
Received: 13 December 2022 Revised: 5 June 2023 Accepted: 10 July 2023

DOI: 10.1002/cpe.7879

R E S EARCH ART I C L E

Accelerating communicationwithmulti-HCA aware collectives
inMPI

Tu Tran Bharath Ramesh BenjaminMichalowicz Mustafa Abduljabbar

Hari Subramoni Aamir Shafi Dhabaleswar K. Panda

Computer Science and Engineering, TheOhio

State University, Columbus, Ohio, USA

Correspondence

Tu Tran, Computer Science and Engineering,

TheOhio State University, Columbus, OH, USA.

Email: tran.839@osu.edu

Summary

To accelerate the communication between nodes, supercomputers are now equipped

with multiple network adapters per node, also referred to as HCAs (Host Channel

Adapters), resulting in a “multi-rail”/“multi-HCA” network. For example, the ThetaGPU

system at Argonne National Laboratory (ANL) has eight adapters per node; with this

many networking resources available, utilizing all of them becomes non-trivial. The

MessagePassing Interface (MPI) is adominantmodel for high-performance computing

clusters. Not all MPI collectives utilize all resources, and this becomes more appar-

ent with advances in bandwidth and adapter count in a given cluster. In this work, we

provide a thorough performance analysis of existingmultirail solutions and their impli-

cations on collectives and present the necessity for further enhancement. Specifically,

we propose novel designs for hierarchical, multi-HCA-aware Allgather. The proposed

designs fully utilize all the available network adapters within a node and provide high

overlap between inter-node and intra-node communication. At the micro-benchmark

level, we see large inter-node improvements up to 62% and 61% better than HPC-X

and MVAPICH2-X for 1024 processes. Because Allgather is used in Ring-Allreduce,

our designs also improve its performance by 56% and 44% compared to HPC-X and

MVAPICH2-X, respectively. At the application level, our enhanced Allgather shows

1.98× and 1.42× improvement in a matrix-vector multiplication kernel when com-

pared toHPC-X andMVAPICH2-X, andAllreduce performs up to 7.83%better in deep

learning training againstMVAPICH2-X.

KEYWORDS

Allgather, Allreduce, collectives, HCA-aware, MPI, network-aware

1 INTRODUCTION

Modern supercomputers are now equipped with more than one network adapter per node, resulting in a multirail network to further increase

bandwidth between compute nodes. Such a network can be built by using more than one Host Channel Adapter (HCA) per node. In this paper, the

terms “rail” and “’HCA” are used interchangeably. Examples of such a system are Frontier1 and El Capitan,2 the first exascale computers planned to

debut in 2022 and 2023.With enormous computing capabilities at our disposal, using all of these becomes a nontrivial task.

Among commonly used parallel programmingmodels such as sharedmemory,message passing, and partitioned global address space (PGAS),3,4

theMessagePassing Interface (MPI) standard5 is currently thede-factoparallel programmingmodelonmodernhigh-performancecomputing (HPC)

clusters. The Exascale Computing Project (ECP)6 was initiated as a primary attempt to pursue Exascale computing by the US government in 2016

Concurrency Computat Pract Exper. 2023;e7879. wileyonlinelibrary.com/journal/cpe © 2023 JohnWiley & Sons, Ltd. 1 of 20
https://doi.org/10.1002/cpe.7879

https://orcid.org/0000-0003-0040-8404
http://wileyonlinelibrary.com/journal/CPE

2 of 20 TRAN ET AL.

F I GURE 1 Bandwidth comparison between intra-node and inter-node communication.

due to its huge potential of contributing to the American society and the world through scientific discovery, energy assurance, economic competi-

tiveness, national security, pandemic simulations, etc. In 2018, Bernholdt et al.7 surveyed theMPI usage in the ECP. Out of the 97 projects active at

the time of the survey, 77 responses were received, and 56 reported they were using MPI. In preparation for Exascale, MPI has been continuously

studied, analyzed, and improved ever since 2009 by the MPI community.8,9 Point-to-point and collective communications are the two main types

defined by theMPI Standard; collectives, in particular, involve two ormore processes and contribute to a significant part ofmanyHPC applications’

total runtime.

1.1 Motivation

Inter-node communication is bolstered by increasing the number of network adapters per node; conversely, intra-node bandwidth will not change

until/unless a cluster is upgraded to a CPU architecture with a faster memory subsystem. Figure 1 shows the bandwidth differences between

intra-node communication using CMA (Cross Memory Attach) and inter-node point-to-point communication using one and two HCAs at the MPI

level. Here, the bandwidth of inter-node communication with one HCA is close to that of intra-node communication, with inter-node bandwidth

doublingwhena secondHCA is utilized. Thedetails of theexperimental environmentof all of the experiments in this paper canbe found in Section5.

As a result, existing collective designs need to be revisited and augmented to be able to fully utilize the additional network resources.

In general, there are twocategories of collective algorithms: flat and two-level. Conventional flat algorithms,10 such asRing, donot differentiate

intra-nodeand inter-nodecommunication. Forexample, largemessages insideanAllgatherwithmore thanoneprocesspernode (PPN)arecollected

in a ring fashion. In each communication step, a node sends data to its right peer and receives it from its left; if there are N processes participating

in an Allgather routine, there will beN − 1 communication steps. Therefore, the communication will be bottlenecked by the slowest links—namely,

intra-nodetransfers.To furtherdemonstrate the issue,weperformedanexperimentwith2nodesand2PPNperforminganAllgather ina ring fashion

on a cluster with 2 adapters per node. Figure 2 shows the timeline view of communication events extracted and redrawn from the TAU profiling

system.11 TAU’s tracing capability allows us to presentwhen/where events happened along a global timeline aswell aswhen/wheremessageswere

sent. Another collective that employs a ring algorithm for largemessages isAllreduce. This collective has beenheavily studied and continuously gets

improved by the academic community12-14; it is frequently used in both traditional HPC andDL operations.

Two-level algorithms are also referred to as single-leader or multileader-based designs. Within a node, processes are divided into one or mul-

tiple groups, and each group contains a designated leader. In the first phase, all processes share data with group leaders. In the second phase,

leaders from each node perform a data exchange using a flat algorithm. Finally, The leaders broadcast the result to their intra-node peers. In the

multi-leader-based design proposed in Reference 15, the communication in the second phase is a blend of data exchanges between leaders within

and across nodes using conventional flat algorithms like Ring; this can potentially lead to a bottleneck due to the difference in intra-node and

inter-node bandwidth. The bottleneck is clearly demonstrated in Figure 2. The problemwill only getworse formulti-rail networks. Besides that, the

authors clearly separated the communication phases. A phase starts right after the previous one has finished while phases two (inter-leader data

exchange) and three (node-level data distribution) can be overlapped.

1.2 Contributions

In this paper,we takeup these challenges andproposemulti-HCAawaredesigns. In addition topreliminary results froma recentlypublished study,16

we do the following in addition to them: (1) We first study the performance characterization of existing multirail solutions. (2) With the insights,

TRAN ET AL. 3 of 20

F I GURE 2 Allgather 2 Nodes, 2 PPN communication timeline visualization. Inter-node data exchanges between process 1, 2 and 0, 3 are two
times faster than intra-node ones of process 0, 1 and 2, 3.

we then propose novel multirail-aware collectives. Specifically, we focus on the two significant ones: Allgather and Allreduce. Besides the wide

applicationofAllreduceonboth traditionalHPCandDeepLearning,Allgather is an important collectiveused inmanyapplications suchas lower and

upper triangle factorization, solving differential equations, linear algebra operations such as Bayesian Probabilistic Matrix Factorization,17-19 and

matrix–matrix/matrix–vector multiplication.19,20 The designs not only fully utilize all of the available network adapters in a node but also provide

high overlap between inter-node and intra-node communication. To summarize, this papermakes the following contributions:

• We first evaluate the performance of existingmultirail solutions to understand and identify their limitations.

