. In particular, to the best
of our knowledge, none of the state-of-the-art MPI libraries
have support for GPU-aware MPI Neighborhood collectives.
With an advent of communication requirements for deep learn-
ing and high performance computing application workloads in
the exascale era where communication performance is critical,
particularly at scale, it is important to have support for neigh-
borhood communication using GPUs. In this work, we propose
GPU-aware MPI Neighborhood collective communication, we
develop optimized designs for neighborhood collectives that
take into account the communication topology, and delve into
the details of our proposed work using various structures and
routines in the PETSc (PETSc, the Portable, Extensible Toolkit
for Scientific Computation) [3] toolkit.

In order to motivate the need for enhanced Neighborhood
Collective communication, we take a look at the PETSc
toolkit [4] as a use case. We evaluate nonblocking neigh-
borhood alltoallv (MPI_Ineighbor_alltoallv)commu-
nication using the PETSc library and proposed optimized
designs to enhance the routines used in PETSc with neighbor-
hood communcation. PETSc offers an option to set up a star
forest object using one of three communication options: one-
sided, point-to-point, and neighborhood. In the neighborhood
version, in order to overlap communication and computation,
PETSc uses the MPI_Ineighbor_Alltoallv operation. Due to
lack of support for GPU-aware MPI neighborhood communi-
cation in GPU-aware MPI libraries, when this neighborhood
call is made, PETSc stages the data from device to host
and makes the call from the CPU before passing the data
back to the GPU after completing the communication pattern.
This practice of copying data from the GPU to the CPU
before processing the communication, then copying back to
the GPU is commonly known as and referred to in this
work as staging. We utilize this staging approach, and the
point-to-point approach in PETSc as the baselines to compare
optimized approaches against.

PETSc supports two types of vectors including: sequential
and parallel [5]. We look at the following three routines
in PETSc, listed in order of complexity of communication
patterns: 1.) scatter from a parallel vector to a parallel vector,
2.) scatter from a sequential vector to a parallel vector, and
3.) scatter from a parallel vector to a sequential vector. The
vectors represented in PETSc (sequential and parallel) can
be compared to the difference between local and distributed
vectors. A parallel vector is a vector that is partitioned into
chunks across processors. A scatter in PETSc refers to a
collective operation that is used to process a parallel vector. In
order to scatter from a sequential vector to a parallel vector,
every process in the communication contributes to the parallel
vector from its sequential vector. In the reverse case, where the
operation is scattering from a parallel vector to a sequential
vector, every process receives values from different locations
into its own sequential vector.

Limitations of Current State-of-the-art Approaches:
State-of-the-art GPU-aware MPI and communication libraries
including NCCL for NVIDIA GPUs [6], RCCL for AMD

GPUs [7], OpenMPI [8], SpectrumMPI [9], CrayMPICH [10],
and MVAPICH2 [11] have support for GPU-aware communi-
cation amongst processes. However, these GPU-aware Com-
munication and MPI libraries do not have support for GPU-
aware Neighborhood communication. In many of these com-
munication libraries, neighborhood communication is merely
supported through a point-to-point implementation using sends
and receives between the neighborhoods in an iterative fashion.
While NCCL has support for neighborhood exchange, this is
through NCCL point-to-point operations and relies on the user
to implement the communication pattern. This is also the case
for any GPU-aware MPI Library. The neighborhood exchange
can be defined through GPU-aware point-to-point operations at
the application layer. With the rapid changes in the ecosystems
and run-times, many applications fall behind in providing
the capabilities of utilizing technologies and advancements as
they become available. While neighborhood collectives were
presented in the MPI 3.0 standard [12], they are yet to become
as widely used in applications as they can be, considering the
many cases where sparse communication patterns are utilized
but not optimized. This responsibility should fall to the MPI
developer to create the optimal MPI run-time for neighborhood
communication, with consideration for correctness, efficiency,
and network topologies. In this work, we emphasize the need
for GPU-aware neighborhood collective communication by
demonstrating the benefits attained through utilizing a neigh-
borhood collective operation in contrast to merely defining the
neighborhood pattern through a point-to-point approach.

B. Key Insights and Contributions

MPI and communication libraries do not have support for
GPU-aware neighborhood communication. In this work, we
propose GPU-aware and optimized designs for neighborhood
communication. The key contributions of this work are:

1) GPU-aware MPI_TIneighbor_Alltoallv and ex-
tension of designs to support all Neighborhood
Alltoall Communication patterns available including:
MPI_{Neighbor, Ineighbor}_{alltoall, alltoallv, and all-
toallw}

2) Optimized designs for MPI_Ineighbor_Alltoallv utiliz-
ing optimal scheduling for communication schemes with
high node-incast neighborhood communication

3) Evaluation of three communication routines from PETSc
using MPI_Ineighbor_Alltoallv on 64 NVIDIA GPUs on
a system with Infiniband Network Interconnection

4) Evaluation of three communication routines from PETSc
using MPI_Ineighbor_Alltoallv on 64 AMD GPUs on a
system with Slingshot Network Interconnection

5) Delve into the challenges and limitations of state of the
art approaches for neighborhood communication at the
MPI layer and it’s usage at the application layer. This
work includes suggestions that need to be addressed
by application developers in order to include support
for communication that is up-to-date with the latest
features provided by the MPI standard and to have the



underlying functionality that would enable portability of
applications to GPUs.