• Wepropose scalable and hierarchical multi-HCA aware collectives.

• We conduct a thorough performance evaluation of the designs and compare them with various MPI implementations, namely HPC-X and

MVAPICH2-X.

• Our new schemes achieve up to 62% improvement against HPC-X and 61% against MVAPICH2-X at the micro-benchmark level, and our design

for inter-node communication boosts the performance of Ring Allreduce by 56% and 44% against HPC-X andMVAPICH2-X.

• At the application level, the enhanced Allgather shows 1.98× and 1.42× improvement in a matrix-vector multiplication kernel when compared

to HPC-X andMVAPICH2-X, and Allreduce performs up to 7.83% better in deep learning training againstMVAPICH2-X.

2 PERFORMANCE ANALYSIS OF COLLECTIVES ON MULTIRAIL SYSTEMS

In this section, we first summarize the existingmulti-rail designs: rail binding and rail sharing, thenwe evaluate and analyze the performance effect

of them on collectives from both theoretical and experimental angles. From the results, wewill demonstrate the need formulti-HCA aware designs

for collectives.

2.1 An overview of existingmultirail designs

Apoint-to-point designatMPI level formultirail InfiniBandclusterwasproposed in2004byLiuet al.21 This is oneof the firstworks to considerusing

multiplenetworkadapters tospeedupcommunicationbetweennodes.Currently,mostMPI implementationsalreadyhavesuchsupport formultirail

systems. To summarize, there are two basic adopted strategies: rail binding and rail sharing. Table 1 demonstrates the two mapping strategies of

two adapters to four processes provided by MVAPICH2. (1) In rail binding, application developers can either have network adapters assigned to

processes in a user-definedmanner or in a round-robin fashion by default. (2)While, in rail sharing, as the naming suggests, each process has access

to all the adapters residing within a node. For small messages, messages are sent through different rails in a round-robin fashion. This approach is

good for load balancing between different rails. As themessage size increases, the bandwidth usage of a rail will go up and eventually get saturated.

The use of message striping will be used in this case to overcome and lessen the bandwidth bottleneck. To clarify, messages are broken into many

chunksandsent acrossmultiple rails simultaneously. Figures1and3 illustrate thebandwidthand latency testsbetween twoprocesseson twonodes

at the MPI level using OSUmicro-benchmark.22 At 16 KB, the bandwidth of a rail is saturated, and the striping technique applies to any messages

with a size greater than this. This cuts the latency of largemessages in half.

4 of 20 TRAN ET AL.

TAB L E 1 Network adapter-to-process binding under different strategies of four processes and two adapters per node.

Process Rail binding Rail sharing

0 mlx5_0 mlx5_0mlx5_2

1 mlx5_2 mlx5_0mlx5_2

2 mlx5_0 mlx5_0mlx5_2

3 mlx5_2 mlx5_0mlx5_2

F I GURE 3 Inter-node latency comparison on two processes with one and two host channel adapters.

2.2 Performance characterization of rail binding and rail sharing on collective algorithms

In the following subsections, detailedanalysesof theperformanceofeachcollectivearepresentedwhenrunningonamultirail cluster. Tohavebetter

insights into why andwhen the existingmultirail solutions work, performancemodels for collectives are also shown. In each collective, we focus on

the analysis of the most commonly used algorithms that are designed to deliver good performance on different targeted message ranges: small,

medium and large. There is no precise definition in separating message size in small, medium or large categories. In this paper, we consider small

message size < 1 KB,medium one ≥ 1 KB and < 16 KB, and large one ≥ 16KB. To demonstrate the necessity for improvement of each algorithm,

we classify into three kinds: (1)No – existing solutions show benefits, (2)Yes – existing solutions showNObenefits even though an additional HCA

is provided, but there is no slowdown, and (3) Can be further improved – existing solutions show benefits but it can be further improved to have

better performance.

Table 2 summarizes the efficiency of different collective algorithms with rail binding and sharing of two adapters and compares them to

the single-HCA case to quantify performance improvement and network resource utilization. The experimental numbers indicate that not every

algorithmcanbe improvedby rail bindingor sharing. Threeof the sevencollectivesneed tobeenhanced, andanotheronecanpotentially havebetter

performance; those collectives and their corresponding message range are highlighted Table 2. Specifically, Ring Allgather and Allreduce, designed

for largemessages, shownobenefitwitheitherof the twoexistingmulti-rail strategies, andall algorithmsofReduce listedherealsohaveno improve-

ment. In otherwords, in these cases, there is nobenefit even thoughanadditional networkadapter is available. This indicates thenetwork resources

are not utilized efficiently, which presents a necessity for enhancement in such circumstances.

Table 3 depicts a list of notations that are used throughout this paper. To keep the analysis simple but straightforward and easy to understand,

we employHockneymodel23 to estimate the cost of collective algorithms, the total process countN ∗ P is a power of two, and omit delay caused by

network congestion or memory contention, but retain the cost for adapter contention CH between processes when its bandwidth is saturated. For

rail binding of two HCAs, processes are mapped to HCAs in a round-robin fashion, each adapter serves (P∕2) processes, and CH is reduced by half.

For rail sharing, a message is broken into two chunks and sent over by two HCAs, so bandwidth BWH is increased two times. A transfer of message

Mwith H adapters can be modeled as TH(M) = 𝛼H + (CH ∗ M)∕(BWH ∗ H). As we can see, with more adapters the latency term (𝛼H) is still the same,

but the bandwidth term is divided by the number of adapters H. The model conforms well with empirical numbers of transfer messages using two

adapters in Figure 3. In summary, when usingmore than one adapter to transfermessages, therewill be an improvement for largemessages, not for

smaller ones.

2.2.1 Allgather

There aremany conventional algorithms for Allgather, with themost popular ones being RecursiveDoubling (RD), Bruck’s, Ring, andDirect Spread.

In this paper, we focus on RD, Ring, and Direct Spread.

TRAN ET AL. 5 of 20

TAB L E 2 Performance analysis of collective algorithmswith existingmultirail designs: rail binding and sharing.

Collective Algorithm

Speedup of rail binding

of two host channel

adapters (HCAs)

Speedup of rail sharing

of twoHCAs

Targeted

message range

In need of

improvement

Allgather Recursive doubling 1.95× 1.95× Small message No

Direct Spread 2.24× 2× Medium and large

message

No

Ring No improvement No improvement Largemessage Yes

Allreduce Binomial tree 1.30× 1.30× Small message No

Ring (Reduce

Scatter – Allgather)

No improvement No improvement Largemessage Yes

Scatter/ Gather Binomial tree No improvement 1.65× Small message No

Direct No improvement 1.95× Largemessage No

Bcast Binomial tree No improvement 1.23× Small message No

Scatter – Recursive

doubling Allgather

No improvement 1.25x Mediummessage Can be further improved

Scatter – Ring Allgather No improvement 1.14× Largemessage Can be further improved

Reduce Binomial tree No improvement No improvement Small message Yes

Reduce Scatter – Gather No improvement No improvement Largemessage Yes

Alltoall Bruck 1.30× 1.37× Small message No

Pairwise 1.71× 1.92× Largemessage No

Notes: The collectives showing no improvement and needed to enhance are highlighted in bold. The experiments are conducted on Thor cluster

(Section 5.1), running with 256 processes with themessage size from 1 B to 1MB and usingMVAPICH2-X software.

TAB L E 3 Notations used in the cost models.

Symbol Description

N Number ofNodes

P Number of Processes per node

M Message size

H Number of adapters (HCAs)

𝛾 Computation cost per byte for reduction

𝛼C Startup time per intra-node transfer byCPU

BWC Bandwidth of intra-node transfer byCPU

𝛼H Startup time per inter-node transfer byHCA

BWH Bandwidth of inter-node transfer byHCA

𝛼L Startup cost per Local memory copy

BWL Bandwidth of Local memoy copy

CH Cost of network adapter contention

TC(M) Time to send an intra-nodemessage of sizeM

TH(M) Time to send amessage of sizeM using H adapters

TL(M) Time to perform amemory copy of sizeM

6 of 20 TRAN ET AL.

1. RecursiveDoubling (RD) executes in log2(P ∗ N) stepswith log2(P) intra-node transfers and log2(N) inter-node transfers for each process, where
N and P are the number of nodes and local processes. In step i, the distance between any communicating processes is 2i−1, and themessage size

increases by a factor of two after each step. For non-power-of-two processes, RD requires additional steps to complete the communication. RD

is good for small messages, and its total cost is TRD(M) = log2(P)𝛼C + log2(N)𝛼H + CH∗M
BWC

∑log2 P
i=1 2i−1 + CH∗M

BWH

∑log2 P∗N
j=log2 P+1

2j−1. Figure 4A shows that for

both rail binding and sharing, as the message size goes up, we see 2× better than using one rail. For rail binding, each adapter serves only (P∕2)
processes, which leads to the speedup. On the other hand, with rail sharing, every process has access to two adapters, so the transfer time of a

messageM is 2× faster. As a result, the overall time of RD is 1.95× faster.

2. In the Ring algorithm, data are exchanged along a virtual ring of processes. In each step i, a process rank r sends the data it has received in

the previous step to its right peer (rank r + 1) and receives from its left peer (rank r + 1). If there are N ∗ P processes participating in the com-

munication, the algorithm will take N ∗ P − 1 steps to finish. For this particular algorithm, the slowest links are the bottlenecks because other

processes cannot continue until they have received the data traveling through these slow links. Therefore, the total cost is TRing(M) = (N ∗
P − 1) ∗ Max(𝛼C +

CH∗M
BWC

, 𝛼H + CH∗M
BWH

). With rail binding and rail sharing, only inter-node bandwidth is increased, so neither of it can help improve

communication for this algorithm.

3. In Direct Spread (dissemination) Allgather algorithm, each process directly communicates with the source processes to get the data instead of

getting from an intermediate process theway Ring algorithm does. Specifically, in step i, a process rank r receives data directly from the process

rank (r − i)%N. This algorithm requires N ∗ P − 1 steps to complete like Ring for a communicator of N ∗ P processes. The total cost of Direct

Spread is TDS(M) = (P − 1)(𝛼C +
CH∗M
BWC

) + (N − 1)P(𝛼H + CH∗M
BWH

). Figure 4B demonstrate the speedups are 2.24× and 2× for rail binding and sharing,

respectively. With 2× inter-node bandwidth due to an additional adapter, rail binding is able to provide better than 2× performance due to the

fact that each adapter only handles (P∕2) processes, which leads to a 2× reduction in the number of send and receive requests each adapter has

to handle. Long queue length leads to long expected waiting time in the queue. On the other hand, the number of send and receive requests for

rail sharing and the single-HCA cases are the same.

Figure 5 compares the performanceofAllgather algorithmswhen combinedwith themultirail strategy that shows thebest benefits. All of them

are configured to use twoHCAs but Ring because it shows no benefit. Formessages>2KB, Ring delivers the best performancewith just one rail. As

discussed earlier, with additional adapters, the latency term (𝛼) remains, but the bandwidth is divided by the number of adapters partaking in the

communication. As a result, it is very challenging to improve small message range, but it is not the case for medium and large ones. As a result, this

presents an opportunity for optimization.

2.2.2 Allreduce

The twomost commonly used Allreduce algorithms are Binomial tree for small messages and Ring for large ones.

1. Similar to Recursive Doubling, the Binomial Tree pattern executes in log2(P ∗ N) steps with log2(P) intra-node data exchanges and log2(N)
inter-node exchanges. The differences are data are reduced at each step and data size is not doubled. As a result, the communication cost is

TBin(M) = log2(P)(𝛼C +
CH∗M
BWC

+M𝛾) + log2(N)(𝛼H + CH∗M
BWH

+M𝛾). Theempirical results inFigure6 indicate that the improvementof existingdesigns

F I GURE 4 Performance comparison of Allgather algorithmswith one and two host channel adapters (256 B to 256 KB).While there is no

performance difference for the three strategies whenmessage size<256B, multirail strategies continue to show benefits for message size>256
KB. (A) Recursive doubling; (B) direct spread.

TRAN ET AL. 7 of 20

F I GURE 5 Comparison of Allgather algorithmswhen using the best multirail strategy (two host channel adapters) for each (1 B to 1MB). (A)

Small andmediummessages; (B) largemessages.

F I GURE 6 PerformanceofBinomial treewithoneand twohost channel adapters (Allreduce) (256B to256KB).While there is noperformance
difference for the three strategies whenmessage size<256 B, multirail strategies continue to show benefits for message size>256 KB.

is up to 1.30× better than 1-HCA case, owing to the facts that each adapter handles 2× less load for rail binding case and the time to deliver a

message is 2× faster for rail sharing.

2. ProposedbyPatarasuketal.,24 RingAllreduce isproven tobebandwidth-optimal,making it particularly suitable for largemessages: all processes

exchange data in a logical ring manner, and the algorithm executes in two phases: In the Reduce-Scatter phase, a logical ring communication is

performed in N ∗ P − 1 iterations to exchange data of size (M
N∗P

). As analyzed previously, in the ring pattern, the slowest links dictate the whole

communication. Therefore, the cost of Reduce-Scatter phase is TR−S = (N ∗ P − 1) ∗ Max(𝛼C +
CH∗M

N∗P∗BWC
+ M

N∗P
𝛾, 𝛼H + CH∗M

N∗P∗BWH
+ M

N∗P
𝛾). After that,

a RingAllgather is performed, and as a result, each processwill have a complete reduction vector. The total cost of RingAllreduce is a sumof TR−S
and TRingAllgather , discussed earlier. The experimental results in Table 2 show rail binding and sharing do not help improve the performance. This

situation is similar to the case of Ring Allgather, and there is potential for improvement.

2.2.3 Scatter/gather

Scatter is the reverse of Gather and vice versa. They both use the same algorithms for small and large messages, (binomial tree and direct

send/receive), respectively.

1. The binomial tree pattern of a Scatter operation is similar to the one of Allreduce, which happens in log2(P ∗ N) steps with log2(N) inter-node
transfers and log2(P) intra-node data transfers. In each step i, the root process and the processes that received data in previous steps send data
to processes that are (N∗P

2i
) ranks away. In contrary to Binomial tree Allreduce, there is no reduction, and the transfer data size is divided by half

in each step. A Gather is a reverse of this algorithm. The overall cost is TBin(M) = log2(N)𝛼H +
∑log2 N

i=1
CH∗M∗N∗P
BWH2

i + log2(P)𝛼C +
∑log2 N∗P

j=log2 N+1
CH∗M∗N∗P
BWC2

j .