To the best of our knowledge, no other work has
been done to propose GPU-aware MPI Neighborhood
communication support and optimization.

C. Challenges

In this work, we address the need for applications to be
up to date with the MPI standard through looking at the case
of neighborhood collectives. While the MPI standard is con-
tinuously changing, and the trends in modern supercomputers
continue to lead innovations and research in different direc-
tions, we find that at the application layer, the rate at which
changes are made to support these newer innovations both
in architecture and in the MPI standard typically falls behind.
This leads to an inefficient use of systems where optimizations
can be made at the application layer to utilize many of these
technologies and advancements. This is particularly evident in
the MPI neighborhood collective communication case.

While MPI neighborhood collective communication ex-
isted as a concept and in the standard for years, we find
that many communication patterns in applications that utilize
sparse communication or unbalanced communication loads
can benefit from utilizing this communication. However, the
gap in merging the communication layer, architecture layer,
and application layer knowledge leaves many of these areas
underutilized where they can be exploited to benefit each of
the other layers. In this work, we address the importance of
connecting these layers through MPI neighborhood communi-
cation as an example. The application layer can benefit from
appointing a neighborhood communication pattern rather than
utilizing several point-to-point calls, which will then in turn
better utilize the MPI layer. At the MPI layer, we address
the importance of utilizing the underlying interconnects and
architectural advancements in order to better exploit the fea-
tures available for communication optimization. By connecting
these three layers, we see enhanced performance for patterns
that have been extensively used but not optimized.

In Figure 1, we demonstrate this hierarchy between the
application, communication, and accelerator layers. At the
accelerator layer, note that each of the different GPU vendor
types are independent of each other due to their underlying
software requirements. While this is addressed at the MPI
layer for communication support on each of these vendor
types (i.e. CUDA for NVIDIA GPUs, ROCm for AMD GPUs,
SYCL for Intel GPUs), the application layer must also have
overall support for these vendors in other aspects of their code
besides just the communication layer. This adds an additional
component to this equation to ensure that every piece of
the puzzle has the appropriate functionality and support to
enable usage of newer innovations in each of these layers.
For example, the time between introducing support for MPI
neighborhood communication calls, and adding support for
each of the different GPU vendor types, then looking into
how to change the application layer to divert from utilizing
a less efficient MPI call to a more specific one. Through this
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Fig. 1. Connection between the various layers and how they interact with each
other once an MPI call is made at the application layer to how the accelerators
and interconnects are utilized. —The highlighted sections emphasize the scope
of this work.

work, we hope to motivate the use of neighborhood collective
operations for many neighborhood patterns that are currently
implemented through standard point-to-point operations.

II. BACKGROUND
A. MPI Neighborhood Collectives

Neighborhood Collective Communication was introduced
in the MPI 3.0 standard. Neighborhood collectives provide a
means of communication over non-fixed or graph-like topolo-
gies that cannot be done with standard MPI Collectives. The
communication is determined statically in a neighborhood
operation. A neighborhood collective call contains information
specific to each rank about the incoming processes in the
neighborhood, the outgoing data and processes, the varying
data counts associated with each send and receive and the
general graph topology associated with the communication
pattern.

B. GPU-aware MPI

GPU-aware MPI [13] libraries provide a means to com-
municate directly between GPU buffers passed to the MPI
call without any involvement from the host, eliminating the
overhead of copying data back and forth to the CPU in order
to make the MPI call from the GPU. Currently, all MPI
libraries with GPU support do not provide functionality for
Neighborhood based communication directly from GPUs. In
fact, even a simple naive approach that encompasses staging
from a GPU buffer to the CPU is not supported in current
libraries. In order to utilize Neighborhood collective com-
munication from GPUs, this functionality must be added to
current MPI libraries and further optimizations can be made
to make better use of the architecture, interconnects, and
accelerators available. Various transports and protocols related



to GPU-aware communication that have been introduced over
the years to optimize performance of GPU-aware MPI at
varying messages need to be considered in implementing a
GPU-aware approach for different systems and underlying
accelerators and interconnects. These include various methods
including GPUDirect [14], Inter-Process Communication [15],
and GDRCopy [16]. In addition, to the specific protocols
that need to be considered, the support for the different
protocols over different accelerators such as AMD GPUs [17],
and for different interconnects such as Slingshot [18] in an
ecosystem heavily optimized for NVIDIA GPUs and Infini-
band interconnection is necessary. To develop optimized GPU-
aware MPI communication, these underlying approaches and
functionalities need to be considered and utilized within the
MPI library to trigger the GPU-aware implementation of the
operation beyond a simple staging approach.

III. DESIGN

In this section, we delve into the details of the optimized
designs we propose for GPU-aware Nonblocking Neighbor-
hood Alltoallv communication. These optimizations are also
extended to other forms of neighborhood alltoall communica-
tion including MPI_{Neighbor, Ineighbor}_{alltoall, alltoallv,
alltoallw }.

A. State-of-the-Art Neighborhood Collectives

First, we take a look at the state-of-the-art MPI li-
braries implementations of neighborhood based collective
communication. While sparse/neighborhood communication
has been studied in the literature, in practice, we find that
MPI libraries still rely on an iterative send and recv ap-
proach similar to implementing a communication pattern
with point-to-point operations. In Algorithm 1, we detail
the current implementation of nonblocking neighborhood
collective communication. At the application layer, after
the communication graph is created with a call to one
MPI_Cart_Create or MPI_Dist_graph_create, a call is made
to MPI_Ineighbor_Alltoallv. In Algorithm 1, we see that at
each rank, information is extracted related to the indegree
(number of processes sending to the source rank), and the
outdegree (number of processes receiving from the source
rank). This information is then used to create two loops to first
schedule the send operations iteratively in the order of the src
array and second to schedule the receive operations iteratively
in the order that they are passed into the algorithm in the
dsts array. This kind of a design in practice does not account
for contention or take advantage of the extensive information
provided by a neighborhood call related to the communication
graph and processes involved in each neighborhood, and
merely implements the neighborhood communication pattern
in the same way a point-to-point implementation of the same
communication pattern would operate.

We use this baseline to motivate optimizations for neigh-
borhood communication where processes are scheduling com-
munication such that the network is congested by multiple
processes in the communicator sending to one destination

process. This is further elaborated on in the examples pre-
sented and evaluated in Section IV. The specific examples
such as Figure 4 show all processes are sending to the same
process in each step, rather than scheduling the communication
such that this congestion is unloaded at each step to better
utilize the network, and the underlying interconnects providing
high speed latency between processes on the same node. We
propose optimizations to Neighborhood MPI communication
to enhance the lower-level utilization of the hardware and
interconnects.

Algorithm 1: MPI_Ineighbor_Alltoallv State-of-the-
Art
1: sendbuf < send buffer starting address
2: sendcounts <— # of elements to send to every neighbor
3: sdispls « displacement i corresponds to data for
neighbor i
4: recvbuf < receive buffer starting address
rcounts <— # of elements received by every neighbor
6: rdispls < displacement j corresponds to location to
store data incoming from neighbor j
7: indegree < # of processes source is receiving from
8: outdegree < # of processes source is sending to
9: M PI_Dist_graph_neighbors_count (indegree,
outdegree, weighted)
10: for ¢ = 0—outdegree do
11:  sbuf = sendbuf + sdispls]i]
12:  Schedule_Send(sbuf, sendcounts[i], dsts[i])
13: end for
14: for j = 0—indegree do
15:  rbuf = recvbuf + rdispls[j]
16:  Schedule_Recv(rbuf, recvcounts[j], src[j])
17: end for

e

B. GPU-aware Implementation of Neighborhood Collectives

While GPU-aware MPI libraries have extensive support
and optimized algorithms for GPU-aware MPI collective op-
erations, this has not been extended to neighborhood col-
lectives. State-of-the-art MPI libraries do not have support
for GPU-aware Neighborhood collective communication. The
NCCL library has support for neighbor exchange, but the
responsibility is passed to the user to implement this using
NCCL send and receive operations. This level of point-to-
point implementations of neighborhood communication pat-
terns can be supported by all GPU-aware MPI libraries, but
does not account for the knowledge gap between applica-
tion development and underlying MPI usability. By adding
support for GPU-aware Neighborhood collectives, all factors
such as deadlock, correctness, optimizations, and efficient
performance are handled at the MPI-level and not exposed
to the user. They merely utilize the collective operation and
MPI graph creation to handle their communication pattern.
In this work, we extend GPU-awareness for Neighborhood
collectives such that our implementation of neighborhood
collectives can have a GPU buffer passed directly into the MPI



Algorithm 2: MPI_Ineighbor_Alltoallv Proposed—
Nearest Neighbor Design

Algorithm 3: Get Nearest Neighbor Implementation

1:

2
3:
4

SANRA

10:
11:
12:
13:
14:
15:

44.

Input :

: sendbuf < send buffer starting address
sendcounts < # of elements to send to every neighbor
: sdispls < displacement i corresponds to data for

neighbor i
recvbu f < receive buffer starting address

: rcounts < # of elements received by every neighbor

rdispls < displacement j corresponds to location to
store data incoming from neighbor j
Variables Defined :
n_nhbr < nearest neighbor
sof fset <— Offset into send Buffer
indegree < # of processes source is receiving from
outdegree < # of processes source is sending to
Function :
/I Extract info related to every rank in/out degree
MPI_D:ist_graph_neighbors_count (indegree,
outdegree, weighted)
if dsts[outdegree — 1] <= rank then
for k = (outdegree — 1) to 0 do
sbuf = sendbuf + sdispls|k]
Schedule_Send(sbuf, sendcounts[k], dsts[k])
end for

. else if dsts[0] >= rank then

for [ = 0 to outdegree do
sbuf = sendbuf + sdispls]l]
Schedule_Send(sbuf, sendcounts[1], dsts[1])
end for

. else

/I Refer to Algorithm 6
Get_Nearest_Neighbor(rank, dsts, outdegree)
z+ 0
y < n_nhbr
z < n_nhbr —1
while z < outdegree do
if y < outdegree then
sbuf = sendbuf + sdispls[y]
Schedule_Send(sbuf, sendcounts[y], dsts[y])
Y+ -+,
T+ +;
end if
if z > 0 then
sbuf = sendbuf + sdispls|z]
Schedule_Send(sbuf, sendcounts[z], dsts[z])
Z—
T+ +;
end if
end while