Figure 7A shows that as message size is large enough (>2 kB), the speedup is up to 1.65× for rail sharing and none for the binding case. By the

nature of this algorithm, only one process in a node does the inter-node transfers, so allowing it to have access to oneHCA in rail binding shows

no improvement over one-HCA case

2. For largemessages, the root process posts (N ∗ P − 1) nonblocking sends to transfer data of sizeMdirectly to other processes. Since intra-node

transfers are performed by CPU cores, and inter-node ones are performed by adapters, they can be overlapped. As a result, the communication

cost is TDirect(M) = Max
[
(P − 1)(𝛼C +

CH∗M
BWC

), (N − 1)(𝛼H + CH∗M
BWH

)
]
. Figure 7B indicates that the speedup is up to 1.95× for messages from 32 kB to

1MB rail sharing and none for the binding case. For this collective, only the root has data, so rail binding does not help with performance.

8 of 20 TRAN ET AL.

F I GURE 7 Performance comparison of scatter algorithmswith one and two host channel adapters (256 B to 256 kB).While there is no
performance difference for the three strategies whenmessage size<256 B, multirail strategies continue to show benefits for message size>256
kB. (A) Binomial tree; (B) direct.

F I GURE 8 Performance of Binomial tree Bcast with one and two host channel adapters (HCAs) (1 KB to 1MB). For message size from 1 B to

32 kB, multi-rail strategies with design overhead lead to slightly higher latency than the single HCA case.

2.2.4 Bcast

Similar to other collectives, Bcast also utilizes binomial tree communication pattern for smallmessages. For larger ones, a Scatter is first performed,

and then an Allgather is followed.

1. The way Bcast communicates using binomial tree pattern is the same as Scatter. At each step i, processes with data send to processes that are

(N∗P
2i
) ranksaway.Theonlydistinction is that thedatasize remains thesameforall steps.Therefore, the total cost isTBin(M) = log2(N)(𝛼H + CH∗M

BWH
) +

log2(P)(𝛼C +
CH∗M
BWC

). The speedup of rail sharing is up to 1.23× for messages from 256 kB in Figure 8. Similar to the case of Scatter, rail binding is

not beneficial because only one process does inter-node transfers.

2. For larger message size, Bcast is a combination a Scatter followed by a recursive doubling or ring Allgather, since the cost of each component

has already been analyzed previously, the total cost is straightforward TBcast(M) = TScatter(M) + TAllgather(M). Even though Figure 9 shows that rail
sharing improves the performance, a speedup of 1.14–1.25× for messages from 128 kB, Bcast can be further improved by optimizing Allgather,

which is the focus of this paper. In addition, large-message Bcast algorithms show no improvement with rail binding.

2.2.5 Reduce

A variant of Allreduce, Reduce also uses binomial tree for a small message range. For a large one, the approach is also similar to ring Allreduce.

Specifically, a Reduce first performs a Reduce-Scatter, and then is followed by a Gather.

1. Since binomial trees of Reduce and Allreduce are the same. the cost is also the same TBin(M) = log2(P)(𝛼C +
CH∗M
BWC

+M𝛾) + log2(N)(𝛼H + CH∗M
BWH

+
M𝛾). Since only one process does the inter-node transfer, rail binding is not useful. For rail sharing, the empirical numbers showno improvement.

Besides communication time, computation time also takes up a portion of the total time for this collective.

TRAN ET AL. 9 of 20

F I GURE 9 Performance comparison of Bcast algorithmswith one and two host channel adapters (1 kB to 1MB). Formessage size<1K, there

is no performance difference for the three strategies. (A) Scatter – recursive doubling Allgather; (B) Scatter – Ring Allgather.

F I GURE 10 Performance of Alltoall algorithmswith one and two host channel adapters (256 B to 256 kB).While there is no performance

difference for the three strategies whenmessage size<256 B, multirail strategies continue to show benefits for message size>256 kB. (A) Bruck;
(B) pairwise.

2. The cost for large-message Reduce algorithm, a Reduce-Scatter followed by aGather, is just the sum of each collective. Therefore, to obtain the

final cost of Reduce, we can just replace the cost of Allgather with Gather (Section 2.2.3) in the final cost of Ring Allreduce in Section 2.2.2. The

empirical numbers show a marginal improvement of just 1.03×. The small improvement here comes from the Gather phase. Thus, we consider

there is no improvement when using existingmultirail strategies.

2.2.6 Alltoall

There arenotmanyalgorithms forAlltoall such asBruck, ScatterDestination, andPairwise.Herewe focusonBruck for smallmessages andPairwise

for large ones.

1. Bruck is a store-and-forward algorithm, good for small messages. Before performing any data transfer, all processes do a local data shift. After

that, the algorithm executes in log2(N ∗ P) steps. In step i (0 ≤ i < log2(N ∗ P)), process rank r sends data of sizeMN∗P
2

to rank r + 2i and receives

from rank r − 2i. When the communication is done, another local inverse rotation is performed to place data in order.10 In the final cost model,

we include the time to do inverse and rotation (Tlocalop) for an Alltoall of N ∗ P processes with messageM, which becomes significant when M

is large. The total cost of the algorithm is TBruck(M) = log2(P)(𝛼C +
CH∗M∗N∗P
2BWC

) + log2(N)(𝛼H + CH∗M∗N∗P
2BWH

) + Tlocalop(M,N ∗ P). Figure 10A indicates a

speedup of up to 1.30× and 1.37× for rail binding and sharing withmessage size from 512 B to 1MB.

2. Pairwise algorithm executes in (N ∗ P − 1) steps with (P − 1) and (N − 1) ∗ P exchanges with local and remote processes, respectively. In each

step i, process rank r exchanges data of sizeMwith rank (rxori). As a result, the total cost isTPairwise(M) = (P − 1)(𝛼C +
CH∗M
BWC

) + (N − 1)P(𝛼H + CH∗M
BWH

).
A speedup of up to 1.71× and 1.92× for rail binding and sharing withmessage size from 2 kB to 1MB is shown in Figure 10B.

In summary, not every collective can be improved by existing multi-rail solutions (rail binding or sharing), such as Allgather, Allreduce, Reduce.

Since Allgather is a common factor in other collectives, enhancing Allgather will lead to the improvement of other collectives: Allreduce and Bcast.

10 of 20 TRAN ET AL.

In this paper, owing to the popularity of Allgather and Allreduce, we focus on optimizing Allgather and showcasing its benefit on Allreduce. More

precisely, novel designs are proposed tomake Allgather multi-HCA aware.

3 THE PROPOSED DESIGNS

3.1 Amulti-HCA aware design for intra-node communication

In Allgather, each process sends its data to every other process. For pure intra-node communications, while these send operations are performed

by memory copy operations that are executed by CPU processors, network adapters remain completely idle. As a result, each process can further

accelerate communication by assigning a fraction of their workload to these adapters. Figure 11 demonstrates the design idea in which intra-node

communication is accelerated byHHCAs. Since the number of processes is usually larger than theHCA count per node, the offloadedwork coming

from processes should be evenly distributed amongHCAs so that each process finishes all of its send requests at the same time.

By assigning toomuch or too little work to processors or adapters, communicationwill be hampered by the component taking the longest time

to finish its task.Therefore, inorder foreachprocessandadapter to finish roughlyat thesametime,wemustensure that theyhandle theappropriate

workload.Here a tuning algorithm is proposed to trackdownan idealworkload tooffload toadapters. Figure12 shows the relationshipbetween the

offload size to adapters and the time it takes to finish the communication.We can easily determine the optimal point by firstmeasuring the duration

of communication done by all adapters while processors remain idle. After that, the offloaded workload is gradually reduced until the intersection

of the communication latency’s downward and upward trend lines is reached based on the correlation.