: end if
: /I Schedule receives for every rank
: for 7 =0 to indegree do

rbuf = recvbuf + rdispls[j]
Schedule_Recv(rbuf, recvcounts[j], src[j])

: end for

1: Input :

2: rank < Rank of source process

3: dsts < stores ranks of outgoing neighbors of source
process

4: outdegree < # of outgoing neighbors of the source
process

5: Output :

6: n_nhbr < NearestNeighbor

7: Function :
Get_Nearest_Neighbor(rank, dsts, outdegree) :

8: f + outdegree

9: while d < f do

10:  soffset + (d+ f)/2

11:  if dsts[sof fset]| == rank then

12: n_nhbr < sof fset;

13: break;

14:  else if dsts[sof fset] > rank then

15: if (sof fset > 0 and rank > dsts[sof fset — 1])
then

16: n_nhbr < (rank — dsts[sof fset — 1] >

dsts[sof fset] — rank) ?
sof fset : (sof fset —1);

17: break;

18: end if

19: [+ sof fset

20:  else

21 if (sof fset < (outdegree — 1) and
rank < dsts[sof fset 4 1]) then

22: n_nhbr < (rank — dsts[sof fset] >

dsts[sof fset + 1] — rank) ?
(sof fset+ 1) : sof fset;

23: break;

24: end if

25: d < sof fset +1
26:  end if

27:  n_nhbr < sof fset
28: end while

call allowing for utilization of different GPU-based protocols.
Through support for GPU-awareness, underlying protocols
such as GDRCopy [16], GPUDirect RDMA technology [14],
and Inter-Process Communication (IPC) [15] can be utilized
between the GPUs during communication to utilize the hard-
ware efficiently. This is also extended over underlying CUDA
and ROCm support to run on both NVIDIA and AMD GPUs.

C. Non-Blocking Neighborhood Alltoallv Designs

The challenges in optimizing neighborhood communication
come from the arbitrariness of the communicator size and
number of processes involved in each rank’s communication
scheme. For traditional collectives, creating an optimized
algorithm that utilizes topology information to generate a
hierarchy or tree-like structure amongst processes will involve



a fixed offset or a fixed tree pattern that can be applied in
all contexts of the collective call. For neighborhood com-
munication, the design considerations can be specific to the
communication pattern at hand. In particular, many neighbor-
hood communication patterns can have quite an unbalanced
communication scheme amongst processes, defined by the
degree of processes sending to (indegree) and the degree
of processing being sent from (outdegree) each rank. This
information is extracted at the beginning of the neighborhood
call and utilized for memory allocation considerations and for
scheduling the number of sends and receives specific to each
rank (Algorithm 2, Line 15).

In particular, with the example demonstrated in Table VII
and Figure 4, each rank loops through the outdegree
value and schedules send operations to each process in its
neighborhood and then loops through the indegree value to
schedule all the receives. As noted in these demonstrations of
the communication pattern, an iterative approach like this with
no consideration to the topology or graph pattern can lead to
very inefficient scheduling. In each step, multiple processes are
sending to the same rank, leaving many other communication
paths idle. This is particularly relevant in a GPU-aware case
where high-speed interconnects between GPUs in a GPU-
dense node configuration, such as NVLink, provide high speed
and throughput that can be utilized here. If the scheduling is
optimized such that the links are being utilized in scenarios
where they would otherwise remain idle, the contention going
to one process in each step can be reduced significantly. This
contention is even more critical in such a communication
pattern at a larger scale where many more processes are
sending to the same process at the same time.

We propose a nearest-neighbor design for MPI
nonblocking neighborhood Alltoallv that utilizes information
extracted from MPI_Graph_neighbors_count or
MPI_Dist_graph_neighbors_count depending on
whether it is a standard graph topology or distributed
graph topology, respectively. In this work, we look at
examples that utilize a distributed graph topology and use
MPI_Dist_graph_neighbors_count to extract the
indegree and outdegree associated with each rank.

In Algorithm 2, we consider GPU-dense systems where
intra-node communication involves high-speed interconnects
and higher connectivity enabling more efficient communica-
tion to first schedule the nearest neighbor and reorder the
pattern with which processes send data to each other. If the
source process is the highest rank amongst the destinations
that the source process will be sending to in the ordered array
of destinations (dsts[]), then the process will send to the
ranks in its communicator starting from the process closest to it
until the lowest rank. This is applied in the opposite direction,
assuming that the current rank is the lowest rank in the com-
municator, then the sends are initiated in a standard iterative
approach to schedule. In all other cases, where the current rank
is neither the highest nor the lowest rank in the communicator,
we make a call to the Get_Nearest_Neighbor (Algo-
rithm 2 line 28) function to get the nearest neighbor (n_nhbr)

in the dsts[] array amongst the outgoing neighbors of the
process. This is implemented in Algorithm 3.