3.2 A hierarchical multi-HCA aware design for inter-node and intra-node communication

The details of the proposed design for inter-node communicationwithmultiple processes per node, namely a hierarchical multi-HCA aware design

are as follows:

F I GURE 11 Multi-HCA aware design: Utilizing idle host channel adapters (HCAs) to accelerate intra-node communication.

F I GURE 12 Correlation between the offload size to adapters and latency.

TRAN ET AL. 11 of 20

F I GURE 13 A timeline view of communication events of a node during inter-leader data exchange and node-level data distribution phases.

F I GURE 14 A timeline view of communication events of a node during inter-leader data exchange and node-level data distribution phases.

• Phase 1: Node-level data aggregation using the proposed intra-node allgather in Section 3.1.

• Phase 2: Data transfers between group leaders with a single process leader per node using either RD or Ring, depending on message sizes. All

processes within a node form a group, and each group has a group leader.

• Phase 3: Node-level data distributionwith group leaders copying to sharedmemory and groupmembers copying out.

During intra-nodecommunication inphaseone, networkadaptersareusually idledue tomemorycopiesbeingused in lieuof thenetwork,which

leads to inefficient resource utilization. The proposed intra-node Allgather is used to have better utilization of network resources. In phase two,

inter-leader data exchanges ofN nodes can be done in logN steps with RD or in (N − 1) steps with Ring. Node-level data distribution in phase three
can be overlappedwith phase two by using sharedmemory. As soon as a data chunk arrives in each step in phase two, group leaders can copy it into

sharedmemory and then increase a counter that indicates the availability of a data chunk in each step. Non-leader processes check the counter for

the arrived chunk to copy out into their buffers. Thus, network transfers and intra-node memory copies can be overlapped, which is demonstrated

in Figure 13.

For inter-leader data exchanges in phase two, Ring can performbetter and delivermore overlap thanRD, depending onmessage size. Figure 14

depicts the case of 8 leaders corresponding to eight nodeswithRing outperformingRDdue to higher overlap. ForRD, The size of data transferred in

the current step is twice that of the previous step, hence why RD loses its overlapping capability. Specifically, inter-node transfer of sizeD happens

concurrently with intra-node broadcast of size (D∕2) instead of size D as in the case of Ring. In addition, after the final data chunk has arrived,

leader processes need to do one final broadcast of that chunk; the data size of the final chunk of RD is 2(log2(N)−1) times bigger than the one of Ring.

As the number of nodes increases, we see a better level of overlap delivered by Ring when compared to RD. Figure 15 compares the performance

of Ring and RD used in the inter-leader data exchange phase. We see that RD outperforms Ring for small message sizes. The message size shown

in the figures is the message size of each process contributing to the Allgather; the real transferred message size by node leaders is PPN times

bigger than this.

12 of 20 TRAN ET AL.

F I GURE 15 Comparison of the recursive doubling and Ring algorithms in the proposed design during inter-leader data exchange. (A) 16
Nodes, 32 PPN; (B) 32 nodes, 32 PPN.

4 PERFORMANCE MODELS OF THE MULTI-HCA AWARE DESIGNS

4.1 Modeling the cost ofMHA-intra Allgather

Suppose there are P processes participating in an Allgather operation. In the MHA-intra algorithm, each process first copies its

data from send to receive buffers if the operation is not an in-place operation. After that, each process requests H HCAs to do

d transfers, while it does (P − 1 − d) intra-node transfers. d is the optimal number of offloaded transfers to HCAs per process,

depending on the number of processes P and message size M; For optimal communication, we need to distribute the workload

from processes to HCAs so that they can approximately finish at the same time. As a result, the following equation can be used

to find d:

TC(M) ∗ (P − 1 − d) = TH(M) ∗ P ∗ d

⇒ d = (TC(M) ∗ (P − 1))∕(TH(M) ∗ P + TC(M)). (1)

Asmentioned previously, a transfer of messageM byH adapters can bemodeled as TH(M) = 𝛼H +M∕(BWH ∗ H). A local memory copy of sizeM

can bemodeled as TP(M) = 𝛼P +M∕BWP. An intra-node transfer ofmessageM can bemodeled as TC(M) = 𝛼C + (M∕BWC) ∗ b, inwhich b is a number

of concurrent accesses tomemory. It is used tomodel thecongestionwhenmemorybandwidth is saturatedwith largemessages. For smallmessages,

b has a value of one.

As a result, theMHA-intra Allgather can be estimated as follows:

TMHA-intra(M) = TP(M)

+Max{(P − 1 − d) ∗ TC(M),

P ∗ d ∗ TH(M)}. (2)

4.2 Modeling the cost ofMHA-inter Allgather

For MHA-inter Allgather, the communication happens in three phases. In phase 1, data are shared with group leaders using MHA-intra algorithm,

then the cost is TMHA−intra(M), modeled in the previous section. For phase 2, group leaders perform data exchange of size (M ∗ P), either using RD
or Ring. While RD runs in logN steps with data size doubled in every step, Ring executes in N − 1 steps with data size of (M ∗ P). Then, the cost for
phase two is

Tphase2-RD(MP) = Tstep1 + Tstep2 + · · · + Tstep log(N)

= TH(M ∗ P) + TH(2 ∗ M ∗ P)

+ · · · + TH(log(N) ∗ M ∗ P)

= 𝛼H ∗ log(N)

+ (N − 1) ∗ (M ∗ P)∕(BWH ∗ H). (3)

TRAN ET AL. 13 of 20

Tphase-2-Ring(MP) = Tstep1 + Tstep2 + · · · + Tstep(N−1)

= TH(M ∗ P) + TH(M ∗ P)

+ · · · + TH(M ∗ P)

= 𝛼H ∗ (N − 1)

+ (N − 1) ∗ (M ∗ P)∕(BWH ∗ H). (4)

For thedatadistributionof node leaders inphase3, the leadersperformmultiplebroadcasts of size (M ∗ P)bycopying to sharedmemorybefore

peers can copy out to their local buffers. Peers cannot copy out concurrently because of memory congestion. As a result, the cost of copying out of

(P − 1)processes is the cost of one process’memory copy times the congestion factor cg(M,P − 1), which is a function of (P − 1)processes accessing
a shared region ofM bytes and thus can be empirically measured. Consequently, a broadcast can bemodeled as

Tintra bcast(M ∗ P)

= Tcopy in(M ∗ P) + Tcopy out(M ∗ P)

= (𝛼P + (M ∗ P)∕BWP)

+ (𝛼P + (M ∗ P)∕BWP) ∗ cg(M ∗ P,P − 1). (5)

When phase two overlaps with phase three, an inter-node transfer to get chunk i + 1 happens concurrently with an intra-node broadcast of

chunk i. Phase three endswhen leaders receive the last chunk; then, they can do a final broadcast to complete the communication. ThusMHA-inter

Allgather can bemodeled as follows:

TMHA-inter-RD(M)

= Tphase-1 + Tphase-2 + Tintra bcast(M ∗ P ∗ N∕2),

if Tintra bcast(M ∗ P) <= TH(2 ∗ M ∗ P)

= TH(M ∗ P) + (N − 1) ∗ Tintra bcast(M ∗ P),

otherwise (6)

. TMHA-inter-Ring(M)

= Tphase1 + Tphase2 + Tintra bcast(M ∗ P),

if Tintra bcast(M ∗ P) ≤ TH(M ∗ P)

= TH(M ∗ P) + (N − 1) ∗ Tintra bcast(M ∗ P),

otherwise (7)

.4.3 Model validation

To predict the performance ofMHA-intra andMHA-inter Allgather, wemust first empirically obtain parameters in Table 3. For intra-node communi-

cation, Equation (2) is used toestimate the cost ofMHA-intra. Figure16 shows that thepredicted latency is close to the actual latencyofMHA-intra,

which means the proposed model can estimate the trend properly. Since MHA-intra is designed for large messages, and the larger the message is

themore benefit it delivers, so a largemessage range from 256 K to 16MB is presented in Figure 16.