The nearest neighbor implementation (Algorithm 3) takes as
input the rank of the source process (rank), the information
stored regarding the ranks of the outgoing neighbors of the
source process (dsts), and the number of outgoing neighbors
from the source (outdegree) to find the rank of the nearest
neighbor to the source rank in the neighborhood. For a
traditional collective operation, this could be extracted easily
by assuming that ranks in the +/- 1 range of a process are
the nearest process. However, with neighborhood collectives,
this becomes a lot more complex considering not all processes
are in the neighborhood of each other (i.e. they may not be
outgoing/incoming neighbors of each other). Since we have
the number of outdegree and an array storing the ranks
of each neighbor, we can do a binary search to find the
nearest neighbor (n_nhbr). Once this value is determined,
in Algorithm 2, we then schedule a send operation to the
nearest rank greater than and the nearest rank less than the
current process until all processes are met. We also handle
the case where this is not an even pattern between processes.
This allows for an example demonstrated in Figure 4, where
MPI_Ineighbor_alltoallv is used to scatter from a
parallel vector to a sequential vector to be rescheduled such
that the load is more balanced as demonstrated in Figure 5.
This approach can also be applied to blocking MPI neigh-
borhood alltoall, alltoallv, and alltoallw and to nonblocking
neighborhood alltoall and alltoallw. The different schemes
require separate consideration for the datatype being passed
depending on whether you are utilizing alltoallw, and the
amount of data being passed for alltoallv. A nonblocking
algorithm can easily be applied as a blocking algorithm, with
a MPI_Waitall operation at the end of the algorithm definition.

IV. EVALUATION

In this section, we evaluate our proposed optimizations and
GPU-aware Neighborhood nonblocking Alltoallv communica-
tion using the PETSc library. We utilize PETSc, the Portable,
Extensible Toolkit for Scientific Computation to demonstrate
performance benefits of our designs compared to existing
methodologies used in the library.

A. Experimental Setup

In order to demonstrate support on multiple different types
of GPUs (NVIDIA and AMD), and various network intercon-
nects (Infiniband and Slingshot), we expand our evaluation to
cover a larger scope of system configurations. We utilize the
Lassen system, [19], at Lawrence Livermore National Labo-
ratory (LLNL) and the Spock system, [20], at the Oakridge
Leadership Computing Facility (OLCF). The system details
associated with Lassen are detailed in Table I where we run our
experiments on up to 64 GPUs (16 nodes, 4 GPUs per node)
with NVIDIA V100 GPUs, NVLink connecting the GPUs
within the node, and Infiniband networking across nodes.

The system details associated with Spock are detailed
in Table II, where we run our experiments on up to 64



TABLE I
DETAILS OF SYSTEM USED FOR EVALUATION

[ System Details - Lassen at LLNL ]

Architecture: ppcbdle
Model name: POWER9
Numa Nodes: 6

Core(s) per socket: 22
Socket(s): 2

Network Interconnect: Infiniband EDR (25 GB/s)
GPU Vendor & Type NVIDIA V100

GPUs Per Node 4

Intra-Node GPU Interconnect: 2-Lane NVLink (50 GB/s)
Intra-Node Cross Socket Interconnect: | X-Bus (64 GB/s)

CUDA Version 11.0.2

GPUs (16 nodes, 4 GPUs per node) with AMD MI100
GPUs, Infinity fabric connecting GPUs within the nodes, and
Slingshot networking across nodes. With the growing system
requirements for the top supercomputers, particularly with
the #1 Supercomputer, Frontier [21] on the Top500 [2] list
being equipped with Slingshot networking and AMD GPUs,
it is pertinent to show optimizations and scalability in this
ecosystem in addition to the more widely accessible NVIDIA
GPUs and infiniband networking on systems in recent years.

TABLE I
DETAILS OF SYSTEM USED FOR EVALUATION

[ System Details - Spock at OLCF |

Architecture: x86_64

Model name: AMD EPYC 7662 64-Core Processor
Numa Nodes: 4

Core(s) per socket: 64

Socket(s): 1

Network Interconnect: Slingshot-10 (12.5 + 12.5 GB/s)
GPU Vendor & Type AMD MI100

GPUs Per Node 4

Intra-Node GPU Interconnect: | Infinity Fabric (46 + 46 GB/s)
ROCm Version 5.0.2

B. PETSc

The PETSc toolkit is widely used in HPC applications
for algebraic solving including applications such as AWP-
ODC, MILC, and OpenFOAM. It supports stencil and ghost-
cell communication patterns and includes various scalable
solutions defined by structures for applications modeled by
partial differential equations [3]. The toolkit has been opti-
mized to have support for GPUs [22] and to run with CUDA,
HIP, SYCL, OpenCL, and RAJA. It is an open-source imple-
mentation widely used and continuously enhanced to support
changing hardware and architecture. With the exascale era de-
manding more GPU-based performance optimizations, there is
a need for scalable solutions on GPUs within PETSc that apply
to both NVIDIA GPUs and optimized on AMD GPUs and the
Slingshot interconnect for the current exascale supercomputer,
Frontier, and the upcoming, Aurora system [23] at the Argonne
Leadership Computing Facility (ALCF).