F I GURE 16 Validation ofMHA-intra with four processes.

14 of 20 TRAN ET AL.

F I GURE 17 Validation ofMHA-inter with eight nodes 32 PPN.

For inter-node communication, Equations (6) and (7) can be used to estimate the cost of MHA-inter when the algorithm for inter-leader data

exchange is RD and Ring, respectively. In Figure 17, the predicted latency and the actual latency reflect the tuned algorithm used in phase two

between RD and Ring. We can see that the estimated numbers from the proposed model are comparable with the measured numbers. As a result,

by using the twomodels, we can predict howmuch performance can be improved for a communication pattern of N nodes with P PPN on a system

ofH adapters.

5 PERFORMANCE EVALUATION

We first present the environment for evaluation and then provide the results of experiments performed to evaluate our proposed designs at the

micro-benchmark and application levels.

5.1 Experimental environment

Weconductedourexperimentson the “ThorεpartitionofHPCAdvisoryCouncil’s cluster.25 It consists of 32nodesequippedwithdual-socket Intel®

Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz (Broadwell), 1024 cores in total. Each node is equipped with 2 ConnectX-6 HDR100 100 Gb/s

InfiniBand adapters and 256 GB DDR4 2400 MHz RDIMMs. The operating system used is Rocky Linux 8.5 (Green Obsidian), with kernel version

4.18.0-348.12.2.el8_5.x86_64 andMellanoxOFED version 5.5-1.0.3.2.

Theproposeddesigns are comparedwith twowidely-usedMPI libraries:MVAPICH2-X-2.326 andHPC-X-2.10.0.27 MVAPICH2delivers thebest

performance, scalability, and fault tolerance for high-end computing systems and servers using InfiniBand,Omni-Path, Ethernet/iWARP, RoCE,Cray

Slingshot 10/11, and Rockport Networks networking technologies. NVIDIA®HPC-X® is a variant of OpenMPI28 maintained by NVIDIA that pro-

vides high performance, scalability, and efficiency and ensures that communication is fully optimized for NVIDIA InfiniBand networking solutions.

At micro-benchmark level, we use OSU Micro-Benchmarks (OMB),26 which is widely adopted by both academic and industrial communities for

benchmarkingMPI performance. For evaluatingDL performance,we use PyTorch-1.8.029 andHorovod-0.20.0.30 For a higher statistical confidence,

all of the experiments are run five times, and any noise or fluctuation has already been filtered out.Within eachOMB run, eachmessage is an aver-

age of 1000 iterations formessage size<8192B and 100 iterations for larger ones. Due to the nature of different designs, while some targets large

and very large messages, others deliver good performance for medium and large messages, thus different message ranges are shown: (1) a mes-

sage range from 256 kB to 16MB for for intra-node Allgather in Section 5.2, (2) a message range from 256 B to 256 kB for inter-node Allgather in

Section 5.3, and (3) a message range from 128 kB to 128MB for Allreduce in Section 5.4.

5.2 Intra-node Allgather evaluation

Figure 18A–D shows the performance evaluation of Allgather with different numbers of processes using OSUmicro-benchmarks.22 The proposed

design with the assistance of two available HCAs, when compared to HPC-X and MVAPICH2-X, speeds up the performance up to 64% and 65%

for two processes, 60% and 73% for four processes, 44% and 56% for eight processes, and 35% and 10% for 16 processes, respectively. We note

an expected trend: as the number of processes in the communication increases given a constant number of adapters, the performance benefit

decreases. Eachprocessoffloadsaportionof itsworkload toHCAswith theobjective thatprocesses andHCAscan finishat the same time, to reduce

communication time. The offloaded portion gets smallerwithmore participating processes because theHCAs alsomust process theworkload from

the additional processes. The offloaded portion represents the reduction in communication latency of each process. A smaller portion means less

performance improvement. Hencemore adapters are needed for sustained performancewhenmore processes are involved in the communication.

TRAN ET AL. 15 of 20

F I GURE 18 Evaluation of proposed Intra-nodeMPI_Allgather design against state of the art libraries via OSUMicrobenchmarks. (A) 2

Processes; (B) 4 processes; (C) 8 processes; (D) 16 processes.

F I GURE 19 Performance of different Allgather algorithmswith the proposed design on 256 processes.

5.3 Inter-node Allgather evaluation

We perform inter-node experiments with 8, 16, and 32 nodes, up to full-subscription of each node (32 PPN). The proposed design is initially com-

pared against RD (with two HCAs) and Ring. Figures 19 and 20 show that MHA Allgather is 47% better than RD at small messages and 41%

better than Ring at large messages—where each algorithm excels, respectively. Figures 21,22, and 23 compare the performance of our designs

with MVAPICH2-X and HPC-X when running with 256, 512, and 1024 processes, respectively. Our designs show significant improvement against

MVAPICH2-X and HPC-X: 29% and 21% better for 256 processes, 44% and 53% better for 512 processes, and 62% and 61% better for 1024

processes, respectively.

By decoupling inter-node and intra-node communication with a single leader per node in the proposed design, multiple HCAs are efficiently

utilized for communication across nodes. Additionally, performance gains also come from a higher overlap provided by Ring during the inter-node

distribution phase. The numbers shown are tuned numbers between these two algorithms.

5.4 Accelerating AllreducewithMHAAllgather

Allgather is used by several collectives, among them being Allreduce: in a Ring-Allreduce, a reduce-scatter is first performed, followed by an All-

gather, and through improving Allgather, we also improveAllreduce. Figure 24A,B shows an average of 10% and 26% improvement of the enhanced

Ring-Allreduce at 256 and 512 processes. As the message size goes up to 128MB, the improvement linearly decreases because of (1) the increase

in reduction time of larger buffers and (2) the higher cost of additional memory copies to shared regions when data no longer fit into cache.

16 of 20 TRAN ET AL.

F I GURE 20 Performance of different Allgather algorithmswith the proposed design. (A) 512 processes; (B) 1024 processes.

F I GURE 21 ProposedMPI_Allgather against state of the art libraries via OSUMicrobenchmarks on 256 processes (eight nodes 32 PPN). (A)
Mediummessages; (B) largemessages.

F I GURE 22 ProposedMPI_Allgather against state of the art libraries via OSUMicrobenchmarks on 512 processes (16 nodes 32 PPN). (A)
Mediummessages; (B) largemessages.

F I GURE 23 ProposedMPI_Allgather against state-of-the-art libraries via OSUMicrobenchmarks on 1024 processes (32 nodes 32 PPN). (A)

Mediummessages; (B) largemessages.

TRAN ET AL. 17 of 20

F I GURE 24 Performance comparison of the proposed design with Ring Allreduce. (A) 256 processes; (B) 512 processes.

F I GURE 25 Evaluation of proposed inter-nodeMPI_Allreduce design against state of the art libraries via OSUMicrobenchmarks at scale (32
PPN). (A) 8 nodes; (B) 16 nodes; (C) 32 nodes.