Through the PETSc test suite, when testing different data
structures and routines, we can pass one of either: basic,

window, or neighbor to sf_type defining whether to utilize one-
sided, point-to-point or a neighborhood communication mech-
anism used to create the star forest (SF) object (PetscSF), [24].
PETSc uses star forests to define communication patterns
efficiently and to manage the communication of arrays and
vectors within an MPI communication realm. It has support
for running with —-sf_type neighbor to initiate a non-
blocking neighborhood alltoallv MPI call. Within PETSc, the
application will stage the buffer to the CPU (copy from device
to host), then call the MPI operation, and then stage the buffer
back to the GPU (copy from host to device) when the MPI
library does not have support for passing a GPU buffer directly
to the MPI call. With our GPU-aware MPI implementation,
we are able to run the neighborhood option on GPUs without
requiring staging at the application level or at the MPI level,
eliminating this added copy overhead, which is evident in the
performance comparisons presented in this section.

In our evaluation we compare the neighborhood approach
against the basic, point-to-point approach to demonstrate op-
timized performance when utilizing a specific MPI neighbor-
hood call to define the forest. We noticed several run-time
errors utilizing the window option with GPU-aware PETSc and
therefore did not include this in the evaluation. We also eval-
uate the neighborhood sf_type using different vec_types
including --vec_type cuda to run with CUDA-aware
MPI on NVIDIA GPUs and —-vec_type hip to run with
ROCm-aware MPI on AMD GPUs.

We demonstrate three routines in PETSc that utilize
MPI_Ineighbor_alltoallv below: 1. scattering from a parallel
vector to a parallel vector (Figure 2), 2. scattering from a
sequential vector to a parallel vector (Figure 3), and 3. scat-
tering from a parallel vector to a sequential vector (Figure 4).
These examples are presented in order of complexity of the
communication pattern. We evaluate the time spent in the
following three events for each of these routines: VecScat-
terBegin, VecScatterEnd, and SFSetUP. These three routines
are impacted by the performance of a MPI_Ineighbor_alltoallv
call to do the scatter operation on the vector (VecScatterBegin
and VecScatterEnd) and to set up the star forest based on the
MPI communication happening.

0 1 2
4 5 6

Fig. 2. PETSc —Scatter from a parallel vector to a parallel vector—
Routine (NOTE: Example shows the communication pattern on 8 Processes)

In the first routine in PETSc that we evaluate, involving
scattering data from a parallel vector to a parallel vector
using neighborhood communication, Table IV, each of the
processes send data to the next rank in a ring fashion. In
this table, ”Out Degree” refers to the number of processes the
source rank is sending to, and the ”In Degree” refers to the
number of processes the source rank is receiving from. In this
communication pattern, Figure 2, the load is balanced across



TABLE III
PETSC —SCATTER FROM A PARALLEL VECTOR TO A PARALLEL VECTOR— ROUTINE
PERFORMANCE EVALUATION ON 64 GPUS (16 NODES AND 4 GPUS PER NODE) ON THE LASSEN SYSTEM

Event Time (seconds) % Improvement
_sf_type basic _sf_type neighbor -sf_type neighbor Cli)mpared tg 1CCompare.d }tlo
-vec_type cuda “vec_type cuda -vec_type cuda . -sf_type basic | -sf_type neighbor
- - w/ GPU-aware MPI Designs -vec_type cuda -vec_type cuda
VecScatterBegin: 8.23E-03 9.79E-03 6.70E-03 18.55% 31.58%
VecScatterEnd: 1.85E-02 2.13E-02 1.84E-02 0.37% 13.65%
SFSetUp: 9.56E-04 2.49E-03 4.29E-04 55.10% 82.74%
| SUM of Events: | 2.76E-02 | 3.36E-02 | 2.55E-02 I 7.67 % | 24.00% |

processes where each process is sending to and receiving from
one other process.

TABLE IV
PETSC —SCATTER FROM A PARALLEL VECTOR TO A PARALLEL
VECTOR— ROUTINE (COMMUNICATION PATTERN)

Sl;):;;e Sends To || Out Degree | In Degree
0 1 1 1
1 2 1 1
2 3 1 1
3 4 1 1
4 5 1 1
5 6 1 1
6 7 1 1
7 0 1 1

For simplicity, we demonstrate the communication load
when utilizing 8 processes. In our evaluation, we extend this
use case across multiple processes. This is an example of a
simple neighborhood call where the load is balanced between
processes. At scale, this sequence is also balanced similar to
a ring fashion where every rank communicates with the next
rank. We evaluate this routine on 64 GPUs on the Lassen
system in Table III with PETSc basic sf_type and cuda vectors,
and the current implementation in PETSc of cuda vectors
with CPU-staging neighbor sf_type, and PETSc neighbor and
cuda vectors using our proposed GPU-aware nonblocking
neighborhood communication. We see approximately 7.67%
improvement against the point-to-point implementation. For
this simple example, the benefits seen at the GPU-level are
attained from having GPU-aware underlying MPI support. The
optimized designs would not have significant impact here with
scheduling due to the balanced and simple workload. When
comparing with a CPU-staging scheme, the added overhead of
copying back and forth to the GPU with every collective call
can be significant and evident here where we show approxi-
mately 24% enhancements against the CPU-staging schemes.
We present this example to demonstrate the benefit of a GPU-
aware implementation of neighborhood communication.

In Table VI, we demonstrate the scenario in PETSc where
data is scattered from a sequential vector to a parallel vector.

In this routine, many processes communicate data to a specific
smaller set of processes. This can be seen in Figure 3, in an 8
process case, where processes 4-7 do not communicate with
each other but would communicate over the network (in a
4PPN case). Scheduling the processes here does not yield opti-
mal setup in SFSetUp where we see that the performance is not
as efficient as the alternatives, but does improve performance
when utilizing GPU-aware MPI protocols. This is because the
processes are all communicating to a smaller set of processes.
We see quite improved performance for VecScatterBegin and
VecScatterEnd compared to the CPU-staging technique, and
the basic approach, respectively when utilizing GPU-aware
MPI. Through the neighborhood exchange, we are able to
show 8.55% improvement against the point-to-point approach,
and approximately 14.11% against the CPU-staging approach.

Ay

4 5 6 7

Fig. 3. PETSc —Scatter from a sequential vector to a parallel vector—
Routine (NOTE: Example shows the communication pattern on 8 Processes)

In the final example, routine 11, where the structure scatters
from a parallel vector to a sequential vector, we see the case
where this design yields enhanced performance for a very
network-congested communication pattern. In Table VII, we
see that in each step all the processes are typically sending
to the same process. This can lead to a lot of congestion
over the network and leaves several communication paths and
links idle when they can be utilized to progress other com-
munication between processes. This is further depicted step-
by-step in Figure 4. Through the optimized schemes, where
the scheduling is enhanced to provide better performance, as
depicted in Figure 5, we are able to show performance gain
at 64 GPUs on NVIDIA and AMD GPUs. We evaluate it on
NVIDIA GPUs on the Lassen system in Table VIII, where
we show 8.25% improvement over the basic approach, and
30.90% improvement over the CPU-staging approach. We also
evaluate this on AMD GPUs on the Spock system in Table IX,
demonstrating 33.25% and 29.52% improvement against the



TABLE V
PETSC —SCATTER FROM A SEQUENTIAL VECTOR TO A PARALLEL VECTOR— ROUTINE
PERFORMANCE EVALUATION ON 64 GPUS (16 NODES AND 4 GPUS PER NODE) ON THE LASSEN SYSTEM

Event Time (seconds) % Improvement
_sf_type basic _sf_type neighbor -sf_type neighbor Cli)mpared tg 1CCompare.d }tlo
-vec_type cuda “vec_type cuda -vec_type cuda . -sf_type basic | -sf_type neighbor
- - w/ GPU-aware MPI Designs -vec_type cuda -vec_type cuda
VecScatterBegin: 4.61E-03 6.20E-03 4.30E-03 6.60% 30.65%
VecScatterEnd: 1.09E-03 5.73E-04 6.04E-04 44.75% -5.40%
SFSetUp: 2.52E-03 1.98E-03 2.61E-03 -3.60% -32.17%
| SUM of Events: | 8.22E-03 | 8.75E-03 | 7.52E-03 I 8.55% | 14.11% |
TABLE VI STEP 1

PETSC —SCATTER FROM A SEQUENTIAL VECTOR TO A PARALLEL
VECTOR— ROUTINE (COMMUNICATION PATTERN)

Slg:;f(e Sends To Out Degree | In Degree
0 - - 0 4
1 0 - 1 6
2 0 1 2 2
3 0 1 2 0
4 0 1 2 0
5 1 - 1 0
6 1 2 2 0
7 1 2 2 0

basic and CPU-staging schemes, respectively. The negative
improvement, emphasized with a (¥) in the table are a result of
the MPI_Dist_graph_create operation used for Neighborhood
calls to generate the graph topology. It makes sense that at this
scale with this heavy load of a communication pattern, there
will be some overhead to generate the graph topology. The
smaller value for the basic approach is a result of this being a
point-to-point scheme that does not utilize a graph topology,
and therefore does not call this APIL.

TABLE VII
PETSC —SCATTER FROM A PARALLEL VECTOR TO A SEQUENTIAL
VECTOR— ROUTINE

S;{)::;f(e Sends To Out Degree | In Degree
0 s 0 7
1 of[2[-1]-1]-1-]1- 2 6
2 O 1 [3]4[5]-]- 5 6
3 O 1 [2]4[5]6]|7 7 5
4 O[1[2|3[5]6]7 7 5
5 Of[1[]2]|3[4]6]7 7 4
6 Ol 1234|517 7 4
7 Ol 1[2]3[4]|5]|6 7 4

V. RELATED WORK

In [25], Hoefler et. al addressed the need for representation
of stencil computations being addressed in MPI beyond using
standard collective calls. They proposed various principles
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Fig. 4. PETSc —Scatter from a parallel vector to a sequential vector—
Routine. (NOTE: Example shows the communication pattern on 8 Processes.
For simplicity we demonstrate an 8 GPUs per node (GPN) case in the diagram
here but to demonstrate scalability, we do our evaluation with a higher GPN
case where the communication pattern is even denser and more congestion is
incurred by many more processes sending simultaneously to one process).
Note the congestion in each of these steps when all/many processes are
sending to the same rank. Through the optimized designs, this congestion is
handled through determining the nearest-neighbor and utilizing more efficient
scheduling to send the data across the network.
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for optimizing communication for this kind of pattern by
utilizing neighborhood communication as opposed to utilizing
point-to-point operations. Neighborhood collective operations
were then introduced in the MPI 3.0 standard. Hoefler et.
al [26] proposed 3 different sparse nearest neighbor collective
operations, called sparse gather, sparse all-to-all, and sparse re-
duction operations. Traff et. al [27] also proposed 3 algorithms
for neighborhood collective operations for parallel stencil-
like computations and discussed a mechanism that has fast,
local computation of communication schedules. This work was
extended in [28] when they proposed Cartesian Collective