Figure 25 depicts the performance of the improved Allreduce compared to HPC-X and MVAPICH2-X. We see that Allreduce performs up to

34% and 15% better for 256 processes, 39% and 31% better for 512 processes, and 56% and 44% better for 1024 processes than HPC-X and

MVAPICH2-X, respectively.

5.5 Impact ofMHAAllgather onmatrix-vectormultiplication

Allgather appears inmany applications: lower/upper triangle factorization, differential equations, linear algebra operations such as Bayesian Prob-

abilistic Matrix Factorization,17,18 and matrix-matrix/matrix-vector multiplication.19,20 To demonstrate the performance of the proposed Allgather

at the application level, we evaluate matrix-vector multiplication (y = A ∗ x) in which A is a matrix of sizeM ∗ N, X and Y are inputs, and the output

vector is of sizeN ∗ 1andM ∗ 1, respectively.A is partitionedusingone-dimensional row layout, inwhicheachprocessholds (M∕#ofprocesses) rows.
Similarly, vector x any y are broken into equal segments of size (N∕#ofprocesses) and (M∕#ofprocesses) stored by each process. To domatrix-vector

multiplication, each process first broadcasts the input segment it stores, resulting in anAllgather (All-to-all Broadcast); after that, they perform the

multiplication locally to create their corresponding output segments. Figure 26 demonstrates the performance of thematrix-vector multiplication

kernel inGFLOP/s (higher isbetter). In theseexperiments,weconfigure theproblemsize (M ∗ N) so thatcommunicationcontributesasignificant time

in the total runtime of the kernel to see the impact of the improved Allgather. The proposed Allgather outperforms both HPC-X andMVAPICH2-X

by up to 1.98× and 1.42× for strong scaling and 1.84× and 1.94× for weak scaling experiments with 1024 processes.

5.6 Impact of the improved Allreduce on deep learning training

Here, we compare the runtime of training different neural networks through PyTorch and Horovod. In particular, we run the synthetic benchmark

provided by Horovod with a batch size of 16. This is the largest batch size that the evaluated cluster can run without running out of memory. The

three neural networks are ResNet50, ResNet101, and ResNet152 with 25.6, 44.7, and 60.4 million parameters, respectively.31 Due to technical

issues, we cannot set up HPC-X to work with Pytorch + Horovod despite our best effort. The reason may be that Open MPI cannot work with

several versions of Horovod, reported onHorovod’s website. Figure 27 shows that as the number of processes increases, we observe up to a 7.83%

improved runtime thanMVAPICH2-X in both epoch time and images per second for ResNet50.We see similar benefits when switching to a larger

neural network (ResNet101 or ResNet152).

18 of 20 TRAN ET AL.

× × ×

F I GURE 26 Performance evaluation ofMHA against state of the artMPI libraries in amatrix-vector multiplication kernel for weak and

strong scaling. (a) Strong Scaling of problem size 1024 × 32,768; (B) weak scaling.

F I GURE 27 ProposedMHA design againstMVAPICH2-X via PyTorch+HorovodDL performance evaluation: images per second. (A)
ResNet-50; (B) ResNet-101; (C) ResNet-152.

6 RELATED WORK

There are a few studies targeting optimization communication for multirail networks at collective level. The work of Chan et al.32 is similar to ours,

inwhich theyproposednewcollective algorithmswhere anode can senddata overmultiple links.However, theirwork, datedback to2006, targeted

direct networks (router-based) while ours is on indirect networks (switched). Nowadays, router-based networks are very rare, and most systems

arebuilt basedon switch-basednetworks.Qianet al.33 proposeddesigns forRDMA-basedMulti-portAll-gatheronmultirailQsNetII networks; ours

target InfiniBand systems, but the designs are general and can be applied to any kind of network. Träff et al.34 used a decompositionmethod to show

that collectives can be redesigned for better performancewhen exploitingmultilane communication. Their work is considered to be a performance

guideline users can referencewhenwritingMPI programs for onmultirail networks. By comparison, we propose designs that take low-level details

into consideration and can be integrated into any existing MPI implementation. Users can directly invoke high-level functions like MPI_Allgather,

which take away the burden of performance from users.

Thereare severalAllgatherdesigns for single rail systems. Sur et al.35 proposedanRDMA-basedAll-to-all Broadcast (Allgather). Specifically, the

design aims at eliminating the overhead of protocol handshakes andmultiple buffer registrations. Furthermore, they also cut down the copy cost by

dynamically choosing an optimal threshold froma copy-based approach to a zero-copy one as the collective progresses.Mamidala et al.36 proposed

sharedMemoryandRDMA-basedDesign forAllgather. The communicationbuffers of eachprocessusingdifferent communication channels arenot

shared; the authors use shared memory for sharing the buffers for both intra and inter-node communication, resulting in overlapping of network

operations with intra-node sharedmemory copies. Kandalla et al.15 proposedmulti-leader-based Allgather algorithms for multicore clusters. Con-

ventional flat and existing algorithms do not take into consideration of differences in latency and bandwidth of communication at the inter-node,

inter-socket, or intra-socket level, resulting in bottlenecks caused by the slowest communication level. The authors resolve the congestion by using

multiple leaders per node to decouple communication at different levels.

7 CONCLUSION AND FUTURE WORK

In this paper, we thoroughly analyze the performance of existing multirail solutions on collectives, theoretically and empirically. Out of the seven

mentioned, three require improvement, andanotheronecanbe further enhanced.Basedon the insights andanalyses,weproposemulti-HCAaware

designs for theAllgather collectiveoperationwithperformancemodels toanalytically study the impactof suchdesigns.Wealso showhowAllgather

can be utilized to improve other collectives such as Allreduce. By offloading some of theworkload to the adapters in intra-node communication, we

TRAN ET AL. 19 of 20

see up to 65% performance gains. Our proposed hierarchical designs, which overlap with sharedmemory/intra-node communication, exhibit up to

71%performancegains. Inaddition,Allreducedeliversup to44%reduction in latencybyutilizingourproposedAllgather.At theapplication level, the

Matrix-Vector multiplication kernel using Allgather and a DL application using Allreduce show 94% and 7.83% reductions in runtime, respectively.

In the future, we plan to address other collectives such as Reduce and investigate the impact of NUMA systems on communication performance.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants #1818253, #1854828, #1931537, #2007991, #2018627, and XRAC grant #NCR-130002.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Tu Tran https://orcid.org/0000-0003-0040-8404

REFERENCES

1. Frontier. AccessedMarch 18. 2022 https://www.olcf.ornl.gov/frontier/

2. El Capitan. Accessed March 18. 2022. https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-

discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html

3. Zheng Y, Kamil A, Driscoll MB, Shan H, Yelick K. UPC++: a PGAS extension for C++. IEEE 28th International Parallel and Distributed Processing

Symposium; 2014:1105-1114.

4. ChapmanB,CurtisT,PophaleS, et al. IntroducingOpenSHMEM:SHMEMfor thePGAScommunity. Proceedingsof theFourthConferenceonPartitioned

Global Address Space ProgrammingModel; ACM; 2010:1-3.

5. Message Passing Interface Forum.MPI: a message-passing interface standard version 4.0. 2021.

6. Messina P. The exascale computing project. Comput Sci Eng. 2017;19(3):63-67.
7. Bernholdt DE, Boehm S, Bosilca G, et al. A survey ofMPI usage in the US exascale computing project. Concurr Comput Pract Exp. 2020;32(3):e4851.
8. Balaji P, Buntinas D, Goodell D, et al. MPI on a million processors. European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting.

Springer; 2009:20-30.

9. Thakur R, Balaji P, Buntinas D, et al. MPI at exascale. Proc SciDAC. 2010;2:14-35.
10. Thakur R, Rabenseifner R, GroppW.Optimization of collective communication operations inMPICH. Int J High Perform Comput Appl. 2005;19(1):49-66.
11. Shende SS,Malony AD. The TAU parallel performance system. Int J High Perform Comput Appl. 2006;20(2):287-311.
12. Castelló A, Quintana-Orti ES, Duato J. Accelerating distributed deep neural network training with pipelined MPI allreduce. Cluster Comput.

2021;24(4):3797-3813.

13. BayatpourM,Hashmi JM,ChakrabortyS, SubramoniH,KoushaP,PandaDK. Salar: scalable andadaptivedesigns for largemessage reduction collectives.

IEEE International Conference on Cluster Computing (CLUSTER); 2018:12-23.

14. Hashmi JM,Chakraborty S, BayatpourM, SubramoniH, PandaDK.Designing efficient shared address space reduction collectives formulti-/many-cores.

IEEE International Parallel and Distributed Processing Symposium (IPDPS); 2018:1020-1029.

15. Kandalla K, Subramoni H, Santhanaraman G, Koop M, Panda DK. Designing multi-leader-based allgather algorithms for multi-core clusters. IEEE

International Symposium on Parallel & Distributed Processing; 2009:1-8.

16. Tran T,Michalowicz B, Ramesh B, Subramoni H, Shafi A, PandaDK. Designing hierarchical multi-HCA aware Allgather inMPI.Workshop Proceedings of

the 51st International Conference on Parallel Processing; ACM; 2022:1-10.

17. SalakhutdinovR,MnihA.Bayesianprobabilisticmatrix factorizationusingMarkov chainMonteCarlo. Proceedingsof the25th InternationalConference

onMachine Learning; ACM; 2008:880-887.

18. Vander Aa T, Chakroun I, Haber T. Distributed Bayesian probabilistic matrix factorization. Proc Comput Sci. 2017;108:1030-1039.
19. ZhouH,Gracia J, Schneider R.MPI collectives formulti-core clusters: optimized performance of the hybridMPI+MPI parallel codes. Proceedings of the

48th International Conference on Parallel Processing:Workshops; ACM; 2019:1-10.

20. Implementation and evaluation of 2.5D matrix multiplication on the K computer. 2017. Accessed March 18, 2022 https://prace-ri.eu/wp-content/

uploads/PRACE-at-SC17-Daichi-Mokunoki.pdf

21. Liu J,VishnuA,PandaDK.Buildingmultirail infinibandclusters:Mpi-level designandperformanceevaluation. SC’04:Proceedingsof the2004ACM/IEEE

Conference on Supercomputing; 2004:33-33.

22. OSUMicro-Benchmarks. Osu network-based computing laboratory. AccessedMarch 18, 2022. http://mvapich.cse.ohio-state.edu/benchmarks

23. Hockney RW. The communication challenge forMPP: intel paragon andMeiko CS-2. Parallel Comput. 1994;20(3):389-398.
24. Patarasuk P, Yuan X. Bandwidth optimal all-reduce algorithms for clusters of workstations. J Parallel Distrib Comput. 2009;69(2):117-124.
25. Thor. AccessedMarch 18. 2022 https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/7864401/Thor

26. MVAPICH:MPI over InfiniBand, 10GigE/iWARP and RoCE. AccessedMarch 18. 2022 http://mvapich.cse.ohio-state.edu/

27. HPC-X. AccessedMarch 18. 2022 https://developer.nvidia.com/networking/hpc-x

28. OpenMPI: Open source high performance computing. AccessedMarch 18. 2022 https://www.open-mpi.org/

29. Paszke A, Gross S, Massa F, et al. Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inform Process Syst. 2019;8024-8035.
30. Sergeev A, Del BalsoM. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint arXiv:1802.05799. 2018.
31. Keras Applications. AccessedMarch 18. 2022 https://keras.io/api/applications/

32. Chan E, Van De Geijn R, GroppW, Thakur R. Collective communication on architectures that support simultaneous communication over multiple links.

Proceedings of the Eleventh ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming; 2006:2-11.

https://orcid.org/0000-0003-0040-8404
https://orcid.org/0000-0003-0040-8404
https://www.olcf.ornl.gov/frontier/
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://prace-ri.eu/wp-content/uploads/PRACE-at-SC17-Daichi-Mokunoki.pdf
https://prace-ri.eu/wp-content/uploads/PRACE-at-SC17-Daichi-Mokunoki.pdf
http://mvapich.cse.ohio-state.edu/benchmarks
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/7864401/%25Thor
http://mvapich.cse.ohio-state.edu/
https://developer.nvidia.com/networking/hpc-x
https://www.open-mpi.org/
https://keras.io/api/applications/

20 of 20 TRAN ET AL.

33. Qian Y, Afsahi A. High performance RDMA-based multi-port all-gather on multi-rail QsNet II. 21st International Symposium on High Performance

Computing Systems and Applications (HPCS’07); 2007:3.

34. Träff JL, Hunold S. Decomposing MPI collectives for exploiting multi-lane communication. -2020 IEEE International Conference on Cluster Computing

(CLUSTER); 2020:270-280.

35. Sur S, Bondhugula UKR, Mamidala A, Jin HW, Panda DK. High performance rdma based all-to-all broadcast for infiniband clusters. International
Conference on High-Performance Computing. Springer; 2005:148-157.

36. Mamidala AR, Vishnu A, Panda DK. Efficient shared memory and RDMA based design for mpi_allgather over InfiniBand. European Parallel Virtual
Machine/Message Passing Interface Users’ GroupMeeting. Springer.; 2006:66-75.

How to cite this article: Tran T, Ramesh B,Michalowicz B, et al. Accelerating communication withmulti-HCA aware collectives inMPI.

Concurrency Computat Pract Exper. 2023;e7879. doi: 10.1002/cpe.7879

	Accelerating communication with multi-HCA aware collectives in MPI
	1 INTRODUCTION
	1.1 Motivation
	1.2 Contributions

	2 PERFORMANCE ANALYSIS OF COLLECTIVES ON MULTIRAIL SYSTEMS
	2.1 An overview of existing multirail designs
	2.2 Performance characterization of rail binding and rail sharing on collective algorithms
	2.2.1 Allgather
	2.2.2 Allreduce
	2.2.3 Scatter/gather
	2.2.4 Bcast
	2.2.5 Reduce
	2.2.6 Alltoall

	3 THE PROPOSED DESIGNS
	3.1 A multi-HCA aware design for intra-node communication
	3.2 A hierarchical multi-HCA aware design for inter-node and intra-node communication

	4 PERFORMANCE MODELS OF THE MULTI-HCA AWARE DESIGNS
	4.1 Modeling the cost of MHA-intra Allgather
	4.2 Modeling the cost of MHA-inter Allgather
	4.3 Model validation

	5 PERFORMANCE EVALUATION
	5.1 Experimental environment
	5.2 Intra-node Allgather evaluation
	5.3 Inter-node Allgather evaluation
	5.4 Accelerating Allreduce with MHA Allgather
	5.5 Impact of MHA Allgather on matrix-vector multiplication
	5.6 Impact of the improved Allreduce on deep learning training

	6 RELATED WORK
	7 CONCLUSION AND FUTURE WORK

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