TABLE

VIII

PETSC —SCATTER FROM A PARALLEL VECTOR TO A SEQUENTIAL VECTOR— ROUTINE
PERFORMANCE EVALUATION ON 64 GPUs (16 NODES AND 4 GPUS PER NODE) ON THE LASSEN SYSTEM WITH NVIDIA GPUS AND INFINIBAND

INTERCONNECT):
Event Time (seconds) % Improvement
sf_type basic | -sf_type neighbor -sf_type neighbor Compared to Compare.d to
_vec_type cuda _vec_type cuda -vec_type cuda -sf_type basic | -sf_type neighbor
- - w/ GPU-aware MPI Designs -vec_type cuda -vec_type cuda
VecScatterBegin: 9.85E-02 1.73E-01 1.14E-01 -16.17% * 33.86%
VecScatterEnd: 6.06E-02 3.96E-02 3.65E-02 39.85% 7.91%
SFSetUp: 9.16E-02 1.20E-01 7.92E-02 13.57% 34.21%
| SUM of Events: | 2.51E-01 3.33E-01 | 2.30E-01 I 8.25% | 30.90% |

TABLE IX
PETSC —SCATTER FROM A PARALLEL VECTOR TO A SEQUENTIAL VECTOR— ROUTINE
PERFORMANCE EVALUATION ON 64 GPUS (16 NODES AND 4 GPUS PER NODE) ON THE SPOCK SYSTEM WITH AMD GPUS AND SLINGSHOT

INTERCONNECT):
Event Time (seconds) % Improvement
-sf_type basic | -sf_type neighbor -sf_type nelgl?bor Cfo mparfi)d to fCompargd Itl(l))
_vec_type hip vec_type hip -vec_type hip - -sf_type asic | - __type neig 1bor

- - w/ GPU-aware MPI Designs -vec_type hip -vec_type hip
VecScatterBegin: 2.58E-02 3.87E-02 2.91E-02 -12.51% * 24.83%
VecScatterEnd: 1.99E-02 1.28E-02 5.31E-04 97.33% 95.84%
SFSetUp: 4.62E-03 4.17E-03 4.03E-03 12.86% 3.46%

| SUM of Events: | 5.04E-02 | 5.56E-02 | 3.36E-02 || 33.25% | 39.52% |

Fig. 5. PETSc Routine 11 Optimal Scheduling: The communication pattern
used in PETSc with Nonblocking Neighborhood Alltoallv to scatter from a
parallel vector to a sequential vector using 8 GPUs across two nodes with
optimized Nonblocking Alltoallv to enhance the scheduling of the processes.
This example was run on 64 GPUs in our evaluation where we will be
unloading a lot of contention rescheduling 63 GPUs from sending to Process
0 initially leaving all other communication paths between GPUs idle.
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Communication for isomorphic stencil patterns. They also pro-
posed message-combining algorithms and implemented that on
top of MPI for alltoall and allgather type Cartesian collective
communications.

Mirsadeghi et. al addressed optimizations by exploiting
common neighborhood patterns in [29], and proposed de-
signs to build optimized message-combining communication
schedules. Ghazimirsaeed et. al [30] proposed a distributed
algorithm for neighborhood communication by modeling the
part of problems as a weighted modeling problem in hyper-
graphs. They also considered the topology of the neighborhood
and proposed topology-agnostic and topology-aware designs.
This work was extended in [31], where Ghazimirsaeed et. al
improved neighborhood communication for large messages by
importing the virtual communication pattern and the physical
topology of the cluster. They also considered the load balance
issue and proposed a mathematical model to calculate the
capacity and dispatch the communication flow.

VI. CONCLUSION

In this paper, we proposed GPU-aware support to MPI
Neighborhood alltoall operations. In particular, we proposed
optimizations to MPI_Ineighbor_Alltoallv for high node-incast
neighborhood communication. We identified the overlap po-
tential in the communication and proposed enhanced de-
signs to take advantage of optimal paths between GPUs for
Neighborhood collective operations to utilize the underlying
communication paths and links. We evaluated the performance
of nonblocking MPI Neighborhood alltoallv on NVIDIA and



AMD GPUs on systems utilizing different interconnects in-
cluding Slingshot and Infiniband.

We utilized the PETSc toolkit to examine three routines
reliant on Nonblocking MPI neighborhood alltoallv implemen-
tations: scattering from a parallel vector to a parallel vector,
scattering from a sequential vector to a parallel vector, and
scattering from a parallel vector to a sequential vector using a
star forest graph representation. We demonstrated over 30%
improvement when utilizing our schemes compared to the
existing approaches in PETSc. In the future, this work can
be extended to add support for GPU-aware neighborhood
collective communication to other applications that utilize
sparse communication patterns implemented through point-to-
point operations.
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